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ON THE DERIVATION OF A STOKES-BRINKMAN PROBLEM FROM STOKES
EQUATIONS AROUND A RANDOM ARRAY OF MOVING SPHERES

KLEBER CARRAPATOSO & MATTHIEU HILLAIRET

ABSTRACT. We consider the Stokes system in R3, deprived of N spheres of radius 1/N, completed by constant
boundary conditions on the spheres. This problem models the instantaneous response of a viscous fluid to an
immersed cloud of moving solid spheres. We assume that the centers of the spheres and the boundary conditions
are given randomly and we compute the asymptotic behavior of solutions when the parameter N diverges. Under
the assumption that the distribution of spheres/centers is chaotic, we prove convergence in mean to the solution
of a Stokes-Brinkman problem.
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1. INTRODUCTION

This paper is a contribution to a rigorous justification of mesoscopic models for the motion of a cloud of solid
particles in a viscous fluid. As explained in [7], the modeling of particle suspensions can borrow to different areas
of partial differential equations. If the cloud contains few particles, the behavior of particles can be modeled by
a finite dimensional system and the coupling with the fluid equations yields a fluid/solid problem similar to the
ones studied in [5] [6], [TT], 23] for example. If the number of particle increases, a description of the particle phase
via its individuals seems irrelevant. Depending on the volume fraction of the particle phase it is then necessary
to turn to a kinetic/fluid description (as in [2] or [3]) or a multiphase description (see [16]).

In the case of a kinetic/fluid description, a system — that we can find in references — is the following Vlasov—
Navier-Stokes system:

Of+v-Vuf +6mdivy[(u—v)f] = 0,
(Oru+u-Vyu) = Azu—Vyp— 67 (u—wv) dv,
R3
div,u = 0.

Here we introduce f : (t,x,v) € [0,00) x R? x R® — [0,00) the particle distribution function which counts
the proportion of particles at time ¢ which are in position # € R3 and have velocity v € R3. This unknown
encodes the cloud behavior. We emphasize that v is a parameter of f, hence the notations with indices to
express with respect to which variable we differentiate. The two other unknowns (u,p) represent respectively
the fluid velocity-field and pressure. One recognizes in the two last equations Navier-Stokes like equations. For
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simplicity, we do not include physical parameters such as the fluid density and viscosity. A particular feature
of this model is the supplementary term

(1.1) 67 | flu—v)dv,
RS

that appears on the right-hand side of the momentum equation. It is supposed to model the exchange of
momentum between the solid phase and the fluid. As emphasized in [I] this supplementary term occurs when
the product "number of particles” times ”radius of particles” is of order 1. The explicit form above can be
justified with the following formal reasoning. Assume that the cloud is made of N identical spheres of radius
1/N. If the particles are sufficiently spaced, they interact with the fluid as if they where alone: at its own scale,
the particle ¢ moves with its velocity v; in a viscous fluid whose velocity at infinity is u(h;). Stokes’ law entails
that fluid viscosity is responsible of the drag force:

67
Fi = N(’UZ‘ — u(hl))

This term corresponds to the forcing term in the Vlasov equation and the corresponding term (L) in the
Navier-Stokes system is obtained by assuming that the forces induced by the N particles can be superposed.

We are interested here in a rigorous approach to the above formal reasoning. This supposes to start from
the fluid/solid problem, where the particle dynamics equations are solved individually, and let the number of
particles diverge with their radius and density given by a suitable scaling. This question mixes large particle sys-
tem problems (justification of the Vlasov equations starting from a system of ODEs) with fluid homogenization
issues (computing a macroscopic equation for the fluid unknowns). The full problem seeming still out of reach
now, we focus here on the fluid homogenization part. Namely, one assumes that the particle behavior is given
and wants to compute the new term in the fluid equation which takes into account the influence of the particles.
Since this term is due to fluid viscosity, we restrict to the Stokes system (i.e. the system obtained by neglecting
the full time derivative on the left hand side of the momentum fluid equation). Then, the problem reduces to
homogenizing the Stokes problem in a perforated domain with non-zero boundary conditions (mimicking the
particle translation). This particular homogenization problem has been the subject of recent publications (see
[8, 13} 15, [19]). Therein, the limit Stokes system including the Brinkman term (I.JJ) is obtained under specific
dilution assumption of the particle phase. One further step toward tackling the time-dependent problem is then
to discuss whether the set of favorable configurations — i.e. such that the Brinkman term (1)) appears in the
limit — is sufficiently large. To this end, we propose here to derive the Stokes-Brinkman problem via a Liouville
approach in the spirit of [20]. More precisely, we first pick at random N identical spherical particles/obstacles
of radius 1/N, each of them being characterized by its center of mass and its velocity, under the constraint that
particles do not intersect each other. We assume that the cloud of particles lies within a bounded open subset
Qo of R3. We then consider a fluid occupying the whole space R? deprived of these particles and satisfying
a stationary Stokes equation with Dirichlet boundary condition at the boundary of each particle given by its
velocity. Our aim is to rigorously derive the Stokes-Brinkman equation as an effective equation of the above
problem in the limit N — oo.

Let us describe the problem in details. To begin with, fix N € N* arbitrary large and consider the experiment
of dropping randomly N spheres of radius 1/N in the whole space R3. Since the radius of the spheres is very
small in comparison with their number (note that the volume fraction occupied by the spheres is typically of
size 1/N?), we adapt a model that is classical for large point-particle systems. We denote

2 .
ON = {((X{V,VlN),...,(XfVV,VJ{,V)) € R* xRV st XN - XN >+ Vi 3&]}.
This represents the set of admissible configurations for the centers of mass X = (X{V,... X¥) and velocities
VN = (VV,..., V). In what follows, we also denote Z; = (X;,V;) the state variable for the particle i and
keep bold symbols for N-component entities. For instance, we denote Z~ = (X, V{V), ..., (XY, V) e ON
a configuration.

The configuration of particles Z will be chosen at random under some law FY € P(OV), where we denote
by P(E) the space of probability measures on E. We assume that this probability measure is absolutely
continuous w.r.t. the Lebesgue measure and also denote by F¥ its density. Moreover, since the particles are
indistinguishable, we shall assume that Z" is an exchangeable random variable, which means that its law FV
is symmetric, that is, for any permutation ¢ € Gy there holds

FN(ZY, . 28) = FN(Z)y), - 20 Ny), V2N e ON.
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Given a configuration ZV = (X, ViM),..., (XY, VE)) € ON we introduce the perforated domain:

N
FN=R*\|JBYN, where BN =B(X, &) Vi=1,...,N,
1=1

and consider the following Stokes problem:

(1.2) { PP =0
with boundary conditions
u(z) = VN ondBN fori=1,... N,
(1.3) lim |u(z)] = 0.
|| =00

We obtain a stationary exterior problem in 3 dimensions. Such systems are extensively studied in [I0] Section V]
where it is proven for instance that there exists a unique solution (u,p) to (L2)-(L3)). We may then construct:

w(z), ifzeFN
u[ZN](:c)={ (0, ifwe

VN ifzeBNfori=1,...,N.
The above reference on the exterior problem entails that u[Z"] € H*(R?) (where we denote H'(R?) the closure
of C2°(R?) for the L?-norm of the gradient). Therefore, we construct the mapping
Uyv: ON — HYRS
- . (®?)
ZN  — u[ZV]

as a random variable on OV endowed with the probability measure FV.

