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Abstract

Random solid solution alloys are a broad class of materials that are used across the entire spectrum of
engineering metals, whether as stand-alone materials (e.g. Al-5xxx alloys) or as the matrix in precipitate-
strengthening materials (e.g. Ni-based superalloys). As a result, the mechanisms of, and prediction of,
strengthening in solid solutions has a long history. Many concepts have been developed and important trends
identi�ed but predictive capability has remained elusive. In recent years, a new theory has been developed
that builds on one historical model, the Labusch model, in important ways that lead to a well-de�ned model
valid for random solutions with arbitrary numbers of components and compositions. The new theory uses
�rst-principles-computed solute/dislocation interaction energies as input, from which speci�c predictions
emerge for the yield strength and activation volume as a function of alloy composition, temperature, and
strain-rate. Being a general model for materials that otherwise have a low Peierls stress, it has broad
application and has been successfully applied to Al-X alloys, Mg-Al, twinning in Mg alloys, and recently fcc
High-Entropy Alloys. Here, the new theory is presented in a general and systematic manner. Approximations
and limiting cases that reduce the complexity and facilitate understanding are introduced, and help relate
the new model to various physical features present among the historical array of models, other recent models,
and simulation studies. The quantitative predictions of the model in the various materials above is then
demonstrated.

Keywords: Solute Strengthening, Mechanical properties, Metallic alloys, Ab initio calculations,
solute-dislocation interactions

1. Introduction

To facilitate the development of advanced ma-
terials, computational materials science can be
used to provide guidelines for design and to give
physical mechanistic insight into the origins of
experimentally-derived trends. However, robust
and predictive models are critical. Predictions of
the macroscopic mechanical properties, such as ow
stress, work hardening, and fatigue behavior, in
metals or other materials undergoing dislocation-
mediated plastic ow, hold particular challenges.
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Such behavior is controlled by phenomena at mul-
tiple scales, from atomistic through mesoscale and
microstructural scales, and is associated with the
collective interactions among defects (solutes, dis-
locations, grain boundaries, precipitates). With
rapidly increasing computational power and new
methods at all of these various scales, computa-
tional metallurgy is entering a new chapter where
predictive capability is achievable and having an
impact on the design of new materials.

Here, we present recent progress in the modeling
of one broad class of materials, random solid solu-
tions. Such materials are some of the most tech-
nologically important and/or promising materials:
aluminum alloys, such as the 1xxx, 3xxx, 5xxx and
solutionized 6xxx series [1] used in automotive ap-
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plications, austenitic stainless steels [2], many bi-
nary alloys such as Ni-Fe and Cu-Ni [3, 4], and
the emerging high entropy alloys (HEAs) [5, 6, 7].
Many precipitation-strengthened alloys also retain
some solid solution strengthening that is not neg-
ligible. Interstitial solutes, such as hydrogen, car-
bon, and nitrogen, also confer strengthening that
may be bene�cial or detrimental, and their high
mobility can contribute to dynamic strengthening
phenomena.
In the next section, we briey discuss the

main historical concepts that developed over many
decades. In subsequent sections, we present the cur-
rent model framework in general. We then show
how the current model encompasses some historical
models, in terms of general scaling of strengthen-
ing versus material parameters, so that the current
model can be seen as a holistic version of the histor-
ical models but with precise and computable mate-
rial parameters. We also note connections to other
recent models when pertinent. We then present ap-
plications of the model to a sequence of cases, each
of which reveals some new features in the solute
strengthening that arise naturally from the model
due to the di�erent dislocation structures in each
case.

2. Background

Solute strengthening arises from the interaction
of a dislocation with the solutes in the lattice.
These interactions fall into two basic categories:
those where the solute changes or recon�gures the
dislocation core structure and those where the so-
lute leaves the topology of the core structure largely
intact. When a solute changes the core structure,
the strengthening e�ects depend on the speci�c de-
tails of the interaction and how the core structure
is changed [8, 9, 10, 11]. We do not envision any
general theory for this important class of problems;
presumably the changes in structure and associated
energies are very speci�c to the solute, the ma-
trix, and the dislocation character. When a solute
distorts the core but does not change it topologi-
cally, and/or when solutes outside the core interact
through nominally elastic interactions, then a gen-
eral theory can be developed, and that is the focus
of the work presented here.
When solutes do not change the core structure,

the fundamental quantity is the interaction energy
U(xi; yj ; zk) between a straight dislocation at the
origin with line direction z and glide direction x,

and a solute at position (xi; yj ; zk). At the sim-
plest level, this interaction energy can be mod-
eled as the mechanical interaction energy between
the straight dislocation pressure �eld p(xi; yj) and
the mis�t volume �V of the solute with respect
to the matrix material. This interaction energy
Uel(xi; yj) = �p(xi; yj)�V , also referred to as the
�rst order \size" interaction [12], is equal to the
work done on the dislocation pressure �eld by the
expansion or contraction of the material upon addi-
tion of the mis�tting solute atom. This mechanical
interaction energy can be generalized to include the
interaction energy between deviatoric mis�t strains
and the deviatoric dislocation stress �eld (the �rst
order \shape" interaction), which is typically im-
portant for interstitial solutes [13, 14, 15]. For sim-
plicity here, we focus on mis�t volumetric strains
that are appropriate for substitutional solutes in
cubic matrices [16, 17]. The elastic interactions are
long-ranged, since the dislocation stress �eld decays
only as 1=r with distance r from the center of the
dislocation, and give a quantitative description of
the solute/dislocation interaction away from imme-
diate dislocation core region [13, 14, 15, 16, 17, 18].
When the solute is located within the core re-

gion of the dislocation, i.e. along the glide plane
and within the highly-distorted region of the core,
additional e�ects between the solute and the dislo-
cation can occur. Part of the chemical short-range
interaction can be estimated using additional elas-
ticity models. Since the addition of solutes changes
the elastic moduli of the material, a solute atom
can be envisioned to possess elastic constants that
di�er from the host matrix, giving rise to an \elas-
tic inhomogeneity" interaction energy [12, 19, 20].
This interaction decays as 1=r2 so is short-ranged
and, within linear elasticity, can be simply added
to the �rst-order size interaction. A \second or-
der size" interaction arises when non-linear e�ects
(e.g. third-order elastic constants) are considered,
and also contributes at short range [12]. However,
both concepts are of limited practical utility be-
cause it is di�cult to de�ne the \elastic constants"
of a solute and to deal with non-linear elasticity.
Another \chemical" core-speci�c interaction is asso-
ciated with solute/stacking-fault interactions [21],
arising for dislocations having a dissociated core
consisting of two partials separated by a stacking
fault ribbon, as occurs in fcc and many slip systems
of hcp materials. This interaction will be discussed
in section 4.3.
With the advent of high-performance comput-
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ing, and e�cient techniques to deal with the long-
range elastic �elds of dislocations [22, 23, 24], it is
now possible to compute dislocation core structures
using �rst-principles methods, most commonly us-
ing Density Functional Theory (DFT). This topic
is covered in depth in the partner Overview Arti-
cle \Ab initio modeling of dislocation core prop-
erties" [25]. Using the same methods, the so-
lute/dislocation interaction energies U(xi; yj) for
any solute at atomic positions fxi; yjg in and
around a dislocation core in any matrix can be com-
puted directly. While computationally demanding,
it provides the fundamental information (the inter-
action energy) including all \chemistry" and short-
range e�ects at the highest level of �delity available
at the present time. Due to their value, such com-
putations have been undertaken for a number of
solutes in a number of matrix materials, primarily
for edge dislocations and mainly at atomic sites just
on either side of the glide plane and within the par-
tial dislocations of dissociated cores, where \chem-
istry" e�ects are expected to be most important and
where elasticity is most likely to fail. For solutes
away from the core region, e.g. the elastic inter-
action energy Uel(xi; yj) = �p(xi; yj)�V is used,
with �V computed by �rst-principles and with the
dislocation pressure �eld p(xi; yj) computed using
the �rst-principles-computed core structure. The
pressure �eld can be computed using local elastic
strains and elastic moduli or by using the computed
distribution of Burgers vector along the glide plane
within a Peierls-Nabarro-type model [18, 26]. Thus,
both near-core and far-�eld interaction energies are
computed on the same underlying dislocation struc-
ture and solute/matrix chemistry. Figure 1 shows
the resulting interaction energies U(xi; yj) for sev-
eral cases that will be studied here. We note in
particular that the interaction energies, calculated
directly by DFT in some regions and via elasticity
in others, are quite continuous, indicating the accu-
racy of the elasticity model rather close to the core,
but still in a region where the local atomic environ-
ment is that of the distorted crystal lattice. This
continuity also shows that the near-core energies
are not signi�cantly larger than those at slightly
further distances, immediately suggesting that both
near-core and far-�eld interactions might contribute
comparably to the net strengthening.
The above discussion focuses on so-

lute/dislocation interaction energies. A number
of historical models have been developed based
on the forces exerted by solutes on dislocations.

The force of a solute on a straight dislocation can
be computed as a con�gurational force derived
from the interaction energy. Speci�cally, the force
exerted by the solute in the glide direction x
can be computed, in a continous formulation, as
F (x; y) = �dU(x; y)=dx, i.e. it is the change in
interaction energy as the relative position of the
solute and the dislocation changes. Both energetic
and force-based concepts capture the same basic
physics and, while the theoretical paths appear
rather di�erent, the �nal outcomes should be the
same aside from approximations made along each
path. We will focus below on an energy-based
approach.
Whether the long-range or short-range interac-

tions control the strength has given rise, histor-
ically, to two broad competing theories for so-
lute strengthening. The strong-pinning theory
(Friedel [27], Fleischer [28, 29]) considers only so-
lute atoms in the glide plane(s) of the dislocation
and treats them as independent point obstacles that
pin the dislocation. The solutes are characterized
by Fmax, the maximum resistive force exerted by
the solute on the dislocation. Under stress, the
dislocation bows out in the regions between the
solutes, exerting forces that counteract resisting
forces of the solutes. The zero-temperature yield
stress for this Friedel mechanism, �Fy0, is the stress
at which the curved dislocation exerts a force on
the dislocation segment at the solute that is su�-
cient to overcome the resistive force of the solute.
The Friedel strength for a random distribution of
solutes at concentration c is given by

�Fy0 =

�
Fmax
2�

� 3
2
�
2�

b2

�
c
1
2 : (1)

where � is the dislocation line tension that relates
the dislocation bow out to the force exerted on the
obstacle, and b is the magnitude of the Burgers vec-
tor.
Examining Fig. 1, it is clear that solute forces

are generated at many positions in and around the
dislocation core, even if attention is con�ned to
only the planes above and below the glide plane.
The basic Friedel model neglects all such compli-
cations. Recognizing that many solutes can si-
multaneously exert forces on the dislocation, the
weak-pinning model (Mott-Nabarro [30], Mott [31],
Labusch [32, 33]) considers the collective interac-
tion of the random solutes with the dislocation.
Strengthening is then attributed to the occurrence
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Figure 1: Solute/dislocation interation energy U (xi; yj) versus solute position (xi; yj ; zk) for various materials and solutes;
(a) Mn solutes around Al edge dislocation, (b) Zn solutes around Mg basal edge dislocation and (c) Al solutes around Mg
twin edge dislocation on a twin boundary. Sites indicated by bold symbols are computed using DFT and all other sites are
computed using the elastic contribution to the interaction energy. The core structure is optimized in DFT calculations using
the Lattice Green's Function method [22].

of favorable statistical uctuations in the overall
solute con�guration that locally bind the disloca-
tion much more strongly than any individual so-
lute. Labusch �rst considered only solutes in the
glide plane, although the concept is really three-
dimensional in nature. He then derived a zero-
temperature ow stress �Ly0 that uses many of
the same parameters as the Friedel model, plus
a parameter w that represents the spatial range
of interaction of the solutes with the dislocation
(and discussed further below). The resulting zero-
temperature Labusch strength is

�Ly0 =

�
F 4
maxw

4�b7

� 1
3

c
2
3 : (2)

which shows a di�erent scaling with solute concen-
tration c as compared to Friedel's model.

