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Multimodal 2D Image to 3D Model Registration via a Mutual

Alignment of Sparse and Dense Visual Features

Nathan Crombez, Ralph Seulin, Olivier Morel, David Fofi and Cédric Demonceaux

Abstract—Many fields of application could benefit from an
accurate registration of measurements of different modalities
over a known 3D model. However, aligning a 2D image to a
3D model is a challenging task and is even more complex when
the two have a different modality. Most of the 2D/3D registration
methods are based on either geometric or dense visual features.
Both have their own advantages and their own drawbacks. We
propose, in this paper, to mutually exploit the advantages of one
feature type to reduce the drawbacks of the other one. For this,
an hybrid registration framework has been designed to mutually
align geometrical and dense visual features in order to obtain
an accurate final 2D/3D alignment. We evaluate and compare
the proposed registration method on real data acquired by a
robot equipped with several visual sensors. The results highlights
the robustness of the method and its ability to produce wide
convergence domain and a high registration accuracy.

I. INTRODUCTION

Nowadays, it becomes relatively simple to create a 3D

virtual representation of a real environment. Indeed, vision-

based 3D reconstruction methods like SLAM (Simultaneous

Localisation and Mapping) [1], SfM (Structure from Mo-

tion) [2] or MultiView-Stereo (MVS) [3] are more and more

mature. In parallel, technological advances have enabled the

development of tools like terrestrial laser scanners (TLS).

These methods and devices can now be considered as out-

of-the-box solutions to create a 3D model of a real scene.

After an environment has been digitized, it may be inter-

esting and useful to supplement the 3D model with novel

measurements that come from different visual sensors. How-

ever, the use of a diversity of sensors is a source of issues

generally grouped under the term “multimodality”. Registering

a 3D model over 2D images is already a challenging task

and is even more complex when the two have been obtained

with different visual sensors. Of course, the types of modality

that are used depend on the purpose of the application. For

instance, near-infrared (NIR) spectral images are commonly

used for precision agriculture applications. In [4] authors have

designed and developed a multi-spectral 3D imaging device

that can be used for creating a 3D point cloud of a field. In

addition to geometric and photometric information, each 3D

point of the resulting model has also a NDVI (Normalized

Difference Vegetation Index) value which is an important

indicator of plant vigor. Combining long-wavelength infrared

(LWIR) images with a photometric 3D model can reveal

information which may not be present neither in the model

or in the LWIR images. This facilitates the visual detection,
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recognition and segmentation of objects like windows on

building façades [5]. Fusion of thermal radiation and a 3D

model is also useful for monitoring energetic performances of

buildings [6] or to study the thermal properties of materials [7].

In cultural heritage documentation, registration of visual data

acquired from various 2D and 3D sensing modalities is also a

crucial point for the visualisation of big multimodal data [8]

or for photorealistic modeling [9]. Finally, registration of 2D

image to 3D range scans collected in urban scenarios serves as

a core module in many applications [10]. All these works are

some examples among many others that show the importance

of an accurate multimodal 2D/3D registration.

II. RELATED WORK

The registration of a 3D model over an image can be seen as

the alignment of visual correspondences extracted from these

two data. These visual correspondences are generally referred

as “visual features”. As for classical registration (as opposed

to the notion of multimodality), the state-of-the-art approaches

for multimodal 2D/3D registration may be broadly classified

according to the type of used visual features. They can be

sparse or dense and both have advantages and drawbacks.

Sparse feature-based registration requires the extraction and

matching of corresponding visual features in the real image

and in a virtual image rendered within the 3D model. The

geometrical features that are the most commonly used are

interest points. For instance, [11] proposed a robust approach

for detecting reliable feature correspondences between an

image acquired with a range camera and a thermal image

by exploiting wavelength independent properties. An EPnP

(Efficient Perspective-n-Point) algorithm is used on the result-

ing set of 2D/3D correspondences to estimate the parameters

of the thermal camera and perform the thermal mapping on

the 3D data. Other geometrical features like lines have also

been used. For instance, contours-based 2D/3D registration

method has been used in [12] to align historical painting

over 3D model obtained from current images of a scene. After

an initial coarse alignment using a shape descriptor, oriented

edge points are extracted and matched from contours that are

detected in the historical painting and in 3D model renders.