At first in [8], it is shown that, for a given sequence Z” satisfying some conditions and with prescribed
asymptotic behavior when N — oo, the associated solutions to (L2))-([3) converge to a solution to the Stokes-
Brinkman problem:

—Au+Vp+6mpu = 67j . 3
(1.5) { divii — 0 in R°,
with vanishing condition at infinity
(1.6) lim |a(z)| = 0.
|z|—o00

In this system the flux j and density p are related to the asymptotic behavior of the Z~. In this paper, we
compute the flux j and density p depending on the asymptotic behavior of the law FV in order that the
expectation of Uy converges in a suitable sense to the same Stokes-Brinkman problem. As we recall in the
beginning of Section @ this system is well-posed for positive p € L?/?(R?) and j € L%/5(R?).

1.1. Main result. Our main result requires some conditions on the sequence of symmetric probability measures
(FN)yen on ON. To state our conditions, we introduce the family of sets O™[R] for an integer m > 2 and
R > 0 as defined by:

O™[R] = {((Xl,Vl),...,(Xm,Vm)) € [R® x R¥]™ s.t. |X; — X;| > 2R Vi ;éj}.

We note that we have then OV = OV[L] in particular. Then, the m-th marginal of FV is given by

FN(z) = / 1y necon FN (2,2')dz, vz € O"[%].
R6(N —m)

Such marginals are constructed by remarking that, if we split an IN—particle distribution by giving the m
first particle state z and the remaining (N — m) particle state z’ we must require that z € O™[+] in order
that (z,z’) € ON be possible. We apply here again with small letters the convention that z; € RS splits into
z; = (x4, v;) and that bold symbols encode vectors of unknowns z, v or z.

We are now able to state our main assumptions. Let (Z)yen+ be a sequence of exchangeable O -valued
random variables, and let (FV)yen- be the sequence of their associated laws, that is, symmetric probability
measures on OV,

Assumption A1l. We assume that (FV)yen- are distribution functions, that is belong to L'(OY), and satisfy
the following properties:
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(0) Supp(FY) C (Q0 x R3)Y for some bounded open €y C R? and any N € N*.
(1) There exists a constant C; > 1 such that for any N € N* and 1 <m < N
N - N m
1P sz syomiay = S0 [ Licony F@av < (C1)
(2) There exists kg > 5 and a constant Co > 0 such that
k() kO N

sup lell Fl ||L1L1(]R3><]R3') = Sup / |21| F1 (zl)dzl S CQ.

Ne NeN* JR3xR3
(3) There exists a constant C3 > 0 such that

N _ N
;16111\13* I||v1| Fy HL?L,IJ(OZ[%]) = ]slelg Islug /RG 1., zoycor(y) 1l FS' (21, 22) durdug < Cs.

In this set of assumptions, (2) corresponds to the classical assumption that the law has a sufficient number of
bounded moments; (1) would be satisfied in particular by tensorized laws; (0) is reminiscent of the fact that the
cloud occupies the bounded region €y and (3) shall enable to control the interactions between close particles
through the flow.

Given a sequence (ZY)yen+ of exchangeable random variables on O, we define the associated empirical
measure by

N
1
(L.7) PN EN] = 3
=1

as well as the empirical density and the empirical flux respectively by

N N
1 , 1
(1.8) PNZN) = pV XN = Y oxws GVEN] = 5 ) Vil o
=1 =1

The first formula defines a standard probability measure while the second one is a vectorial measure on R3.

We now state our assumptions concerning the asymptotic behavior of the sequence of configurations.

Assumption A2. Under Assumption [AT] we suppose that there is a probability measure f on R x R? with
support on Qo x R3 such that, defining the probability measure p(dz) fR3 f(dz,dv) and the vectorial measure
:= Jgs vf(dz,dv) (both with support on €q), we have:

(i) lim E[Wi(p"[Z"],p)] = 0;

N —oo
. . N N . —
(i) Jim E [[7¥Z] = jllioos sy | =0

We denote here W, for the Wasserstein distance (with cost ¢(z,y) = |z — y|) and || - ||C£,1(R3)]* for the dual

norm of Lipschitz bounded functions on R? (see Section ] below).

Remark 1. Given the random variable ZV with law FV, we can consider the random variable X~ on O :=
(X, X3) e RN | XN — XV| > 2 Vi # j} which has a symmetric law RY € P(OY), given by
RN(dxN) = [oon FN(dxY,dv"). Point (i) in Assumption [A2] is equivalent to the fact that the sequence
(RN)nen- is p-chaotic (roughly speaking that RY is asymptoticly i.i.d. with law p, see Definition B.I]) thanks
to e.g. [12].

Remark 2. We will be interested in conditions on the sequence (FV)yen+ in order to ensure the convergences
of Assumption [A2] In particular we will show in Lemma 23] that if the sequence (F'V)nen- is f-chaotic (see
Definition 2.1]) then it satisfies Assumption [A2] (But clearly this is not a necessary condition.)

With these notations, our main theorem reads:

Theorem 1.1. Let f € LY(R3 x R3) be a probability measure having support in Qo x R3 and define p(z) =
fRS x,v)dv and j(z fRS vf(z,v)dv. Assume that p € L*(Q) and j € L°(Qo) so that there exists a unique
solution (u,p) € Hl(R3) x L%(R3) to the Stokes-Brinkman problem (LH)-(L6) associated to p and j. Consider
a sequence of exchangeable random variables (Z) yen< on O and their associated symmetric laws (FN) yen-
satisfying Assumption [A1l
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Then, given « € (2/3,1) and for N large enough, the map Uy given by (LL4) satisfies:

1
3

1
(1.9) E HUN[ZN] — UHLEOC(RS)} 5 E [Wl(pN[ZN], P)] LR [HJN[ZN] . j||[Cg'1(R3)]* + N—el(a),

l1—a (3@—2) )

where e1 (o) = min(~g*, =5

As a consequence, if (FN)yen- satisfies moreover Assumption[AZ (i)-(ii), then

. N
Jim B [[UN[ZN] = ullzz o] = 0.

