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RANDOM OPTIMIZATION ON RANDOM SETS

EMMANUEL LEPINETTE

Abstract. Random sets and random preorders naturally appear
in financial market modelling with transaction costs. In this pa-
per, we introduce and study a concept of essential minimum of a
family of vector-valued random variables, i.e. the set of all mini-
mal elements with respect to some random preorder. We provide
some conditions under which the essential minimum is not empty
and we present two applications in optimisation to Mathematical
Finance and Economics.

1. Introduction

Random sets and random preorders naturally appear in financial
market modelling with transaction costs. Indeed, a fundamental con-
cept to model a financial market with transaction costs is the random
solvency set Gt of all financial portfolio positions which is possible to
liquidate without any debt at time t. Since the pioneering paper [7],
models with proportional transaction costs have been extended to the
case where the solvency sets are random convex cones of Rd, d ě 1, see
[11, Section 3]. They are now very popular in Mathematical Finance.
Actually, it is possible to consider very general models, e.g. models
with convex or fixed costs, through the concept of liquidation value
process p Ltqtě0 so that Gt “ tz P Rd :  Ltpzq ě 0u is the set of all
financial positions whose liquidation values are non negative at time t.
Notice that Gt is random as it depends on the future prices observed
in the financial market at time t. Associated to these random solvency
sets, the random preorders defined by x "t y when x ´ y P Gt natu-
rally appear as a portfolio process pVtqt“0,1,¨¨¨ satisfies by definition the
dynamics Vt ´ Vt´1 P ´Gt in discrete time, see [11, Section 3.1.1], i.e.
Vt´1 "t Vt, t ě 1. This leads to consider a new approach based on
random preorders and optimization on random sets when solving the
classical problem of super-replication, i.e. for a given measurable payoff
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2 E. LEPINETTE

ξ at time T , characterising the set of all portfolio processes pVtqt“0,1,¨¨¨ ,T

which satisfy VT "T ξ. This approach seems to be fruitful for non con-
ical models and, more generally for non convex models, see [13] with
fixed costs. Indeed, classical tools from convex analysis are no more ap-
propriate and it is not possible to characterise the super-hedging prices
through the duals elements, i.e. the risk-neutral probability measures
for frictionless models, see [2], and the Consistent Price Systems, i.e.
martingales evolving in the positive dual of the solvency sets, for mod-
els with proportional transaction costs, see [11, Section 3.3]. Notice
that a set-valued optimisation approach has been successfully applied
to compute the super-hedging prices of European payoffs in [1] when
the probability space is finite. The same approach is also used in the
setting of set-valued risk measures in presence of proportional transac-
tion costs, [6, 5], where the random orders defined by the solvency sets
play a crucial role.

Therefore, we need to take a fresh look at least for non convex mod-
els and a new idea is to consider only the portfolio processes which
are minimal in some sense to be defined with respect to the random
preorders. This idea has been initially introduced, see [8, 9, 10], for
conic models and the concept of essential supremum for a family of
vector-valued random variables is formulated with respect to the ran-
dom preorder defined by a convex cone. In the present paper, we
consider a more general setting where the random preorder is either
defined by a random set which is not necessarily convex or is defined
by a random countable multi-utility representation. We introduce the
concept of essential minimum for a family of vector-valued random
variables with respect to a random preorder. Our main contribution is
to show the existence of minimal elements, i.e. the essential minimum
is not empty, under mild conditions. Finally, we illustrate our result
by two applications. The first one in Mathematical Finance improves
a result of [13] by characterizing the minimal portfolio processes super-
replicating a European claim. The second one is a classical problem
in Economics which is here solved in a random environment, i.e. we
minimise a random cost function on a random set.

In the following, we first recall the notions of random set (see [14]
for a complete overview) and random preorders with examples. The
main result (Theorem 4.1) is then formulated. At last, we present the
two applications.
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2. Measurability of random sets

Let Rd be the Euclidean space with norm }¨} and the Borel σ-algebra
BpRdq. The closure of a set A Ă Rd is denoted by clA.

A set-valued mapping ω ÞÑ Xpωq Ă Rd from a complete probability
space pΩ,F ,Pq to the family of all subsets of Rd is called F-measurable
if its graph

GrX “ tpω, xq P Ωˆ Rd : x P Xpωqu Ă Ωˆ Rd

belongs to the product σ-algebra FbBpRdq. In this case, X is said to be
a random set. In the same way, the H-measurability of X with respect
to a sub-σ-algebra H of F is defined. Unless otherwise stated, by the
measurability we always understand the measurability with respect to
F . The random set X is said to be closed if Xpωq is a closed set for
almost all ω.

