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RANDOM OPTIMIZATION ON RANDOM SETS
EMMANUEL LEPINETTE

ABSTRACT. Random sets and random preorders naturally appear
in financial market modelling with transaction costs. In this pa-
per, we introduce and study a concept of essential minimum of a
family of vector-valued random variables, i.e. the set of all mini-
mal elements with respect to some random preorder. We provide
some conditions under which the essential minimum is not empty
and we present two applications in optimisation to Mathematical
Finance and Economics.

1. INTRODUCTION

Random sets and random preorders naturally appear in financial
market modelling with transaction costs. Indeed, a fundamental con-
cept to model a financial market with transaction costs is the random
solvency set G; of all financial portfolio positions which is possible to
liquidate without any debt at time ¢. Since the pioneering paper [9],
models with proportional transaction costs have been extended to the
case where the solvency sets are random convex cones of R?, d > 1,
see [13, Section 3]. They are now very popular in Mathematical Fi-
nance. Actually, it is possible to consider very general models, e.g.
models with convex or fixed costs, through the concept of liquidation
value process (L;)i=0 so that Gy = {z € R? : L;(z) = 0} is the set
of all financial positions whose liquidation values are non negative at
time t. Notice that G, is random as it depends on the future prices
observed in the financial market at time ¢. Associated to these random
solvency sets, the random preorders defined by x »; y when x —y € Gy
naturally appear as a portfolio process (V;);o ... satisfies by definition
the dynamics V; — V;_; € —Gy in discrete time, see [13, Section 3.1.1],
ie. Vi_y »; Vi, t = 1. This leads to consider a new approach based
on random preorders and optimization on random sets when solving
the classical problem of super-replication, i.e. for a given measurable
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2 E. LEPINETTE

payoff £ at time T, characterising the set of all portfolio processes
(Vi)i=o01,... 7 which satisfy Vi »¢ & This approach seems to be fruitful
for non conical models and, more generally for non convex models, see
[15] with fixed costs. Indeed, classical tools from convex analysis are
no more appropriate. Precisely, it is not possible to characterise the
super-hedging prices through the duals elements, i.e. the risk-neutral
probability measures for frictionless models, see [3], and the Consistent
Price Systems, i.e. martingales evolving in the positive dual of the
solvency sets, for models with proportional transaction costs, see [13],
Section 3.3]. Notice that a set-valued optimisation approach has been
successfully applied to compute the super-hedging prices of European
payoffs in [2] when the probability space is finite. The same approach
is also used in the setting of set-valued risk measures in presence of
proportional transaction costs, [7, [6], where the random orders defined
by the solvency sets play a crucial role. More recently, a conditional
analysis approach is considered to solve stochastic optimal problems
in discrete-time [§] with applications in Finance and Economics. Sim-
ilarly, a backward approach is implemented in [I]. These works are
based on new ideas stemming from conditional analysis applied to the
theory of random sets and measurable selections.

For non convex models, we also need to take a fresh look. A new
idea is to consider only the portfolio processes which are minimal in
some sense to be defined with respect to the random preorders. This
idea has been initially introduced, see [10), 11, 12], for conic models
and the concept of essential supremum for a family of vector-valued
random variables is formulated with respect to the random preorder
defined by a convex cone. In the present paper, we consider a more
general setting where the random preorder is either defined by a ran-
dom set which is not necessarily convex or is defined by a random
countable multi-utility representation. We introduce the concept of es-
sential minimum for a family of vector-valued random variables with
respect to a random preorder. Our main contribution is to show the
existence of minimal elements, i.e. the essential minimum is not empty,
under mild conditions. Finally, we illustrate our result by two appli-
cations. The first one in Mathematical Finance improves a result of
[15] by characterizing the minimal portfolio processes super-replicating
a European claim. The second one is a classical problem in Econom-
ics which is here solved in a random environment, i.e. we minimise a
random cost function on a random set.

In the following, we first recall the notions of random set (see [10]
for a complete overview) and random preorders with examples. The
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main result (Theorem is then formulated. At last, we present the
two applications.

2. MEASURABILITY OF RANDOM SETS

Let R? be the Euclidean space with norm ||-| and the Borel o-algebra
B(R%). The closure of a set A = R? is denoted by cl A.