A key-point in the result of this theorem is that the right-hand side of (L) depends on powers of E [W1(p™ [ZV], p)]
and E [”jN[ZN] — (€0 &2+ | and on a residual power of N (depending only on the parameter ). We remark

that both densities and flux differences estimates in (9] are in fact estimates of the same type, since here, for
probability measures such as the densities, the Wasserstein distance W3 is equivalent to the distance given by
the [C})"' (R?)]*-norm. However, the fluxes j¥[Z"] and j are not probability measures (they do not even share
the same mass a priori) so that Wi is not a distance. We emphasize that the explicit values of our exponents
need not be optimal in all contexts and that it is also possible to obtain a L? version of estimate (L3]) with
different exponents, under the condition that W2P embeds into some Holder space.

A further result of our study (see Section []), is that, with the assumptions of Theorem I E[Uy[ZY]]
defines a bounded sequence in H L(R3). Theorem [[T] then implies that this sequence converges (at least weakly
in H'(R3)) to the solution to the Stokes-Brinkmann problem with the corresponding flux j and density p. This
consequence is yet another hint that the Stokes-Brinkman problem (LH)-(L6) is indeed the right macroscopic
model to compute the behavior of a viscous fluid in presence of a cloud of moving particles under the asymptotic
convergences of Assumption [A2]

To show one application of the previous theorem, we shall construct an explicit example of probability
measure on OV satisfying the assumptions of Theorem [T and for which we obtain a quantitative estimate of
the convergence (L.9).

Corollary 1.2. Let f € L'(R3 xR3) be a probability measure satisfying the hypotheses of Theorem L1 and such
that the associated density p € L>=°(p) and fQOX]RS |v|¥ f(dz) for some k > 5. Then we can construct a sequence
of symmetric probability measures (FN)yen- on ON satisfying Assumptions [Adl and [AZ, and for which there
holds

E {||UN[ZN] - u||leoc(Rs)} SN~ 4 N-a(@),

On the basis of computations in [I5], we expect that the content of Theorem [[.T] can be extended to particles
with arbitrary shapes and possibly rotating. We recall that, in this framework, the limit Stokes-Brinkman
problem is related to the distribution of shapes for the particles in the cloud, that is quantified in terms of
Stokes resistance matrix associated with these shapes. The particle rotations influence the effective model only
via their contribution to the drag force exerted on the particles. We refer to [I5] for more details.

1.2. Overview of the proof. The proof of Theorem [[T] faces several difficulties. First, for fixed N, we must
identify a sufficiently large set of data Z” for which the solution Ux[Z"] to the Stokes problem in the punctured
domain is close to the solution to the Stokes-Brinkman problem. In comparison with [§], a key-difficulty is to
have a quantified estimate at-hand. A second difficulty is that, since the velocities V¥ that we impose on the
particles are arbitrary, the solution to the Stokes problem may diverge in H L(R3) when two particles become
close. It is then necessary to obtain a bound on the solution to the Stokes problem associated with these
configurations in order to ensure that they won’t perturb the computation of the limit in mean.

Having in mind these two important difficulties, we propose an approach that is divided into five steps that
we explain in more details below:

e As a first step, we prove in Section [Z.I] some estimates associated to the convergence of the sequence of
configurations (the random variables (Z")y and their laws (F'V)y) with respect to the expected limit
(the marginals p and j of the distribution f).

o We then identify some “concentrated configurations” and prove that they are negligible in the asymptotic
limit N — co. These configurations correspond to Zv € OV such that there exists a couple of particles
too close to each other or that there exist too many particles in a same cell of small volume. This is
done in Section
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e Furthermore, we compute uniform estimates satisfied by the map Uy[Z"]. We obtain simultaneously
that:
— the mean of Uy[ZN] is well-defined and uniformly bounded in H'(R?);
— the weight of contribution of the concentrated configurations vanishes when N — oc.
This enables to get rid of concentrated configurations in the asymptotic description of Uy. This step is
treated in Section [Bl

e In a further step, developed in Sectiond] we prove a mean-field result for non-concentrated configurations
which is the cornerstone of our proof. We combine here the duality method of [I9] with covering
arguments of [13]. In comparison with these previous references, we consider in this paper an unbounded
container. So, these arguments need to be adapted carefully.

e Finally, in the last step presented in Section Bl we gather previous estimates together in order to obtain
Theorem [[LJl Furthermore, we construct a particular example of sequence of probability measures
(FN) N in order to obtain Corollary

The paper ends with a series of appendices. In Appendix [A] are gathered the technical computations under-
lying the third step of the above analysis (corresponding to Section [3). In Appendix [Bl we give some material
on the resolution of the Stokes problem in a punctured box. These results are used in Section @ Finally, in the
last Appendix [C] we provide also some computations of constants that are involved in Section (]

Notations. In this paper, we shall denote A < B if there is some constant C' > 0 (insignificant to our
computation) such that A < CB. We use the classical notations LP(Q) and H™(O) for Lebesgue and Sobolev
spaces. The space H L(R3) will play a crucial role in the analysis. We recall that we can see this space as the
closure of C2°(R3) for the norm

ey = ([ [902) ", vwe cx@)

We also apply below constantly the Bogovskii operator [10, Section IIT1.3]. We recall that this operator is
constructed to lift a divergence. Namely, given f € LP(Q) it creates (under some compatibility conditions on
f) a vector-field w € WP(O) such that divw = f. Concerning the homogeneity properties of this operator we
refer to [I3, Appendix A] among others.

Acknowledgments. K.C. thanks N. Fournier for fruitful discussions on empirical measures. K.C. was par-
tially supported by the EFT project ANR-17-CE40-0030 and the KIBORD project ANR-13-BS01-0004 of the
French National Research Agency (ANR). M.H. is supported by the IFSMACS project ANR-15-CE40-0010, the
Dyficolti project ANR-13-BS01-0003-01.

2. PROPERTIES OF THE SEQUENCE OF CONFIGURATIONS

In this section we gather some properties of the sequence of configurations (Z")yen+ on OV under the
sequence of associated laws (FV)yen- satisfying Assumptions [ATl We recall that

(2.1) ON = {zN e (R x RV | [X; — X;| > % Vi # j},
where hereafter we shall use the Assumption [ATH0) saying that Supp(FY) C Qg x R? for some bounded open
set Qg C R3, and where we denote
ZN = (Zy,...,Zn) € (R® x R®)N,
XN = (Xy1,...,Xn) RN VN = (V... Vy) e R3Y,
Z; = (X, Vi) € R® x R3.
We shall denote by OF the projection of the space of configurations OV onto the X -variables, more precisely

2
oN = {(Xl,...,XN) ERM | |X, - X;| > Vi;éj},

in such a way that O ~ OF x R3V.