Definition 2.1. An F -measurable random element ξ in Rd such that
ξpωq P Xpωq for almost all ω P Ω is said to be an F -measurable selec-
tion (selection in short) of X, L0pX,Fq denotes the family of all F -
measurable selections of X, and LppX,Fq is the family of p-integrable
ones.

By [3, Th. 4.4], an a.s. non-empty random set X has at least one
selection, i.e. L0pX,Fq ‰ H where L0pRd,Fq is equipped with the
topology generated by the convergence in probability. When such a
property is used to mention the existence of such a measurable selec-
tion, we write by measurable selection argument.

Definition 2.2. A family Ξ Ă L0pRd,Fq is said to be H-decomposable
if

m
ÿ

n“1

ξn1An P Ξ

for all finite sequences pξnqn“1,¨¨¨ ,m from Ξ and all finite H-measurable
partitions pAnqně1 of Ω.

The following result is well known for p “ 1 [4], for p P r1,8s [14,
Th. 2.1.6], and is proven in [12] for p “ 0.

Theorem 2.3. Let Ξ be a non-empty subset of LppRd,Fq for p “ 0 or
p P r1,8s. Then

Ξ X LppRd,Hq “ LppX,Hq.
for an H-measurable random closed set X if and only if Ξ is H-
decomposable and closed.
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We deduce the following result [12]. In particular, the existence of
a countable respresentation of a random set is well known when it is
closed, see e.g. [14, Th. 2.2.3]. It is called the Castaing representation.

Proposition 2.4. If X is a random set, then its pointwise closure
clXpωq, ω P Ω, is a random closed set, and L0pclX,Fq “ cl0 L0pX,Fq.
Furthermore, there exists a countable family pξiqiě1 of measurable se-
lections of X such that clX “ cltξi, i ě 1u a.s.

3. Random preorders

In the following, we consider a random binary relation (or preference
relation) between the elements of Rd denoted by " which is reflexive.
In the case where " is also transitive, " is a random preorder. Note
that it is naturally possible to extend it to the set of all measurable
random variables, i.e. for any γ1, γ2 P L

0pRd,Fq, we write γ1 " γ2

when the set of all ω such that γ1pωq " γ2pωq is of full measure. We
shall consider on a complete probability space pΩ,F ,Pq two types of
random preorders we define below. To do so, we need to introduce the
following notions.

Lemma 3.1. Let H be a sub σ-algebra of F and let h : Ω ˆ Rk Ñ R.
Then h is H-normal integrand (see Definition 14.27 in [16]) if and only
if h is H b BpRkq-measurable and is lower semi-continuous (l.s.c. in
the sequel) in x, see [16, Corollary 14.34].

Consider Z P L0pRk,Hq. We shall use the notation hpZq : ω Ñ

hpZpωqq “ hpω, Zpωqq. If h is H b BpRkq-measurable, hpZq P
L0pRk,Hq.

Definition 3.2. We say that the random preorder is of type I if there
exists a super additive 1 random function L with Lp0q “ 0 such that
for all x, y P Rd, x " y if and only if Lpx ´ yq ě 0 a.s. Moreover, we
suppose that ´L is a F -normal integrand and there exists a bounded
F -normal integrand u such that for all x, y P Rd, Lpx´ yq “ 0 implies
that upxq ě upyq with a strict inequality if x ‰ y.

Definition 3.3. We say that the random preference relation is of type
II if there exists a countable family of random functions puiqiPN which
are F -normal integrands such that for all x, y P Rd, x " y if and only
if uipxq ě uipyq a.s. for all i P N.

Example 3.4. Let G be a random F -measurable closed set of Rd, d ě 1,
containing R`e1 where e1 “ p1, 0, ¨ ¨ ¨ , 0q P Rd. Assume that G ` G Ă

1i.e. Lpx` yq ě Lpxq ` Lpyq.
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G a.s. and G X p´Gq “ t0u. Moreover, suppose that the smallest
closed convex cone K “ clpR`Gq containing G does not contain ´e1.
In mathematical finance, G is interpreted as the set of all financial
positions which are solvent, i.e. that may be liquidated without any
debt. Let us consider

Lpxq :“ suptα P R : x´ αe1 P Gu, x P RD.