Finally, an ICP-like approach is applied on these matched

edges to perform the registration. Dominant lines are often

preferred in the case of man-made environments as in [13].

Geometrical sparse features require an accurate detection in

images of different modalities. They also have to be correctly

matched together and even tracked for some approaches. Even

if features detection, matching and tracking have been deeply



studied, they are still hard challenges but are crucial to the

success of sparse feature-based 2D/3D registration.

As opposed to sparse features, the second category of

2D/3D registration methods are based on dense features. Dense

features concept is based on the global appearance of a scene

instead of its geometrical shape. A dense feature uses all image

pixels. The most commonly used for multimodal 2D/3D regis-

tration is the Mutual Information (MI). This statistical measure

of non-linear correlation between two data sources was first

introduced for the registration of multimodal medical images.

The use of MI has been extended to 2D/3D multimodal regis-

tration in [14]. Indeed, authors proposed to estimate the camera

parameters by maximizing the correlation between a real

image and different attributes of illumination of the 3D model

(ambient occlusion, specularity, normal field). Very recently,

[10] proposed to only use similarity measurements between a

chosen set of 2D/3D attribute-pairs that could be dominant in

a specific scene. The choice of the attributes-pairs results of a

preliminary training phase. Finally, all the selected attributes-

pairs are combined into a reliable similarity measurement:

Normalized Mutual Information (NMI). NMI have also been

used for autonomous vehicles localization based on a LIDAR

map of urban environments [15], [16]. Dense features have

the advantages to avoid the detection, matching or tracking

stages and offers a very accurate registration [14]. However,

the convergence domain is very tight, thus to guarantee a

correct 2D/3D registration, the real image and the 3D model

must be initially coarsely aligned.

These two types of visual features are typically used in

two consecutive stages. First, sparse features are used to

estimate a first coarse alignment, then a dense feature is used

to obtain a fine registration. However, the accuracy of such

approaches is highly related to the success of the first phase.

An hybrid method has also been studied in [17]. Authors

introduced Mutual Correspondences (MC), a semi-automatic

2D/3D registration method based on a minimization function

that combines sparse correspondences and MI measure. MC

is defined as a simple weighted sum of the two.

In this paper, we propose a robust method that perform

accurate multimodal 2D/3D registration that is comparable

to an hybrid approach. We did not try to develop a new

hybrid similarity measure but we take advantages of both

geometrical and dense visual features strengths in an elegant

framework. The proposed framework has been designed so

that geometrical and dense visual features mutually improve

the registration in order to perform a correct and accurate final

2D/3D alignment. Thanks to the use of both feature types, the

method has wide convergence domain and a high registration

accuracy, regardless of the quality of both the image and the

3D model. Even if the method has been developed in order to

perform the alignment of multimodal data, it remains generic

and also usable in a classical 2D/3D registration. Moreover,

the proposed approach is not limited to a specific pair of

geometrical/dense feature types.

This paper is organized as follows. Section III states the

problem and describes the several stages of the proposed

registration method. Then, experimental results, including

qualitative results and quantitative evaluation are presented in

Section IV. Finally, conclusions are given in Section V.

III. PROPOSED FRAMEWORK

The registration of a real 2D image over a virtual 3D model

can be seen as an estimation of the parameters (intrinsic and

extrinsic) of the real camera. This is commonly formalized as

an optimization problem. The optimization techniques that are

generally used are based on the gradient or the Hessian of the

cost function such as Gauss-Newton, Levenberg-Marquardt or

Barzilai-Borwein methods. In this work, we propose to use a

PSO (Particle Swarm Optimization) approach to perform the

registration. PSO solves a problem by having a population

(swarm) of candidate solutions (particles) that move around

in the search-space. Each particle displacement is influenced

by the best particle in its nearest neighborhood and by the best

particle in the complete search-space. The particle velocities

updated in this way are expected to iteratively move the swarm

toward the best solution. PSO is well suited to solve 2D/3D

registration problem. First, an analytical derivative of the cost

function w.r.t. the camera parameters is not required. Second,

having a several virtual cameras appears to be beneficial for

both geometrical and dense visual features (Section III-C).