In the first part of this section, we focus on the convergence of the family of measures (p™[Z"])nen- and
(3V[ZN])Nen- seen as random variables. As mentioned in the introduction, we metrize the convergence of
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measures on R3 by two different topologies: either we see (by restriction) vectorial measures as bounded linear
forms on Hélder spaces:

CE’Q(R?’) = {(p € C(R*) N L>(R?), s.t. sup 7”((13) _yjjgy” < oo} ,
z#y 1T

or we use the (Monge-Kantorovich-) Wasserstein W1 -distance on probability measures. Hereafter, the 1-Wasserstein
distance W1(f, g), with f and g probability measures on R? x R3, is defined by (see e.g. [24])

e W)= it [ e sn = s [ 0 ) - ),

w€l(g,f) PlLip<1

with II(g, f) being the set of probability measures on (R3 x R3)? whose first marginal equals g and second
marginal f, and [-]rip denotes the Lipschitz semi-norm

W’]Lip = sup M

N

Correspondingly, []co.e with 0 < § < 1 stands for the C%¢ semi-norm

[¥(2) = (=)
[Y]go.e = zs;lg FErra
and || - Hcg,e(Rg) i= | - || Lo (r2) + []co.e the C%P-norm. We then define, for finite signed measures m and m in
R3, the dual metric || - H(Cg,e(Rg))* by
(2.3) |l — mH(Cg,e(RS))* = sup d(2) (m(dz) — m(dz)).

3
191l 00,0 ) <1 /R

Finally, for vectorial measures j = (ja)1<a<s and j = (ja)i1<a<3 in R?, we define
3
(2-4) ||] - jH(cgve(RS))* = Zl H]a - jaH(cgve(RS))*-

We remark here that, when dealing with probability measures p, p € P(R?) with support included in g, the
W1 distance between p and p is equivalent to the dual distance given by the Cg "!_norm of their difference, and
we shall always use the former, which is of more common use.

In the second part of this section, we measure the weights of configurations in which the particles are
concentrated, meaning that the minimal distance between two particles is small or that there are too many
particles in a small subset of R3.

2.1. On the convergence Assumption [A2]l Let us describe some properties concerning the asymptotic
convergence of the data, where we always assume that Assumption [Adl is in force. We first obtain some
estimates for different metrics concerning the convergences of Assumption [A2] and then we give a sufficient
condition on the sequence (FV)yen- to satisfy Assumption

We recall below the notion of chaoticity for a sequence of probability measures, see [I8] 22].

Definition 2.1. Let £ C R%. Consider a sequence (Y )yen- of exchangeable random variables on EVV and the
associated sequence of laws (V) yen-, that are symmetric probability measures on EV. We say that (V) yen-
(or that (Y¥)nen+) is m-chaotic, for some probability measure m on E, if one of the following equivalent
conditions is fulfilled:

(a) N converges to @™ weakly in P(E™) as N — oo for any fixed m > 1 (or some m > 2);

(b) the P(E)-valued random variable VN [Y™] converges in law to m as N — oo.

Here 7} denotes the m-marginal of 7 given by 7} (dz1,...,dzy) = Jn-m aN(dz1,. .., dzm, dzmt1, - - -, d2N),
and pN[YN] = & vazl dy~ is the empirical measure associated to YV,

We remark that [12] obtains a quantitave version of the above equivalence. More precisely, assuming that
7V possesses a finite moment of order k > 1, (7V) yen- is m-chaotic is equivalent to

(a”) A}im Wi (rN, 7®™) = 0 for any fixed m > 1 (or some m > 2);
— 00
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(b) lim E[W, (N [YN],7)] =0;

N—o0

with a quantitative estimate in NV for the equivalence between (a’) and (b’). As a consequence of this, and arguing
similarly for the case of finite vectorial measures (more precisely for finite signed measures, corresponding to
each component of jV[ZN] and j), we hence remark that Assumption [A2]is equivalent to

(i’) the random variable pV[Z™] converges in law to p as N — oo ;
(ii’) the random variable j¥[ZY] converges in law to j as N — oc.

We now give some estimates concerning different metrics. For any k£ > 0 and any probability measure
f € P(R? x R3) with support on Qg x R3, we denote its moment of order k£ > 0 by

M= [ (o) S,

We remark that My(f) > 1 for any k > 0 and k& — My(f) is non-decreasing. On the other hand, under the
Assumption [ATH(2), we have a uniform bound for (My, (F™))yen+. So, below, we focus on probability measures
with bounded kyp-momentum i.e.:

By, (C2) := {f € P(R® x R®) s.t. Supp(f) C Qo x R® and My, (f) < Co}

where kg € [1,00) and Cy > 1 are fixed by Assumption[AT}(2). Standard arguments show that this set is closed
w.r.t. the weak topology on P(R? x R3).

Lemma 2.2. Let f,g € By, (C2) and define py = f]RS f(,dv), pg = f]RS g(-,dv), j5 = f]R3 vf(-,dv) and j, =
fRS vg(-,dv). Given k > 0 we denote My, := My(f) + My(g) and Ko > 0 a constant depending on Q.

(1) For any 6 € (0,1) there holds
o o
oy — Pg”(cgﬁ(]RS))* < KoWi(py, pg) 7 < KoWi(f,g)7+T.

(2) For any 6 € (0,1) there holds

. . . R T A (ko—1) o
H]f *]g”(cgﬁ(ugz))* < KOH]f *Jg| (egéwl(]RS))* S KoMI:S oy Wl(fv g) ko (1),
Proof. These estimates are standard but we give the proof here for completeness.
(1) We prove first that
_6
(2.5) lor — Pg”(Cgﬂ(Re.))* S Wilpg, pg) 7T,
from which we conclude by remarking that
(2.6) Wilps,pg) S Wilf,9)-
Recall that
oy = Pg”(cgv"(RS))* = sup (@)(ps(dz) — pg(dx)).

650,05, <1 /%

We consider a sequence of mollifiers (()eso, that is, ((z) = e 3¢(e7'z), ¢ € C°(R?®) nonnegative, [ ((z)dz =1,
and supp(¢) C B(0,1). We split

[ 6@os = o)) = [ (02 C@os ~p)dz) + [ [60a) = (05 CI@Nps — py)(d)

R3

For the term T5, we easily remark that

o) = (¢ +C)(@) = /R [6(@) = 6@ = y)lCely) dy < [dleos /R l7Cy) dy < [glcon €.

