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E. Augeraud-Véron†, G. Fabbri‡, K. Schubert�
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Abstract

This paper presents a benchmark stochastic endogenous growth model of an agri-

cultural economy. Producing food requires land, and increasing the share of total land

devoted to farming mechanically reduces the share of land devoted to biodiversity con-

servation. However, safeguarding a greater number of species guarantees, through spatial

exchanges, better ecosystem services, which in turn ensure lower volatility of agricul-

tural productivity. The optimal conversion/conservation rule is explicitly characterized,

as well as the total value of biodiversity in terms of the welfare gain from biodiversity

conservation, and the marginal value of biodiversity in terms of risk premium reduction,

namely its insurance value. The Epstein-Zin-Weil speci�cation of preferences allows us

to disentangle the e�ects of risk aversion and aversion to �uctuations.

KEY WORDS: Biodiversity, stochastic endogenous growth, insurance value, recursive

preferences.
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1 Introduction

From 1999 to 2008, 48 000 square kilometers of wildland were turned into cropland. By 2013,

cropland covered 12% of earth's ice-free surface; annually, more than 10% of the world net

primary production is turned into crops (Phalan et al. [31]). As documented since a long

time by ecologists (Preston [32], Rosenzweig [36]), the ensuing destruction of natural habitats

causes species extinctions and thus biodiversity loss. This destruction of habitats and natural

ecosystems for agricultural purposes, useful and inevitable as it may appear, is increasingly

questioned. Indeed, biodiversity provides for free a wide range of goods and services: provi-

sioning services, such as food, wood, freshwater, and regulating services, such as control of

the local climate, clean water provision, �ood control, regulation of soil fertility, pollination,

or biocontrol (pest control, resistance to plant invasion, disease control). These services are

impossible or too costly to replace arti�cially. They have a multifaceted non-market value,

which key determinants are important to understand for the design of conservation policies.

This paper o�ers a contribution to the theoretical economics literature on biodiversity, which

is at the moment rather scarce, in contrast to the rapidly growing empirical literature. It

does not pretend to explain the overall value of biodiversity, but focuses the attention to one

of the possible components of this overall value, the insurance component, in the context of

land use change.

In the debate about the trade-o� between food production and biodiversity conservation,

a growing body of evidence shows that, ironically, one of the ecological and economic deter-

minants of the value of ecosystem services is the feedback e�ect that biodiversity destruction

exerts on agricultural productivity. Biodiversity destruction negatively impacts the climatic,

hydrological and, more generally, ecological environment, which may in turn negatively af-

fect the mean level and/or the variability of agricultural productivity over time (Fuglie and

Nin-Pratt [13], de Mazancourt et al. [6]). To put things di�erently, biodiversity conservation

can provide bene�cial services that enhance mean agricultural productivity and reduce its

variability. We are interested in the second of these e�ects, namely the ability of a high level

of biodiversity to dampen �uctuations in agricultural productivity around its trend. In this

context, biodiversity acts as a form of insurance, a natural insurance against �uctuations in

agricultural production.
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To better study the impact of risk on optimal decisions in a dynamic context, we follow

the approach pioneered by Epstein and Zin (Epstein and Zin [9], [10], Du�e and Epstein [7])

and represent preferences by a recursive utility function. In this way, we are able to disentan-

gle two logically distinct concepts, the attitude towards time, represented by the aversion to

intertemporal �uctuations parameter, and the attitude towards risk, represented by the rel-

ative risk aversion parameter. Risk aversion quanti�es the preference for certain rather than

uncertain outcomes, and it only makes sense in a stochastic context. Conversely, aversion

to intertemporal �uctuations, i.e. the inverse of the elasticity of intertemporal substitution,

measures the propensity to smooth consumption over time, and is a fundamental parameter

in deterministic dynamic models as well. In typical endogenous growth models, when the

growth rate is positive, aversion to intertemporal �uctuations takes the form of a willingness

to increase the level of consumption at the expense of its growth rate. Several studies1 in the

�eld of natural resources and the environment show that these two concepts cannot satisfy-

ingly be embodied in a single parameter as they are when intertemporal additive expected

utility is considered.

We characterize the optimal allocation of land to biodiversity conservation. We show

that the optimal share of land devoted to biodiversity conservation is constant over time. It

decreases with the social discount rate and increases with risk aversion. It decreases with

aversion to �uctuations when the average trend of agricultural productivity corrected by the

elasticity of total volatility to the share of land devoted to farming is larger than the discount

1In a model of reservoir management, Howitt et al. [18] show that the intertemporal additive expected

utility function does not �t their data, whereas the recursive utility function does. Peltola and Knapp [30] use

recursive utility to study forestry management, and Lybbert and McPeak [28] for the trade-o� among di�erent

livestock for Kenyan pastoralists. They empirically identify the distinct values that should be taken by the

intertemporal elasticity of substitution and risk aversion parameters. Ha-Duong and Treich [17] evaluate

policies in a context of global warming; it is shown that the optimal policy responds di�erently to variation in

the intertemporal substitution parameter and in the risk aversion one. The same result is observed by Knapp

and Olson [20] for rangeland and groundwater management. They consider the e�ect of both parameters

on the optimal decision rule, showing in particular that when intertemporal substitution has a major e�ect,

risk aversion does not impact the optimal policy. The di�erent roles of the two parameters is also proved

in Epaulard and Pommeret [8] in the context of extraction of a non-renewable resource in a continuous time

framework.
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rate, but increases with aversion to �uctuations in the opposite case.

We then compute the total and the marginal values of biodiversity, interpreted as an

insurance against the volatility of agricultural productivity, because hedging against these

�uctuations is the only role biodiversity has in our model. The total value of biodiversity is

de�ned with reference to Lucas [26], [27] as the welfare gain from biodiversity conservation

under the optimal solution compared to a solution where total land conversion is achieved

ans all biodiversity is lost. Probably more meaningful in our context is the marginal welfare

gain associated to a biodiversity increase. It has been analyzed in a series of groundbreaking

studies by Baumgärtner [3], Quaas et al. [33], Quaas and Baumgärtner [34], Baumgärtner

and Quaas [4] and Baumgärtner and Strunz [5]. We therefore compute the marginal value of

biodiversity, in the spirit of Baumgärtner [3]. We study the determinants of these two values

of biodiversity. We show that both are increasing functions of risk aversion, but that the e�ect

of aversion to �uctuations is ambiguous. When the average trend of agricultural productivity

corrected by the elasticity of total volatility to the share of land devoted to farming is smaller

than the discount rate, the signs of the e�ects of increasing aversion to �uctuations on the

share of land devoted to biodiversity conservation and on the total and marginal values of

biodiversity are, quite intuitively, the same. But a counter-intuitive result may appear in the

opposite case, when risk parameters are large: the two signs may be opposite. Then, when

society becomes more averse to �uctuations it preserves less and less of something that has

more and more value: biodiversity.