A. Problem formulation

The process inputs are a 3D model noted O (for Object)

of an environment and a real image Id that may have a

different modality. The 3D model is composed of points

P that have 3D coordinates and an intensity value I. The

coordinate of a point expressed in the 3D model is noted
oP = [oX ,o Y,o Z,1]⊤. A 3D model is then a list of N points

and intensities: O= [oP1, I1], [
oP2, I2], ..., [

oPN , IN ]. The pose of

a virtual camera C (for Camera) is described by the following

homogeneous transformation matrix cMo :

cMo(4×4) =

(

cRo(3×3)
cto(3×1)

0 0 0 1

)

(1)

where cRo is a rotation matrix and cto is a translation vector.

In the following, we also expressed a camera pose by a 6-

element vector cro = [ctX o,
c tY o,

c tZo,
c θX o,

c θY o,
c θZo] where

cto = [ctX o,
c tY o,

c tZo] and [cθX o,
c θY o,

c θZo] are Euler angles.

The velocity of camera c expressed relatively to the model is

noted cvo =
c ṙo.

We express a virtual image rendered by the virtual camera

C by:

I = Kpr(cMoO) (2)

where the matrix K contains the intrinsic parameters (focal

length in terms of pixels, principal point and distortion param-

eters) and the operation pr(.) denotes the projection model of

the camera (e.g. perspective, fisheye, omnidirectional...).

The aim of a 2D/3D registration is to find the optimal virtual

camera pose that maximizes the similarity, or minimize the

difference, between Ic and Id , which can be expressed as:

cM̂o = arg max
cMo

[S(fc, fd)] (3)
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Fig. 1: General overview of the 2D image to 3D model registration method. The stages colored in red represent the core of

the approach. For ease of reading, the swarm contains only 4 virtual cameras.

where fc and fd describes the features extracted from respec-

tively Ic and Id and S(.) is a similarity metric (in the case of

a maximization).

A general overview of the proposed framework is illustrated

in Fig. 1. The method consists in a swarm of N virtual cameras

Ci for i = [0, ...,N] that move inside the 3D model O trying to

reach a desired pose represented by the real image Id . Each

virtual camera, in other words each particle, is defined by :

Ci























Ici
: Image

ci Mo : Pose

Kci
: Intrinsic Parameters

ci vo : Velocity

sci
: Similarity Score

The main parts of the proposed registration method are

described in the following.

B. Initialization of the swarm

To be able to correctly register the 3D model over the real

image, the pose of the real camera has to be inside the search-

space of the swarm. Every camera pose ciMo is initialized from

a random position and a random orientation. The position of

the N virtual cameras in the 3D model are randomly initialized

inside a sphere around a specific position. Orientations are

randomly initialized within a cone. The sphere radius and the

angle ranges that defined the orientation cone represent the

limits of the search-space. The velocity of every virtual camera

is zero in the initial state of the method.

If the real camera has been calibrated, its intrinsic param-

eters Kd are already known and all the virtual cameras can

be configured with it Kci
= Kd ∀ i = [0, ...,N]. Otherwise

the intrinsics parameters of the virtual cameras have to be

initialized randomly around a reasonably range and will be

estimated in addition to the pose. For ease of reading in

the following, we consider that the real camera has been

calibrated, thus only the pose is optimized.

At this point, we have N virtual cameras intrinsically and

extrinsically initialized and N virtual images rendered from

every camera pose. The next stages of the method represent

the core of the registration.

C. Evolution of the swarm

The core of the registration process consists of two phases:

virtual cameras displacement and virtual camera creation. Each

phase is based on a different type of visual features.

1) Displacement phase: The displacement of the N virtual

cameras is based on dense visual features. Thanks to the use of

every pixel of the images, dense features have the advantage

to provide a global minimum clearly defined leading to a very

accurate registration. However, it is well known that their cost

function are highly non-linear. Having many virtual cameras

theoretically reduces the probability of being trapped in a

local minimum during the registration process. Considering

the different modalities between the 3D model (by extension,

the virtual images) and the real image, the state-of-the-art has

shown that the Mutual Information (MI) and its derivatives are

well suited as similarity metrics [10][14]. In the case of MI

as dense metric, equation (3) then becomes:

cM̂o = arg max
ci Mo

[MI(Id ,Ici
)] ∀ i = [1, ...,N] (4)

with

MI(Id ,Ici
) = H(Id)+H(Ici

)−H(Id ,Ici
) = sci

(5)

where H(Id) and H(Ic) are individual entropies and H(Id ,Ic)
is the joint entropy.