At any given solute concentration, the opera-
tive mechanism has historically been assumed to
be the mechanism that gives the strongest zero-
temperature yield stress. Taking the ratio of
Eqs. (1) and (2) yields �1=6 where � is the tran-
sition parameter �rst identi�ed by Labusch [32, 33]
as

� =
Fmaxb

2

4�cw2
: (3)

When � � 1, the strong-pinning model gives a
much larger zero-temperature yield stress and is ex-
pected to be the dominant mechanism. Conversely,
the weak-pinning model is dominant when � � 1.
There is thus a transition concentration ctrans0 at

� = 1, ctrans0 = Fmaxb
2

4�w2 . At low concentrations
c � ctrans0 , the strong pinning mechanism is domi-
nant and at high concentrations c� ctrans0 the weak
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pinning mechanism is dominant. Using typical ma-
terials parameters gives a transition concentration
� 10�2, which has led to the assumption that the
strong pinning model is applicable at moderate to
low solute concentrations [32, 34].
Solute strengthening is, of course, temperature-

and strain-rate-dependent, i.e. the underlying pro-
cess is thermally-activated2. The standard Labusch
and Friedel theories are zero-temperature theories.
Extending the theories to �nite temperatures, i.e.
examining the energy barriers to dislocation mo-
tion, reveals a signi�cant di�erence between the two
theories. The energy scale of the Friedel model is
the maximum interaction energy Umax of a single
solute with the straight dislocation, independent of
solute concentration [18]. As seen in Fig. 1, this en-
ergy is typically on the order of � 100� 200 meV.
Applied stresses reduce the barrier toward zero as
the stresses approach the zero-temperature yield
stress. Therefore, the energy barrier for thermally-
activated escape of the dislocation across a single
pinning solute is very low, and the escape rate
very fast, at moderate temperatures (with kT �
25 meV at room temperature). Correspondingly,
the �nite-temperature yield stress decreases rapidly
with temperature, and simple models show that the
Friedel mechanism has a characteristic temperature
TF
� � 100{200 K at which the strength is essen-

tially zero. In contrast, the energy scale of the
Labusch model is related to the collective solute
uctuations and scales as � c1=3, and can be much
greater than Umax even at moderately low concen-
trations (c > 10�4). The yield stress of the Labusch
model thus decreases much more slowly with in-
creasing temperature as compared to the Friedel
model (and also never goes to zero; see discussion
below). At �nite temperature, the concentration at
which there is a transition from the Friedel to the
Labusch model, ctrans, is then much smaller than
the zero-temperature estimate ctrans0 . Detailed esti-
mates show, for example, that ctrans < 10�4 when
T > 78 K for the Al-X (X= Mg, Si, Cu, Cr, Mn and
Fe) and the Mg-Al (basal) systems [36]. As a result,
the Friedel model rarely applies for moderate so-
lute/dislocation binding energies. For solutes that
change the core structure, and with much larger as-
sociated interaction energies (e.g. Umax = 1 eV [8]),
the Friedel model may become pertinent [27, 32] be-

2We do not consider here the dynamic overshoot and pos-
sible quantum e�ects that can occur at very low tempera-
tures T < 50K [20, 35].

cause the core-changing solutes dominate over all
other solute interactions in the far-�eld and the ac-
tivation energy barrier is signi�cant.
Both strong-pinning and weak-pinning models

struggle to deal quantitatively with both the long-
range interactions and the short-range interactions.
The Friedel-type models entirely neglect the long-
range interactions, so that even solutes just two
atomic planes above or below the glide plane are
not considered to exert forces on the dislocation
even though their maximum pinning force can be
appreciable [37]. If such solutes were included, the
Friedel theory would need to include di�erent val-
ues for Fmax for each atomic plane and, moreover,
the \spacing" between solutes would become very
small so that the dislocation bow out would be oc-
curring over atomic distances where the line tension
model surely fails. The early Labusch model, and
recent derivations of the weak-pinning model [20],
also considered solutes only near the glide plane.
In this limit, the interaction energy falls o� rapidly
(1=d2) with distance d along the glide plane, so that
the concept of a �nite range w is acceptable. How-
ever, when extended to 3D (i.e. not just solutes
on the glide planes), the Labusch model must also
ignore long-range interactions beyond a certain dis-
tance. Since the solute/dislocation interactions de-
cay only as 1=r, uctuations in the net positive and
negative interactions scale as 1=r2, and the inte-
gral of those uctuations over a cylinder of radius
R around the dislocation line diverges as ln(R). To
avoid this problem, the Labusch model has tradi-
tionally adopted the 2d concept by invoking a cut-
o� in the interaction energies at an arbitrary dis-
tance w. Unfortunately, all predictions depend on
the unde�nable w, while attempts to \measure" a
w from the solute/dislocation interaction forces in
atomistic simulations [38] cannot be quantitative
because of the fundamental 1=r scaling of the in-
teraction energy. With respect to short-range in-
teractions, researchers had little detail about the
true dislocation core structures. So, a singular
Volterra �eld associated with a sharp dislocation
core was typically used, and the short-range inter-
actions were simply cut o� at some convenient but
ill-de�ned distance. Argon [20], for example, ig-
nores solutes in the two planes immediately above
and below the glide plane, denoting this a \dead
zone", even though this is precisely where the in-
teraction energies and forces are the largest (see
Fig. 1), and considers only the planes just above
and below these planes. In general, the theories
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make uncontrolled approximations precisely where
the solutes will have the largest e�ects.
The short-range issue is resolved, in principle, by

the detailed computations of solute/dislocation in-
teraction energies as shown, for example, in Fig. 1.
How this more-detailed information can be embed-
ded into the historical models has not been ad-
dressed. For purposes of guiding alloy design, i.e.
selection of solutes, Trinkle et al. [39] devised two
quantitative measures for the solute/dislocation in-
teraction energy, a mis�t volume parameter and
a solute/stacking fault interaction parameter, and
used these parameters in Fleischer/Friedel-type
model to predict trends in solute strengthening
at 0 K. Quantitatively predictive models have re-
mained elusive, however. The long-range issue was
only clearly addressed by the new theory presented
in the following sections. An inkling of the resolu-
tion of the divergence problem at long-range can be
found, however, in the study of the so-called Cot-
trell atmosphere formed by solutes di�using around
a �xed dislocation. Hirth et al. [40] showed that,
although the energy of the solute-cloud/dislocation
diverges (in�nite binding of the dislocation), the
stress to move the dislocation does not diverge.
The stress does not diverge because the (diverging)
energy contributions of solutes far from the dislo-
cation do not a�ect the net con�gurational force
�dU(x; y)=dx upon incremental motion of the dis-
location. A similar feature will emerge here in so-
lute strengthening with no di�usive motion of the
solutes, i.e. a dislocation moving through a �xed

�eld of randomly-distributed solutes, leading to a
convergent theory.
Experimentally, there are many excellent data

sets on the yield strength versus temperature
and/or strain-rate in binary fcc alloys, mainly with
a dilute (< 1%) concentration of one type of so-
lute [29, 41, 42, 43, 44, 45, 46, 47, 48]. These ex-
periments clearly show a commonality in the ow
behavior versus temperature and versus concentra-
tion. Moreover, experiments have measured the ap-
parent activation volume V � (1=kT )d(ln�)=d ln _",
which reveals the underlying length scale of dislo-
cation motion during whatever thermally-activated
process is controlling the ow behavior [44, 49,
50]. At the dislocation level, the activation vol-
ume can be expressed as the derivative of the
stress-dependent energy barrier versus stress, V =
�d�E(�)=d� , and so directly connects to quantities
arising in any theory. Moreover, Basinski postu-
lated the \stress equivalency" principle: if two dif-

ferent alloys have the same yield stress at the same
temperature and strain-rate then they will have the
same activation volume, regardless of the types of
solutes or their concentrations [44, 50]. The \stress
equivalency" principle has been demonstrated ex-
perimentally many times.

With a strong empirical data base, the histori-
cal theories have been applied to predict qualitative
and quantitative trends. Nabarro showed that some
features related to stress equivalency emerge natu-
rally from the Labusch-type models, solidifying the
broad applicability of the Labusch model, consis-
tent with our discussion above. Earlier, Kratchovil
and Neradova [43] showed that the (extrapolated)
zero-temperature strength scales with solute con-
centration as c2=3, as predicted by the Labusch
model. Nonetheless, the simplicity of the Friedel
model - it contains just a few physically-based pa-
rameters - has led to continued applications of the
model concepts. In particular, when the Friedel
model based on pinning by individual solute atoms
has failed to quantitatively explain experiments, re-
searchers have postulated the existence of solute
\clusters" as the operative pinning points within
a Friedel-type model [51, 52, 53]. These exper-
iments are, however, well-interpreted in terms of
the Labusch-type models. The Labusch-type mod-
els (i.e. models that consider the collective statis-
tical uctuations of the random solutes as caus-
ing the pinning) have thus, in general, provided
a framework for qualitative interpretation of many
experiments, in spite of nagging theoretical issues.
Quantitatively, however, the models are not accu-
rate, which is not surprising given the approxima-
tions, particularly for the interaction energies. Ar-
gon shows that the estimated Fmax parameter in
the Labusch model is 2-3 times larger than the value
derived by �tting theory to experimental data, so
that the model has limited predictive capability.
Versions of the Labusch model have attempted to
describe experiments using very simpli�ed forms,

such as �y = K
P

n c
2=3
n �V

4=3
n , with n referring to

the elements in solid solution and with K being a
�tting parameter [54, 55], without any regard for
the temperature and strain-rate dependence of the
ow stress.

Finally, experimental data on some systems
shows a high-temperature \plateau", i.e. the yield
stress becomes less temperature-dependent than ex-
pected based on the models. \Plateau" stresses
have a long history and are usually attributed to
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\athermal" mechanisms, such as long-range dislo-
cation/dislocation interactions [56]. \Athermal"
mechanisms are those with large energy barriers
but also large length scales, for which the strength
is not high but the barrier renders that strength
temperature-insensitive. In solute-strengthened
materials, the \plateau" is, however, dependent on
solute concentration itself. The mechanistic origins
of such plateaus have historically been unknown.
Labusch [57, 58] suggested that additional energy
barriers enter at high temperatures, but without
substantial quanti�cation. Zaiser [59] used scaling
arguments coming from the theory of ux pinning
in superconductors and provided a clearer picture of
how the \plateau" arises and its connection to the
low-temperature solute strengthening. Discussion
of the physical origin(s) of such \plateaus", based
on the progress resulting from the recent develop-
ment, is presented below.
In this Overview, we present a new Labusch-type

solute strengthening model that resolves many of
the conceptual and operational di�culties of the
historical models. The derivation of the Labusch-
type model is quite di�erent from previous deriva-
tions, although with similarities to the analysis of
Zaiser [59]. The analysis provides a clean, phys-
ical, and energy-based picture of how a disloca-
tion moves through a random �eld of solutes. The
theory starts from the solute/dislocation interac-
tion energies and proceeds forward with a few
non-critical assumptions. The resulting model is
parameter-free and generally applicable across ma-
terials and crystal structures, and interfaces (twin-
ning). To date, the theory has only been applied to
cases with very low intrinsic Peierls stresses where
the solute strengthening dominates the ow stress.
The new theory reproduces all the positive features
of the Labusch-type models, and the �nal functional
forms for ow stresses and energy barriers are con-
sistent with historical models. However, the coef-
�cients emerge directly from the solute/dislocation
interaction energies, making the model predictive.
By examing limiting cases of the model, we can
also make speci�c contact with the various histori-
cal models and concepts.

3. Theory of Solute Strengthening

In this section, a general theory of solute
strengthening in substitutional alloys with arbi-
trary number of components and arbitrary com-
position is described. The presentation considers

fcc crystals, but most aspects of the theory are
more general. Basic concepts and physical mech-
anisms responsible for the strengthening are �rst
introduced, and then the full theory leading to the
temperature, strain-rate and compositional depen-
dance of the strength is derived.

3.1. Average matrix in a random alloy

We consider an N -component random solid so-
lution alloy, with concentration cn of the nth ele-
ment, satisfying the sum rule

PN
n=1 cn = 1. Except

in the case of dilute alloys, there is no speci�c rea-
son to identify one speci�c elemental component as
the matrix, i.e. as the reference state for the real
material. Indeed, when the concentrations of alloy-
ing elements are non-dilute, there is not one major
element nor can the real solid solution be consid-
ered as a small perturbation of the matrix of one
of the elements. Rather, an e�ective matrix at the
overall alloy composition can be envisioned, which
has the crystal structure of the real solid solution
alloy. Such an average alloy reference state can be
demonstrated explicitly for systems represented by
Embedded Atom Method (EAM) interatomic po-
tentials [60, 61], for instance, and an average alloy
is the basis of e�ective medium approaches and co-
herent potential approximations in electronic struc-
ture theory [62, 63, 64]. The e�ective matrix ma-
terial has all of the important average properties
of the true random alloy: lattice constant a, elas-
tic constants fCijg including shear modulus � and
Poisson's ratio �, and stable/unstable stacking fault
energies SF and USF. All of these quantities de-
pend on the alloy composition, but are well-de�ned
average quantities. The gliding dislocations in an
e�ective fcc matrix would be the typical f111g h110i
dislocations, with a Burgers vector b = a=2 h110i,
dissociation into two Shockley partials separated by
an intrinsic stacking fault, and glide at very low
Peierls stresses [20, 56, 65, 66]. Standard results
for dilute systems, where the average matrix ap-
proaches that matrix of the dominant element of
the alloy, emerge naturally when the concentration
of one alloy component approaches 1 while the other
concentrations approach zero.

Within the average matrix material, each elemen-
tal alloy atom can be viewed as a \solute" atom
embedded into the average \matrix" of the sur-
rounding material [61, 65]. Each solute of type
n has some average properties in the average ma-
trix, such as a mis�t volume �V n. In the true
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random alloy, each speci�c solute atom has a mis-
�t volume that depends on the precise surround-
ing distribution of other atoms, and can be repre-
sented as the average value plus a uctuating term,
�Vn(xi; yj ; zk) = �V n + �Vn(xi; yj ; zk). The aver-
age mis�t volume can be determined, for instance,
by measuring the change in atomic volume V ver-
sus alloy composition, and taking the appropriate
derivatives as

�V n =
X
m

cm

�
@V

@cn

����
�c

� @V

@cm

����
�c

�
: (4)

These average mis�t volumes follow the sum ruleP
n cn�V n = 0, since the reference state is the

stress-free average material at average lattice con-
stant a. Each solute will also interact with any
structural defect in the e�ective matrix material.
For a straight dislocation in the average matrix,
centered at the origin and lying along the z direc-
tion, an individual solute atom of type n at position
(xi; yj ; zk) has an interaction energy with the dis-

location of Un(xi; yj ; zk) = U
n
(xi; yj) independent

of z because the straight dislocation in the average
matrix is periodic along z, as shown schematically
in Fig. 2b. In the true random alloy, a solute of
type n at position (xi; yj ; zk) has a speci�c interac-
tion energy Un(xi; yj ; zk) due to the speci�c local
distribution of other solutes around (xi; yj ; zk). For
a statistical distribution of local environments, the
true interaction energy can thus be expressed as the
average value in the average matrix plus a uctu-
ation, Un(xi; yj ; zk) = U

n
(xi; yj) + �Un(xi; yj ; zk).