Our analysis contributes to two strands of the literature. First, we contribute to a nascent

theoretical literature on the insurance value of biodiversity in the sense of Baumgärtner [3],

enlarging its de�nition to a stochastic dynamic framework. Indeed, the static context is a

limitation, because the e�ects of biodiversity degradation accumulate and spread over time.

In our model, the volatility of agricultural productivity depends on the whole historical path

of biodiversity conservation decisions. This dynamic context is essential to being able to speak

about elasticity of intertemporal substitution and aversion to �uctuations.

The second strand that our paper contributes to is the small but growing literature on nat-

ural resources that disentangles intertemporal substitution and risk aversion. In the speci�c

case of the relation between optimal growth and biodiversity conservation, we show that the
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optimal allocation of land and the values of biodiversity respond qualitatively di�erently to

the two parameters, and highlight the sometimes discordant in�uences of preferences towards

risk and time.

The paper proceeds as follows. In section 2 we present the basics of the model. We

explicitly solve it to obtain the optimal land conversion rate in section 3, and we compute the

total and marginal values of biodiversity in section 4. Section 5 concludes. All the proofs of

the results are in the Appendix.

2 The model

We build a highly stylized general equilibrium model of an agricultural economy, the simplest

we can think of that allows us to compute the value of biodiversity as insurance against

agricultural productivity �uctuations. We �rst present the model and its optimal solution,

and then determine the total and marginal values of biodiversity.

The planner of the agricultural economy, or the unique producer�consumer living in this

economy (the farmer), owns a stock L = 1 of land and she has to decide how to allocate it

between two possible intended uses: farming and biodiversity conservation. For t ≥ 0, we

denote by f(t) ∈ [0, 1] and 1 − f(t) ∈ [0, 1] the shares of land respectively used for farming

and left undeveloped, that is devoted to biodiversity conservation.

In the modeling of the ecological part of the model we have to specify the relationship

between space and biodiversity. Eppink and Withagen [11] simply introduce the classical

species-area curve �rst proposed in the 1920s by O. Arrhenius [2] and H. Gleason [14] to

describe this relationship. In Smulders et al. [38], biodiversity depends on the carrying

capacity, which is itself a function of the size of habitat. In Li et al. [24], the number of

species is explicitly modelled. We choose here to follow Lafuite and Loreau [23].

First, the evolution of biodiversity B(t), de�ned as the variety of ecological elements

present in a place, including genes, species, functional traits, communities etc., can be modeled

as2:

ηḂ(t) = − (B(t)− S(t)) with η > 0, (1)

2See Lafuite and Loreau [23] and the references therein.
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where S(t) is the long term species richness. This dynamics is very slow, compared to the

time scale of agricultural activity, so that we can safely consider that the dynamics occurs on

the slow manifold B(t) = S(t).

Second, according to the species-area curve, the number of species S(t) is constrained by

the size of the natural habitat:

S(t) = ε1(1− f(t))ε2 with ε1 > 0 and 0 < ε2 < 1. (2)

The economic part of the model is very simple. We assume that agricultural production

at time t is given by:

Y (t) = f(t)A(t) (3)

where A(t) is the productivity of a unit of land devoted to farming at time t, which dynamics

is described by a stochastic di�erential equation (SDE). More precisely, given a complete

probability space (Ω,F ,P) and a real standard Brownian motion W : [0,+∞) × Ω → R,

adapted to some �ltration Ft, we assume that A(t) is a solution of the following SDE: dA(t) = αA(t) dt+ Σ(t)A(t) dW (t)

A(0) = A0.
(4)

In such an expression, α ∈ R represents some �xed and exogenous rate of technological

progress in farming activities (it can be equal to 0), and the term Σ(t) measures the volatility

of agricultural productivity.

Finally, we suppose that at each time t ≥ 0 all the production is consumed, so that:

C(t) = Y (t). (5)

This assumption is not innocuous. It implies that there is no precautionary saving: the farmer

cannot store or save part of its agricultural production to hedge against the risk of poor future

productivity.

The link between the ecological and the economic parts of the model is given by the speci-

�cation of the volatility of agricultural productivity Σ(t). This volatility has two components.

The exogenous component σ > 0 represents the intrinsic volatility, stemming for instance

from weather events (�oods, droughts, etc.). The endogenous component is a decreasing

function of the level of biodiversity B(t). The justi�cation of this assumption can be found

6



in Loreau et al. [25], who show that "biodiversity provides spatial insurance for ecosystem

functioning by virtue of spatial exchanges among local systems in heterogeneous landscapes."

Two mechanisms are brought out: spatial averaging and functional compensation. In our

framework, those exchanges take place between a natural biodiversity-rich ecosystem, namely

the part of land left undeveloped, and the simpli�ed agricultural ecosystem to be found in

the part of land converted to farming. The spatial exchanges dampen the �uctuations of the

productivity of the agricultural activity. Overall, to represent those e�ects, and using the link

between biodiversity and the share of land devoted to farming highlighted in the ecological

part of the model (equations (1) and (2)), we specify total volatility as:

Σ(t) = σg(B(t)) = σf(t)χ/2 with χ > 0. (6)

Total volatility decreases as the land devoted to biodiversity conservation, and then biodiver-

sity itself, increases. It is in this sense that biodiversity appears in the model as insurance

against adverse outcomes. We �nally get that the productivity dynamics is described by the

following SDE:  dA(t) = αA(t) dt+ σf
χ
2A(t) dW (t)

A(0) = A0.
(7)

It should be noted that, because of the di�erent time scales of agricultural activity and

biodiversity evolution3, we do not include in the state equation any ecosystem transitional

internal dynamics. We also disregard possible conversion costs and irreversibility of biodiver-

sity depletion. Of course the need to keep the model analytically tractable is not unconnected

with this choice but we can observe that ex post this choice is not too �heroic�. Indeed along

the optimal path the decision maker always chooses to keep the same shares of the land for

farming and for biodiversity conservation (see Propositions 3.2 and 3.5). This suggests that

adding conversion costs or transitional costs/dynamics or an irreversibility constraint on the

evolution of biodiversity should not essentially change the results. The situation would be

very di�erent if we had found that at the optimum the amount of land devoted to biodiversity

conservation changes over time.

The planner maximizes, over the set of the [0, 1]-valued Ft-adapted processes, an aggregate
3See the comment following equation (1).

7



social welfare criterion in the form of an in�nite horizon, continuous time, Epstein-Zin-Weil

utility function characterized by a constant relative risk aversion of θ, θ > 0, θ 6= 1, an

intertemporal elasticity of substitution of φ−1 > 0 and a discount rate of ρ > 0. Recall

that the case θ = φ corresponds to the usual time additive expected utility function. The

inverse of the intertemporal elasticity of substitution φ can also be interpreted as a measure of

aversion to �uctuations, as an agent with a high φ prefers to smooth consumption over time4.

Of course, φ and θ are distinguished because they represent logically di�erent concepts: the

attitude towards time and the attitude towards risk, respectively.

By de�nition of the Epstein-Zin utility function in continuous time, utility at time t, u(t),

depends on current consumption C(t) and a certainty equivalent of the distribution of time

t+ dt utility, conditioned upon time t information:

u(t) = f(C(t), µt(u(t+ dt)))

where f is the aggregator and µt(u(t+ dt)) the certainty equivalent.