We assume that the nearer a virtual camera is to the real

camera, the more its rendered image is similar to the real one.

Consequently we consider that the more a virtual camera has a

high similarity score the better is its pose in the search-space.

At each iteration of the PSO algorithm, the N virtual cameras

move in the direction of the camera which has the highest

similarity score. Their movements are also influenced by the

best particle in their nearest neighborhood. More precisely,

velocities are updated at each iteration following:

civo(t +1) =γ civo(t)+µ1ω1(
cgro(t)−

ci ro(t))

+µ2ω2(
cl ro(t)−

ci ro(t)) (6)

where γ is an inertia factor, µ1 and µ2 are acceleration

constants and ω1 and ω2 are random weight that are distributed

uniformly in [0,1]. Cg denotes the best camera of the complete

swarm and Cl denotes the best camera in the local neighbor-

hood of each camera. The configuration of the PSO parameters

is discussed in the experiments section (Section IV-B).

The pose of every virtual camera in the 3D model is updated

following:

ciMo(t +1) = ci Mo(t) e[
ci vo(t+1)] (7)

where e[.] is an exponential map of special Euclidean group

SE(3) used to determine a displacement from a velocity vector.

The velocities of the cameras are updated iteratively until a

stop criterion is reached (e.g. a maximum number of iterations

or a threshold on the spatial distribution of the cameras).

At the end of the process, all the cameras are supposed

to have iteratively converged to the best solution cM̂o in

order to solve equation (4). Even if PSO has a high global

search capacity, considering the high non-linearity of our cost

function (equation (3)) we have no guarantee to find the

optimal solution. To overcome this weakness, just before the

computation of the cameras velocity (Fig. 1), a second phase

implementing sparse features, tries to create a new virtual

camera to add to the swarm.

2) Creation phase: having many virtual viewpoints of the

scene increases the chance of finding correspondences between

images. This is particularly interesting since it is already

difficult to accurately detect and match visual feature between

real and virtual images and it is even more challenging when

these images have different modalities. Very recently, points

matching techniques between multimodal pairs of images

(visible, thermal, TLS intensity and range images) have been

evaluated [18]. Authors have shown that good results are ob-

tained when point features are detected using MSD (Maximal

Self-Dissimilarity) and described with SIFT (Scale-invariant

feature transform). Based on this study, our creation phase

exploit this combination of detector and descriptor.

The N virtual cameras are reordered in a decreasing order

regarding to the visual dense similarity scores computed in the

previous phase: sci
> sci+1

∀ i = [1, ...,N]. Point features are

matched between the real image Id and the best virtual image

Ic1
that gives us a list of theoretical 2D/2D correspondences:

duc1 ←→ c1 u (8)

dxc1 ←→ c1 x (9)

where duc1 and c1 u are expressed in the image space and

where dxc1 and c1x are expressed in the normalized met-

ric space following respectively: dxc1 = K−1
d

du and c1 x =
K−1

c1

c1 u. The 2D points c1 x are back-projected in 3D using:
c1X = pr−1( c1 x). The resulting 3D points are then expressed

in the frame of the model O with: oXc1 = oMc1
c1 X. This

leads to a set of 2D/3D correspondences:

dxc1
←→ oXc1 (10)

Knowing these theoretical 2D/3D correspondences, the pose

computation of the real camera consists in solving the well

known PnP problem:

dxc1
= pr(cM̃o

oXc1) (11)

Due to the differences in terms of the type, visual aspect,

modality and due to the 3D model accuracy, it is challenging

to find reliable correspondences between the real and the

virtual images. Consequently some matches among the set of

correspondences (equation (10)) are wrong. For this reason we

solved the PnP problem with a RANSAC (Random Sample

Consensus) approach. Indeed, RANSAC uses the smallest set

of potential correspondences (4 matches in our case) and

iteratively tries to expand this set with consistent data. The

algorithm provides the camera pose cM̃o that solves equa-

tion (11) and also classifies the 2D/3D matches (equation (10))

as inliers and outliers.