If the interaction was purely elastic, then the av-
erage interaction energy would be directly related
to the average of the solute mis�t volume through
the pressure �eld of the dislocation in the average
matrix. The additional uctuations �Un(xi; yj ; zk)
in the interaction energy of the real random al-
loy would be related to the uctuations in both
the mis�t volume �Vn(xi; yj ; zk) and the mis�t so-
lute shape (deviatoric mis�t strains) since the av-
erage solute shape contribution is zero, by sym-
metry, in a cubic matrix. The interaction energy
Un(xi; yj ; zk) = U

n
(xi; yj) + �Un(xi; yj ; zk) includ-

ing both the interaction in the average matrix ma-
terial and the additional uctuations is the funda-
mental input to the theory for solute strengthening.
In the dilute limit, where one element acts as the
matrix, Un(xi; yj ; zk) = U

n
(xi; yj), independent of

zk, and can be computed as shown in Fig. 2b. For
non-dilute systems, computation of Un(xi; yj ; zk)

or U
n
(xi; yj) is challenging, but their existence is

clear.

3.2. Energy of a straight dislocation segment in a

random alloy

Strengthening, i.e. increased stress required to
move a dislocation due to the presence of solutes,
arises from the totality of the interaction energies
between all of the solutes and each individual dis-
location. The average matrix concept allows us to
imagine a straight dislocation in that matrix, with
surrounding solutes. The random distribution of so-
lutes in the lattice gives rise to local uctuations in
solute concentrations and lattice distortions. The
dislocation is thus attracted to some uctuations
and repelled by others. A key concept in the model
is the energy change of a straight dislocation seg-
ment of length � when the dislocation glides a dis-
tance w from an initial position at x = 0. The
change in the position of the dislocation relative to
the positions of the (�xed) solutes leads to a poten-
tial energy change of

�Utot(�; w) =
X
i;j;k
n

snijk [U
n(xi � w; yj ; zk)

� Un(xi; yj ; zk)] ; (5)

where snijk = 1 if a type-n solute is at position
(xi; yj ; zk) and 0 otherwise. This energy change can
be positive or negative, and has a statistical distri-
bution. We are interested in those environments
that pin the dislocation segment (i.e. lower the sys-
tem energy). The typical energy reduction associ-
ated with such favorable \binding" environments is
the negative (binding taken as a negative energy)
of the standard deviation of the energy change

��Utot(�; w) =

�D
�U2

tot(�; w)
E
�
D
�Utot(�; w)

E2� 12
:

(6)

Because the solutes are randomly distributed, i.e.
uncorrelated (no short range order), the quantity
��Utot(�; w) can be computed analytically. Invari-
ance of the dislocation along z allows the average
over the variations �Un(xi; yj ; zk) due to local dis-
tortions and/or local chemical environment among
the sites zk to be rigorously performed [61], leading
to

��Utot(�; w) =

�
�p
3b

� 1
2

� ~Ep(w); (7)
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(a)
A

B

C

(b)

(c)

Figure 2: E�ective medium approach for dislocation/solute
interactions: (a) Fully-random 3-component alloy containing
a dissociated edge dislocation; (b) E�ective matrix material
of the same alloy, with an embedded A \solute" at position
(xi; yj ; zk) relative to the dislocation centered at the origin,

with interaction energy U
A
(xi; yj); (c), Normalized Burgers

vector distribution db
dx

� e
�

1
2

�
x�d=2

�

�2
+e
�

1
2

�
x+d=2

�

�2
along

the glide plane of edge dislocation in the e�ective matrix,
with d the dislocation dissociation distance and � describing
the partial spreading.

with

� ~Ep(w) =

2
64X

i;j
n

cn

�
�U

n
ij(w)

2 + �2�Un
ij

�375
1
2

; (8)

where �U
n
ij(w) = U

n
(xi � w; yj) � U

n
(xi; yj) and

��Un
ij

is the associated standard deviation of the

distribution due to local uctuations. � ~Ep(w) is
the key mesoscale quantity for strengthening in the
theory. We note that this quantity includes the
additional uctuations in interaction energy that
arise in the true random alloy within the framework
of the e�ective matrix.
The computation of � ~Ep(w) does not repre-

sent any convergence issues. The energy di�erence

�U
n
ij(w) due to solutes far from the dislocation, i.e.

where r >> w with r = (x2i +y2j )
1=2, scales as w=r2

and so the sum over all sites fi; jg in Eq. (8) is con-
vergent. As long as w emerges as a �nite distance
(see below), there is no divergence in the sum. The
quantity w is not a cut-o� distance in any way, and
thus has a very di�erent meaning than that arising
in the original Labusch model.

3.3. Minimum energy con�guration of a long dislo-

cation in a random alloy

We have seen that straight dislocation segments
can lower their energies by moving to favorable so-
lute uctuations that exist in the random alloy.
However, di�erent segments along a long disloca-
tion line will want to move to di�erent positions
along the glide plane, i.e. the dislocation will not
remain straight, and there is an elastic energy cost
to creating the non-straight dislocation. There-
fore, an initially straight dislocation of length L
can minimize its total energy by adopting a wavy
con�guration where segments of some characteris-
tic length �c reside in regions of favorable uctua-
tions. These segments lie at the minima in a po-
tential energy landscape having typical minima and
maxima spaced by some characteristic distance wc

along the glide plane. The pinned segments �c are
connected through additional segments of length
�c to create a wavy, quasi-sinusoidal con�guration
(see Fig. 3). Adopting such a wavy con�guration
involves bowing of the dislocation, which has the
elastic energy cost associated with the dislocation
\line tension" �. For the con�guration envisioned
here, the cost of bowing is related to the change
in total length of the dislocation and is given by

9



�ELT(�c; wc) = �w2
c=2�c per 2�c dislocation por-

tion (see Fig. 3) when wc � �c (veri�ed ex post
facto).
To determine the characteristic �c and wc, we

consider all possible dislocation con�gurations �; w
and minimize the total energy with respect to �
and w. The total energy of a wavy dislocation is
the sum of the elastic energy penalty of bowing and
of the potential energy gain of favorable solute en-
vironments,

�Etot(�; w) =

"
�
w2

2�
�
�

�p
3b

� 1
2

� ~Ep(w)

#�
L

2�

�
;

(9)

where L=2� is the number of pinned segments of
length �, with each segment of length � �nding a
local environment that has, on average, the typi-
cal binding energy ��Utot . We have factored out
the length � from the potential energy so that the
key quantity � ~Ep(w) appears explicitly. The equi-
librium dislocation con�guration is then found by
minimizing the total energy �Etot with respect to
both � and w to obtain �c and wc. Minimization
with respect to � is analytical, giving

�c(w) =

 
4
p
3
�2w4b

� ~E2
p(w)

! 1
3

: (10)

Minimization of �Etot with respect to w then
reduces to the solution of @� ~Ep(w)=@w =

� ~Ep(w)=2w. � ~Ep(w) is not explicit in w, and thus
minimization is performed numerically. In the the-
ory, wc emerges naturally via minimizing the total
energy.
The above analysis shows that the total energy

of the wavy dislocation described by �c and wc is
lower than the original straight dislocation by an
energy per unit length of

�Etot(�c; wc)=L = � 3
2
3

8 � 2 1
3

 
� ~E4

p(wc)

b2w2
c�

! 1
3

; (11)

where the numerical factor is related to the crys-
tallography of the slip system. This describes the
typical pinning of the dislocation by the random
�eld of solutes.

3.4. Thermal activation of dislocation glide

Motion of the overall dislocation then occurs by
the motions of the individual segments of length

�c. In the pinned con�guration, each 2�c portion of
the dislocation resides in a local total energy mini-
mum, of average depth 2�c�Etot(�c; wc)=L with re-
spect to the zero energy. Along the glide plane,
at typical distance wc away from that minimum,
there is a local maximum energy corresponding to
an unfavorable solute con�guration. We envision
this local potential energy landscape to be locally
sinusoidal, and the associated potential energy bar-
rier �E0

b, i.e. the average energy between the local
minimum and the local maximum, is then a factor
of
p
2 larger than the minimum energy [17]. The

total energy barrier �Eb to unpin the 2�c disloca-
tion segment must then include a reduction by the
elastic energy gain �ELT, such that the �nal energy
barrier is given by

�Eb = 1:22

 
w2
c��

~E2
p(wc)

b

! 1
3

; (12)

with 1:22 emerging as a combination of derived nu-
merical constants.
To glide, the dislocation must overcome �Eb by

thermal activation. The analysis from this point is
standard. An applied resolved shear stress � facili-
tates the thermal activation by providing the work
��b�cx on the �c segment as it glides a distance
x within the local energy landscape away from the
minimum energy position. The local energy land-
scape in the presence of an applied stress is then

E(�; x) =
�Eb

2

�
1� cos

�
�x

wc

��
� �b�cx : (13)

With increasing � the e�ective energy barrier
steadily decreases, as shown schematically in Fig. 4.
At a su�ciently high stress, the energy barrier be-
comes zero and the dislocation can glide forward
without any thermal activation. This stress is
therefore the zero-temperature yield stress �y0. For
the potential energy landscape of Eq. (13), the zero-
temperature yield stress is analytically obtained as

�y0 =
�

2

�Eb

b�c(wc)wc
= 1:01

 
� ~E4

p(wc)

�b5w5
c

! 1
3

: (14)

At lower stresses � < �y0, the energy barrier is �-
nite. The barrier versus stress, shown schematically
in Fig. 4, can be determined from Eq. (13) and for
� near �y0 can be written as [27]

�E (�) = �Eb

�
1�

�
�

�y0

�� 3
2

: (15)
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glide 

direction

Figure 3: Schematic of the low-energy wavy con�guration of the dislocation as it moves through the 3d random �eld of solutes.
The con�guration is characterized by segments of lateral length 2� of amplitude w along the length of the long dislocation.
The key quantity is the change in energy of a straight segment of length � as it glides a distance w through the random solute
�eld. The total dislocation energy is minimized with respect to both � and w to obtain the controlling characteristic lengths
�c and wc.
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Figure 4: Normalized energy barrier �E=�Eb versus nor-
malized stress �=�y0, where �Eb and �y0 are the zero-stress
energy barrier and zero-temperature ow stress, respectively.
Solid line: multiscale bow out model that applies across all
stress levels; Dashed line: single-scale bow out model that is
accurate at high stresses, and thus controls the strength at
low temperatures, as given by Eq. (15).

3.5. Yield Stress versus Temperature and Strain

Rate

The overall plastic strain-rate is controlled by the
rate of thermally activated glide of the dislocation
segments over the stress-dependent energy barrier.
Orowan's relation for the strain-rate is _" = �mbv
where �m is the mobile dislocation density and v is
the velocity [20, 26, 56]. The velocity is determined
by the rate of escape R of the segments and the typ-
ical glide distance d � wc for each event. The rate
of escape is the rate of thermal activation of a seg-
ment over the barrier, R = �0e

��E(�)=kT where �0
is an attempt frequency that is related to the atomic
vibration frequency and the number of atoms along
the dislocation line segment, �0 � �at=(�c=b). As-
sembling all of these pieces, the plastic strain-rate
is then

_" =
�mb

2wc�at
�c

e�
�E(�)
kT = _"0 e

�
�E(�)
kT : (16)

Using typical values for well-annealed metals, �at �
1013s�1, and with wc � 1 nm and �c � 10 nm
emerging from various analyses below, the reference
strain-rate is _"0 � 105s�1. Since _"0 will always ap-
pear within a logarithm (see below), values within
one order of magnitude of this estimate, e.g. from
104s�1 to 106s�1, make little quantitative di�er-
ence in �nal predictions of the yield strength versus
temperature at typical experimental strain rates of
_" = 10�5s�1 to 10�2s�1.
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Solving Eq. (16) for the �nite-temperature, �nite
strain-rate yield stress �y(T; _") gives, for �y=�y0 �
0:5

�y(T; _") = �y0

"
1�

�
kT

�Eb
ln

_"0
_"

� 2
3

#
: (17)

This is a standard formulation in historical solute-
strengthening theories (see, for example, Refs. [20,
56]).
With increasing temperature, Labusch [67, 57]

argued that the dislocation can become wavy on
multiple larger scales, �nding ever-deeper energy
barriers over longer length scales. He concluded
that the relevant energy barrier increases logarith-
mically with decreasing stress at low stresses, but
did not provide a quantitative analysis for evalua-
tion. We have recently derived [68] a related result
based upon a generalization of our analysis above
for single-scale bow out to multiple-scale bow out.
We have demonstrated that there is indeed a tran-
sition toward a regime with an approximately log-
arithmic scaling of the energy barrier versus stress.
At even lower stresses, there is a transition to a
power-law regime, but this regime tends to be below
the regime probed in most available experiments.
The energy barrier emerging from the multiscale
bow out analysis is shown in Fig. 4 along with the
single-scale bow out model. Fitting our full multi-
scale bow out analysis to a logarithmic form over
an intermediate range of stresses 0:2 � �y=�y0 � 0:5
gives a yield stress versus temperature and strain-
rate of [17, 67, 68]

�y(T; _") = �y0 exp

�
� 1

0:57

kT

�Eb
ln

_"0
_"

�
; (18)

This logarithmic result can actually be used at
stresses up to �y=�y0 � 0:8 with very modest errors
of approximately 7% over the result of Eq. (17).
For polycrystalline materials, the predicted

strength �y(T; _") needs to be converted into an uni-
axial yield stress �y(T; _"). For an equiaxed fcc poly-
crystal, the uniaxial tension strength is obtained
from the shear strength by multiplying by the Tay-
lor factor of 3:06.