A set-valued mapping w — X (w) = R? from a complete probability
space (Q, F, P) to the family of all subsets of R? is called F-measurable
if its graph

GrX ={(w,2) e QxR : 2e X(w)} = Q x R

belongs to the product o-algebra FB(R?). In this case, X is said to be
a random set. In the same way, the H-measurability of X with respect
to a sub-c-algebra H of F is defined. Unless otherwise stated, by the
measurability we always understand the measurability with respect to
F. The random set X is said to be closed if X (w) is a closed set for
almost all w.

Definition 2.1. An F-measurable random element ¢ in R? such that
¢(w) € X(w) for almost all w € € is said to be an F-measurable selec-
tion (selection in short) of X, £°(X, F) denotes the family of all F-
measurable selections of X, and £P(X, F) is the family of p-integrable
ones.

By [, Th. 4.4], an a.s. non-empty random set X has at least one
selection, i.e. L%(X,F) # & where L°(R% F) is equipped with the
topology generated by the convergence in probability. When such a
property is used to mention the existence of such a measurable selec-
tion, we write by measurable selection argument.

Definition 2.2. A family = < £°(R?, F) is said to be H-decomposable
if

m
2 fnlAn ez
n=1

for all finite sequences (§,)n=1.....m from = and all finite H-measurable
partitions (A, ),>1 of Q.

The following result is well known for p = 1 [5], for p € [1,00] [10,
Th. 2.1.6], and is proven in [14] for p = 0.

Theorem 2.3. Let = be a non-empty subset of LP(R?, F) for p =0 or
p€ [1,0]. Then
EnLP(RYH) = LP(X,H).
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for an H-measurable random closed set X if and only if = is H-
decomposable and closed.

We deduce the following result [14]. In particular, the existence of
a countable respresentation of a random set is well known when it is
closed, see e.g. [16, Th. 2.2.3]. It is called the Castaing representation.

Proposition 2.4. If X is a random set, then its pointwise closure
cl X (w), w e Q, is a random closed set, and L°(cl X, F) = cly L°(X, F).
Furthermore, there exists a countable family (&)i=1 of measurable se-
lections of X such that cl1 X = cl{&;,1 = 1} a.s.

3. RANDOM PREORDERS

In the following, we consider a random binary relation (or preference
relation) between the elements of R? denoted by » which is reflexive.
In the case where » is also transitive, » is a random preorder. Note
that it is naturally possible to extend it to the set of all measurable
random variables, i.e. for any vi,v € LO(RY, F), we write v, > 7o
when the set of all w such that v, (w) » 72(w) is of full measure. We
shall consider on a complete probability space (€2, F,P) two types of
random preorders we define below. To do so, we need to introduce the
following notions.

Lemma 3.1. Let H be a sub o-algebra of F and let h : Q x RF — R.
Then h is H-normal integrand (see Definition 14.27 in [18]) if and only
if h is H ® B(R¥)-measurable and is lower semi-continuous (Ls.c. in
the sequel) in x, see [18, Corollary 14.34].

Consider Z € L°(R¥,H). We shall use the notation h(Z) : w —
h(Z(w)) = hlw,Z(w)). If h is H ® B(RF)-measurable, h(Z) €
LO(RF, H).

Definition 3.2. We say that the random preorder is of type I if there
exists a super additive [] random function L with L(0) = 0 such that
for all z,y € RY 2 » y if and only if L(z — y) = 0 a.s. Moreover, we
suppose that —L is a F-normal integrand and there exists a bounded
F-normal integrand u such that for all 2,y € RY, L(z — y) = 0 implies
that u(x) = u(y) with a strict inequality if = # y.

Definition 3.3. We say that the random preference relation is of type
IT if there exists a countable family of random functions (u;);eny which
are F-normal integrands such that for all z,y € R?, x » y if and only
if w;(z) = u;(y) a.s. for all i € N.

Ye. L(z+y) = L(z) + L(y).
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Example 3.4. Let G be a random F-measurable closed set of RY, d > 1,
containing R, e; where e; = (1,0,---,0) € R Assume that G + G <
G as. and G n (—=G) = {0}. Moreover, suppose that the smallest
closed convex cone K = cl(R;G) containing G' does not contain —e;.
In mathematical finance, GG is interpreted as the set of all financial
positions which are solvent, i.e. that may be liquidated without any
debt. Let us consider

L(z) :=sup{aeR: 2 —ae, € G}, z e R,

In finance, L(x) is the liquidation value of the financial position x. As
—e1 ¢ K, we may show that L(z) is a maximum, i.e. © — L(x)e; € G
for all z € R In particular, G = {x e RY: L(x) = 0}.