Hence the previous estimate yields

3

T, < 6= (6% = [ (07 +00)(d2) S Iollogoqesy <
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For the term T; we observe that @ — (¢ * (.)(x) lies in Lip(R?), indeed, for any x € R?, we have
Va6 @) = (6= Vo)) s/ ot — ) =W
< [ 1ot T g,

S € ol pe(ze) ”szHLl(RS)a

which implies [¢ % (JLip S € '||@|| oo (rsy. From that last estimate we get

T, S (6% Clup / e (o~ py)(an)

S e el Lems)  sup / (@) (pf — pg)(dx) = € |l Loems) Wi(py pg),
YPlLip<1JR3

Gathering previous estimates and choosing e = Wi (py, pg)ﬁll completes the proof of ([Z1]). We now easily prove
26) by remarking that

Wilps.p) = sw [ 0@y —ppae) = s [ w@)(f —g)(aado)

[Y]Lip<1JR3 [Y]Lip<1

< sw [ W@ - 9dnd) = Walfg).
R3 xR3

[Plrip<1
(2) By reproducing mutatis mutandis the arguments for ([2.5]) we obtain
2]
L < ie_ i | F
(27) ||.7f .7!]”(01?*9(]1@3))* ~ ||.7f jg||(C5’1(R3))*'
So we prove next

. ) = ko1
(2.8) ||]f *Jg”(cg’l(RS))* S M;;U Wi(f,g) "

For R > 1 we define the smooth cutoff function xz(v) = x(v/R) with x € C°(R?) nonnegative and 1p(g 1) <
X < 1p(o,2), and we write, denoting j; = (j¢)i1<a<s and jg = (j§')1<a<s, for any a € {1,2,3} :

H]? - ng(cgvl(RB))* = sup ) (b(z)(]?(d:c) - ]g(dx)) = sup / ¢(z)va(f - g)(dzﬂ d’U)
1910, <1 B3 1] g, <1 /0 xRS

= s {[ s - 9@na + [ oo - xn()(r - g)dnan
”¢”02,1(Rs)§1 R3xR3 R3xR3
= Il + IQ.
Observe that, given ¢ € C%(R?) such that ||¢||C$,1(R3) < 1, the mapping (z,v) = é(x)vaxr(v) lies in Lip(R? x
R?) with [¢pvaXr]Lip < R. Indeed, we have
[PvaxrlLip < []LiplvaX Rl Lo ®3) + 1]l L ®3) [ VovaX R Lo ®s)

and, for any v € R3,

1
vaxr(@) SR, [Vo(vaxr) @)l S [vallVox(3)l5 S 0Vex e @s) $1

which implies
Il 5 RWl(fa g)
For the second term, since f, g € By, (C2), we have

M,
BS sw [ o1 xe@)f - o)(ded) £ 1
19150.1 ) S1 /RO xRS
A/ ko
and we conclude to (2.8) by choosing R = Wg‘))l/ko > 1 (since Wi(f,g) < My,) if not infinite. O

With the above lemma we can show the following sufficient condition for the convergences in Assumption [A2]
to hold.



10 KLEBER CARRAPATOSO & MATTHIEU HILLAIRET

Lemma 2.3. Consider a sequence (ZY)yen of exchangeable random wvariables on ON and the associated
sequence of symmetric laws (FN)yen- on ON satisfying Assumption[Adl Suppose that (F™N)nen- is f-chaotic
(Definition[2.1), for some probability measure f on R* xR3 with support on Qg xR3, and denote p := [s f(-,dv)
and j := fR3 vf(-,dv). Then (FN)nen- satisfies Assumption[AD, more precisely there holds

E [Wi(p"N[2"], p)] SE [Wi(uN[2ZM], )] ~o 0

and

E 15V (2"] = dlicor - | SEWGNEZYL ] o0

Proof. Thanks to the moment condition Assumption [AT}(2) and the fact that (FV)yen- is f-chaotic, we know
from [12] that
lim E [Wy(uN[ZN], f)] = 0.

N—o0
We conclude the proof by applying Lemma 2] and remarking that E [ My, (uV[ZN])] = My, (F{Y) is uniformly
bounded thanks to Assumption [ATH2). O

2.2. Estimating the weight of concentrated configurations. For A\, > 0, and any integer M < N, we
define

(2.9) oY ={zZN e OV | r_r;éin|XfV - XN < N~*}
17#]

and

(2.10) Of\\ZM = {ZN € OV | there exist at least M particles (X7¥) in the same cell C(\) of size A > 0}.
Here the cell C()\) is given by, for some y € R3, (y1 — A\/2,y1 +A/2) X (y2 — A\/2, 92+ A/2) X (y3 — A\/2, 93+ \/2),
so that [Cy(A)] = A3

Below, we study the weight of the sets Oi\{ 2 and OY. For this, we allow that the parameters A and M
depend on N. Namely, we denote:

M\ /3
(2.11) My =NP? = Ay:= (UTN) , VYNeN*

with positive parameters «, 3,1 to be fixed later on.
We now state the main result of this section.

Proposition 2.4. Consider a sequence of random variables (Z")nen+ and the sequence of their associated laws
(FN)nen- satisfying Assumption[Ad. Let o € (2/3,1), B € (0,1/2) and n € (0,00) sufficiently small. Then, the
sequences (M) yen- and (\Y)nen+ given by formula @I) satisfy:

1
N N N
P(ZN € O, iy VON) S 5305 - O

We emphasize that the smallness restriction in the previous statement is explicit. With the notations of
Assumption [AT] it reads n < 1/(2eC}). The proof of Proposition 24l is split into the two following lemmas.

Lemma 2.5. Under the assumptions of Proposition there holds
s
P(ZN € O 1) S (2nCre)™ .

~

Proof. By symmetry of F~, given A > 0 and M € N* with M < N, we have
N
M

In order to compute the last probability, again by symmetry, we only need to compute the probability of particles
i€{l,...,M — 1} to be in the same cell C()\) containing X2, the position of particle number M. Since a cell
C(A) has diameter A\ (with respect to ¢°°-norm), we obtain:

P(X{,..., X2 are in the same cell C(\))

<P ( ﬁ {1X" - Xl < A}>

i=1

P(ZY € O )) = ( ) P((X{,...,X3)) are in the same cell C())).

S ()\301)]\471

)
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where we have used Assumption [AT}(1) in last line.
When N, M — oo with (N — M) — oo and N/M — oo, Stirling’s formula gives
N\ N! V2rNY2NNeN
M) M{N-—M)  \2xMV2MMe=M\/27(N — M)/2(N — M)N—-Me—(N-M)

1 ( N ) M 1
V2or \ M 7\{1/2(1 %)N—]VI—}-I/Q’
which implies

)Mfl .

I o \ M M1/2(1 — %)N71VI+1/2
We now cousider the given sequences (My)nen+ and (Ax)nven+ given by formula (2I1]), and we get

N\ MY 1 M M=l
N N < o _N
P(Z" € Oxy.Mn) S (MN) M}V/Q(l - %)N(lfMN/N)Jrl/Q (77 N Cl)

N 1 .
S N
N <MN) My?(1 - My )N (1=My /N)+1/2 (nC1)

Since 3 € (0,1/2), we have that M% /N — 0 so that we can simplify the denominator of the right-hand side:

N _ _38 B_
]P)(ZN c OiVN,MN) ,S W (ncle)MN 1_ N(l 38) (ncle)N 1
N

< exp (Nﬂ log(nCie) + ( - %) log N) < (2nCle)Nﬂ .