For instance we can choose as in Epstein and Zin [10], Svensson [39] and Du�e and Epstein

[7] a CIES aggregator:

f(C, v) =
(
C1−φ + e−ρdtv1−φ

) 1
1−φ

, φ 6= 1.

When the attitude towards risk is modeled by the CRRA utility function C1−θ

1−θ , θ > 0 and

θ 6= 1, the certainty equivalent is de�ned by:

µt(x) =
[
Etx1−θ

] 1
1−θ

, θ 6= 1.

It yields:

u(t) =

(
C(t)1−φdt+ e−ρdt

[
Etu(t+ dt)1−θ

] 1−φ
1−θ
) 1

1−φ

.

As it has been shown in Du�e and Epstein [7] that the utility function U(t) de�ned by

U(t) = u(t)1−θ

1−θ yields the same optimal path as the utility function u(t), the previous equation

can be replaced by5:

(1− θ)U(t) =
(
C(t)1−φdt+ e−ρdt [(1− θ)EtU(t+ dt)]

1−φ
1−θ
) 1−θ

1−φ
. (8)

4If θ > φ, individuals are more risk-averse than concerned about consumption smoothing. In this case

(Gollier [15]), an agent is said to have Preferences for an Early Resolution of Uncertainty (PERU), notably

the case among poor, vulnerable populations (Lybbert and MacPeak [28]).
5See also Smith [37].
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We denote by V (A0) the value function of the described problem.

3 The optimal land conversion rate

The following conditions, which we will always suppose to be veri�ed in the sequel of the

paper, will be shown to be necessary to explicitly express the value function and ensure that

it remains �nite.

Hypothesis 3.1. The parameters satisfy the following conditions:

(i) χ ≥ 1, (ii) ρ > α(1− φ), (iii) ρ

(
1 +

φ− θ
χ

)
> α(1− θ). (9)

Condition (i) in (9) postulates that the instantaneous total variance Σ2

2 = σ2fχ

2 is (weakly)

convex in f . When this condition is veri�ed, the marginal e�ectiveness of an increase of the

share 1− f of the land devoted to biodiversity conservation in terms of volatility reduction is

decreasing. We will show in particular (see the proof of Proposition 3.2) that this condition,

together with inequality (ii) in (9), form the feasibility condition, insuring that the optimal

control is positive. Condition (ii) imposes that the discount rate is high enough. Notice that

the parameter that matters for the feasibility condition is the aversion to �uctuation φ and

not the risk aversion θ. Also, condition (ii) is always satis�ed when φ > 1. Observe that

feasibility conditions are not required in the separable preference speci�cation of the model

(when φ = θ) because in this case the in�nite derivative of the instantaneous utility at zero

is enough to ensure the decision maker always chooses a strictly positive consumption and

then a strictly positive f . The situation changes when the intertemporal structure is more

complex so a condition to ensure the existence of an optimal admissible strategy is necessary.

We can, formally, verify this fact observing that (ii) reduces, when φ = θ, to condition (iii),

the transversality condition of the problem. This is a rather general fact which also arises in

standard optimal investment models (see Smith [37]).

The transversality condition (iii) in (9) gives the restrictions on the parameters ensuring

that the value function remains �nite at in�nity. Its economic intuition is not very transparent

at a �rst look but it does not need to be so. Indeed, as soon as we depart from the the standard

separable preference case (φ = θ) several possible ordinally equivalent representations of
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Epstein-Zin preferences are possible (see Du�e and Epstein [7], Section 3.3). All of them

(since they are ordinally equivalent) entail the same optimal control but they need di�erent

transversality conditions so that, for instance, once we speci�ed the parameters of the economy

α, χ and σ and risk and �uctuation aversion parameters θ and φ, the set of possible discounting

ρ which satisfy the transversality condition depends on the chosen representations of Epstein-

Zin preferences. So the transversality condition is not intrinsic here. Observe that, if we look

at the standard separable preference case (φ = θ) the condition reduce to ρ > α(1− θ). It is

particularly simple: it is indeed a simpli�ed version of the conditions appearing for instance

in standard optimal investment models (see e.g. Merton [29]), and it has the form of the

transversality condition for the AK deterministic baseline model (see Acemoglu [1]). The

reason of this fact is that, di�erently from standard stochastic growth models, in our case the

choices of the agent do not alter the drift term in the equation describing the dynamics of A.

Under Hypothesis 3.1 the value of the positive constant

ρ− α(1− φ)
σ2

2 θ(χ− 1 + φ)

will be important to distinguish between interior and corner solutions. In the two following

propositions we will see what happens when this constant is greater or smaller than 1. We

begin by describing the dynamics of the system in the interior solution case.

Proposition 3.2. Let Hypothesis 3.1 be satis�ed. Assume that:

ρ− α(1− φ)
σ2

2 θ(χ− 1 + φ)
< 1. (10)

Then the value function of the problem can be written explicitly. It is equal to:

V (A) =
1

1− θ
βA1−θ (11)

where

β =

( χ− 1 + φ

ρ− α(1− φ)

)χ−1+φ
χ 1

χ
(
θ σ

2

2

) 1−φ
χ


1−θ
1−φ

. (12)

The optimal control is constant and deterministic, and it is given by:

f∗(t) = f∗ :=

(
ρ− α(1− φ)
σ2

2 θ(χ− 1 + φ)

) 1
χ

, for any t ≥ 0. (13)

Finally, (9) guarantees the respect of the feasibility and transversality conditions.
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Proof. See Appendix.6

Observe that (9) and (10) imply

α(1− φ) < ρ < α(1− φ) + θ
σ2

2
(χ− 1 + φ).

For given α and φ, the range of the admissible discount rates for the existence of an optimal

interior solution is all the larger since the parameters characterizing risk in this economy,

namely risk aversion θ, the intrinsic volatility σ, and the elasticity of total volatility with

respect to the share of land devoted to farming, χ, are high.

We now detail how the di�erent parameters of the model, and in particular the preference

and technological parameters, a�ect the total value of biodiversity.

Proposition 3.3. The optimal conversion rate f∗ is an increasing function of the discount

rate ρ, a decreasing function of the intrinsic volatility of agricultural productivity σ, and a de-

creasing function of risk aversion θ. It is also a decreasing function of aversion to �uctuations

φ if αχ− ρ < 0, but an increasing function of aversion to �uctuations if αχ− ρ > 0.

Proof. Straightforward derivations of (13) give the results.

The �rst three results are consistent with intuition. The higher the discount rate, that

is, the more impatient a society is, the less it cares about the future and the less it wants

to insure against future uncertainty. Such a society has a strong incentive to convert a large

part of its land to agriculture to enjoy food consumption now. Conversely, the higher the

6The arguments of the proof of Proposition 3.2 can be adapted to a more general case where, instead of

considering Σ as in (6), we consider the situation where Σ(t) = σγ(f(t)) for some continuous function γ(·).