If the inliers are good enough, the estimated camera pa-

rameters cM̃o should be inside the initial search-space (Sec-

tion III-B). In this case a new virtual camera that is added to

the swarm with cM̃o as initial pose and we progress to the

next step (Figure 1). If cM̃o is outside the initial search-space,

we extract and match point features between the real image

and the next best image Ic2
of the swarm. The resulting 2D/3D

correspondences are added to the inliers of the previous points

matching:
{

inlers(dxc1
),d xc2

}

←→{inliers( oXc1), oXc2} (12)

This new set of correspondences is used as before to solve the

PnP problem (equation (11)). This procedure is repeated until

the estimated cM̃o falls within the initial search-space. If cM̃o

is outside the search-space even using every virtual images, no

camera is added during the current creation phase. However,

at the next iteration, all the cameras will have moved towards

the current best one (highest dense score), consequently the

virtual images will be different and the next creation phase

has more chance to lead to a better set of correspondences.

Adding a new virtual camera to the swarm is actually always

beneficial. If the new camera is actually well estimated, it may

be the future global best camera of the swarm. The others

will then move in its direction and the dense feature-based

PSO should locally improve this solution. If the new camera



is estimated inside the search-space but is not close to the

desired solution, it will still be a new particle of the swarm

that will explore differently the PSO search-space and may be

the source of other interesting visual features.

IV. ANALYSIS AND EVALUATION

In a first time, our 2D/3D multimodal acquisition process

is detailed. Then, the performances of the proposed approach

are qualitatively and quantitatively evaluated.

A. Dataset acquisition

A ground mobile robot (Fig. 2) with several visual sensors

has been instrumented to acquire images of different modali-

ties and to simultaneously create a 3D model of the environ-

ment. The robotic base is a Summit XL from Robotnik [19]

that has been equipped with a Kinect 2.0, a near-infrared

camera (AVT Marlin F-131B NIR) and a polarization camera

(4D Technology PolarCam). The near-infrared camera with a

Fig. 2: Dataset acquisition - Robotnik Summit XL equipped

with a Kinect 2.0, a near-infrared camera and a polarization

camera

2/3” sensor and a 8mm f1.4 lens has a narrow field of view.

The polarization camera with a 1/2” sensor and a 1.4mm lens

has super wide angle up to 185◦. The three cameras have been

calibrated. Thus, their intrinsic parameters and the relative

transformations between each sensor are known.

The complete system architecture including camera inter-

faces, localization and mapping is ROS (Robot Operating

System) [20]. The visual SLAM ORB-SLAM2 [1] is applied

on the Kinect data to compute the robot trajectory. The

keyframes selected by the ORB-SLAM2 algorithm are very

well localized thanks to local bundle adjustment, loop closure

detection and pose graph optimization. Knowing the pose

of the Kinect (and by extension the pose of the two other

cameras) at every keyframe, we merge every 3D point clouds

acquired at every keyframe in order to build a dense 3D

reconstruction with true scale of the environment. Fig. 3 shows

a 3D model created following this approach on 470 keyframes.

The robot did a loop trajectory of 47.2 meters to create a 3D

model that covers an area of about 16×24 meters.

In addition to the Kinect data, the near-infrared and the

polarization images and their corresponding camera poses are

Fig. 3: A 3D model of an indoor building environment created

from Kinect data acquired by the Summit XL robot

also saved for every keyframes. In summary, the complete

dataset contains the 3D model, the 470 images acquired by

the three cameras and their poses expressed in the 3D model

reference frame. These camera poses serve as ground truth to

evaluate the proposed registration method in the next section.

B. Experimental results

For practical reasons, we have evaluated our method on 50

keyframes randomly selected among the 470 of the dataset.

To highlight the advantage of using both visual feature types,

we compare the estimation of the poses of the near-infrared

and the polarization cameras using the proposed method

(DENSE+SPARSE), an approach that uses only sparse features

(SPARSE) and another one that only use dense features

(DENSE).