O

Lemma 2.6. Under the assumptions of Proposition there holds

P(zN € O)) < i N?3e,
Proof. By symmetry of F¥ we have

N
Pz € OF) = () ) PUXT - xf < 50)
and we easily compute
P(X] — X5 | < N™%) S| F|| oo 1 @oxrsy N 2% S CLN 2,

which completes the proof. O

3. PROPERTIES OF THE MAPPING Uy FOR FIXED N

In this section, we fix an arbitrary strictly positive N € N and we analyze the properties of the mapping U .
As N is fixed, we drop the exponents in notations (except OV). For example, we denote U = UN, X = XV,
V =VV X, = XY and V; = V;V... The main result of this section reads:

Proposition 3.1. The mapping U defined in (L4) satisfies U € C(ON; H'(R?)). Moreover, if F € L'(ON) is
a sufficiently reqular symmetric probability density, we have U € LY(ON | F(Z)dZ).

More quantitative statements on the integrability properties of U are stated in due course. In particular, the
meaning of “F sufficiently regular” is made precise in Section below.

Let first recall classical statement on the well-definition of the mapping U. For fixed Z € OV, by definition,
the restriction u of U[Z] to

N
F=F\|JB (Bi:B(Xi,l/N), Wzl,...,N),
=1

should be the unique H'(F) vector-field for which there exists a pressure p such that (u,p) is a solution to:

-Au+Vp = 0,
(3.1) { P in F
divue = 0,
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completed with boundary conditions:

(3.2) { u(xr) = V; on B

lim |y oo u(z) = 0.

We recall here shortly the function spaces and analytical arguments underlying the mathematical treatment of
this problem [13] Section 3]. We refer the interested reader also to [10, Sections IV-VI] for more details.

We denote D(R?) := {w € C°(R3) div w = 0} and D(R3) its closure for the H'(R?)-norm. We recall that
D(R?) is a Hilbert space for the scalar product:

(u,v) — Vu: Vv
R3

and that D(R3) C L5(R3). For a smooth exterior domain F (i.e. the complement of some bounded compact
set B C R?) we can then set

D(F) ={u,, ue€ D(R?)}.

By restriction, D(F) is also a Hilbert space for the scalar product:

(3.3) (u,v) — / Vu : V.
F
Remark 3. We just remarked that:
D(F) C {u € L°(F) s.t. Vu € L*(F) and div u = 0}.

One may then wonder if this inclusion is an equality. However, we have that D(F) C H} (F). Since OF is

compact the trace of elements of D(F) is then well-defined in H'/2(0F). Standard manipulations show also
that, if w € D(F) then

(3.4) / u-ndo =0 for every connected component I' of O.F.
r

Conversely, if this latter condition is satisfied then one can extend u by the solutions of the Stokes problem
inside the connected component of R? \ F surrounded by I'. Finally, we may then characterize:

D(F) = {u € L(F) satisfying Vu € L*(F), div u =0 and (34)}.

In particular D(F) contains Dy(F), the subset of divergence-free vector-fields vanishing on F, which can also be
seen as the closure of Dy(F) := {w € C®°(F), div w = 0} for the H'(F)-scalar product (Z3). Remarking that
extensions of vector-fiels in D (F) are the trivial ones, and recalling that we have the embedding D(R?) C L5(R?)
we infer that Do(F) embeds continuously into L°(F).

With these definitions, problem (BI])-(B.2)) is associated with a(n equivalent) weak formulation:
Find v € D(F) such that w = V; on 0B, fori =1,..., N and
/ Vu:Vw=0, forarbitrary w € Dy(F).
F
Existence of a weak-solution yields by applying a standard Riesz-Fréchet or Lax-Milgram argument which also
yields the following variational property:

Theorem 3.2. The vector-field U[Z] € D(R?) is the unique minimizer of

{ [Vu[?, veDR?) st v, =Vi for alliG{l,...,N}} .
R3 ’

We refer the reader to [I3] Theorem 3] for a similar proof on a bounded domain that can be adapted easily
to this case with the functional framework depicted above. The remainder of this section is organized as follows.
In the next subsection, we consider the continuity properties of the mapping U. We continue by deriving a
pointwise estimate and end up the section with an analysis of integrability properties of U.
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3.1. Continuity of the mapping U. At first, we obtain that:
Lemma 3.3. The mapping U satisfies U € C(OV; D(R?)).

As only continuity is required for our purpose, we give below a proof of this lemma based on monotonicity
arguments only. Nonetheless, one may prove much finer properties by using change of variables methods (see
[21] [] for instance).

Proof. The problem [B.I)-(3.2) being linear with respect to its boundary data, we have that, for fixed X € R3Y
such that |X; — X;| > 2/N when ¢ # j, the mapping V — U[Z] is linear. Consequently, it is sufficient to
consider the continuity of the mapping X — UJ[Z] for fixed V.

Let V € R3Y be fixed and consider X € R3" — such that |X; — X;| > 2/N for any i # j — and a sequence
(X®))eny in R3N such that

o Z) = (X*) V) e ON for any k € N,
o limy_ oo Xi(k) =X;,fori=1,...,N.

We are interested in proving that U[Z®)] converges to U[Z] in D(R?). Due to the variational characterization
of U[Z], we remark that it is sufficient to prove that the sequence (m®))iecn defined by

Bx™ 1/n)

mk) ::inf{/ |Vu]?, ve D(R?) s.t. v =V forallie{l,...,N}} VkeN
R3

satisfies:

(3.5) Jim m®) = m, ;= inf {/3 Vo, v e DR?) st v, ,n =Vi forallie({l,.. .,N}} :
o0 R

Indeed, for arbitrary k € N, there holds: m¥) = || VU[Z®)] H%z(m)- Consequently, if (m®)),.cy converges, U[Z*)]

is bounded in D(R?). We may then pass to the limit in the weak formulation of the Stokes problem (restricted

to test-function in Dy(F)) and we obtain that U[Z] is the weak limit of U[Z®)] in D(R?). The convergence of

(m™)en implies then that (|[VU[Z®)]||p2rs))ken converges to |[VU[Z]||2(rs). As D(R?) is a Hilbert space,

this ends the proof.