Let us define the random preorder x » y if x —y € G. By the
assumptions on G, this is a random order and z >» y if and only if
L(x—y) 2 0. As G+ G c G, we obtain that L(x +y) > L(z) + L(y),
i.e. L is super additive.

Let us show that L is upper semi-continuous (u.s.c.). Consider a
convergent sequence (,)neny Whose limit is x. Recall that x,—L(z,)e; €
G. In the case where |L(x,)| — + for a subsequence, then using the
normalization &, := z,/(1 + |L(z,)|) — 0, we get that —e; € K as
n — oo hence a contradiction. We deduce that limsup,, L(z,) < o
and, as n — o, x — limsup,, L(z,)e; € G. This implies that L(z) >
limsup,, L(x,). At last, (w,z) — L(w,z) is F x B(R%)-measurable.
Indeed, as Rie; < G, we may show that, for every ¢ € R, {(w,z) €
OxRY: L(w,z) =) = {(w,2) e A x RY: z — cey € G}, the latter set
belonging to F x B(R?) since G is measurable.

Finally, we suppose that the points of the boundary dG may be
separated by a bounded F-normal integrand u in the sense that x —y €
0G implies that u(x) > u(y) is * # y. In that case, » is of type I since
{L = 0} < dG. This condition will be satisfied in the financial model
we shall present below.

Example 3.5. Let G be a random JF-measurable closed convex cone of
R? d > 1, which contains 0. The positive dual is G* := {zr e R? : xg >
0, Vg € G}. It is well know that G = (G*)* and G* is F-measurable.
Therefore, G* admits a Castaing representation G* = cl(g : i € N}
and G = {z e R?: xgf > 0, Vi € N}. Therefore, if we define x » y by
x —y e G, we get that x » y if and only if u;(z) = u;(y) a.s. for every
i € N, where u;(2) = gfz.

The following concepts are introduced to solve minimization prob-
lems related to random preorders. See also [10], [11] and [12] where
similar notions are considered.
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Lemma 3.6. Let X < L°(R?, F) be such that X3, :== X n L°(R%, H) #
. Suppose that > is antisymmetric, i.e. > 1s a random order. There
exists a unique subset X c Xy denoted by X = Essming (X) satisfying
the following properties:

(i) For all v € Xy :, there exists 4 € X such that vy » 4.
(ii) If 51,92 € X satisfy 51 > A2, then 41 = .

Proof. Suppose that there exists two subsets X1, Xo © X5 satisfying
(i) and (ii). Consider any 4 € X;. As X, satisfies (i) , there exists
A9 € Xg such that 41 » 45. Similarly, there exists 7, € Xl such that
F2 » 41. We deduce by transitivity that 4, » 4;. This implies by (ii)
that 41 = 4;. Therefore, 41 = 42 and 4, > 4;. By antisymmetry, we
get that 41 = 4 € XQ, ie. X; © Xo. By symmetry, we also get that
X, < X; so that the equality holds. []

We may only consider random preorders if we only consider a weak
version of the essential minimum. To do so, we write 7, ~ 7o if v1 > ¥
and v > 7.

Lemma 3.7. Let X < L°(R?, F) be such that X3, :== X n L°(R%, H) #
. There exists a unique subset X < Xy denoted by X = Essming,(X)
satisfying the following properties:

(i) For all v € X4, there exists ¥ € X such that v > 4.

(i) If 51,792 € X satisfy 51 » F2, then 1 ~ Fe. )

(i1i) For any 4 € X, 5 ~4 and 7 € Xy, itmplies ¥ € X.

Proof. 1t suffices to repeat the proof of Lemma |3.6] where we use (iii)

instead of the antisymmetry condition. []

When necessary, we denote by Essminj; (X) or Essminj;”(X) the

essential minimum Essming (X) or Essminy) (X) to specify the chosen
preorder.