In this case one can show that, if the couple (βγ , f
∗
γ ) ∈ (0,+∞)× [0, 1] is a solution of the following system:

f∗γ ∈ arg maxf∈[0,1]

(
f1−φ

β

1−φ
1−θ
γ

− (1− φ)γ(f)2 σ
2

2
θ

)

ρ− α(1− φ) =

(
f∗γ

1−φ

β

1−φ
1−θ
γ

− (1− φ)γ(f∗γ )2 σ
2

2
θ

)

and if some suitable feasibility and transversality conditions are veri�ed, the optimal land used for farming is

f∗γ and the optimal social welfare is 1
1−θβγA

1−θ. The problem is that this result is not at all explicit: we cannot

express f∗γ and the value of biodiversity in terms of the various parameters of the model and qualitatively

describe their behavior. For this reason we decided to concentrate our analysis on the case γ(f) = fχ/2.
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intrinsic volatility and the more risk-averse a society is, the more it wants to insure against

future uncertainty.

Things are more complex regarding the e�ect of society's aversion to �uctuations. When

the di�erence between the trend of agricultural productivity corrected by the elasticity χ and

the discount rate is negative, future prospects are � on average � rather poor, and at the same

time the society is impatient. Both e�ects lead to better present than future outcomes. A

society averse to �uctuations logically wants to counteract these forces, and is thus willing to

insure against adverse outcomes in the future by conserving more biodiversity. The opposite

occurs when αχ− ρ > 0.

Notice than when αχ > ρ, increasing both risk aversion and aversion to �uctuations has

an ambiguous e�ect on the optimal conversion rate, since the two parameters characterizing

preferences act in opposite directions.

In the situation described in Proposition 3.2 a complete description of the optimal dynam-

ics of the system can be provided. What we have is the following corollary of the previous

result.

Corollary 3.4. Let the assumptions of Proposition 3.2 be satis�ed. Then the optimal evolu-

tion of A(t) and C(t) are respectively:

A(t) = A0 exp

[(
α− σ2

2
f∗χ
)
t+ σf∗

χ
2W (t)

]
(14)

and:

C(t) = f∗A(t).

In particular

E [A(t)] = A0e
αt, Var [A(t)] = A2

0e
2αt
(
eσ

2f∗χt − 1
)
. (15)

The dynamics of the optimal land productivity described in (14) is a geometric Brownian

motion, so that at any time t the distribution of A(t) is log-normal and has, respectively, the

expected value and the variance described in (15). Given the expression of the dynamics of A

in (7), the growth rate of the expected value of A(t) only depends on the parameter α, while

f∗ positively impacts its variance.
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We can now return to the results of Proposition 3.3 and look more closely at their sig-

ni�cance. First, the e�ect of increased risk aversion can be seen as a form of precautionary

saving e�ect. Indeed, increasing θ has the consequence of reducing f∗ which, on the one hand,

decreases the (certain) consumption level today but, on the other hand, increases the average

value of the consumption growth rate7 that is given by E[g] = α− σ2

2 f
∗χ.

Second, increasing society's aversion to �uctuations also generates a level e�ect and a

growth e�ect. The situation is similar to that of the standard deterministic benchmark AK

growth model. The e�ect of φ depends on the value of αχ−ρ. When it is positive, the bigger

φ is, the higher the initial consumption C(0) = f∗A(0) is, and the lower the average value of

the growth rate E[g] = α− σ2

2 f
∗χ. The opposite happens when αχ− ρ < 0.

We now characterize the value function in the corner solution case.

Proposition 3.5. Let conditions (i) and (ii) of (9) be satis�ed. Assume in addition that

ρ− α(1− φ)
σ2

2 θ(χ− 1 + φ)
≥ 1 (16)

and

ρ > (1− θ)
(
α− θσ

2

2

)
. (17)

Then the value function of the problem can be written explicitly. It is equal to:

VC(A) =
1

1− θ
βCA

1−θ, (18)

where

βC :=

[
ρ− (1− φ)

(
α− θσ

2

2

)]− 1−θ
1−φ

. (19)

Moreover the optimal control is constant and deterministic, and it is given by:

f∗(t) = f∗ := 1, for any t ≥ 0.

Proof. See Appendix.

7According to equation (14), the average value of the growth rate is given by

1
t
E
[(
α− σ2

2
f∗χ
)
t+ σf∗

χ
2 W (t)

]
= α − σ2

2
f∗χ. It should not be confused with the value of the growth rate

of the average value of C(t), which is α, as shown in (15).
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As underlined by the previous results, the structure of the value function is the same in

the two cases (i.e. both are homogeneous of degree 1 − θ), but of course the multiplicative

constants di�er. A corollary similar to Corollary 3.4 can be obtained in the corner case: the

optimal dynamics of A(t) is described by (14) where, instead of f∗, we have 1.

Condition (17) is the transversality condition of the problem. Notice that (16) and (17)

imply ρ > (1− φ)(α− θσ2/2), meaning that βC in (19) is well de�ned.

4 The value of biodiversity

In our model, the value of biodiversity comes exclusively from its ability to dampen the

�uctuations of agricultural productivity. A wide range of ecosystem services provided for free

by biodiversity, whether they are provisioning or regulating services, are ignored, as well as

the amenity value of biodiversity. Therefore it is clear that our aim here is not to evaluate

the overall value of biodiversity. It is much more modest. We want to make precise what

the value of biodiversity is, in its function of hedging against the volatility of agricultural

productivity. To do so, we follow two di�erent directions. First, we build on the famous

papers by Lucas [26], [27] on the welfare cost of �uctuations to compute the total value of

biodiversity de�ned as the welfare gain from biodiversity conservation. Second, we compute

the insurance value of biodiversity, de�ned as the marginal value of biodiversity in its risk

premium reduction function, in the spirit of Baumgärtner [3]. The �rst value is total while

the second one is marginal and, as such, is probably more relevant. Indeed, the meaningful

decision to be made in the real world at a given moment is not whether to conserve the optimal

level of biodiversity or to destroy all biodiversity, but rather whether to decrease marginally

biodiversity to increase the land devoted to farming.

4.1 The welfare gain from biodiversity conservation

Following Lucas [26], [27], we de�ne and compute the total value of biodiversity as the welfare

gain from biodiversity conservation. According to Lucas, the welfare cost of �uctuations is the

percentage increase in consumption needed at all dates to compensate the representative agent

for the presence of �uctuations, i.e. to make him indi�erent between the actual consumption

14



path, subject to �uctuations, and the corresponding deterministic consumption path. In the

same spirit, we de�ne here the welfare gain from biodiversity conservation as the percentage

increase in consumption that a society considers an acceptable compensation for exchanging

the optimal situation for a situation with nil biodiversity and all land used for farming. It is

thus de�ned as follows:

De�nition 4.1. The welfare gain from biodiversity conservation (i.e. the total value of bio-

diversity) is the percentage increase in consumption society is willing to accept at all dates to

give up the optimal level of biodiversity in favor of no biodiversity at all.