To prove (31, we analyze the continuity properties of the function mu(-) as defined by:

mOO(R)inf{ Vo2, v € D(R?) V; forallz'G{l,...,N}}, VR >0,
R3

s.t. U‘B(Xi,R) =
We note that me, = Mmoo (1/N) and that, as |X; — X;| > 2/N for ¢ # j, this function is well defined for R
close to 1/N. Left continuity in 1/N is for free. Indeed, by construction, mu(-) is increasing and, if we had
limp_1/n- Moo (R) < Moo(1/N), we would be able to construct a vector-field v € D(R?) satisfying simultane-
ously Vlpx, 1/ny = Vifori=1,...,N and

2 < (R w(1/N
190 <t e (R) < mac 1/,

which yields a contradiction. Right continuity in 1/N is a bit more intricate. To this end, we note that mq(1/N)
is achieved by U[Z]. Remarking that, on the one hand, for an arbitrary truncation function y there holds:

Vixxz| [ V; ontheset {x=1}
2 a 0 on the set {x = 0},

V x [X(:c)
and that, on the other hand Dy(F) is dense in Do(F), we may construct a sequence (w®)en € [D(R?)N
converging to U[Z] and a sequence (¢));cy € (0,00)N converging to 0 such that, for arbitrary I there holds:
w =V, on B(X;,1/N+eW), Vi=1,...,N.
This implies that:
IVU[Z]|| 2 (r2) = Moo (1/N) < moo(1/N + &) < [[Vw || p2gsy, VYEkeEN,
and consequently, by comparison, that:

. s 0y _
R—1>111}1N+ Meo(R) = lliglomoo(l/Nan ) = meo(1/N).
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To conclude, we apply a simple geometric argument implying that, associated with the sequence (X (k))keN,
we may construct a sequence (7®))zen € (0, 00) converging to 0 for which, for arbitrary k € N we have:

B(X;,1/N —n®) c B(X® 1/N) c B(X;,1/N +7®) Vi=1,...,N.
Consequently, for arbitrary & € N, by comparing the sets on which U [Z(k)] is equal to V; with balls of center
X;, we obtain:
moo(1/N =n®) <m® < mee(1/N +n®).
We conclude the proof thanks to the previous continuity analysis of R +— ms(R) in R =1/N. O

3.2. A pointwise estimate. We obtain now a bound for given configurations:

Lemma 3.4. There exists a universal constant C for which, given Z € OV, there holds:

N
C 1 1|X-7X‘\<i
2 2 B j
HVU[Z]”L?(]RS) < N E Vil | 1+ N E ' —2N2
=t i | Xi = X5l =

Proof. In this proof Z € OV is fixed and splits into X and V. The idea of the proof is to construct a suitable
function

weYZ] = {u € D(R?) s.t. v, = V; for all i € {1,.. .,N}}

whose norm can be bounded by the right-hand side of the above inequality. The bound is then transferred
to U[Z] via its variational characterization (see Theorem [B.2)). To construct the candidate w we consider
successively the spheres B; in the cloud. Given a sphere B; we construct a divergence-free vector-field w; which
satisfies the boundary condition w; = V; on B; and w; = 0 on the By, for j # 4. A naive construction of w; would
be to truncate away from 0B; as a function of |z — X;|. This would create a non-optimal vector-field (because it
requires to choose the distance at which the truncation vanishes smaller than the minimum distance between B;
and the B;’s). Our method consists in drawing a virtual sphere of radius 3/2N around X;. We then intersect
this sphere with F. This creates a connected domain with two boundaries: an internal one corresponding to
0B; and an external one made partially of the boundary of B(X;,3/2N) and partially of small spherical caps
corresponding to the B;’s that intersect B(X;,3/2N). We create then a vector-field that satisfies w; = V; on
the internal boundary and w; = 0 on this virtual external boundary by truncating the (constant) vector-field
V;. The key-point is that we make the truncation to depend not only on the distance |z — X;| but also on the
projection of the point z and the sphere B;. We treat then differently the truncation in a zone between 0B;
and spherical cap by adapting the construction of [I4].

Technical details of the proof are are rather long, hence we stick to the main ideas here and postpone them
to Appendix [Al The first intermediate result concerns the treatment of sphere B;:

Lemma 3.5. Giveni € {1,..., N}, there exists w; € D(R?) satisfying

(3.6) w; = V; in B; and w; =0 in B; for j #1i,
(3.7) Supp(w;) C B(X,, %),
such that:

C|VZ|2 1 1\Xi7Xj\<i
(3:8) vaiH%Z(]RS) < N 1+ N —

i | X = X5 =

for a universal constant C.

Let (w;)i=1,....n be given by Lemma By combining B.0) for i = 1,..., N, it is straightforward that:
N
w=> w; €YI[Z]
i=1
Furthermore:

N N
2 _ . _
/Rs|Vw| 7ZZ/WV1UZ.Vw].

i=1 j=1
At this point, we use the property ([B.1) in order to bound the right-hand side. Given i € {1,..., N} let denote
Ti={je{l,...., N} st. B(Xi, 5x) N B(X;,5%) #0}.
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We remark that, given two indices ¢ and j we have the equivalence between j € Z; and i € Z;.

On the one hand, applying [B.7), there holds:

N
Z/Rsvw“ij:szvw“ij Vi=1,...,N.
j=1

JEL;
On the other hand, we have:

Lemma 3.6. Given i € {1,...,N} the set Z; contains at most 64 distinct indices.

This lemma is obtained thanks to simple geometric argument that we develop in Appendix [Al Applying
standard inequalities, we can then bound:

N

1
Z/ Vw; : Vw; §32/ |Vwi|2+—2/ |Vw;[?, Vi=1,...,N,
= R3 R3 2 R3

JEL;

which entails:

N N

1
Vuw|? < 32 Vw;|? + = /v 2
/RJ“"— ;_1/]R3|w|+2§§ Rslwyl

i=1 j€T;

N N
1
3322/ |Vwi|2+52|zj|/ [V, |2,
: R3 ° R3
=1 J=1
N
< 64 \Y% i2-

We then conclude the proof by applying (B.8)). O

3.3. Integrability properties of the mapping U. In this last part, we envisage to integrate the mapping
U against a sufficiently regular symmetric probability density F' € L'(OV). To state the regularity assumption,
we recall the notations:

Fi(z) = / 1on(2,2)F(2,2')dz', Vze RS,
R6(N—1)
FQ(Zl, 22) = / ]_ON (2’1, ZQ,Z/)F(Zl, ZQ,Z/)dZ/, V(Zl, 22) S Oév,
R6(N—2)

2
where O := {(21,22) € RC s.t. |1 — 22| > N} We introduce also:

. 2
](1‘1,1‘2) = / |’01|F2((1'1,’Ul), (SCQ,’UQ))d’Uld’UQ, V(Z‘l,Z'Q) s.t. |.CC2 - $1| > N
R6

With these notations, we prove

Proposition 3.7. Let F € L'(OY) be a symmetric probability density satisfying

(3.9) /Rﬁu F22) P (2)dz < oo,

(3.10) /]R3 [ sup |j(m1,x2)|] dzy < 0.