Ezxample 3.8 (Minimization on a random set). Let D be a random F-
measurable closed set we consider as the domain of control variables
r € R? satisfying some random contraints. Let ¢ be a random cost
function we suppose to be a F-normal integrand. Our goal is to study
the problem of minimising ¢ over D. Notice that this problem is a pri-
ori considered pointwise, i.e. for each w € {2, we may solve the problem
mingep(w) ¢(w, x). Here, we seek for mesurable minimizers of the prob-
lem with values in D. This is why we introduce the following random
preorder of type II: x » y if c(x) » ¢(y) a.s. Actually, we may show that
MiNep() ¢(w, z) = ¢(§) a.s. whatever 4 € Essmin'?(LY(D,F)) # &,
see Theorem [6.11
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4. MAIN RESULTS

The goal of this section is to provide conditions under which the
essential minimum X = Essming(X) (resp. Essminy (X)) of some
family of random variables X < L°(R% #) is not empty.

Theorem 4.1. Let X < L°(R% H). Suppose that X3y = X n
LR, H) # & is H-decomposable and closed in L°. Assume that
for any v € Xy and any sequence (Vp)nen € X3 such that ~, < 7,
we have liminf, |y,| < o a.s. Suppose that the random preorder »

is of type I (resp. of type II). Then, X = Essming (X) # & (resp.
Essminf, (X) # &).

Proof. Suppose that » is of type I, i.e. represented by a function L
in Definition such that = » y if and only if L(x —y) > 0. Let us
define L(z) := arctan L(z) € [—n/2;7/2]. For any v € X3, we denote
by L°((—0,v], H) the set of all H-measurable random variables 7§ such
that ¥ « v and we define

A

a = inf EL(v—7~).
) = emiditanapn S0 )

By definition, there exists a sequence (7, )nen € Xy N LO((—00,7], H)
such that a(y) = lim, EL(y —7,,).

Let us consider the sequence (%, )nen defined by 41 = 7, and its next
terms are recursively defined as

V41 = Yt 1 LBy ) EE (r—3m) 1) T T LB () H)<E(L (v—30) 1)

Since Xy is H-decomposable, we deduce by induction that (3, )nen €
Xy L°((—o0,7],H). Moreover, by construction, the sequence E(f)(fy—
Fns1)|H) is non decreasing and satisfies E(L(y — Ans1)|H) = E(L(y —
Yns1)|H) hence a(y) = lim, EL(y — 7,,).

By the assumption, liminf, |¥,| < oo a.s. Therefore, by [13, Lemma
2.1.2], there exists a H-measurable sequence n, € L°(N,H) such
that 7,, is a.s. convergent to some v, € LO(RY H). As Xy is H-
decomposable and closed, we deduce that

:)/nk = Z :yjlnic:j € XH a LO((_OO77]>H>'

i=k
It follows that v, € X3. Moreover, since L is w.s.c., IA/(y — V) =
limsupy, L(y — 4, ) = 0 hence v, < 7. At last,

E(L(y = An M) = D E(L(y = 3)[H)1n,—j = E(L(y — ) |H).

j=zk
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Therefore, a(y) = limy, E(L(y — 4,,)) and, since L is w.s.c.,
a(y) = E(L(y =) = Elimsup L(y = Fn,)
> limsup E(L(y = n)) = a(7).

It follows that a(y) = E(L(y — 7s)) is a minimum. Let us define

A

A 1= {7 € Xo 0 L((=0,91, 1)+ aly) = E(L(y = 7))} # @

For any 7, € A(7), consider ¥ € X3, nL°((—c0,~], H) such that ¥ « ve.
As L is super additive, L(y — %) = L(v — Vo) + L(Yo — ) where
L(v5 — %) = 0 by assumption. Therefore, L(y —7) = L(y — 75) and
the inequality is strict on L(y, — ) > 0. This implies that a(y) >
E(L(y—7)) > E(L(y — 7)) if P(L(7% —7) > 0) > 0. This contradicts
the definition of a(vy) hence L(v, — %) = 0. For any 74, € A(y), we
then define
b(Ve0) : et Eu(¥),

where w is given in Deﬁnition As above, we may show that b(7y.,) =
Eu(4) for some 4 € X3, A LO((—0, 75|, H). Let us define A(v,) := {4 €
Xy LY((=0,7%], H)} # & and

X:= ) U Abw)

YEXH Yoo€A(Y)

Let us verify that X satisfies the conditions of Lemma . First X
Xy and X # & by construction since X3 # J. Let us consider 7 € X.
Then, 7 » vy for v, € A(y) # & and 4, » 4 where 4 € A7) # .
It follows that Condition (i) holds.