The value function in the no-biodiversity case is denoted by VB(A) and is characterized in

the following proposition. Let λ be the welfare gain de�ned above. According to De�nition

4.1, λ satis�es:

V (A) = VB((1 + λ)A). (20)

Observe that when (16) is satis�ed, i.e. when we are at the optimum in the corner case

f∗ = 1, the optimal and the no-biodiversity solution are equivalent, so in this section we

assume that (10) is veri�ed, i.e. that we are in the interior case at the optimum. We will also

make a technical assumption to be able to characterize the explicit form of the welfare in the

no-biodiversity case.

Proposition 4.2. Let conditions (i) and (ii) of (9) and condition (10) be satis�ed and suppose

that:

ρ > (1− φ)

(
α− θσ

2

2

)
(21)

and

ρ > (1− θ)
(
α− θσ

2

2

)
. (22)

Then the welfare in the no-biodiversity case is given by:

VB(A) =
1

1− θ
βBA

1−θ (23)

where

βB :=

[
ρ− (1− φ)

(
α− θσ

2

2

)]− 1−θ
1−φ

. (24)

Proof. See Appendix.
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Conditions (21) and (22) are the counterparts, respectively, of the feasibility and of the

transversality conditions in Proposition 3.2 (we di�usely described their meaning in the para-

graphs following (9)). They reduce to the same condition when θ = φ (the standard separable

case). Condition (10) together with condition (iii) of (9) imply (22) when θ ∈ (0, 1) (the

reasons is that the utility along the optimal trajectory can be used to bound from above the

utility of the no-biodiversity scenario). When θ > 1 a speci�c condition (i.e. (22)) is needed

to prevent the utility in the no-biodiversity scenario to be −∞.

Proposition 4.3. Let the assumptions of Proposition 4.2 be satis�ed. The welfare gain from

biodiversity conservation is:

λ =

(
(χ− 1 + φ)f∗χ + (1− φ)

χf∗(χ−1+φ)

) 1
1−φ
− 1. (25)

Proof. See Appendix.

A comparative statics exercise yields the following results.

Proposition 4.4. Let the assumptions of Proposition 4.2 be satis�ed. The total value of

biodiversity λ is an increasing function of the intrinsic volatility of agricultural productivity

and of risk aversion. However, the e�ect of aversion to �uctuations on the total value of

biodiversity is ambiguous.

Proof. See Appendix.

The �rst two results are intuitive and �t well with the e�ects of intrinsic volatility and

risk aversion on the conversion rate. Higher intrinsic volatility of agricultural productivity

and higher risk aversion result in a lower optimal conversion rate, i.e. more biodiversity con-

servation, and a higher total value of biodiversity, i.e. a higher welfare gain from biodiversity

conservation. More is conserved of an asset that is more valued.

To further investigate the role of aversion to �uctuations, it is useful to examine the case

where the optimal conversion rate is very high (f∗ close to 1).

Lemma 4.5. Let the assumptions of Proposition 4.2 be satis�ed. For f∗ close to 1,

λ ' χ− 1 + φ

2
(1− f∗)2 . (26)
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and
dλ/λ

dφ/φ
' φ

χ− 1 + φ

[
1− 2

f∗

1− f∗
αχ− ρ

χ(ρ− α(1− φ))

]
. (27)

Proof. See Appendix.

When the optimal conversion rate is close to 1, the value of biodiversity is proportional

to the square of the share of the land optimally devoted to conserving biodiversity.

Besides, if we look at equation (26), we can see that two e�ects are at work: on the one

hand, a direct e�ect (the term (χ− 1 + φ)/2) through which increasing φ increases λ, and on

the other hand, an indirect e�ect (the term (1−f∗)2) of the same sign as the e�ect of φ on the

share of land devoted to biodiversity conservation. When the corrected trend of productivity

αχ is higher than the discount rate ρ, the two e�ects are discordant.

At �rst glance, it may seem that the signs of the e�ect of increasing aversion to �uctuations

(or in fact any other parameter) on the value of biodiversity and on the share of land devoted

to biodiversity conservation should be the same. This is actually what happens when the

discount rate ρ is higher than the corrected trend of productivity αχ (see equation (27)). Then,

increasing aversion to �uctuations increases both the share of land devoted to biodiversity

conservation (see Proposition 3.3) and the value of biodiversity. However, when the discount

rate is smaller than the corrected trend of productivity, increasing aversion to �uctuations

decreases the share of land devoted to biodiversity conservation, but may either decrease or

increase the total value of biodiversity, which is less intuitive.

Simulations allow us to check that these results hold when f∗ is not assumed to be close

to 1. We postpone the discussion of the simulation results until after the determination of

the insurance value of biodiversity.

4.2 The insurance value of biodiversity

The welfare gain from biodiversity conservation we identi�ed in Subsection 4.1 can be seen as

the total value biodiversity has in the framework of our model. Indeed, it is the welfare loss

incurred by society when all biodiversity is lost. We would like now to take a step further and

try to understand how to measure a marginal gain associated to a variation in the biodiversity
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level. To do so we will follow the idea (and the de�nition) of insurance value of biodiversity

of Baumgärtner [3], generalizing it in our continuous-time set-up.

Fix a certain (in general, non-optimal) level of biodiversity f . The corresponding evolution

of productivity is then given by the solution Af (·) of (7) for a constant f(t) = f . We classically

de�ne the risk premium Π(A(t), f) associated to the uncertainty arising in our model as the

amount of productivity the decision maker is willing to forego at time t in order to get for

sure the expected value of the problem. In other terms, if we denote by W(C(·)) the welfare

generated by a consumption process C(·), Π(A(t), f) is characterized by the relation

W(fE((Af (·)−Π(Af (·), f))) =W(fAf (·)). (28)

Following Baumgärtner [3], the insurance value of biodiversity may be de�ned as follows:

De�nition 4.6. The insurance value of biodiversity is the change of the risk premium due to

a marginal change in the level of biodiversity, evaluated at the optimal level of biodiversity:

v(A) = −∂Π(A,f)
∂(1−f)

∣∣∣
f=f∗

.

An explicit expression for this value is given in the following proposition.

Proposition 4.7. Let the assumptions of Proposition 3.2 be satis�ed. The insurance value

of biodiversity is:

v(A) = −∂Π(A, f)

∂(1− f)

∣∣∣∣
f=f∗

= A

(
χ− 1 + φ

χ

) 1
1−φ 1

f∗
. (29)

Proof. See Appendix.

Proposition 4.8. Let the assumptions of Proposition 3.2 be satis�ed. The insurance value of

biodiversity v(A) is an increasing function of the intrinsic volatility of agricultural productivity

and of risk aversion. It is also an increasing function of aversion to �uctuations when the

discount rate is larger than the corrected trend of productivity. However, in the opposite case,

the e�ect of aversion to �uctuations on the insurance value of biodiversity is ambiguous.

Proof. See Appendix.