In finance, Lpxq is the liquidation value of the financial position x. As
´e1 R K, we may show that Lpxq is a maximum, i.e. x ´ Lpxqe1 P G
for all x P Rd. In particular, G “ tx P Rd : Lpxq ě 0u.

Let us define the random preorder x " y if x ´ y P G. By the
assumptions on G, this is a random order and x " y if and only if
Lpx´ yq ě 0. As G`G Ă G, we obtain that Lpx` yq ě Lpxq ` Lpyq,
i.e. L is super additive.

Let us show that L is upper semi-continuous (u.s.c.). Consider a
convergent sequence pxnqnPN whose limit is x. Recall that xn´Lpxnqe1 P

G. In the case where |Lpxnq| Ñ `8 for a subsequence, then using the
normalization x̃n :“ xn{p1 ` |Lpxnq|q Ñ 0, we get that ´e1 P K as
n Ñ 8 hence a contradiction. We deduce that lim supn Lpxnq ă 8

and, as n Ñ 8, x ´ lim supn Lpxnqe1 P G. This implies that Lpxq ě
lim supn Lpxnq. At last, pω, xq ÞÑ Lpω, xq is F ˆ BpRdq-measurable.
Indeed, as R`e1 Ă G, we may show that, for every c P R, tpω, xq P
ΩˆRd : Lpω, xq ě cu “ tpω, xq P ΩˆRd : x´ ce1 P Gu, the latter set
belonging to F ˆ BpRdq since G is measurable.

Finally, we suppose that the points of the boundary BG may be
separated by a bounded F -normal integrand u in the sense that x´y P
BG implies that upxq ą upyq is x ‰ y. In that case, " is of type I since
tL “ 0u Ă BG. This condition will be satisfied in the financial model
we shall present below.

Example 3.5. Let G be a random F -measurable closed convex cone of
Rd, d ě 1, which contains 0. The positive dual is G˚ :“ tx P Rd : xg ě
0, @g P Gu. It is well know that G “ pG˚q˚ and G˚ is F -measurable.
Therefore, G˚ admits a Castaing representation G˚ “ clpg˚i : i P Nu
and G “ tx P Rd : xg˚i ě 0, @i P Nu. Therefore, if we define x " y by
x´ y P G, we get that x " y if and only if uipxq ě uipyq a.s. for every
i P N, where uipzq “ g˚i z.

The following concepts are introduced to solve minimization prob-
lems related to random preorders. See also [8], [9] and [10] where similar
notions are considered.

Lemma 3.6. Let X Ă L0pRd,Fq be such that XH :“ XXL0pRd,Hq ‰
H. Suppose that " is antisymmetric, i.e. " is a random order. There
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exists a unique subset X̂ Ă XH denoted by X̂ “ EssminHpXq satisfying
the following properties:

(i) For all γ P XH :, there exists γ̂ P X̂ such that γ " γ̂.

(ii) If γ̂1, γ̂2 P X̂ satisfy γ̂1 " γ̂2, then γ̂1 “ γ̂2.

Proof. Suppose that there exists two subsets X̂1, X̂2 Ă XH satisfying
(i) and (ii). Consider any γ̂1 P X̂1. As X̂2 satisfies (i) , there exists

γ̂2 P X̂2 such that γ̂1 " γ̂2. Similarly, there exists γ̃1 P X̂1 such that
γ̂2 " γ̃1. We deduce by transitivity that γ̂1 " γ̃1. This implies by (ii)
that γ̂1 “ γ̃1. Therefore, γ̂1 ě γ̂2 and γ̂2 ě γ̂1. By antisymmetry, we
get that γ̂1 “ γ̂2 P X̂2, i.e. X̂1 Ă X̂2. By symmetry, we also get that
X̂2 Ă X̂1 so that the equality holds. l

We may only consider random preorders if we only consider a weak
version of the essential minimum. To do so, we write γ1 „ γ2 if γ1 " γ2

and γ2 " γ1.

Lemma 3.7. Let X Ă L0pRd,Fq be such that XH :“ XXL0pRd,Hq ‰
H. There exists a unique subset X̂ Ă XH denoted by X̂ “ EssminwHpXq
satisfying the following properties:

(i) For all γ P XH, there exists γ̂ P X̂ such that γ " γ̂.