Suppose that 4! » 42 where 4',4% € X. We have 4' € A(yL) where
vL e A(yh) for some ' € Xy such that 41 « yL « 4. As above, we
deduce that L(vL, —4') = L(v4 —4?) = 0. As L is super additive,
we also have L(y —4%) = L(y — L) + L(vL, —~%). We then deduce
as above that L(vL —~%) = 0 since a(y') = EL(y —~L). On the set
where 4! # 4%, we deduce that u(vL) > u(72) hence b(vL) = Eu(3') >
Eu(4?) if P(4' # 4?) > 0 in contradiction with the definition of b(75).
Therefore, 4' = 4? and Condition (ii) holds.

Suppose that » is of type II, i.e. » is represented by a countable
family of random l.s.c. functions (u;);ey in Definition such that
x » yif and only if u;(x) = w;(y) for all i € N. We may assume without
loss of generality that |u;| is bounded by 1 for every ¢ € N. Indeed,
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replace u; by 2 arctan(u;). We then define u(z) = 7, 27 u;(x). We
may show that u is l.s.c. For any v € X3, we consider
a(y) = inf Eu(y).
% FeX3nLO((—o0,7]),H) @

As in the first proof above, we get a(y) = E(u(vyy)) for some 7, €
X3 n L((—0,7],H). We define

A(Y) = {7 € X 0 LO((—0,9], H) + aly) = E(u(y))} # &,

and we claim that

Essminf (X) = U Aly) # &.
YEXH

Indeed, Condition (i) of Definition 3.7 holds by construction. Condition
(iii) is trivially satisfied as 4 ~ ~ implies that u(%) = wu(y). At last,
consider 7', +? € Essmin}; (X) such that 4* » 4%. We have 4' € A(y!)
for some ! € Xy such that a(y!) = E(u(4')). Then, 41 » 41 » 2
implies that E(u(4')) = E(u(9?)) = a(y'). We deduce that E(u(y') —
u(4?)) = 0 hence u(4') — uw(4?*) = 0 and finally w;(§') — u;(5*) = 0 for
all 7, i.e. 4t ~ 42 [

5. APPLICATION IN FINANCE

On a complete stochastic basis (2, (F;)i=o.... 7, P), we consider a fi-
nancial market model defined by a sequence of random sets (G¢)i—o.... T
such that G} is F;-measurable at any instant t = 0,--- ;T where T' > 1
is an horizon date. We suppose that, for any ¢, GG; satisfies the con-
ditions of Example 3.4 In particular, the liquidation value process is
given by

Li(z) :=supfaeR: z —ae, € G}, z e RP

so that Gy = {z : L;(z) = 0} is the set of all solvent financial portfolio
positions which can be liquidated without any debt. In the following,
we define the associated random orders »; by = », y if and only if
x —y € Gy. Notice that »; is of type 1.

A classical 2-dimensional model is to consider a Bond S) = 1
(w.lo.g.) and a risky asset defined by Bid and Ask prices S° and
S% such that S” < S Recall that S° is the price you get when sell-
ing one unit of risky asset and S is the price you pay when buying
one unit of risky asset. In that case, L;((z,y)) = z + y+tS? — y=S¢
where z* := max(z,0) and £~ = —min(z,0). Moreover, G; is a con-
vex cone containing R? whose positive dual is the smallest convex cone
containing {1} x [S?,S¢]. In [I5], there is also a model where a fixed
cost is charged for every transaction. In that case, the solvency sets



10 E. LEPINETTE

(G4)i=o,... 7 are no more convex but still define an order satisfying the
conditions of Example [3.4]

Definition 5.1. A portfolio process is a stochastic process (V;)i=o.... T
adapted to (F)i—o.... 7, i.e. V; € LO(RY F,) for all t = 0,--- , T, such
that

(5.1) AV,:=V,—V,_1e-G, t=0,--,T.

The interpretation of the dynamics is simple: we may write
Vio1 = Vi + (—=AV}) so that it is possible to change V;_; into V; since
we may liquidate the residual term (—AV;) without any debt. We may
also interpret as the paiement of transaction costs when changing
Vi—1 into V4, see [13, Section 3]. Notice that may be reformulated
as Vioy > Vi forall t < T.