3.6. Activation Volume

A quantity associated with the �nite tempera-
ture thermal activation and yield stress is the area
swept by the dislocation during the activation pro-
cess. This area multiplied by the Burgers vector is
the activation volume V = �@�E(�)=@� . For the

high-stress/low-temperature model (Eq. (17)), the
activation volume can be directly calculated from
Eq. (15) as

V =
3

2

�Eb

�y0

�
kT

�Eb
ln

_"

_"

� 1
3

: (19)

Basinksi [44] �rst experimentally observed that the
relationship between the activation volume V and
the �nite temperature yield stress �y seemed inde-
pendent of the alloy composition for a given tem-
perature. This \stress equivalency principle" is
nominally satis�ed by the model, provided that
the quantity wc does not vary much between dif-
ferent alloy compositions (which turns out to be
the case in the dilute limit for a given matrix ma-
terial [17, 69]). Then, for a single solute of con-
centration c, the quantity � ~Ep(wc)

2 controls both
�y0 and �Eb, which leads to a direct relation-
ship between V and �y. For the high-stress/low-
temperature solution, this relationship takes the
form �y = K1V

�3=2(1 � K2V
1=2), where K1 and

K2 are constants. When K2V
1=2 is small, the re-

lationship between V and �y can be approximated

by the power law V � �
2=3
y , which was previously

derived by Nabarro [70].

4. Valuable and Insightful Simpli�cations

The present theory predicts solute strengthening
due to the mesoscale uctuations on the scale of
(�c; wc) that create the dominant energy barriers
controlling thermally-activated dislocation motion.
All aspects of the theory are well-de�ned - there
are no �tting or adjustable parameters - and thus
the theory should be predictive. The major inputs
to the theory are the solute/dislocation interaction
energies, which depend on the detailed dislocation
structure. The other inputs are the Burgers vec-
tor, the elastic constants and the dislocation line
tension in the average matrix. The latter is not
known precisely, but scales as � / �b2 where � is a
representative shear modulus. We will show some
speci�c predictions in Section 5.

However, the full general model does not provide
signi�cant direct insights into the role of the average
matrix properties, the solute properties, or the over-
all composition. In addition, the solute/dislocation
interaction energies Un(xi; yj ; zk) may not be easily
computable or measurable in real materials. Here,
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we thus simplify the theory to some important lim-
iting cases: (i) dilute solutions where one compo-
nent has a high concentration and serves as the
\matrix" in which the remaining components are
solutes, (ii) elastic interactions only, and (iii) elastic
interactions plus a solute/stacking fault interaction
model to better account for the dislocation core spe-
ci�c interactions. These simpli�cations reveal many
connections with historical theories, particularly in
the dilute limit.

4.1. Dilute limit

To make contact with the historical models, we
consider the dilute limit of Eqs. (8), (12) and (14),
as most of the e�orts in modeling solute strength-
ening were done for low solute concentration mate-
rials.

In this limit, one component n0 is dominant, i.e.
cn0 � fcn 6=n0g, and becomes the matrix element.
Each solute n is therefore only surrounded by n0-
type atoms, so the uctuations of solute/dislocation
interactions due to the di�erent possible local chem-
ical and structural environment disappear and the
��Un

ij
terms in Eq. (8) vanishes. Applying the sum

rule
P

n cn�U
n
ij(w) = 0, Eq. (8) can be rewritten

as

� ~Ep(w) =

2
64X

i;j

X
n 6=n0

cn�U
n
ij(w)

2

+
1

cn0

X
i;j

X
n6=n0
p6=n0

cncp�U
n
ij�U

p
ij

3
775

1
2

: (20)

Taking the limit cn 6=n0 � cn0 ' 1, we �nally get,
neglecting the second order terms in cn 6=n0

� ~Ep(w) =

2
4X

i;j

X
n 6=n0

cn�U
n
ij(w)

2

3
5

1
2

: (21)

Inserting Eq. (21) into Eqs. (12) and (14), and
reducing further to the case of only one solute
with concentration c and interaction energy changes
f�Uij(wc)g (binary dilute alloy), the scalings of
the zero-temperature ow stress and energy barrier

Table 1: Concentration-normalized energy barrier �Eb=c
1=3

and zero-temperature yield stress �y0=c2=3 for various dilute
binary alloys, as obtained by �tting to experimental data.

�Eb=c
1=3 (eV) �y0=c

2=3 (MPa)
Cu-Al [44] 3:96 187:3
Cu-Ge [51] 3:02 227:2
Cu-Mn [51] 4:01 415:5
Ag-Al [41] 4:30 97:2

with c emerge as

�y0 =1:01

0
B@
�P

i;j �Uij(wc)
�2

�b5w5
c

1
CA

1
3

c
2
3 ;

�Eb =1:22

 
w2
c�
P

i;j �Uij(wc)

b

! 1
3

c
1
3 : (22)

The scalings with solute concentration �y0 / c2=3

and �Eb / c1=3 are similar to those found in the
historical collective pinning models [30, 32, 33, 57].
The present analysis provides quanti�cation, i.e.

analytic derivation of the prefactors, in terms of
the fundamental solute/dislocation interaction en-
ergies.
If the solute/dislocation interaction energies and

the line tension parameter � are not known,
Eqs. (22) can be used to �t experimental mea-
surements with only two parameters over arbitrary
temperature and concentration ranges. These pa-
rameters are the concentration-normalized energy
barrier �Eb=c

1=3 and zero-temperature ow stress
�y0=c

2=3. Examples of such �ttings are shown in
Fig. 5 for the Cu-Al [44], Cu-Ge, Cu-Mn [51] and
Ag-Al [41] systems. The �tted parameters are sum-
marized in Table 1. A similar analysis was per-
formed by Argon [20] and related �tting performed
by Toda-Caraballo and Rivera [71], although these
�ts were unable to capture the high temperature
behavior of the yield stress. The latter authors no-
ticed that, for some alloys, a change in energy bar-
rier at a transition temperature was necessary to
account for the high temperature behavior in the
�tting procedure and this is naturally accomodated
within the present theory.
Finally, we return to the multiple solute case in

the dilute limit. If the minimized wc for each indi-
vidual solute value does not vary signi�cantly across
the range of solutes considered (veri�ed for solutes
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Figure 5: Yield stress versus temperature, as predicted by multiscale bow out model (lines) and as measured (symbols): (a)
Cu-Al [44]; (b) Cu-Ge [51], (c) Cu-Mn [51] and (d) Ag-Al [41]. Predictions use �tted parameters in Table 1.

in Al by Leyson et al. [17]), then the approximate
relationship

�y0 =

"X
n

�
�
(n)
y0

� 3
2

# 2
3

;�Eb =

"X
n

�
�E

(n)
b

�3# 1
3

;

(23)

holds where �
(n)
y0 and �E

(n)
b are the zero-

temperature ow stress and energy barrier for so-
lute n alone. The �rst expression in Eq. (23) is
consistent with Labusch's analysis [32, 33], which
implicitly assumed some constant value of the w
cut-o� parameter.

4.2. Elastic interaction model

We now simplify the full strengthening the-
ory of Eqs. (8), (12) and (14) by considering

only the elasticity contribution Un
el(xi; yj ; zk) =

�p(xi; yj)�Vn(xi; yj ; zk) to the solute/dislocation
interaction energy, which is due to the interaction
between the pressure �eld p(xi; yj) of the disloca-
tion at the solute site and the solute nmis�t volume
at this site. This \size" contribution is common
to all materials. Furthermore, in substitutional fcc
materials, due to cubic symmetry, the e�ects of lo-
cal deviatoric mis�t strains of solutes average to
zero. The elasticity limit also enables comparison
with simpler literature models based on elasticity
concepts.
We �rst express the dislocation pressure �eld as

p(xi; yj) = � �
3�

(1+�)
(1��)f(xi; yj) where f(xi; yj) is the

dimensionless pressure generated by the distribu-
tion of normalized Burgers vector along the glide
plane (see for instance Fig. 2c). Here, � is the
isotropic shear modulus so that anistropic elastic
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e�ects are embedded within the function f . Insert-
ing the above into Eq. (8), the key energy in the
theory becomes

� ~Ep(w) =
�

3�

(1 + �)

(1� �)

2
4X

i;j

�f2ij(w)

3
5

1
2

�
"X

n

cn

�
�V

2
n + �2�Vn

�# 1
2

; (24)

where �fij(w) = f(xi � w; yj) � f(xi; yj). Recall
that �V n is the average mis�t volume of solute n
and ��Vn its standard deviation due to di�erent
local chemical and structural environments.
Minimization of the total energy with respect

to w to determine wc is then determined only by
�fij(w); the role of the dislocation core structure is
thus separated from the solute properties. In other
words, wc depends only on the dislocation core
structure through the dislocation pressure �eld. Af-
ter minimization, we obtain (�c; wc) for the speci�c
dislocation core structure. Without any loss of gen-
erality, we can express the line tension for bowing
in the glide plane as � = ��b2, with � a dimension-
less number that may also incorporate anisotropic
elasticity. The zero-temperature ow stress �y0 and
energy barrier �Eb can then be written as

�y0 = 0:051 ��
1
3�

�
1 + �

1� �

� 4
3

f1(wc)

�
2
4
P
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�
�V

2
n + �2�Vn

�
b6

3
5

2
3

; (25)

�Eb = 0:274 �
1
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; (26)

where f1(wc) =

��
b
wc

�5=2P
i;j �f2ij(wc)

�2=3
and

f2(wc) =
h�

wc
b

�2P
i;j �f2ij(wc)

i1=3
are the mini-

mized coe�cients for the given core structure.
Two interesting features emerge when examin-

ing the role of the core structure for dislocations
that dissociate into two partial dislocations sep-
arated by a stacking fault of length d, as in fcc
crystals, and basal and pyramidal slip in hcp crys-

tals. We �rst represent the core structure by a dis-
tribution of Burgers vector along the glide plane,
and compute the pressure using isotropic linear
elasticity (see Appendix A and Fig. A.13 for de-
tails). Then, for su�ciently large d, the minimiza-
tion to obtain wc and the coe�cients f1(wc) and
f2(wc) reveals the existence of two minima with
two values wc;LT < d and wc;HT � d and thus two
sets of coe�cients f1;LT(wc;LT); f2;LT(wc;LT) and
f1;HT(wc;HT); f2;HT(wc;HT). The �rst minimum has
a higher strength f1;LT(wc;LT) > f1;HT(wc;HT) but
lower energy barrier f2;LT(wc;LT) < f2;HT(wc;HT).
The �rst minimum thus controls the strength at
lower temperatures while the second minimum con-
trols the strength at higher temperatures, with low
and high depending on the precise material values.
The second minimum thus provides a \high tem-
perature plateau" strength that may supplant the
high temperature behavior due to the �rst mini-
mum. This unexpected outcome will appear in our
predictions below for Mg-Zn.
Of perhaps more importance is that the coe�-

cients f1;LT(wc;LT) and f2;LT(wc;LT) for the �rst,
low temperature, minimum are essentially indepen-
dent of d for d > 10b. For matrices (pure or al-
loy) with low stacking fault energies SF, and thus
large d, the low temperature ow stress is there-
fore independent of stacking fault energy. The co-
e�cients depend on the spreading of the Burgers
vectors of the partial dislocations, but these do
not vary signi�cantly across fcc metals. This un-
expected outcome will enable predictions of ow
strength for a range of fcc High Entropy Alloys for
which the stacking fault energies are su�ciently low
(such that d > 10b) but are not established with any
quantitative accuracy.
With coe�cients f1;LT(wc;LT) and f2;LT(wc;LT)

independent of material (for d > 10b), the above
elastic theory becomes fully analytical. Eqs. (25)
and (26) then show that high strength materials
are achieved by maximizing the shear elastic mod-
ulus of the matrix (which itself encourages larger
d = �b(2 + �)=(24�(1� �)SF) for fcc edge disloca-
tions) and maximizing the concentration-weighted
mean-squared mis�t volume quantity. The impor-
tance of high shear elastic modulus and high mis-
�t parameter appear in previous models for dilute
alloys [29, 32, 39, 69], but the result here is now
generalized for arbitrary composition of the solid
solution alloys and is demonstrated to be indepen-
dent of dislocation dissociation for d > 10b.
Furthermore, the concentration-weighted mean-
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squared solute mis�t volume quantity appearing in
Eqs. (25) and (26) can be related - under certain
conditions - to the so-called \lattice mis�t parame-
ter" �. Speci�cally, neglecting the uctuations in
solute/dislocation interactions, assuming that all
alloying elements can crystallize in the same struc-
ture, and assuming that Vegard's law is followed for
the lattice parameter variations with alloy composi-

tion, the mis�t parameter is � =

qP
n cn�V

2
n=3V ,

with V the atomic volume of the average matrix.
The zero-T strength and energy barrier thus scale
as �y0 / �4=3 and �Eb / �2=3. This � param-
eter is frequently estimated [6, 72, 73, 74] using
tables of \accepted" atomic radii for the di�erent
elements. Such estimates are generally not su�-
ciently accurate for real predictions and should be
replaced by the more general de�nition using the
mis�t volumes of the solutes in the actual alloy
of interest. These mis�t volumes are well-de�ned
quantities from both thermodynamics and mechan-
ics perspectives, do not rely on any Vegard's law as-
sumption, do not require the elements to crystallize
in the same structure, and are simple enough to be
computable using ab initio calculations [13, 17, 75].
Reducing again to the case of only one dilute so-

lute with concentration c and mis�t volume �V , we
obtain the zero-temperature ow stress and energy
barrier for dilute binary alloys as

�y0 = 0:051��
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�
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3
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1
3
�V

2
3

b3
:

(27)

These scalings with the solute mis�t volume, �y0 /
�V 4=3 and �Eb / �V 2=3 [17, 69], show that �V
is a sensitive quantity for which an accurate deter-
mination is necessary. However, �V can now be
achieved by routine ab initio computations. Note
that the sign of the mis�t volume does not have any
importance within the simpli�ed model adopted
here, i.e. solutes having mis�t volumes of the same
magnitude but with opposite signs will strengthen
the material in the same way. This is revealed in
explicit calculations for Mg and Cu solutes in fcc
Al, for instance [17].
If the solute(s) modify the elastic constants of

the average matrix relative to the pure elemental
matrix then, in the dilute binary alloy case, we can
write � = �0 + (@�=@c)c, giving rise to a second-

order dependence on concentration c in both �y0
and �Eb. This provides one component of the his-
torical \modulus" term in the strengthening. As
summarized by Argon [20], the change in elastic
constants induced by the presence of solutes in a
pure element has two main consequences: (i) addi-
tional core-speci�c interactions (inhomogeneity or
\modulus" Fleischer e�ect [20, 28, 29]) and (ii)
modi�cation of the dislocation line tension. The
simpli�ed model based on mis�t interactions in the
average matrix does not include the �rst e�ect, but
does create a concentration-dependence of the dislo-
cation pressure �eld and the line tension. In the full
model, Eqs. (8), (12) and (14), core interactions are
computed atomistically by DFT, meaning that the
\modulus" e�ect and all other higher order e�ects
occurring within the dislocation core are automati-
cally included (cf. description of solute/dislocation
interactions in section 2).