(ii) If γ̂1, γ̂2 P X̂ satisfy γ̂1 " γ̂2, then γ̂1 „ γ̂2.

(iii) For any γ̂ P X̂, γ̃ „ γ̂ and γ̃ P XH, implies γ̃ P X̂.

Proof. It suffices to repeat the proof of Lemma 3.6 where we use (iii)
instead of the antisymmetry condition. l

When necessary, we denote by Essmin"HpXq or Essminw,"H pXq the
essential minimum EssminHpXq or EssminwHpXq to specify the chosen
preorder.

Example 3.8 (Minimization on a random set). Let D be a random F -
measurable closed set we consider as the domain of control variables
x P Rd satisfying some random contraints. Let c be a random cost
function we suppose to be a F -normal integrand. Our goal is to study
the problem of minimising c over D. Notice that this problem is a pri-
ori considered pointwise, i.e. for each ω P Ω, we may solve the problem
minxPDpωq cpω, xq. Here, we seek for mesurable minimizers of the prob-
lem with values in D. This is why we introduce the following random
preorder of type II: x " y if cpxq " cpyq a.s. Actually, we may show that
minxPDpωq cpω, xq “ cpγ̂q a.s. whatever γ̂ P EssminwFpL

0pD,Fqq ‰ H,
see Theorem 6.1.
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4. Main results

The goal of this section is to provide conditions under which the
essential minimum X̂ “ EssminHpXq (resp. EssminwHpXq) of some
family of random variables X Ă L0pRd,Hq is not empty.

Theorem 4.1. Let X Ă L0pRd,Hq. Suppose that XH “ X X

L0pRd,Hq ‰ H is H-decomposable and closed in L0. Assume that
for any γ P XH and any sequence pγnqnPN P XH such that γn ! γ,
we have lim infn |γn| ă 8 a.s. Suppose that the random preorder "

is of type I (resp. of type II). Then, X̂ “ EssminHpXq ‰ H (resp.
EssminwHpXq ‰ H).

Proof. Suppose that " is of type I, i.e. represented by a function L
in Definition 3.2 such that x " y if and only if Lpx ´ yq ě 0. Let us

define L̂pzq :“ arctanLpzq P r´π{2; π{2s. For any γ P XH, we denote
by L0pp´8, γs,Hq the set of all H-measurable random variables γ̃ such
that γ̃ ! γ and we define

apγq “ inf
γ̃PXHXL0pp´8,γsq,Hq

EL̂pγ ´ γ̃q.

By definition, there exists a sequence pγnqnPN P XH X L0pp´8, γs,Hq
such that apγq “ limn EL̂pγ ´ γnq.

Let us consider the sequence pγ̃nqnPN defined by γ̃1 “ γ1 and its next
terms are recursively defined as

γ̃n`1 “ γn`11EpL̂pγ´γn`1q|HqąEpL̂pγ´γ̃nq|Hq ` γ̃n1EpL̂pγ´γn`1q|HqďEpL̂pγ´γ̃nq|Hq.

Since XH is H-decomposable, we deduce by induction that pγ̃nqnPN P

XHXL
0pp´8, γs,Hq. Moreover, by construction, the sequence EpL̂pγ´

γ̃n`1q|Hq is non decreasing and satisfies EpL̂pγ ´ γ̃n`1q|Hq ě EpL̂pγ ´

γn`1q|Hq hence apγq “ limn EL̂pγ ´ γ̃nq.
By the assumption, lim infn |γ̃n| ă 8 a.s. Therefore, by [11, Lemma

2.1.2], there exists a H-measurable sequence nk P L0pN,Hq such
that γ̃nk

is a.s. convergent to some γ8 P L0pRd,Hq. As XH is H-
decomposable and closed, we deduce that

γ̃nk
“

ÿ

jěk

γ̃j1nk“j P XH X L
0
pp´8, γs,Hq.

It follows that γ8 P XH. Moreover, since L̂ is u.s.c., L̂pγ ´ γ8q ě

lim supk L̂pγ ´ γ̃nk
q ě 0 hence γ8 ! γ. At last,

EpL̂pγ ´ γ̃nk
q|Hq “

ÿ

jěk

EpL̂pγ ´ γ̃jq|Hq1nk“j ě EpL̂pγ ´ γ̃kq|Hq.
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Therefore, apγq “ limk EpL̂pγ ´ γ̃nk
qq and, since L̂ is u.s.c.,

apγq ě EpL̂pγ ´ γ8qq ě Eplim sup
k

L̂pγ ´ γ̃nk
qq

ě lim sup
k

EpL̂pγ ´ γ̃nk
qq “ apγq.