Figures 1 and 2 show the optimal share of land devoted to farming and the total and

marginal values of biodiversity for di�erent con�gurations of the parameters, satisfying the

18



Figure 1: Optimal conversion rate, value of λ and insurance value of bio-

diversity as a function of aversion to �uctuations for α = 0.05, χ = 1,

ρ = 0.03, σ = 0.1.

constraints we have determined. We focus on the ambiguous case where αχ > ρ. We have

shown that in this case f∗ is an increasing function of φ, and a decreasing function of θ and σ,

meaning that the e�ects of aversion to �uctuations and to risk are discordant. This translates

into ambiguous e�ects on the total and marginal values of biodiversity, λ and v(A)/A.

On Figures 1 and 2, parameters α, χ and ρ are �xed. The evolutions of f∗, λ and v(A)/A

when φ increases are represented for di�erent values of θ on each �gure, combined with a small

σ on Figure 1 and a larger σ on Figure 2. It clearly appears that when the risk parameters θ

and σ are large, meaning that the weight of uncertainty and the incentive for insurance are

large, f∗ is small, and λ and v(A)/A are U-shaped functions of φ (Figure 2). The antagonist

forces that drive biodiversity conservation then make the optimal amount of land devoted to

conservation decrease with the aversion to �uctuations, whereas the total and marginal values

of biodiversity increase.

5 Conclusion

This paper presents a stylized dynamic model including a particular incentive for biodiversity

conservation: its ability to hedge against the volatility of agricultural productivity. Producing

food requires land, and increasing the share of total land devoted to farming mechanically
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Figure 2: Optimal conversion rate, value of λ and insurance value of bio-

diversity as a function of aversion to �uctuations for α = 0.05, χ = 1,

ρ = 0.03, σ = 0.2.

reduces the share of land devoted to biodiversity conservation. However, the safeguarding

of a greater number of species ensures through spatial exchanges better ecosystem services �

pollination, �ood control, pest control, etc., which in turn ensure lower volatility of agricultural

productivity. The optimal conversion/conservation rule is explicitly characterized, as well as

the total value (in terms of the welfare gain from biodiversity conservation) and the marginal

value (in terms of risk premium reduction) of biological diversity. The Epstein-Zin-Weil

speci�cation of the utility function allows us to disentangle the e�ects of risk aversion and

aversion to �uctuations.

At least two interesting extensions of our work could be explored.

First, there is the debate on land sparing versus land sharing initiated by Green et al.

[16]. The question is whether agriculture should be concentrated on intensively farmed land

in order to conserve more natural spaces for biodiversity, or whether it should be extensive,

less productive, and wildlife-friendly. It has been, and still is, the object of huge debates

among ecologists (see for instance Fisher et al. [12], Hulme et al. [19], or Kremen [22]). The

dichotomy between the two production schemes depends on the land characteristics and its

ability to provide ecosystem services (Renwick and Schellhorn [35]). In its present simple

form, the model we use is not suited for adequately studying this question. Indeed, we

consider that average productivity growth is exogenous, and in particular independent on
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the level of biodiversity. Biodiversity only a�ects the volatility of agricultural productivity.

These modelling choices allow us to focus our analysis on the insurance value of biodiversity.

Besides, we do not introduce arti�cial inputs, such as fertilizers and pesticides, that could

compensate the loss of ecosystem services due to the depletion of biodiversity. A natural

extension of the model would be to make average productivity depend on biodiversity and to

re�ne the agricultural production technology. It would allow us to distinguish between the

two management practices and their di�erent consequences.

Second, we consider here that the economy does not have access to �nancial insurance

and that there are no means of crop saving/storage. However, if a �nancial insurance system

and/or storage were available, farmers could insure against adverse outcomes by other means

than biodiversity conservation. Quaas and Baumgärtner [34] study this problem and show in

a static framework that the twos types of insurance (natural and �nancial) are substitutes.

It would be interesting to see whether their result holds in a dynamic framework, and to

disentangle the impact of risk aversion and aversion to �uctuations on the arbitrage between

the two types of insurance.
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Appendix: Proof of the results

Proof of Proposition 3.2. Following the approach of [39] (see Proposition 9 and Appendix C of

[7] for a more rigorous and detailed mathematical reference), the value function V of our problem

evaluated on some trajectory A(·) can be characterized as the solution of the following Hamilton-

Jacobi-Bellman (HJB) equation:

(1− θ)V (A(t)) = max
f(t)

[
(f(t)A(t))

1−φ
dt+ e−ρdt ((1− θ)EtV (A(t+ dt)))

1−φ
1−θ

] 1−θ
1−φ

. (30)

By Itô's lemma, we have:

EtdV (A(t)) =

(
V ′(A(t))A(t)α+

1

2
V ′′(A(t))A(t)2σ2f(t)χ

)
dt = X(A(t), f(t))dt, (31)

which yields:

(1− θ)EtV (A(t+ dt)) = (1− θ)V (A(t))

[
1 +

X(A(t), f(t))

V (A(t))
dt

]
.

Using the approximations: e−ρdt = 1− ρdt and (1 + xdt)a = 1 + axdt, neglecting the terms of order

greater than 1 and dropping the time index, the HJB equation may therefore be written as:

ρ
1− θ
1− φ

V (A) = max
f

[
(fA)

1−φ

1− φ
1

((1− θ)V (A))
1−φ
1−θ−1

+X(A, f)

]
. (32)

Our aim is to prove that the function de�ned in (11) is a solution of such an equation. We try to

�nd a solution of the form

V (A) =
1

1− θ
βA1−θ (33)

for some β > 0. We have V ′(A) = βA−θ and V ′′(A) = −θβA−θ−1 so, following (31), X(A, f) speci�es

as

X(A, f) = βA1−θ
[
α− θσ

2

2
fχ
]
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and V of the prescribed form is a solution of the HJB equation if and only if

ρ
1

1− φ
βA1−θ = max

f

[
(fA)

1−φ

1− φ
1

(βA1−θ)
1−φ
1−θ−1

+ βA1−θ
[
α− θσ

2

2
f(t)χ

]]

i.e.

ρ = max
f

[
f1−φ

β
1−φ
1−θ

+ (1− φ)

[
α− θσ

2

2
fχ
]]

i.e.

ρ− α(1− φ) = max
f

[
f1−φ

β
1−φ
1−θ

− (1− φ)θ
σ2

2
fχ

]
. (34)

The arguments of the maximum in previous expression in (0,+∞) (which exists since we supposed

χ > (1− φ)) is given by

f∗ =

(
1

θ σ
2

2 χβ
1−φ
1−θ

) 1
χ−1+φ

, (35)

and after �nding the expression of β we will be able to show that this expression is indeed always in

(0, 1). If we replace this expression in (34), after some algebra we get the value of β that we need to

have a solution of the form (33):

β =

( χ− 1 + φ

ρ− α(1− φ)

)χ−1+φ
χ 1

χ
(
θ σ

2

2

) 1−φ
χ


1−θ
1−φ

. (36)

If we use this expression in (35) we obtain

f∗ =

[
ρ− α(1− φ)

θ σ
2

2 (χ− 1 + φ)

] 1
χ

. (37)

Conditions (i) and (ii) of Hypothesis 3.1 and (10) ensure that

0 <
ρ− α(1− φ)

θ σ
2

2 (χ− 1 + φ)
< 1 (38)

so that f∗ ∈ (0, 1) and all our previous computations are justi�ed8.