4.3. Additional core contribution: interaction with

the stacking fault

As mentioned above, the reduced elasticity mis�t
volume interaction model for the solute/dislocation
interaction neglects all speci�c chemical interac-
tions within the dislocation core. In fcc materials,
dislocations are dissociated into two partials sepa-
rated by a stacking fault. An alternative to direct
calculations that improves the interaction descrip-
tion within the core zone without adding too much
complexity is to consider also the interaction of the
solute with the stacking fault in this region. This
has been done in the work of Yasi et al. [39] and Ma
et al. [76] for dilute binary alloys, in the framework
of a Fleischer-type and Leyson-type strengthening
model, respectively. This led to the identi�cation
of important features due to the speci�c core inter-
actions, as will be seen further below. We discuss
here the dilute binary case for simplicity. The total
interaction energy for the solute n at a given po-
sition (xi; yj) becomes the sum of the mis�t term
and a stacking fault term

Un(xi; yj) = �p(xi; yj)�V n + Un
 (xi; yj); (28)

The stacking fault term Un
 (xi; yj) can be approx-

imated as constant within the stacking fault and
zero outside, so that

Un
 (xi; yj) = Un

1�j�1

�
H
�
xi +

d

2

�
�H

�
xi � d

2

��
;

(29)
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where �j�1 is the Kronecker symbol, d � deq the
equilibrium dislocation dissociation distance and H
the Heaviside function, which delineates the range
along the glide plane where the interaction with the
stacking fault exists. This accounts for the interac-
tion energy Un

1 of the solute with the stacking fault
over the two planes adjacent to the glide plane that
de�ne the stacking fault plane. Note that interac-
tions of substitutional solutes in planes farther away
from the stacking fault can exists [37] and can be
included in Eq. (29) by considering j = �2; 3; :::.
Interstitial solutes and/or multiple solute sites not
related by symmetry [77, 78] are also straightfor-
ward to consider. However, in such cases, and even
when considering only the two planes adjacent to
the stacking fault energy, the Heavyside function
may require some smoothing to avoid an abrupt
transition in the energy contributions versus dis-
tance w. This does not change the general conclu-
sions below. The solute/stacking fault interactions
can be calculated using direct ab initio calculations,
now routinely done for dilute alloys [77, 78, 79, 80].
Using the interaction model of Eq. (28), the key

characteristic energy � ~Ep(w) becomes

� ~Ep(w) =

2
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2
n

X
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2
X
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1
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with

�pij(w) =� �
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The key energy � ~Ep(w) of Eq. (30) can therefore
be decomposed into a mis�t volume (\size") term,
a stacking-fault interaction term, and a cross-term
between mis�t volume and stacking fault interac-
tion. Interestingly, contrary to the case of the mis-
�t volume interaction only, the role of the solute
and matrix properties are no longer separated. The
minimization with respect to w leading to wc is not
independent of the solute properties. Ma et al. [76]
illustrated this aspect by showing a dependence of

wc on mis�t volume and stacking fault interaction
energies when both terms are included for the so-
lute/dislocation interactions.
Both zero-temperature ow stress and energy

barrier scale with the key energy � ~Ep(wc), i.e. we

have �y0 / � ~Ep(wc)
4=3 and �Eb / � ~Ep(wc)

2=3.
Consequently, the �rst two terms in Eq. (30) are
always positive and increase the strength at any
temperature, whatever the sign of �V n and of Un

 .
However, their respective signs matter for the third
term (the cross-term), which can either enhance or
decrease the strength. Similar conclusions were ob-
tained using approximate functional forms for the
zero-temperature strength by Yasi et al. [39] and for
both zero-temperature strength and energy barrier
by Ma et al. [76]. Note that these authors adopt
a slightly di�erent expression for the interaction of
the solute between the two partials, considering a
slip mis�t parameter

�SF =
1

SF

dSF
dc

����
c=0

; (33)

with SF the relevant stable stacking fault energy
of the material. The solute/dislocation interaction
is then given by

Un
 (xi; y�1) = Ash (us(xi; y�1)) �SF; (34)

where As is the area of the solute atom projected on
the slip plane, h is the generalized stacking fault
energy of the host, us is the shear displacement of
the atom adjacent to the stacking fault with co-
ordinates (xi; y�1). This formulation should bet-
ter describe the interaction of the solutes when ap-
proaching the partial cores than the simple model
of Eq. (29), as it accounts for the exact mis�tting
displacement along glide direction instead of hav-
ing an abrupt Heaviside function. On the other
hand, inclusion of the interaction of solutes located
in planes farther away from the glide plane is less
obvious within this approach and would require ad-
ditional modeling [77, 80].
To conclude, simpli�ed models to account for

both elastic long-range e�ects and chemical-speci�c
short-range interactions within the dislocation core
allows us to tackle and understand the possible
consequences of including core interactions, com-
pared to the purely elastic case: (i) variation of
wc with the solute type (seen in Al alloys [17], al-
though changes are very weak), and (ii) strength-
ening/softening compared to the simpli�ed mis-
�t volume interaction model. Finally, the elas-

17



tic/stacking fault interaction models require ma-
terial input that are obtained from comparatively
low-cost ab initio simulations, thus allowing for
the construction of design maps at a low cost, as
compared to full direct computations of the so-
lute/dislocation interactions (see examples by Yasi
et al. [39] for Mg alloys and Ma et al. [76] for Al
alloys).

5. Applications

We now turn to various applications of the
strengthening model to materials having low intrin-
sic Peierls stress. We select speci�c cases here that
are not addressed in detail in earlier work, so that
the results here are new in some respects. The ap-
plications cover a range of systems, one with a rela-
tively compact dislocation core (fcc Al alloys), one
with well-dissociated and distinct partial disloca-
tions (basal slip in hcp Mg alloys), one with the
dislocation at an interface (twinning in Mg), and
�nally complex non-dilute alloys (fcc High Entropy
Alloys). Each application demonstrates the quan-
titative, parameter-free power of the theory while
also revealing new predictions that emerge natu-
rally from the theory.

5.1. Al-Mn Solid Solutions

We have previously examined the strengthening
behavior of various solutes in Al alloys [17, 69].
Here, we speci�cally discuss the case for Mn so-
lutes in fcc Al, and pay detailed attention to the
role of the line tension. The edge dislocation core
was computed by previously [81] and corresponds
to the structure shown in Fig. 1a. Based on this
structure, the normalized pressure �eld of the dis-
location away from the core is described using the
following spread core model,

f(xi; yj) =
b

n+ 1

n
2X

l=�n
2

yj�
xi � l

�
b
2

��2
+ y2j

; (35)

where n = 10, which was previously shown to agree
well with the core predicted using an EAM poten-
tial [82]. A Peierls-Nabarro model [26] could also
be used, or a double-Gaussian model as shown in
Fig. 2c. The solute/dislocation interaction outside
the dislocation core is assumed to be purely elastic,
i.e. Uel(xi; yj) = �p(xi; yj)�V . For sites immedi-
ately adjacent to the dislocation core (stacking fault

region), the interaction energy is calculated by di-
rect substitution of an Al atom by a Mn atom in the
quantum computational cell. The resulting map of
solute/dislocation interaction energy versus solute
position is shown in Fig. 1a. This is the only solute
input to the theory.
The line tension � is a material property, but

its precise value is not well-established since it in-
volves dislocation core energies. In addition, since
line tension is in part controlled by elastic interac-
tions along a non-straight dislocation, the line ten-
sion varies with the length of the bowing line. In
the context of solute strengthening, the line tension
should thus be computed at the characteristic pe-
riodic length 2�c. Recent atomistic calculations for
Al using an EAM potential [83] showed that � for
the edge dislocation is approximately

� = C1 ln(2�c=b) + C0; (36)

where C1 = 0:072 eV.�A�1 and C0 = �0:04 eV.�A�1.
The theory above assumed that the line tension is
independent of � and so is not included in mini-
mization of the total energy. Since the line tension
only varies logarithmically with �c, the additional
complexity has minor quantitative e�ects. For in-
stance, for Mn concentrations ranging from 0:001{
0:01, �c varies in the range 150{300 �A, and Eq. (36)
then predicts � to range from 0:30{0:35 eV.�A�1.
The zero temperature strength and energy bar-
rier scale weakly with �, as �y0 � ��1=3 and
�Eb � �1=3 respectively, so that e�ects of such
variations in line tension are minor. The values
0:30{0:35 eV are slightly lower, however, than the
value of 0:47 eV.�A�1 used in Ref. [17]. The line
tension � could also be calculated self-consistently
using the model and the relationship between � and
�c given in Eq. (36). Speci�cally, an initial value for
� is assumed and is used to calculate �c. A new line
tension �0 (�c) is then computed and used to pre-
dict a new value of � 0c � �0�1=3. This process is
iterated until both �c and � are converged. The
resulting self-consistent � then determines the so-
lute strengthening parameters �Eb � ��1=3 and
�y0 � �1=3.
The total energy vs. w for Al-Mn is shown in

Figure 6a. For the Al core with small partial dislo-
cation separation, only a single minimum emerges
at a characteristic length wc = 18:6�A that is on
the order of the partial separation. The resulting
solute strengthening parameters for Al-Mn are sum-
marized in Table 2. For comparison, the same pa-
rameters as predicted by Ma et al. [76] using the
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Table 2: Solute strengthening parameters for the Al-
Mn and Mg-Zn systems. The Mg-Zn system has two sets
of parameters, corresponding to each minimum shown in
Fig. 6. The parameters shown use � = 0:32 eV/�A and
� = 0:24 eV/�A for Al-Mn and Mg-Zn, respectively. Values
between parenthesis are from Ref. [76].

Normalized Al-Mn Mg-Zn
parameter Conf 1 Conf 2

wc (�A) 18.6(17.1) 9.6 35.1

�c � c 13 (�A) 38.8 31.8 108.4

�Eb=c
1
3 (eV) 6.62(6.94) 1.61 5.76

�y0=c
2
3 (MPa) 807.9(840) 416.5 108.9

same strengthening theory but a simpli�ed elas-
tic/stacking fault interaction model (see Eqs. 29
and 34) are also shown; similar values are found,
showing the validity of the simpli�ed interaction
model for Al-Mn alloys. The predictions of the
model are compared to experimental measurements
by Diak et al. [49] on three di�erent alloy compo-
sitions at temperatures ranging from 78K to 263K
and _" = 5 � 10�5s�1. The theory uses a reference
strain-rate of _"0 = 104s�1. Diak et al. have con-
�rmed that their alloys contained elements other
than Mn, but only in negligible concentrations. In
particular, Fe concentrations are less than 3 ppm;
this is especially important because solute strength-
ening of Fe in Al is anomalously large [17, 69].
Moreover, the present theory fails in prediction of
the strength of dilute Al-Fe binary alloys; this will
be discussed in Section 6. The comparison be-
tween predictions and experiments for Al-Mn alloys
is shown in Fig. 7. For the purpose of illustration,
predicted strengths over a range of line tension val-
ues are shown to indicate sensitivity of the results
to this quantity. A good agreement over the entire
concentration and temperature range of the experi-
ments is found. We emphasize here that our predic-
tions are based on �rst-principles calculations and
are parameter-free.