It follows that apγq “ EpL̂pγ ´ γ8qq is a minimum. Let us define

Λpγq :“
!

γ8 P XH X L
0
pp´8, γs,Hq : apγq “ EpL̂pγ ´ γ8qq

)

‰ H.

For any γ8 P Λpγq, consider γ̃ P XHXL
0pp´8, γs,Hq such that γ̃ ! γ8.

As L is super additive, Lpγ ´ γ̃q ě Lpγ ´ γ8q ` Lpγ8 ´ γ̃q where
Lpγ8 ´ γ̃q ě 0 by assumption. Therefore, Lpγ ´ γ̃q ě Lpγ ´ γ8q and
the inequality is strict on Lpγ8 ´ γ̃q ą 0. This implies that apγq ě

EpL̂pγ´ γ̃qq ą EpL̂pγ´ γ8qq if PpLpγ8´ γ̃q ą 0q ą 0. This contradicts
the definition of apγq hence Lpγ8 ´ γ̃q “ 0. For any γ8 P Λpγq, we
then define

bpγ8q :“ inf
γ̃PXHXL0pp´8,γ8s,Hq

Eupγ̃q,

where u is given in Definition 3.2. As above, we may show that bpγ8q “

Eupγ̂q for some γ̂ P XHXL
0pp´8, γ8s,Hq. Let us define Λ̂pγ8q :“ tγ̂ P

XH X L
0pp´8, γ8s,Hqu ‰ H and

X̂ :“
ď

γPXH

ď

γ8PΛpγq

Λ̂pγ8q.

Let us verify that X̂ satisfies the conditions of Lemma 3.6. First X̂ Ă

XH and X̂ ‰ H by construction since XH ‰ H. Let us consider γ P X̂.
Then, γ " γ8 for γ8 P Λpγq ‰ H and γ8 " γ̂ where γ̂ P Λ̂pγ8q ‰ H.
It follows that Condition (i) holds.

Suppose that γ̂1 " γ̂2 where γ̂1, γ̂2 P X̂. We have γ̂1 P Λ̂pγ1
8q where

γ1
8 P Λpγ1q for some γ1 P XH such that γ̂1 ! γ1

8 ! γ1. As above, we
deduce that Lpγ1

8 ´ γ̂1q “ Lpγ1
8 ´ γ̂2q “ 0. As L is super additive,

we also have Lpγ ´ γ̂2q ě Lpγ ´ γ1
8q ` Lpγ1

8 ´ γ2
8q. We then deduce

as above that Lpγ1
8 ´ γ2

8q “ 0 since apγ1q “ ELpγ ´ γ1
8q. On the set

where γ̂1 ‰ γ̂2, we deduce that upγ1
8q ą upγ2

8q hence bpγ1
8q “ Eupγ̂1q ą

Eupγ̂2q if Ppγ̂1 ‰ γ̂2q ą 0 in contradiction with the definition of bpγ1
8q.

Therefore, γ̂1 “ γ̂2 and Condition (ii) holds.
Suppose that " is of type II, i.e. " is represented by a countable

family of random l.s.c. functions puiqiPN in Definition 3.3 such that
x " y if and only if uipxq ě uipyq for all i P N. We may assume without
loss of generality that |ui| is bounded by 1 for every i P N. Indeed,
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replace ui by 2
π

arctanpuiq. We then define upxq “
ř8

i“1 2´1uipxq. We
may show that u is l.s.c. For any γ P XH, we consider

apγq “ inf
γ̃PXHXL0pp´8,γsq,Hq

Eupγ̃q.

As in the first proof above, we get apγq “ Epupγ8qq for some γ8 P

XH X L
0pp´8, γs,Hq. We define

Λpγq :“
 

γ8 P XH X L
0
pp´8, γs,Hq : apγq “ Epupγ8qq

(

‰ H,

and we claim that

EssminwHpXq “
ď

γPXH

Λpγq ‰ H.