We �nally check the respect of the transversality condition which reads (see [37]):

lim
t→∞

E0

[
e−ρtV (A(t))

]
= 0. (39)

Since we have

E0

[
e−ρtV (A(t))

]
=

β

1− θ
lim
t→∞

e−ρtE0

[
A(t)1−θ

]
=

β

1− θ
A0 lim

t→∞
e−ρte(1−θ)(α−θ

σ2

2 f
χ)t,

8Indeed the �rst part of this inequality is the feasibility condition which (see [37]) is equivalent to the

transversality condition for θ = φ. The second part of the inequality ensures the existence of an interior

solution.
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the condition (39) is veri�ed whenever −ρ+(1−θ)
(
α− θ σ

2

2 f
χ
)
< 0 i.e., replacing fχ by its expression

given in (37), whenever

ρ

(
1 +

φ− θ
χ

)
> α(1− θ), (40)

that is exactly condition (iii) in (9).

Proof of Proposition 3.5. The proof follows the lines of that of Proposition 3.2. Again we have to

�nd a solution of the HJB equation so we need to prove that, if condition (16) is veri�ed, the following

equation is satis�ed:

ρ
1− θ
1− φ

V (A) = max
f∈[0,1]

[
(fA)

1−φ

1− φ
1

((1− θ)V (A))
1−φ
1−θ−1

+

(
V ′(A)Aα+

1

2
V ′′(A)A2σ2

)]
. (41)

By direct computation we can show that the function

VC(A) = βC
A1−θ

1− θ

with

βC =

[
1

ρ− (1− φ)
(
α− θ σ2

2

)] 1−θ
1−φ

(42)

is a solution. Observe that the argument of the maximum

max
f∈[0,1]

[
(fA)

1−φ

1− φ
1

((1− θ)V (A))
1−φ
1−θ−1

+ βCA
1−θ

(
α− θσ

2

2
fχ
)]

is attained (as in the proof of Proposition 3.2) at the the point

(
1

θ σ2

2 χβ
1−φ
1−θ

) 1
χ−1+φ

when θ σ
2

2 χβ
1−φ
1−θ

C > 1

but it is attained at point f∗ = 1 when θ σ
2

2 χβ
1−φ
1−θ

C ≤ 1. The latter is the case here since, thanks to

(16), we have ρ− α(1− φ) > θ σ
2

2 (χ− 1 + φ) and then

θ
σ2

2
χβ

1−φ
1−θ

C = θ
σ2

2
χ

1

ρ− α(1− φ) + (1− φ)θ σ
2

2

≤ θσ
2

2
χ

1

θ σ
2

2 (χ− 1 + φ) + (1− φ)θ σ
2

2

= 1.

So the candidate solution is indeed a solution of the HJB equation if and only if (evaluating the HJB

equation at f = 1)

ρ
1− θ
1− φ

βC
A1−θ

1− θ
=

[
(A)

1−φ

1− φ
1

((1− θ)V (A))
1−φ
1−θ−1

+ βCA
1−θ

[
α− θσ

2

2

]]
.

Some straightforward calculations allow to prove this relation.

Once we have that we can check the transversality condition as in the proof Proposition 3.2 and

then conclude the proof.
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Proof of Proposition 4.2. We can �nd the result as a corollary of the proofs of Propositions 3.2

and 3.5. Indeed one can think at the welfare in the no-biodiversity case as the optimal welfare in

the optimal control problem where the agent can only choose f = 1. So the candidate-welfare is the

solution of the HJB equation (32) evaluated at point f = 1 i.e.

ρ
1− θ
1− φ

V (A) =

[
(A)

1−φ

1− φ
1

((1− θ)V (A))
1−φ
1−θ−1

+X(A, 1)

]

where, as in (31),

X(A(t), 1) = V ′(A)Aα+
1

2
V ′′(A)A2σ2.

By direct computation we can show that the function VB(A) = 1
1−θβBA

1−θ where

βB :=

[
ρ− (1− φ)

(
α− θσ

2

2

)]− 1−θ
1−φ

.

is a solution of this equation. We can then conclude, checking the transversality condition as in the

proof Proposition 3.2 and then conclude the proof.

Proof of Proposition 4.3. We use the expressions of V and VC (equations (11) and (18)) to com-

pute V (A) = VC((1 + λ)A). We obtain:

(1 + λ)
1−θ

=
β

βC
,

i.e.

(1 + λ)
1−φ

=

( χ− 1 + φ

ρ− α(1− φ)

)χ−1+φ
χ 1

χ
(
θ σ

2

2

) 1−φ
χ

[ρ− (1− φ)

(
α− θσ

2

2

)]

=

(
χ− 1 + φ

ρ− α(1− φ)

)χ−1+φ
χ 1

χ
(

ρ−α(1−φ)
(χ−1+φ)f∗χ

) 1−φ
χ

[
ρ− (1− φ)

(
α− ρ− α(1− φ)

(χ− 1 + φ)f∗χ

)]

=
χ− 1 + φ

χ
f∗(1−φ)

1

1 + 1−φ
(χ−1+φ)f∗χ

=
(χ− 1 + φ)f∗χ + 1− φ

χf∗(χ−1+φ)
,

i.e. (25).

Proof of Proposition 4.4. Let

Λ = (1 + λ)1−φ =
1

χ

(
(χ− 1 + φ)f∗(1−φ) + (1− φ)f∗(−χ+1−φ)

)
.
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We have
dΛ

dθ
=

(χ− 1 + φ)(1− φ)

χ
f∗(−φ)(1− f∗(−χ))df

∗

dθ
.

Besides:
dλ

dθ
=

1

1− φ
Λ

1
1−φ−1 dΛ

dθ
=

1

1− φ
(1 + λ)φ

dΛ

dθ
.

Therefore:
dλ

dθ
=
χ− 1 + φ

χ

(
1 + λ

f∗

)φ
(1− f∗(−χ))df

∗

dθ
,

which shows that dλ
dθ is of the opposite sign than df∗

dθ , that is positive. The computation of dλdσ follows

exactly the same lines, and the result is the same.

Coming back to Λ, we can write:

ln Λ = − lnχ+ (1− φ) ln f∗ + ln
(
χ− 1 + φ+ (1− φ)f∗(−χ)

)
,

which yields:

1

Λ

dΛ

dφ
= − ln f∗ +

f∗χ − 1

(χ− 1 + φ)f∗χ + (1− φ)
+

(χ− 1 + φ)(1− φ)

f∗
f∗χ − 1

(χ− 1 + φ)f∗χ + (1− φ)

df∗

dφ
.