5.2. Activation volume of Al alloys

The activation volume V is a physical quantity
that can be measured experimentally using strain
jump tests, and Basinski showed that V satis�es the
stress-equivalency principle in solute strengthened
materials. It was shown earlier that stress equiva-
lency is predicted by the model if wc is the same
for all the alloys, which is well-satis�ed in Al-X al-
loys, and assuming that � is a constant. While the
�nite-temperature yield stress �y is only weakly de-

pendent on � due to the opposing trends on �y0 and
�Eb, the activation volume scales like �5=9. It is
thus not clear if stress equivalency is obeyed if �
varies with �c and, therefore, solute concentration.
To investigate this issue, we have computed the line
tension � self-consistently using the model and the
relationship between � and �c given in Eq. (36), as
discussed in the previous paragraph.
We perform the analysis for Al-Mg and Al-Si al-

loys using solute strengthening parameters reported
in Ref. [17], but rescaled with the self-consistent �.
These alloys are chosen because they have very dif-
ferent �Eb and �y0 but the same wc. The predicted
activation volume as a function of �y is shown in
Fig. 8a in a log-log plot along with the experimen-
tal values of Diak et al. Diak et al. [52, 53] mea-
sured at 78 K for a range of solutes in Al. The
results show that stress equivalency is upheld even
when � varies with solute concentration (through
the corresponding value of �c). Both the predic-
tions and the experiments in Fig. 8a are approx-
imately linear, indicating a power-law relationship
V � ��my . The exponentm using the self-consistent
� is slightly larger than that using a �xed � but
both cases are smaller than experiments. The pre-
dicted magnitude of V is larger than experiments,
but the experimental yield stress includes contribu-
tions due to lattice friction (Peierls stress) on the
order of 1 MPa. When this is taken into considera-
tion, agreement is improved. Finally, an interesting
consequence of this analysis is that the variation of
� with �y also shows a \stress equivalency". That
is, given the same �nite-temperature yield stress,
two alloys with the same matrix will have the same
characteristic length regardless of the alloying ele-
ment(s) (the � vs. �y curve is given in Fig. 8b).

5.3. Mg-Zn Solid Solutions

Unlike the relatively compact dislocation core in
Al, the basal edge dislocation in Mg has a large dis-
sociated core with distinct partials, commensurate
with its low stacking fault energy. The fundamental
theory applies in general, but reveals that a second
minimum solution arises in Mg that is absent in Al,
and this has implications for the strength at higher
temperatures. We �rst reported on this feature of
the model in Ref. [18] for Mg-Al alloys. Here, we
present previously unpublished predictions for the
Mg-Zn system.
The solute/dislocation interaction energies were

calculated by DFT for atomic sites in the Mg basal
edge dislocation core by Yasi et al. [39], and are
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w (Å) w (Å)
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Figure 7: Experimental [52] and predicted �nite-temperature
yield stress �y (T ) = 3:06�y (T ) for Al-Mn alloys. The pre-
dicted results use self-consistent line tension � values. The
range of predicted values corresponds to an assumed range
of � = 0:2 to 0:47 eV.�A�1 to show sensitivity to this pa-
rameter; symbols without a range indicate that the range is
smaller than the symbol size. The dashed line of slope of
unity is a guide to the eye.

shown in Fig. 1b. The solute/dislocation ener-
gies outside the core region were approximated by
elasticity with the DFT-computed mis�t volume
�V = �10:6 �A3 for Zn in Mg. For an accurate de-
scription of the normalized pressure �eld f(xi; yj),
we use the Peierls-Nabarro model,

f (xi; yj) =

Z 1

�1

b0 (x0) yj

(xi � x0)
2
+ y2j

dx0 (37)

where the Burgers vector distribution b0(x0) =
db=dx is calculated from the �rst-principles-
computed core structure of Yasi et al. [39]. The
complete solute/dislocation interaction energy map
is shown in Fig. 1b. The smooth transition between
the DFT computed core interactions and the elastic
mis�t volume interactions outside the core region
is again found and supports the use of the elastic-
ity approximation just outside the core. We use a
line tension based on Eq. (36), but scaled the re-
sults from Al to account for the di�erences in shear
modulus and Burgers vector, as � = ��b2. The self-
consistent procedure leads to a � that ranges from
0:19{0:28 eV.�A�1 for the temperature and concen-
tration range in the experiments.

The total energy per unit length as a function of
w (see Eq. (11)) for the wavy dislocation is shown in
Fig. 6b. Here, the change in total energy shows two
minima rather than just one; this was noted earlier
during our discussion of the elasticity limit of the
general theory. In Mg basal slip, there are therefore
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Figure 8: (a) Normalized activation volume MV=b3 and ver-
sus yield stress �y at 78 K for experimental binary Al al-
loys [52, 53] (open symbols) and predictions (solid line:
� = 0:25 eV/�A; dashed line: self-consistent �). Predictions
are calculated using solute strengthening parameters for Al-
Mg and Al-Si from Ref. [17], and the results are identical
thus demonstrating Basinksi's stress equivalency principle.
(b) Self-consistent line tension � vs �y .

two equilibrium con�gurations that the dislocation
can adopt, leading to two sets of solute strength-
ening parameters as summarized in Table 2. The
two minima arise because of the dissociated nature
of the Mg basal edge dislocation core. The �rst
con�guration corresponds to a decorrelation of so-
lute uctuations when the dislocation has moved
approximately one-half the partial separation. This
con�guration is characterized by a relatively large
zero-temperature yield stress but a relatively low
energy barrier. The second con�guration corre-
sponds to decorrelating much longer-range solute
uctuations, and is characterized by a relatively
small zero-temperature yield stress but a relatively
high energy barrier.

In order to glide, the dislocation must overcome
both types of con�gurations by thermal activation.
In general, one of the con�gurations will dominate,
i.e. have the largest barrier at any given stress. To
determine the net rate of ow, Eq. (16) should thus

be replaced by

1

_�
=
1

_�1
+

1

_�2

=
1

_��

�
exp

�
�E1 (�)

kT

�
+ exp

�
�E2 (�)

kT

��
; (38)

where the subscripts 1 and 2 indicate the �rst
and second con�gurations, respectively. Inverting
Eq. (38) yields the prediction of the �nite temper-
ature yield stress �y (T; _"). Due to the two di�erent
con�gurations, the temperature dependence of the
yield stress exhibits two regimes. At low tempera-
tures, since �E1 < �E2 which leads to _"2 � _"1,
the low temperature behavior of Mg basal slip is
controlled by the �rst con�guration. At higher tem-
peratures, the second con�guration dominates the
ow. The transition between the two regimes oc-
curs over a relatively narrow temperature range be-
cause the energy barrier appears in an exponential
Arrhenius law. The solution to Eq. (38) can be well
approximated by using Eqs. (17) and (18) for both
con�gurations and selecting the larger stress.

We now compare the predictions against experi-
ments by Akhtar and Teghtsoonian [84]. They mea-
sured the yield stresses of Mg-Zn alloys at concen-
trations ranging from 0:15% to 0:45% and at various
temperatures, at _" = 1:66�10�4 s�1. As before, we
use _"0 = 104 s�1. Because the alloy strengths are
comparable to the measured Peierls stress �Mg;P

y of

pure Mg , we add �Mg;P
y to the predictions. The

yield strength versus temperatures, as predicted
and measured, are shown in Fig. 9. With no ad-
justable parameters or �tting, the predictions are
in good agreement with experiments over all con-
centrations and temperatures. There is some over-
estimation of the yield stress at low temperatures,
but of more importance is that the model nicely
captures the transition in strength with increasing
temperature into what is traditionally referred to as
a \plateau" regime. The presence of a plateau has
previously been attributed to additional strength-
ening mechanisms, such as solute multiplets [51],
elastic dislocation/dislocation interactions [85], or
solute drag \friction" [20]. Here, the \plateau"
regime arises naturally from the theory as a con-
sequence of the well-dissociated nature of the basal
dislocations in Mg, and quantitatively explains the
trends in experimental results versus temperature
and composition. No new or unusual mechanisms
need to be invoked to explain the experiments.
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5.4. Twinning in Mg

The theory predicts how a dislocation will move
in a random �eld of solutes. The dislocation is not
restricted to be a lattice dislocation, and so equally
applies, in principle, to dislocations along interfaces
(with possible modi�cations needed for any �nite
Peierls stress). Thus, in particular, the model is
applicable to the strengthening of twinning dislo-
cations moving along a twin boundary, where the
defect has a dislocation+step character. Our dis-
cussion here examines strengthening of the tensile
twin dislocation in Mg due to Al and Zn solutes.
The solute/twin-dislocation interaction energies

for Al solutes were computed using DFT and the
dislocation pressure �eld, as shown in Fig. 1c. No-
tably, the solutes have a strong interaction (both
positive and negative) with the twin boundary, in-
dependent of the twin dislocation. This new fea-
ture of the energetics emerges when studying dis-
locations moving along boundaries, but is not an
impediment to application of the theory. Direct
DFT calculations of the solute/twin-dislocation in-
teraction energy are computationally very expen-
sive, and so we computed Zn interactions with the
twin boundary alone (no dislocation) and have then
estimated the Zn interaction energy around the dis-
location by a validated scaling of the corresponding
values for Al [86]. The line tension is dominated by
the step because the dislocation Burgers vector is
quite small (b � 0:5�A). The line energy is computed
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Figure 10: Normalized total energy change per unit length
vs. roughening amplitude w normalized by the periodicity
of the coherent twin boundary L1 = 7:58�A, for Al and Zn
solutes interacting with twinning dislocation in Mg. The Zn
interaction energies are obtained by direct DFT calculations
at selected sites and scaled Al interaction energies elsewhere.
Use of the scaled energies at all sites (dashed line) introduces
an error of � 0.001 meV.�A�1 in the normalized total energy.

as � = 0:040 eV.�A�1 from the twin dislocation core
energy using the EAM Liu potential [87], which
predicts twin boundary structure and energy, and
twinning dislocation core structure, in good agree-
ment with DFT [88].

With the above inputs, the theory is applied. As
found for Mg basal slip, application of the model
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to the twinning problem shows new features, as
follows. Fig. 10 shows the total energy per unit
length of dislocation �Etot(w)=L for various val-
ues of the amplitude w. Unlike in the previous
applications to lattice dislocations, a clear mini-
mum in the total energy does not emerge from
the analysis. Rather, the energy is almost inde-
pendent of w, for each discrete (periodic) value of
w > 0. This feature is unique to the twin dislo-
cation because the interaction energies are domi-
nated by the solute/twin-boundary energies rather
than the solute/twin-dislocation energies. As the
twin dislocation moves along the boundary plane,
it shifts the twin boundary up by the unit step
height and changes the relative positions of solutes
with respect to the boundary; solutes on the origi-
nal boundary are below the new boundary and so-
lutes above the original boundary are on the new
boundary. In a random solute �eld around the twin
dislocation, the strengthening is dominated by the
favorable statistical uctuations of solutes along the
original and new twin boundaries which extend be-
yond the defect core. Furthermore, the small line
energy of the twin dislocation enables more bow-
ing to �nd such favorable solute uctuations. As a
result, in the Mg twin, various roughening ampli-
tudes w, given by multiples of the twin periodicity
L1, have nearly equal contributions to � ~Ep(w) and
thus a�ect the total energy by comparable amounts.
Because there is no minimum in the total energy

versus amplitude w, with all values of w having
nearly equal energies, the analysis of strengthen-
ing for the twin dislocation is thus more complex
than strengthening for the lattice dislocation but
follows as a generalization of the two-minimum sit-
uation found in basal slip in Mg. For �xed values of
temperature, concentration, and strain-rate, there
are now many possible con�gurations available for
the twinning dislocation to optimize its energy, i.e.
the dislocation line may bow out by various mul-
tiples of L1 towards favorable solute distributions.
Among all of these con�gurations, the one requir-
ing the highest stress to achieve the desired strain-
rate at any given temperature is the con�guration
that controls the strengthening. Thus, a prediction
of the yield stress versus temperature and concen-
tration requires calculation of the strength for all
possible roughening amplitudes w and then a de-
termination of the maximum strength among all
these strength values. The strength versus tem-
perature at a given c and strain-rate is then con-
structed as the \envelope" of the strength vs. T

curves for each possible integer bow out w = nL1.
Creation of the envelope is straightforward but un-
wieldy. Since �Etot=(Lc

2=3) is essentially constant
for all the integer values of w = nL1 (see Fig. 10),
we can develop an analytic model by considering
w as a continuous variable for w � L1 but with
�Etot=(Lc

2=3) independent of w, and carry out the
maximization analytically. This yields an analytic
expression for the �nite-T, �nite strain-rate yield
stress (for w � L1) given by

�y(T; _�) =
2�(33� 8

p
2)

25
p
5b

[��Etot=Lc
2
3 ]

3
2�

1
2 c

kBT ln _"0= _"
; (39)

where �Etot=(Lc
2=3) is the computed constant

value for w � L1 shown in Fig. 10 for the given so-
lute. This analytic result is in excellent quantitative
agreement with the results obtained through nu-
merical construction of the \envelope" of strength
vs. T curves. The analytic result, encompassing all
possible bow outs, changes the scaling of strength
versus concentration and temperature, as compared
to the case for lattice dislocations. For the twin, the
strength is directly proportional to concentration c
and inversely proportional to the temperature T.
We now compare the model to experiments for

the Mg-Al-Zn alloys. For multiple solute types at
dilute concentration, the above model can be gen-
eralized to

�y(T; _�) =
2�(33� 8

p
2)

25
p
5b

�
1
2

P
n cn[��Etot;n=Lc

2
3
n ]

3
2

kBT ln _"0= _"

(40)

where n ranges over the solute types (but not
the host matrix). The predictions use the rele-
vant collective solute/twin-dislocation interaction
energy quantity �Etot=(Lc

2=3), computed using the
DFT-computed solute/twin-dislocation interaction
energies. Speci�cally, we use the average values
of �Etot=(Lc

2=3) = �0:009 meV.�A�1 for Al and
�0:014 meV.�A�1 for Zn, corresponding to the av-
erage values as indicated in Fig. 10. We com-
pare to experiments performed at T=300K and
_" = 10�3s�1, and use a reference strain-rate of
_"0 = 105s�1. Twinning in pure single-crystal Mg
was studied by Kelly and Hosford [89], who ob-
tained a strength of 3MPa at room temperature;
this value represents the \Peierls stress" for twin-
ning and must be added to our prediction in mak-
ing any comparison with experiments. Direct and
systematic experiments measuring the strengthen-
ing e�ect of solutes on twinning in Mg alloys have
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not been reported. However, there is signi�cant
stress-strain data on textured polycrystals with ei-
ther controlled solute concentrations or commer-
cial compositions, and these studies have been used
to estimate the stresses needed to drive twinning.
Ref [90] contains an analysis of earlier experimental
data for AZ31 [91, 92, 93, 94], AZ61 and AZ80 [92]
at various grain sizes. The twinning yield stress
for these alloys can be determined from the results
at a (large) grain size of 100 �m and applying the
appropriate Schmid factor (m = 0.37) [90]. The
experimental strengths and our predictions for the
total twin yield stress (CRSS) including the Peierls
barrier are shown in Table 3; the agreement is very
good. Estimates of the critical resolved shear stress
(CRSS) required for twin growth in Mg AZ31 alloys
were also reported to be in the range of 6-14MPa
[95], in reasonable agreement with the prediction of
�y = 14MPa. However, Stanford and Barnett [90]
studied the solute strengthening of twinning in bi-
nary Mg-Zn polycrystals and found that the CRSS
is independent of Zn concentration up to 1 at%
(2:8wt% ), in disagreement with our prediction that
the strength should increase from the Peierls stress
of 3 MPa to � 8 MPa at 1 at% Zn. These strength-
ening levels are small, but should be measurable if
real. The ratio of twin vs. basal CRSS predicted
by the model, however, reproduces well the ratio
obtained in Ref. [90].