Indeed, Condition (i) of Definition 3.7 holds by construction. Condition
(iii) is trivially satisfied as γ̃ „ γ implies that upγ̃q “ upγq. At last,
consider γ1, γ2 P EssminwHpXq such that γ̂1 " γ̂2. We have γ̂1 P Λpγ1q

for some γ1 P XH such that apγ1q “ Epupγ̂1qq. Then, γ1 " γ̂1 " γ2

implies that Epupγ̂1qq ě Epupγ̂2qq ě apγ1q. We deduce that Epupγ̂1q ´

upγ̂2qq “ 0 hence upγ̂1q ´ upγ̂2q “ 0 and finally uipγ̂
1q ´ uipγ̂

2q “ 0 for
all i, i.e. γ̂1 „ γ̂2. l

5. Application in Finance

On a complete stochastic basis pΩ, pFtqt“0,¨¨¨ ,T ,Pq, we consider a fi-
nancial market model defined by a sequence of random sets pGtqt“0,¨¨¨ ,T

such that Gt is Ft-measurable at any instant t “ 0, ¨ ¨ ¨ , T where T ě 1
is an horizon date. We suppose that, for any t, Gt satisfies the con-
ditions of Example 3.4. In particular, the liquidation value process is
given by

Ltpxq :“ suptα P R : x´ αe1 P Gu, x P RD

so that Gt “ tx : Ltpxq ě 0u is the set of all solvent financial portfolio
positions which can be liquidated without any debt. In the following,
we define the associated random orders "t by x "t y if and only if
x´ y P Gt. Notice that "t is of type I.

A classical 2-dimensional model is to consider a Bond S0
t “ 1

(w.l.o.g.) and a risky asset defined by Bid and Ask prices Sb and
Sa such that Sb ď Sa. Recall that Sb is the price you get when sell-
ing one unit of risky asset and Sa is the price you pay when buying
one unit of risky asset. In that case, Ltppx, yqq “ x ` y`Sbt ´ y´Sat
where x` :“ maxpx, 0q and x´ “ ´minpx, 0q. Moreover, Gt is a con-
vex cone containing R2

` whose positive dual is the smallest convex cone
containing t1u ˆ rSbt , S

a
t s. In [13], there is also a model where a fixed

cost is charged for every transaction. In that case, the solvency sets
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pGtqt“0,¨¨¨ ,T are no more convex but still define an order satisfying the
conditions of Example 3.4.

Definition 5.1. A portfolio process is a stochastic process pVtqt“0,¨¨¨ ,T

adapted to pFtqt“0,¨¨¨ ,T , i.e. Vt P L
0pRd,Ftq for all t “ 0, ¨ ¨ ¨ , T , such

that

∆Vt :“ Vt ´ Vt´1 P ´Gt, t “ 0, ¨ ¨ ¨ , T.(5.1)

The interpretation of the dynamics (5.1) is simple: we may write
Vt´1 “ Vt ` p´∆Vtq so that it is possible to change Vt´1 into Vt since
we may liquidate the residual term p´∆Vtq without any debt. We may
also interpret (5.1) as the paiement of transaction costs when changing
Vt´1 into Vt, see [11, Section 3]. Notice that (5.1) may be reformulated
as Vt´1 "t Vt for all t ď T .

The classical problem in finance is to characterise the set of all port-
folio processes whose terminal values are larger that some given contin-
gent claim ξ P L0pRd,FT q of a financial derivative, i.e. some wealth ξ
which is delivered at the maturity date upon paiement at time 0. The
mathematical problem is then to estimate the prices of ξ at any time
t, i.e. the values Vt of portfolio processes super hedging ξ, i.e. VT ě ξ.

In general, in particular for models without transaction costs, a no
arbitrage condition is imposed to characterise the prices of a con-
tingent claim ξ, see [11, Section 2]. In the following, we suppose
the no arbitrage condition called (NA2) 2, initially introduced by
M. Ràsonyi [15]. In [13], it is proven that (NA2) is equivalent to
L0pGt`1,Ftq Ă L0pGt,Ftq for all t ď T ´ 1. We may reformulate
this equivalent condition as mpGt`1|Ftq Ă Gt a.s. for all t ď T ´ 1,
where mpGt`1|Ftq is the largest Ft-measurable set contained in Gt`1,
called conditional core, see [12]. Under (NA2), we may characterise the
minimal portfolio processes super hedging ξ as follows. Let us denote
by Hξ the set of all portfolio processes super hedging ξ.