The classical problem in finance is to characterise the set of all port-
folio processes whose terminal values are larger that some given contin-
gent claim & € L°(RY, Fr) of a financial derivative, i.e. some wealth &
which is delivered at the maturity date upon paiement at time 0. The
mathematical problem is then to estimate the prices of £ at any time
t, i.e. the values V; of portfolio processes super hedging &, i.e. Vp = €.

In general, in particular for models without transaction costs, a no
arbitrage condition is imposed to characterise the prices of a con-
tingent claim &, see [I3| Section 2]. In the following, we suppose
the no arbitrage condition called (NA2) E|, initially introduced by
M. Rasonyi [I7]. In [I5], it is proven that (NA2) is equivalent to
LY(Gyy1, Fr) © LO(Gy, F) for all t < T — 1. We may reformulate
this equivalent condition as m(Gy.1|F;) < Gy as. for all t < T — 1,
where m(G;1|F;) is the largest Fi-measurable set contained in Gy,
called conditional core, see [I4]. Under (NA2), we may characterise the
minimal portfolio processes super hedging & as follows. Let us denote
by H¢ the set of all portfolio processes super hedging &.

Definition 5.2. A portfolio process (‘z)t=07...7T of H¢ is said minimal
if whatever V e H¢, the condition V; »; V; implies that V = V.

Notice that V; »; V, means that V; = V, + g: where g; € L%(Gy, ),
i.e. we need to add the extra position g; to V; to obtain Vt If we
introduce the minimal cost function Cy(z) := inf{a e R : ae;—z € Gy},
i.e. the minimal amount of cash we need to get the position z, then
Ci(z) = —L¢(—=z). Therefore, Cy(g;) = —L¢(—g:) where Li(—g;) = 0 if
and only if —g; € Gy (—G;) = {0}. Therefore, if g; # 0, then Cy(g;) > 0
so that it is expensive to change V; into ‘A/t This motivates Definition

2Absence of arbitrage of second kind.
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The natural problem is about the existence of minimal portfoho
processes and a characterisation of them. We denote by Hmm the
set of all minimal portfolio processes super hedging £ and by Hmm( )
their values at time ¢. The following result improves [I5, Proposition
4.9], which is only formulated for the random preorder defined by G4

instead of Gy here, by providing a backward characterization of #5,, .

Theorem 5.3. Suppose that Condition (NA2) holds. Let £ €
LR, Fr) be such that H¢ # &.  Then, HS, # & and
(HE . ())imo.... 7 is characterized recursively by 1S, (T) = € and

HS i (£) = Bssmingt (M, (¢ +1) + LGt Finn) ) # @, < T = 1,

Proof. 1t is clear that #5,,,(T) = €. Let us consider V e H¢ # (.
Then, VT—I € X]:T—l = XT N LO(R 7»FT—1) where XT = LO(GT,FT) +
£. Notice that Xz, | is closed in L° Let us now verify that, for
any v € LO(R? Fr_;) and for all sequence (7, )neny of Xz, , such that
Yn <7_1 7, we have liminf, |y,| < o a.s. To see it, observe that
£ &7 Y €7_1. On the Fr_; measurable set Fr_; = {liminf, |v,| =
oo}, divide the previous inequality by 1 + |v,| and we may assume by
[13| Lemma| that 4, := v,/(1 + |y|) — 7 on Fr_y such that [y =1
and 0 «p ¥ «7_1 0. In particular, ¥ € L°(Gr, Fr_1) hence, under
(NA2), ¥ € m(Gr|Fr—1) © Gr_y. This implies that ¥ € Gr_; N
(—Gr-1) = {0} in contradiction with |¥| = 1. Therefore, P(Fr_1) = 0
hence liminf, |v,| < o a.s.