Besides,
dλ

dφ
=

1 + λ

1− φ

[
1

Λ

dΛ

dφ
+ ln(1 + λ)

]
,

which yields:

dλ

dφ
=

1 + λ

1− φ

[
ln(1 + λ)− ln f∗ +

f∗χ − 1

(χ− 1 + φ)f∗χ + (1− φ)
+

(χ− 1 + φ)(1− φ)(f∗χ − 1)

f∗[(χ− 1 + φ)f∗χ + (1− φ)]

df∗

dφ

]
which sign is at �rst glance ambiguous, and proves to be very di�cult to determine analytically.

Proof of Lemma 4.5. It is su�cient to use the Taylor expansion of the expression of λ. The �rst

order term vanishes while the second gives the claim.

Proof of Proposition 4.7. As a �rst step we calculate the expression of Π(A, f) (recall that f is

�xed). Given the linearity of consumption in terms of productivity and of productivity in terms of

the initial datum, we will look in particular for a linear Π as a function of A. The equation which

needs to be satis�ed is

W(fE((Af (·)−Π(Af (·), f))) =W(fAf (·)). (43)

The right hand side of this equation is the welfare obtained starting from A always using a fraction f

of the land for agriculture. Consistently with previous notations we call it Vf (A). As in the proof of

Proposition 4.2 we observe that its expression can be found as a corollary of the proofs of Propositions

3.2 and 3.5 since the welfare obtained for a �xed pre-speci�ed f can be seen as the optimal welfare
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in the optimal control problem where the agent can only choose this f . Thus, as a �rst step, we look

for a solution of the HJB equation (32) evaluated at point f :

ρ
1− θ
1− φ

V (A) =
(fA)

1−φ

1− φ
1

((1− θ)V (A))
1−φ
1−θ−1

+

(
V ′(A)Aα+

1

2
V ′′(A)A2σ2fχ

)
.

Arguing as in the proofs of Propositions 3.2, 3.5 and 4.2 we can directly check that the function

Vf (A) = βf
A1−θ

1− θ
(44)

where

βf =
f1−θ[

ρ− α(1− φ) + (1− φ)θ σ
2

2 f
χ
] 1−θ

1−φ

,

is a solution of (5). We can check the transversality condition as in the proof Proposition 3.2 so we

�nally have that Vf is the welfare we were looking for.

We need now to compute the left hand side of (43). Let Z(t) = E((Af (t) − Π(Af (t), f)). Z(t)

is certain and, since we are looking for a Π which is a linear function of A, dZ(t) = αZ(t)dt. Since

the consumption C(t) is equal to fZ(t) the welfare process can be characterized as the solution of the

following HJB equation:

((1− θ)V (Z(t)))
1−φ
1−θ = (fZ(t)))

1−φ
dt+ e−ρdt [(1− θ)EtV (Z(t+ dt))]

1−φ
1−θ .

Using that

EtV (Z(t+ dt)) = V (Z(t)) + EtdV (Z(t)) = V (Z(t)) + V ′(Z(t))Z(t)αdt

and dropping the time index we get

((1− θ)V (Z))
1−φ
1−θ

= (fZ)1−φdt+ e−ρdt [(1− θ)V (Z) + V ′(Z)Zαdt]
1−φ
1−θ

= (fZ)1−φdt+ (1− ρdt)((1− θ)V (Z))
1−φ
1−θ

[
1 +

V ′(Z)Zα

V (Z)
dt

] 1−φ
1−θ

= (fZ)1−φdt+ (1− ρdt)((1− θ)V (Z))
1−φ
1−θ +

1− φ
1− θ

((1− θ)V (Z))
1−φ
1−θ

V ′(Z)Zα

V (Z)
dt

i.e.

0 = (fZ)1−φ − ρ((1− θ)V (Z))
1−φ
1−θ +

1− φ
1− θ

((1− θ)V (Z))
1−φ
1−θ

V ′(Z)Zα

V (Z)
.

We look for a 1− θ-homogeneous solution of the form Ve(A) = βe
A1−θ

1−θ . The HJB equation above can

have a solution of this form if and only if

0 = (fZ)1−φ − ρ(βeZ
1−θ)

1−φ
1−θ + (1− φ)(βeZ

1−θ)
1−φ
1−θ α

= f1−φZ1−φ − β
1−φ
1−θ
e Z1−φ(ρ− α(1− φ))
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i.e.

f1−φ = β
1−φ
1−θ
e (ρ− α(1− φ))

which yields:

βe = f1−θ
[

1

ρ− α(1− φ)

] 1−θ
1−φ

and

Ve(Z) =
(fZ)1−θ

1− θ

[
1

ρ− α(1− φ)

] 1−θ
1−φ

(45)

which is the expression of the left hand side of (43). Finally, using equations (45) and (44), we can

see that (43) is veri�ed if and only if

(f(A−Π))1−θ

1− θ

[
1

ρ− α(1− φ)

] 1−θ
1−φ

=
(fA)1−θ

(1− θ)
[
ρ− (1− φ)

(
α− θ σ2

2 f
χ
)] 1−θ

1−φ

which gives, after some computations,

Π(A, f) = A

1−

(
ρ− α(1− φ)

ρ− (1− φ)
(
α− θ σ2

2 f
χ
)) 1

1−φ

 . (46)

This gives the expression of Π (linear in A and depending on f and all various parameters) we were

looking for. We can now use it to �nd the explicit expression of the insurance value of biodiversity.

First we compute its derivative with respect to f :

∂Π(A, f)

∂f
= A

1

1− φ
(ρ− α(1− φ))

1
1−φ

(
ρ− (1− φ)

(
α− θσ

2

2
fχ
))− 1

1−φ−1

(1− φ)θ
σ2

2
χfχ−1.

and then we compute such a derivative at point f = f∗ (found in Proposition 3.2). After some algebra

we obtain

v(A) = − ∂Π(A, f)

∂(1− f)

∣∣∣∣
f=f∗

=
∂Π(A, f)

∂f

∣∣∣∣
f=f∗

= A

(
χ− 1 + φ

χ

) 1
1−φ

(
θ σ

2

2 (χ− 1 + φ)

ρ− α(1− φ)

) 1
χ

. (47)

Proof of Proposition 4.8. We easily see that:

dv(A)/A

dθ
= −

(
χ− 1 + φ

χ

) 1
1−φ 1

f∗
df∗

dθ
,

which shows that dv(A)/A
dθ is of the opposite sign than df∗

dθ , that is positive. The computation of dv(A)/A
dσ

follows exactly the same lines, and the result is the same.

We have: ln v(A)
A = 1

1−φ ln χ−1+φ
χ − ln f∗, which yields:

1

v(A)/A

dv(A)/A

dφ
=

1

(1− φ)2
ln
χ− 1 + φ

χ
+

1

(1− φ)(χ− 1 + φ)
− 1

f∗
df∗

dφ
.
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A study of the function of φ and χ formed by the �rst two terms of this equation shows that it is

always positive. Therefore, a su�cient conditions for which dv(A)/A
dφ to be positive is αχ − ρ < 0,

which ensures that df∗

dφ < 0. If this condition is not satis�ed, the sign of dv(A)/A
dφ is ambiguous.
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