Definition 5.2. A portfolio process pV̂tqt“0,¨¨¨ ,T of Hξ is said minimal

if whatever V P Hξ, the condition V̂t "t Vt implies that V̂ “ V .

Notice that V̂t "t Vt means that V̂t “ Vt ` gt where gt P L
0pGt,Ftq,

i.e. we need to add the extra position gt to Vt to obtain V̂t. If we
introduce the minimal cost function Ctpzq :“ inftα P R : αe1´z P Gtu,
i.e. the minimal amount of cash we need to get the position z, then
Ctpzq “ ´Ltp´zq. Therefore, Ctpgtq “ ´Ltp´gtq where Ltp´gtq ě 0 if
and only if´gt P GtXp´Gtq “ t0u. Therefore, if gt ‰ 0, then Ctpgtq ą 0

so that it is expensive to change Vt into V̂t. This motivates Definition

2Absence of arbitrage of second kind.



RANDOM OPTIMIZATION 11

5.2. The natural problem is about the existence of minimal portfolio
processes and a characterisation of them. We denote by Hξ

min the

set of all minimal portfolio processes super hedging ξ and by Hξ
minptq

their values at time t. The following result improves [13, Proposition
4.9], which is only formulated for the random preorder defined by Gt`1

instead of Gt here, by providing a backward characterization of Hξ
min.

Theorem 5.3. Suppose that Condition (NA2) holds. Let ξ P

L0pRd,FT q be such that Hξ ‰ H. Then, Hξ
min ‰ H and

pHξ
minptqqt“0,¨¨¨ ,T is characterized recursively by Hξ

minpT q “ ξ and

Hξ
minptq “ Essmin"t

Ft

´

Hξ
minpt` 1q ` L0

pGt`1,Ft`1q

¯

‰ H, t ď T ´ 1.

Proof. It is clear that Hξ
minpT q “ ξ. Let us consider V P Hξ ‰ H.

Then, VT´1 P XFT´1
“ XT X L0pRd,FT´1q where XT “ L0pGT ,FT q `

ξ. Notice that XFT´1
is closed in L0. Let us now verify that, for

any γ P L0pRd,FT´1q and for all sequence pγnqnPN of XFT´1
such that

γn !T´1 γ, we have lim infn |γn| ă 8 a.s. To see it, observe that
ξ !T γn !T´1. On the FT´1 measurable set FT´1 “ tlim infn |γn| “
8u, divide the previous inequality by 1 ` |γn| and we may assume by
[11, Lemma] that γ̃n :“ γn{p1 ` |γn|q Ñ γ̃ on FT´1 such that |γ̃| “ 1
and 0 !T γ̃ !T´1 0. In particular, γ̃ P L0pGT ,FT´1q hence, under
(NA2), γ̃ P mpGT |FT´1q Ă GT´1. This implies that γ̃ P GT´1 X

p´GT´1q “ t0u in contradiction with |γ̃| “ 1. Therefore, PpFT´1q “ 0
hence lim infn |γn| ă 8 a.s.

By Theorem 4.1, we set Hξ
minpT´1q “ Essmin

"T´1

FT´1
pL0pGT ,FT q ` ξq ‰

H. If V P Hξ ‰ H, then VT´2 "T´1 VT´1 where VT´1 P XFT´1
. This

implies that VT´1 "T´1 V̂T´1 for some V̂T´1 P Hξ
minpT ´ 1q. Therefore,

VT´2 P XFT´2
“ XT´1 X L0pRd,FT´2q where XT´1 “ Hξ

minpT ´ 1q `
L0pGT´1,FT´1q. By the previous reasoning with Theorem 4.1, we then

set Hξ
minpT ´ 2q “ Essmin

"T´2

H

´

Hξ
minpT ´ 1q ` L0pGT´1,FT´1q`

¯

‰

H. We then reiterate the construction. Starting from Hξ
minpT q “

ξ, it is then possible to backwardly generate a minimal portfo-
lio, i.e. from V̂t`1 P Hξ

minpt ` 1q, it suffices to consider V̂t P

Essmin"t
Ft

´

V̂t`1 ` L
0pGT´1,FT´1q`

¯

‰ H. Reciprocally, by construc-

tion, any V0 P Hξ
minp0q is the initial value of some minimal portfolio

process V̂ with V̂t P Hξ
minptq for all t ď T . Moreover, it is clear by

construction that, for any V P Hξ, there exists V̂ P Hξ
min such that

Vt "t V̂t for all t ď T , which also proves that the sets Hξ
minptq, t ď T ,

generate Hξ
min ‰ H. l
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6. Random minimisation on a random set