Table 3: Twinning yield stress in MPa for commercial Mg
alloys, as measured and as predicted by the present model.
The compositions used in the model are shown.

Alloy c (at%) Ref. [90] This work
AZ31 Al:2.7, Zn:0.37 18 14
AZ61 Al:5.47, Zn:0.37 22 23
AZ80 Al:7.28, Zn:0.187 33 28

Overall, the theory cannot match two entirely
di�erent experimental results, those on the Mg-Al-
Zn alloys and those on the binary Mg-Zn alloys.
The expected uncertainties in the model predictions
(due to line energy and solute/twin interaction en-
ergies) are not large enough to rectify the discrep-
ancy. We consider the good agreement found for
the AZ alloys to suggest that solute strengthening
of twinning does exist, and with the theory point-
ing toward these experiments as more representa-
tive. The issue of strengthening of twinning by so-
lutes will be resolved experimentally only through
designed tests on single-crystal Mg alloys, although
such studies may be complicated by the need to nu-

cleate twins. Nonetheless, our robust mechanistic
theory provides a theoretical foundation for inter-
pretation of such future results.

5.5. fcc High Entropy Alloys

Finally, we consider the case of multi-component
High Entropy Alloys (HEAs). We view these mate-
rials simply as speci�c cases of non-dilute random
solid solutions, making our general theory applica-
ble. A recent e�ort treating HEAs as random solid
solution alloys was made by Toda-Caraballo and
Rivera [71]. They assumed a dilute-limit Labusch-
type analysis plus a separate double-kink ther-
mal activation model, and used generalized size
and modulus mis�t parameters to �t existing data,
followed by a data-analytics-type approach to es-
timate strengths of HEAs. The recent experi-
mental work carried out on fcc HEAs by Wu et

al. [96] showed that the measured activation vol-
umes are much larger than those typical for kink-
pair mechanisms, and that the Labusch-type analy-
sis of Ref. [71] was qualitatively compatible with the
experimental strenghs. The derived theory for arbi-
trary composition random solid solutions presented
here, when reduced to the elastic limit (Eqs. (25)
and (26)), leads to functional forms for strength and
energy barrier having similarities to those assumed
by Toda-Caraballo and Rivera, and thus puts the
problem on a �rm theoretical foundation.
Here, we apply the solute strengthening model to

several fcc HEAs in the Ni-Co-Fe-Cr-Mn family. In
the detailed publication [61], comparison of the the-
ory to molecular simulations on a model Ni-Fe-Cr
alloy, using EAM interatomic potentials, was pre-
sented to validate important features of the theory.
Here, we concentrate on predictions for real mate-
rials. The Ni-Co-Fe-Cr-Mn family has been well-
studied by George and coworkers [97, 98, 99], who
performed uniaxial tensile yield strengths versus
temperature, strain-rate, and grain size dg in poly-
crystalline materials. The HEA strengths showed
two contributions: a grain-size-dependent Hall-
Petch (H-P) contribution �H�P(dg) and a chemi-
cal/alloying e�ect �alloy that is modeled by solute
strengthening theory. For comparison with theo-
retical predictions, we thus only consider those al-
loys for which the measured H-P contribution can
be subtracted from the total experimental strength,
i.e. NiCoFeCr and NiCoFeMn alloys at various tem-
peratures [97, 99], and NiCo, NiFe, NiCoFe, and
NiCoCr alloys at T = 293K [98] (for details see
Ref. [61]).

24



 0

 100

 200

 300

 0  200  400  600

σ
al

lo
y
  

(M
P

a)

Temperature (K)

NiCoFeCr

Exp.

Theory

 0

 100

 200

 300

 0  200  400  600

σ
al

lo
y
  

(M
P

a)
Temperature (K)

NiCoFeCrMn

Exp.

Theory

Figure 11: Quantitative comparison between experimental and theoretical yield stress versus temperature for the NiCoFeCr
(left) and NiCoFeCrMn (right) equiatomic alloys [97, 99], as measured (black symbols) after subtraction of the Hall-Petch
contribution to the strength and as predicted by the theory (open symbols). The dashed lines show predictions using a line
tension of one-half the original value (i.e. � is reduced by 1/2), showing the weak sensitivity of the model to the line tension
except at very low T.

Prediction of �alloy for these alloys requires the
input parameters of the model. Ab initio com-
puted data are not available, and are also very
challenging to obtain in these highly-concentrated,
multicomponent systems. We therefore use the
simpli�ed elasticity model of Eqs. (25) and (26).
Measurements of the polycrystalline elastic con-
stants (�; �) versus temperature (for NiCoFeCr and
NiCoFeCrMn) and at room temperature (for NiCo,
NiCoFe, and NiCoCr) [97, 99] and Burgers vectors
b are available. The average mis�t volume �V n

of each solute element is computed using litera-
ture data on the lattice parameter of binary Ni-X
(X=Co, Cr, Fe) fcc solid solutions [60, 100, 101]
and on the wider family of Ni-Co-Fe-Cr-Mn HEAs
studied by Wu et al. [97], and applying Vegard's
law to the atomic volumes [61]. The corresponding
atomic volumes for each element are shown in Ta-
ble 4, and the mis�t volume of solute type n in
any alloy is then computed as �V n = Vn � V .
The line tension parameter � = 0:123 is obtained
from the atomistically-measured edge dislocation
line tension in the EAM FeNiCr e�ective matrix,
and is close to the coe�cient for elemental Al [83].
The dislocation cores in HEAs show large dissoci-
ation distances d > 10b, consistent their relatively
low stacking fault energies SF (low ab initio esti-

Table 4: Atomic volumes Vn of element n =Ni, Co, Fe, Cr
and Mn, computed from litterature data on the experimental
lattice parameters of Ni-X binary solid solutions for X=Co,
Fe and Cr [60, 100, 101] and on the wider family of Ni-Co-
Fe-Cr-Mn HEAs [97], and applying a Vegard's law to the
average alloy atomic volume.

n Ni Co Fe Cr Mn

Vn (�A3) 10:94 11:12 12:09 12:27 12:60

mates, and large stacking fault ribbons observed
experimentally [102, 103, 104]). The minimized
parameters of Eqs. (26) and (25), f1(wc) � 0:35
and f2(wc) � 5:7 for the low temperature solution
(which is the only one relevant for these materials
up to � 700K) are thus independent of the precise
value of d or SF.

With all these inputs, the analytic theory of
Eqs. (25) and (26) then predicts the strength ver-
sus temperature and strain-rate for any alloy com-
position. Figs. 11a,b show the predicted and mea-
sured alloy contributions �alloy to the yield stress
for the NiCoFeCr and NiCoFeCrMn alloys over the
complete temperature range at _" = 10�3 s�1. The
predictions are very good, again with no �tting pa-
rameters. The NiCoFeCr and NiCoFeCrMn alloy
strengths are nearly identical, which the theory at-
tributes to the compensating e�ects of a larger mis-
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�t contribution for NiCoFeCrMn and a larger � for
NiCoFeCr. The predictions at the lowest temper-
ature (T = 77K) are, however, well below the ex-
periments. This could be due to chemical-speci�c
core interactions that are absent in the elasticity
model, or to the neglected uctuations due to local
structural and chemical disorder in HEAs (appear-
ing in Eq. (8)). On the other hand, Figs. 11a,b
also show predictions using a line tension parame-
ter � = 0:06125, demonstrating that the strength
predictions are nearly independent of line tension
except at T = 77K and thus some of the discrep-
ancy at T = 77K could be due to inaccuracy of the
line tension. Comparison of parameter-free theory
and experiment for four other alloys (NiCo, NiFe,
NiCoFe, NiCoCr) [98] at T = 293K are shown in
Fig. 12, and again the overall agreement is very
good, with accuracy levels similar to those achieved
in the simpler dilute binary alloys [17, 18]. The the-
ory also preserves the observed ordering of strength
versus composition, with the ternary NiCoCr alloy
having the highest strength, for instance.
In addition to the good quantitative agree-

ment with experiments, the theory answers many
open questions about strengthening in HEAs: (i)
strength does not directly depend on the number
of components N , and is not necessarily maximized
by the equi-atomic composition, (ii) the strongest
and most temperature-insensitive materials are
achieved by maximizing the concentration-weighted
mean-square mis�t volume quantity and/or increas-
ing the shear modulus, and (iii) the stacking fault
energy has little inuence on strength. These in-
sights provide a basis for computationally-guided
design of higher-strength many-component random
alloys. This is discussed further below.

6. Discussion

The new strengthening model presents possibil-
ities for alloy design while pointing to additional
topics for future work. We discuss these issues here.

6.1. Identi�cation of promising materials

Having demonstrated that the present model is
robust and predictive, the identi�cation of new
promising materials becomes reachable. The full
theory does not have any adjustable parameters;
all inputs - elastic constants, Burgers vector, and
the more complex line tension, dislocation core
structure, and solute/dislocation interactions - can,
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Figure 12: Experimental [97, 98, 99] versus predicted
strengths for several HEAs in the Ni-Co-Fe-Cr-Mn family
at T = 293K, after subtraction of the Hall-Petch contribu-
tion to the strength. The dashed line of slope of unity is a
guide to the eyes.

in principle, be computed. If computed from re-
liable ab initio methods, then systematic explo-
ration of compositional phase space, through high-
throughput computing of model inputs accompa-
nied by application of the model to predict strength,
will allow for the creation of \design maps" for new
materials. Such an approach is then coupled with
predictions of alloy phase stability through well-
established thermodynamic modeling.

For dilute alloys, ab initio computation of dislo-
cation core structure and solute/dislocation interac-
tion is accessible with high accuracy, as described in
the partner Overview article [25]. The line tension
is computable from either empirical potential simu-
lations (given good interatomic potentials) or from
DFT-parameterized line tension models [83, 105].
New alloy design can therefore be undertaken based
on the full version of the strengthening model of
Eqs. (8), (12) and (14).

For non-dilute alloys such as HEAs, the prob-
lem is more complex due to the high number of
components and the chemical, structural, and pos-
sible magnetic disorder in such materials. How-
ever, the model here, using an e�ective matrix
material and including �rst-order local uctua-
tions around the average, provides a formal base-
line. Properties of the e�ective matrix and disor-
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der are challenging for ab initio calculations, but
techniques such as the Virtual Crystal Approxima-
tion [62] and the Coherent Potential Approxima-
tion [63, 64, 106, 107, 108], and the use of Spe-
cial Quasi Random structures [109, 110] provide
directions for progress. Direct calculations of av-
erage properties, such as Cij , b, �V n, �

2
�Vn

, and
SF are currently feasible (see Refs. [102, 103]) and
provide the inputs needed for application of the
simpli�ed elasticity model. The precise disloca-
tion core structure, direct solute/dislocation core
interactions Un(xi; yj ; zk), and dislocation line ten-
sion, are all far more challenging, and perhaps pro-
hibitively expensive, to compute. However, well-
validated empirical potentials for alloys, tuned us-
ing DFT inputs, may allow all model inputs to be
computed with reasonable accuracy [60, 65]. The
availability of such potentials is not su�cient at
the present time, however. Thus, ab initio-based
design is likely best pursued using the elasticity-
based model (Eqs. (24)-(26)) with dislocation struc-
tures parameterized by b, SF and USF, and a
line tension scaled by �b2. Within this simpli-
�ed elasticity model, higher strengths will gener-
ally be obtained for a larger solute mis�t param-

eter
hP

n cn

�
�V

2
n + �2�Vn

�i1=2
and/or larger �,

with SF of less importance. New alloys designed
using the elasticity-based theory with computable
material inputs will, while not exact, provide a
clear physical framework for identifying promising
compositions to achieve higher-performance HEAs,
austenitic stainless steels, etc.