By Theorem | we set HS,,, (T—1) = Essmin}’ ! (L*(Gr, Fr) +€) #
@ IfVe HE #* @, then VT 2 D71 VT 1 Where VT 1 € X]:T—l' This
implies that Vi_y »7_1 Vi_q for some Vi € ’Hmm( —1). Therefore,
VT_Q € AXV]:T_2 XT 1M L° (Rd fT 2) where XT 1 = Hfmn( 1) +
L°(Gr_1, Fr_1). By the previous reasoning with Theorem 4.1 - we then

set HS,;, (T — 2) = Essmin,, " (7—[5 — 1)+ LYGr_y, Fr_ 1)+> #

min mln(
@. We then reiterate the construction. Starting from H, (T) =
§, it is then possible to backwardly generate a minimal portfo—
lio, i.e. from Vi, € HS (t + 1), it suffices to consider V, €

min

Essmin 7! (V}H + L (GT_l,fT_1)+) # . Reciprocally, by construc-
tion, any Vo € HE

mzn

process V with V; € HS . (t) for all t < T. Moreover, it is clear by
construction that, for any V e H¢, there exists V e HS,,, such that

V, », V, for all t < T, which also proves that the sets H . (¢), t < T,
generate HS,,, # . [

(0) is the initial value of some minimal portfolio
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6. RANDOM MINIMISATION ON A RANDOM SET

In this section, we develop Example 3.8 As announced in the ex-

ample, we are interested in Essmin%(X) where X = L°(D,F) is the
set of all measurable controls. Indeed, in the case where it is not
empty, then any v € L°(D, F) may be reduced into a cheaper control
4 € Essmin%(X) < L%(D, F), i.e. such that c¢() = ¢(¥). We then claim
that any 4 € Essmin%(X) < L°(D,F) satisfies mingep() c(w,z) =
c(%)-
Theorem 6.1. Consider a random F-measurable set D. Let ¢ be a
(random) F-normal integrand and consider the random order v » y
if c(x) = c(y). Suppose that the associated essential minimum (see
Deﬁnitz’on Essmin%(L°(D, F)) is not empty. Then,

xgg(r:})c(w,x) = c(9), as.

whatever 4 € Essminy(LY(D, F)).

To prove this result, we need to recall the notion of real-valued es-
sential infinimum of a family of random variables, see [13] Section 5.3]:

Proposition 6.2. Let (7;)ier be a family of F-measurable random vari-
ables with values in [—o0, 0] on a complete probability space (Q, F,P).
There exists a unique (up to a negligible set) F-measurable random
variable ¥ € LO([—c0, 0], F) such that:

(i) ¥ < a.s. for everyiel.
(ii) If v € L°([—o0, 0], F) satisfies v < 7; a.s. for every i€ I, then
<Y a.s.

Proof of Theorem [6.1]

We first prove that for all 4,42 € Essmin2(X), ¢(1) = ¢(%2), ie.
1 o~ fAyQ To see it, consider 4 = 7116(71)%(72) + 7210(72)>(72) Then,
4 « 4% i =1,2, hence 4 € Essmin'%(X) and 4 ~ 4! ~ 42.

Secondly, we show that essinfr{c(y) : v € X} = ¢(§) whatever
4 € Essmin?(X). Indeed, essinfr{c(y) : v € X}) < ¢(¥) by definition
of the essential supremum. On the other hand, for all v € X, there is
4 € Essmin?(X) such that v » 4 hence the conclusion follows.

Finally, let us consider that the F-measurable set F(w) := {z €
D(w) : c(w,x) < c(w,¥(w)} where 4 is chosen arbitrarily in
Essmin%(X). By a measurable selection argument, there exists on
the set {w: F(w) # &} a measurable selection ¥ € L°(F, D). Then,
Y = Alpeg + Ylr—g € LO(D, F) satisfies ¥ < 4. As 4 € Essmin%(X),
we deduce that ¥ ~ 4 hence P(F # &) = 0. It follows that a.s. for
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all z € D, c(w,z) = ¢(¥) hence mingep) c(w,z) = ¢(¥), which also
proves that mingep,) c(w,z) is F-measurable. In conclusion, for all
4 € Essmin%(L°(D, F)),

Hzl)ién) c(w,z) = essinfr{c(y) : ye L°(D, F)} = c(¥).
e w

i.e. the pointwise minimization of the random function ¢ on the
random set D is solved by identifying the elements of Essmin?(X). [J

Remark 6.3. By Theorem [4.1] Essmin%(L%(D, F)) # & when D is a.s.
compact. This is also the case when D is closed and the (real-valued)

cost function satisfies lim|.j,,, ¢(2) = +o0. Indeed, in that case, if
(Yn)nen satisfies 7, « 7, i.e. c(y,) < c(y) for some v € LO(R? F),
then on the set {liminf, |vy,| = +o0}, we obtain o < ¢(v), i.e. a

contradiction so that liminf,, |7y,| < 4o0.
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