The SPARSE approach computes the camera pose using

point features (MSD+SIFT) matched between the real image

and a virtual image rendered from the Kinect pose. The re-

sulting PnP problem is solved following a standard RANSAC

scheme. The DENSE approach estimates the real camera

pose by minimizing the mutual information between the real

image and virtual images using a PSO. In order to test the

convergence properties of our method (DENSE+SPARSE) we

deliberately initialize the virtual cameras of the swarm in a

very large search-space. The performance of PSO depends on

the parameters configuration: number of particles, initialization

of the swarm, inertia factor, acceleration constants, stop crite-

ria. Many variants of the PSO algorithm have been proposed

to initialize and to optimize the evolution of these parameters.

This is not the point of this experiment which is a proof of

concept, the parameters are thus chosen empirically. For every

keyframe, we initialize a swarm of 30 virtual cameras in a 2

meters diameter sphere centered on the current Kinect position.

The cameras orientation is initialized in a range of ±20◦

around the 3 axes. The number of virtual cameras that can

be created (Section III-C2) during the registration is limited

to 20. The DENSE approach has been initialized with the same

parameters.

Fig. 4 shows a comparison between the ground truth and

the trajectories of the near-infrared camera and the polarization

camera estimated using the 3 methods. As expected, because



(a) (b)

Fig. 4: Comparison of the ground truth and the trajectories of the near-infrared camera (a) and the polarization camera (b)

estimated with our method, the sparse features only and the dense features only approaches

of the very large initial search-space and the very tight con-

vergence domain of the method based only on the MI metric,

the poses estimated with the DENSE approach are often very

far from the desired solution. On the other hand, because of

the difficulties to find reliable sparse correspondences between

the real and the virtual images, the poses computed with the

SPARSE approach are often very badly estimated or even not

estimated at all (Fig. 4b). Despite these problems the proposed

framework that combines dense and sparse features takes

advantages of both and provides an accurate pose estimation.

More precisely, TABLE I summarises the mean estimation

errors depending on the registration methods.

Near-Infrared Polarization

SPARSE
[51.11cm,52.47cm,52.77cm,

3.25◦,4.97◦,3.11◦]
No results

DENSE
[62.83cm,92.12cm,89.76cm,

6.96◦,6.64◦,7.37◦]
[42.42cm,70.44cm,90.05cm,

5.69◦,7.01◦,6.30◦]
SPARSE
DENSE

[6.5cm,7.3cm,8.1cm,
0.65◦,0.72◦,0.61◦]

[15.15cm,20.86cm,18.07cm,
3.02◦,5.15◦,4.04◦]

TABLE I: Mean pose estimation errors of the two cameras

according to the registration method.

Fig. 5 gives a visual idea about the dissimilarity aspect

between the real images and the virtual ones. It also gives a

qualitative evaluation of the accuracy of the multimodal 2D/3D

registration using the proposed method. Indeed, the two first

rows show respectively 4 near-infrared images and the virtual

images rendered at the estimated camera poses. Similarly, the

two last rows show respectively 4 polarization images and the

virtual images rendered at the estimated poses.

It should be kept in mind that the ground truth is directly

related to the accuracy of the visual SLAM. The mean errors

of estimation have also to be put in perspective with the very

high initial search space (±1 meter along the 3 axes and ±20◦

around them). One can note that we chose MI as similarity

metric for the displacement phase but it is not a limit of the

method, and other metric could be used and maybe preferable

regarding the modalities. Similarly, other matching approaches

for the creation phase, maybe more robust to multimodality

and image distortions, could be preferred.

V. CONCLUSION

Usual 2D/3D registration approaches are relied either on

sparse or on dense visual features. Sparse features offer a

high domain of convergence but the resulting alignment is

highly related to the reliability of geometric features that

have to be extracted and matched between images. Dense-

based methods avoid feature detection and matching and

provide a very accurate registration but have a very small

domain of convergence. Furthermore, the use of a diversity

of sensors increases the drawbacks of both types of visual

features. In this paper, we have proposed a way to combine

sparse and dense features in order to perform automatic and

accurate 2D/3D registration. The proposed framework smartly

employs both feature types to dramatically increase their

strength points. Their combination makes 2D/3D alignment

achievable regardless the modalities of both the image and the

3D model. The method has obtained promising results in terms

of registration accuracy and robustness even to large initial

condition. Of course, the current approach in not free from

drawbacks. For further improvements, we plan to study more

deeply the influence of the PSO parameters on the quality of

the registration.
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