6.2. Failures of the theory

The present theory has been shown to be quanti-
tatively predictive across a range of systems. How-
ever, as mentioned earlier in section 5, the theory
fails for very dilute Al-Fe binary alloys strength [17].
The DFT computations for Fe/dislocation interac-
tion energies are similar to, albeit slightly larger
than, the results for Al-Mn [17]. The measured
strengths of Al-Fe at Fe contents of 10-50 ppm are,
while small, roughly 10 times larger than predicted
by the theory. Analysis of the DFT provides no
insights into the reasons for this failure of the the-
ory. Ma et al. [76] analized the speci�c role of the
screw dislocations in these Al-Fe alloys, but this
could not resolve the discrepancy with the experi-
mental results. Investigations into other possible
e�ects (e.g. interaction of Fe with O or other im-
purities, formation of strong Fe-Fe pairs, etc. see

further discussions in subsection 6.6) remains to be
done. As a practical matter, we have �t the theory
to the Al-Fe binary response to obtain �tted val-
ues for �Eb=c

1=3 and �y0=c
2=3, and have then used

these parameters to successively predict strengths
in nominal binary alloys that contain Fe at tens
of ppm levels by treating them as ternary alloys
(Al-Cu-(Fe), Al-Cr-(Fe), commercial Al-Mg-(Fe)).
Nonetheless, the failure of the theory in this one
case shows that the strengthening mechanism en-
visioned in the theory may not be applicable even
when �rst-principles DFT results do not indicate
any anomalous behavior in the solute/dislocation
interaction energies.

6.3. Contribution of screw dislocations to solute

strengthening

In the present model, the alloy strength has been
predicted while focusing only on the energetics and
motion of the edge dislocation. Atomistic simula-
tions using EAM potentials show comparable inter-
action energies and/or zero-temperature strengths
for screw and edge dislocations in fcc solid solution
Ni-Al [38] and Al-Mg alloys [82, 111]. Such results
cannot be expected from usual elasticity theory de-
scribing the screw pinning by a modulus mis�t and
the edge pinning by a dominant size mis�t. For low
solute concentration, the strengthening of the screw
e�ect is clearly a consequence of the dissociation
of the screw dislocation core into Shockely partials
that each have edge components. Yasi. et al. [39]
computed the solute/dislocation interactions of so-
lutes with basal edge and screw dislocations in hcp
Mg, and found them comparable in magnitude.
These initial �ndings are consistent with TEM ob-
servations of dislocation microstructures in fcc ma-
terials showing them to be fairly isotropic [20], i.e.
having equal proportion of edge and screw disloca-
tion segments.
The present theory does not exclude screw dislo-

cations from consideration, and thus can be applied
to screw dislocations. This was nicely pursued by
Ma et al. [76], who showed that the strengthen-
ing of the screw dislocation in Al was indeed fairly
comparable to that of the edge. This result would
seem surprising at �rst, since the screw dislocation
has no long-range pressure �eld to interact with
the solute mis�t volume. However, the dissocia-
tion of the screw dislocation core creates a pressure
�eld due to the edge component of the partials. In
addition, three other factors are important in the
quantitative magnitude of the strengthening: wc,
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�, and the Peierls stress. First, the line tension
for the screw dislocation is much larger than that
for the edge, and this increases the energy barri-
ers for screw motion (see Eq. (12)). Second, the
screw core is also less dissociated than the edge
core, and in Al we expect wc to scale with the
partial separation (because the partial separation
is small), and the strength increases with decreas-
ing wc. Third, the zero-temperature Peierls stress
of fcc dislocations tends to be somewhat larger than
that of the edge, and this also reduces the di�erence
in strengthening between edge and screw. Full com-
putations for the screw dislocation in fcc Al alloys
[76] show that, in general, the energy barrier �Eb

for the edge is about twice that observed for the
screw while the zero-temperature ow stress �y0 is
smaller than that for the screw dislocation. Al-
though the line connectivity of the edge and screw
should provide some averaging of the individual mo-
bilities, there is no clear approach for combining
edge and screw strengths versus temperature and
strain rate. But with the edge strength being larger
under most practical conditions, we expect the edge
strengthening to control the overall strength. How-
ever, further investigations of the respective role of
edge and screw dislocations remain of high interest.

6.4. Strengthening in other materials

The model presented in the paper is also applica-
ble to interstitial solid solutions in low-Peierls stress
alloys, provided the dislocation core structure is not
too strongly modi�ed by the solute(s). A few com-
plications arise, as such properly enumerating all
the possible solute sites, accounting for the interac-
tions between the deviatoric mis�t strains (due to,
e.g., tetragonal distortions generated by interstitial
solutes) and the deviatoric dislocation stress �eld,
and accounting for the various orientations of such
con�gurations. Recent work presents some analy-
sis of these issues in the context of Hydrogen in Ni
[112], but in general the complications present no
theoretical or conceptual di�culties.
In materials such as bcc alloys, the Peierls stress

of the pure material (or the e�ective matrix ma-
terial) is high. Thus, solutes can soften and
strengthen, and various models have been devel-
oped to account for the role of solutes on the tem-
perature and strain-rate dependent motion of dis-
locations in these materials [20, 113]. However,
remaining within the generally-accepted kink-pair
nucleation model for screw motion in bcc materi-
als, the present theory points toward another pos-

sible avenue for analysis of the solute strength-
ening/softening, particularly in non-dilute alloys.
This is a topic for future work.

We also remind ourselves that an underlying as-
sumption of the present class of models is that so-
lutes do not signi�cantly distort the dislocation core
structure of the matrix material (or e�ective ma-
trix) [8, 9, 10]. When such large distortions do oc-
cur, they are accompanied by large reductions in
the system energy, e.g. large solute/dislocation in-
teraction energies. If in addition there are no long-
range interactions, the \strong pinning" Fleischer-
Friedel models may become operative. One exam-
ple of such a case is the high strengthening e�ect
of dilute oxygen in hcp titanium, well-established
experimentally. Yu et al. [10] have recently
shown that an individual O in the very core of the
dislocation provides much stronger pinning than
that of the collective e�ect of the surrounding so-
lutes (no long-range elastic interactions). Appli-
cation of the classical Fleischer-Friedel model us-
ing the DFT-estimated parameters provides pre-
dictions in the range of the measured experimental
values, although the measurements were performed
in nanopillars and thus include a signi�cant pillar
size e�ect. Thus, continued development of point-
pinning models, especially for thermal activation
and at realistic solute concentrations, is valuable.

6.5. Flow stress in atomistic simulations

Direct modeling of solute strengthening by
Molecular Dynamics (MD) simulations is tempt-
ing but not obvious. Direct MD simulations can-
not capture the evolution of very long, wavy dis-
locations (L � �c), having energy barrier of the
order of 0:7-1:1eV, at typical experimental strain-
rates. Instead, we advocate the study of single seg-
ments of length � � �c. At this length, the dis-
location remains straight as it move through the
�eld of solutes. The corresponding theory in this
case is slightly di�erent but remains analytical.
We used this approach for model Fe-Ni-Cr alloys
modeled with an EAM potential [114] and demon-
strated good agreement between direct simulations
and model predictions [61]. While care must be
taken, such studies validate crucial aspects of the
theory such as the internal length scale wc and av-
erage ow stress versus alloy composition.

Nonetheless, numerical simulations of solute
strengthening have, however, led to the identi-
�cation of important trends and understandings.
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We already mentioned above the rather compa-
rable role of the screw and edge dislocations in
strengthening found in MD simulations using em-
pirical potentials [38, 82, 111]. The contribution
to the strength of solutes in planes away from
the glide plane has also been identi�ed through
atomistic simulations in Al-Mg and Ni-Al systems
[37, 38, 82, 111, 115]. This clearly established that
the historical approaches that only included so-
lutes in the glide plane were to be revised. Fur-
thermore, the speci�c strengthening due to solute
pairs when the solute concentration increases (and
with the reference taken as the pure elemental ma-
trix) has been measured [38, 115]. MD simulations
also showed a �nite size e�ect in solute strengthen-
ing [111, 37, 116], i.e. the dependence of the mea-
sured ow stress on both the dislocation line length
and the glide distance, due to the statistical nature
of the solute con�guration. This was extensively
studied using simpli�ed line-tension-based numeri-
cal models [37, 117]. When correctly parameterized
using atomistic information [37], such models repro-
duce MD simulations at zero-temperature for given
dislocation length and glide distance. However, the
approach remains numerical and the thermal acti-
vation is yet to be included. In general, further
work to understand the ability and/or limitation of
direct MD simulations to determine the strengths
relevant to real materials remains a fruitful area.

6.6. Alloys with Short Range Order

A strong assumption in both historical models
and the strengthening model presented in this pa-
per is the representation of the solid solution as a
random alloy. Although this can be a good approx-
imation for some alloys (e.g. in HEAs [118]), short
range order (SRO), i.e. correlations between the
chemical occupancy of the atomic sites, can exist
in materials. Evidence of SRO e�ects on strength
has been experimentally demonstrated for instance
in NiAl fcc solid solution alloys [119, 120]. As com-
pared to the fully random case, SRO a�ects the
strength in two di�erent ways: modi�ed statistics
and existence of non-negligible solute/solute inter-
actions. These factors can introduce additional
softening/strengthening e�ect [119, 121, 122]. In-
clusion of SRO can be performed within the frame-
work of the current model, in principle. A more-
complex energetic model is required, and appropri-
ate treatment of the statistics in the short-range-
ordered solid solution is challenging [123], but the

current model provides the baseline to include those
e�ects.

7. Summary

In this overview, we have summarized the exten-
sive recent progress within the Labusch-type weak-
pinning model for solid solution strengthening for
metallic alloys, accounting for multiple solutes at
arbitrary composition [17, 61, 68, 69]. The detailed
model makes contact with both historical models
and recent developments. Most importantly, the
model provides many insights about the physics of
the strengthening. These insights extend to rather
subtle issues, including (i) identifying conditions
under which stress equivalency is upheld, (ii) pro-
viding a clear physical origin of the observed high-T
\plateau", (iii) demonstrating which materials pa-
rameters are the key quantities for strengthening,
(iv) the relatively unimportant role of stacking fault
energy, and (v) the role of additional uctuations
in local solute energies due to local chemical envi-
ronments. Application of the model to low-Peierls
stress materials shows its predictive capacity, for
both dilute and concentrated alloys. These valida-
tions, each revealing some new features, open the
way for design of optimized solute-strengthened al-
loys. The model also provides a baseline to consider
short-range ordering e�ects, interstitial solutes (if
they do not modify strongly the dislocation core
structure), and other crystallographic structures,
all of which will be pursued in future work.
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Appendix A. Role of the dislocation core

structure

In the various applications shown in this paper,
we have seen that the dislocation core structure is
important, and this has been raised by other au-
thors [39, 76]. To study its inuence, we thus pa-
rameterize the Burgers vector distribution along the
glide plane by two Gaussian peaks, each of standard
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Figure A.13: Minimized dislocation structural coe�cients
(a) f1(wc) for zero-temperature strength �y0 appearing in
Eq. (25), and (b) f2(wc) for the energy barrier �Eb appear-
ing in Eq. (26), vs. d the dissociation distance of an fcc edge
dislocation, related to SF and isotropic elastic constants
through the elasticity relation d = �b(2+�)=(24�(1��)SF).

deviation �, separated by a stacking fault of width
d, as follows
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where xi = nb=2 with n = 0;�1;�2::: is the po-
sition along the glide plane. Atomistic studies of
fcc dislocations in various materials (Al, Ni, Fe-Ni-
Cr alloys) showed that typical � values range from
1:25b to 2:5b, and scale with �b2= (4�(1� �)USF),
with USF the unstable stacking fault energy [61].
Fixing � = 1:5b, the dimensionless pressure �eld
f(xi; yj) can then be computed, and the minimized
quantities in brackets in Eqs. (25) and (26) are cal-
culated versus d, as shown in Fig.A.13. Isotropic

elasticity [40] yields d = �b2

SF

(2+�)
24�(1��) for an edge

dislocation.
When both gaussian peaks are well separated,

i.e. when d > 10b, there are two minimum en-

ergy con�gurations leading to two di�erent mini-
mized coe�cients for both zero-temperature stress
and energy barrier. The �rst minimized core coef-
�cients in Eqs. (25) and (26) associated to �y01 and
�Eb1, are nearly independant of d. For typical elas-
tic moduli, the strength is thus independent of SF
for SF < 100 mJ/m2. The second minimum en-
ergy con�guration, associated to a larger wc, with
low �y02 and high �Eb2, provides a \plateau" stress
relevant only at very high temperatures, which ap-
pears to be more sensitive to the exact value of the
stacking fault energy (see the former discussion on
Mg alloys). For low-to-intermediate temperatures,
the simpli�ed theory of Eqs. (25) and (26) with co-
e�cients f1(wc) ' 0:35 and f2(wc) ' 5:7 is fully
analytic and predictions require only elastic mod-
uli, lattice constants, and mis�t volumes versus al-
loy composition. This is valid for low stacking fault
energy materials, such as fcc high entropy alloys,
austenitic stainless steels, or cupper alloys, for in-
stance. When d < 10b on the other hand, the two
gaussian peaks in the Burgers vector distribution
start to overlap. The minimized core coe�cients
are not independant of d anymore, and thus the ex-
act value of SF matters for both core coe�cients
in �y0 and �Eb, for all the range of temperature.
As it can be seen in Fig. A.13, there is a transi-
tion between a regime having two minimum energy
con�gurations and only one minimum energy con-
�guration (like in Al alloys).
This simple model of two gaussian peaks for the

Burgers vector distribution of the dissociated dis-
location allows us to understand the exact role of
the stacking fault energy in predicting the strength
and its temperature evolution. Other mathematical
expressions could be used to parameterize the Burg-
ers vector distribution, like the Peierls-Nabarro de-
scription [26], or discrete spread-core models [17].
They would lead to the same conclusions about the
importance of the dissociation distance on the alloy
strength.
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