In this section, we develop Example 3.8. As announced in the ex-
ample, we are interested in EssminwFpXq where X “ L0pD,Fq is the
set of all measurable controls. Indeed, in the case where it is not
empty, then any γ P L0pD,Fq may be reduced into a cheaper control
γ̂ P EssminwFpXq Ă L0pD,Fq, i.e. such that cpγq ě cpγ̂q. We then claim
that any γ̂ P EssminwFpXq Ă L0pD,Fq satisfies minxPDpωq cpω, xq “
cpγ̂q.

Theorem 6.1. Consider a random F-measurable set D. Let c be a
(random) F-normal integrand and consider the random order x " y
if cpxq ě cpyq. Suppose that the associated essential minimum (see
Definition 3.7) EssminwFpL

0pD,Fqq is not empty. Then,

min
xPDpωq

cpω, xq “ cpγ̂q, a.s.

whatever γ̂ P EssminwFpL
0pD,Fqq.

To prove this result, we need to recall the notion of real-valued es-
sential infinimum of a family of random variables, see [11, Section 5.3]:

Proposition 6.2. Let pγiqiPI be a family of F-measurable random vari-
ables with values in r´8,8s on a complete probability space pΩ,F ,Pq.
There exists a unique (up to a negligible set) F-measurable random
variable γ̄ P L0pr´8,8s,Fq such that:

(i) γ̄ ď γi a.s. for every i P I.

(ii) If γ P L0pr´8,8s,Fq satisfies γ ď γi a.s. for every i P I, then
γ ď γ̄ a.s.

Proof of Theorem 6.1.
We first prove that for all γ̂1, γ̂2 P EssminwFpXq, cpγ̂1q “ cpγ̂2q, i.e.

γ̂1 „ γ̂2. To see it, consider γ̂ “ γ̂11cpγ̂1qącpγ̂2q ` γ̂21cpγ̂2qěpγ̂2q. Then,
γ̂ ! γ̂i, i “ 1, 2, hence γ̂ P EssminwFpXq and γ̂ „ γ̂1 „ γ̂2.

Secondly, we show that ess infFtcpγq : γ P Xu “ cpγ̂q whatever
γ̂ P EssminwFpXq. Indeed, ess infFtcpγq : γ P Xuq ď cpγ̂q by definition
of the essential supremum. On the other hand, for all γ P X, there is
γ̂ P EssminwFpXq such that γ " γ̂ hence the conclusion follows.

Finally, let us consider that the F -measurable set F pωq :“ tx P
Dpωq : cpω, xq ă cpω, γ̂pωqu where γ̂ is chosen arbitrarily in
EssminwFpXq. By a measurable selection argument, there exists on
the set tω : F pωq ‰ Hu a measurable selection γ̃ P L0pF,Dq. Then,
γ̄ “ γ̃1F‰H ` γ̂1F“H P L

0pD,Fq satisfies γ̄ ď γ̂. As γ̂ P EssminwFpXq,
we deduce that γ̄ „ γ̂ hence P pF ‰ Hq “ 0. It follows that a.s. for
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all x P D, cpω, xq ě cpγ̂q hence minxPDpωq cpω, xq “ cpγ̂q, which also
proves that minxPDpωq cpω, xq is F -measurable. In conclusion, for all
γ̂ P EssminwFpL

0pD,Fqq,

min
xPDpωq

cpω, xq “ ess infFtcpγq : γ P L0
pD,Fqu “ cpγ̂q.

i.e. the pointwise minimization of the random function c on the
random set D is solved by identifying the elements of EssminwFpXq. l

Remark 6.3. By Theorem 4.1, EssminwFpL
0pD,Fqq ‰ H when D is a.s.

compact. This is also the case when D is closed and the (real-valued)
cost function satisfies lim|z|Ñ8 cpzq “ `8. Indeed, in that case, if
pγnqnPN satisfies γn ! γ, i.e. cpγnq ď cpγq for some γ P L0pRd,Fq,
then on the set tlim infn |γn| “ `8u, we obtain 8 ď cpγq, i.e. a
contradiction so that lim infn |γn| ă `8.
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