22€R3\B(z1,2/N)

There holds U € L*(ON, F(Z)dZ) and there exists a universal constant C such that:

(1+ |2 Fi(2)dz %+i ‘ sup li(21, z2)| | daq
(L. V5 Lo e

2 €R3\B(z1,2/N)

E[|VU| L 2rs)] < C

Proof. Since U € C(ON; D(R?)), our proof reduces to show that E[||VU | p2(rs)] is finite. Let Z € O, applying
the bound of Lemma B4l together with a standard comparison argument, we obtain that:

N 1 o 1|X-—X~\<i
DI IS o) ol
i=1 =1 j£i 1Xi — X5l - %

1
2

1
VU[Z)||r2ms) < C | —=
IVUME ey < C |
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We have then

1
N 2 N
1 1 1x,_x, -
E[\VUZ)] 2] < C [ E | [ = SOV ) [ +E| 5 DY Vi ——=tilsar
N 4 N &~ &~ X — X — 2
i=1 i=1 j7#i | Xi 5l N

We split the right-hand side into two integrals I; and I5. First applying a Jensen inequality and then symmetry
properties of the measure F' we have:

1 ’ 1
L o= E||=D V) | <E|[=) IViVP
(G RE e

< (/Rsa + |z|2)F1(z)dz>1/2.

By assumption (39), we have then I; < oco. Furthermore, using symmetry properties, the definition of j and
assumption [B.I0), we infer:

1 1x,_x,|<=
L = E|5> > IV — 2
=1z \/|IXi =Xl - &%

1\X1*X2|<%

1
2

< NE ||Vi]
X1 — Xo| — %
1\11—z2|<i
= N / |’U1|—2NFQ(21,ZQ)d’Uld’U2 d.%'ldl'g
|Z1—Z2|>% R3xR3 llxl — $2| — %
<

1
N/ / ————————j(%1, 72) dzadz;.
R3 JB(z1,5%)\B(z1,%) /|$1 — $2| _ %

1 / L
< sup |j($1,$2)|d$1] / T W
N3/2 Jgs LZeRS\B(mwN) BOP\BO:2) VIvl =2

The last integral appearing on this last line being finite, we obtain that Iy < oo and our proof is complete. O

With similar arguments as in the proof of this theorem, we also obtain the following corollary:

Corollary 3.8. Under the assumptions of Proposition [3.7, given ON c ON we have:

IP(ON)|? (/Rﬁu + |z|2)F1(z)dz)% + #/R l sup |j(m1,x2)|] dxll .

2 €R3\B(z1,2/N)

E[IVU||l2@®s)1lp,] < C

4. MAIN ESTIMATE FOR NON-CONCENTRATED CONFIGURATIONS

In this section, we compute a bound for the distance between a solution to the N-particle problem and
the limit Stokes-Brinkman system in a “favorable” case. For this, let first state a stability estimate for the
Stokes-Brinkman system suitable to our purpose.

Let consider a nonnegative density p € L3(€) and a momentum j € L?(0) where Qg and O are bounded
open subsets of R3. The subset )y is the one given in the introduction, corresponding to the domain occupied
by the cloud of particles. We denote below ©; = Qo + B(0, 1). The subset O is another bounded open subset,
not necessarily the same one. We apply the convention that we extend p and j by 0 in order to yield functions
on R3. In this framework, the existence/uniqueness theorem in bounded domains (as mentioned in [19]) extends
to the Stokes-Brinkman problem on the whole space:

—Au+Vp+6rpu = 67j . 3
(4.1) { dive — 0 in R?,
(4.2) lim |u(z)| = 0.
|z|— 00

Indeed, as in the case of the Stokes problem, the system ([@I)-(Z2) is associated with the weak formulation
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Find u € D(R?) such that
/ Vu:Vw+67r/ ﬁu~w:67r/ j-w, Yw € D(R?).
R3 R3 R3

For positive p € L3(Qg) C L3/?(R3), the left-hand side of the weak formulation represents a bilinear mapping
a, which is in the same time coercive and continuous on D(R?) (we recall that D(R?) C L°(R?)). Hence, for
arbitrary j € L?(Q0) C L5/5(R3) C [D(R?)]* we can apply a standard Lax-Milgram argument to obtain that
@I)-[#2) admits a unique weak solution u := u[p,j] € D(R3). At this point, we note that any weak solution
u to [@EI)-E2D) is also a weak solution to the Stokes equations with data 67 (7 — pu). Since j € L?(R?) and
p € L3(R3) we obtain that the source term is in L?(R3) and apply elliptic regularity estimates for the Stokes
equations on R? (see [10, Theorem IV.2.1]). This yields:

Proposition 4.1. For arbitrary j € L?>(O) and non-negative p € L*(Qq) the unique weak solution u = u[p,7]]
to the Stokes-Brinkman problem (@I)-[@2) satisfies VZu € L?(R3) and there ewists constants Ko, K1 whose
dependencies are mentioned in parenthesis such that:

IVl p2@s) < KolljllLo/smsys IV?ull L2gsy < K1(llpllnarey) (17l L2 ey + 17l pors rs)] -

By duality, the previous elliptic-regularity statement entails a regularity statement in negative Sobolev spaces.
Namely, given a nonnegative density g € L3(), we denote, for arbitrary v € D(R3) :

A

Reproducing the arguments of [I9, Lemma 2.4], we obtain then the following proposition:

/3 Vo : Vw + 67T/3 pov - w‘ , W E D(R3> with ||V’LU||L2(]R3) + ||V2’wHL2(]R3) < 1} .
R? R¢

Proposition 4.2. Given a bounded open subset O C R3, there exists K := K(O,||pl|13(0,)) such that
vl 220y < K[v]p,2

We refer the reader to the proof of [I9] Lemma 2.4] for more details.

The computations below are then based on the following remark. Let Z¥ = (X, V{V, ..., XY V) e OV,
U = Un[Z"] and P the associated pressure. For arbitrary divergence-free vector-field w € C°(R?), we have by
integration by parts:

/VU:VwN/ VU : VwNZ/ (U, P)n - wdo,
R3 FN dB(XN,1/N)

where (U, P) = (VU + V'U) — PIj is the fluid stress tensor and n is the normal to dB(X}¥,1/N) directed
inward the obstacle. In the favorable configurations under consideration here, we can replace w — in the boundary
integrals on the right-hand side — by the value in the center of B(X}¥,1/N) and compute the integral of the
stress tensor on dB(XY,1/N) by using Stokes law (see [8, formula (4)]):

6 _
/ S(U, P)n - wdo ~ / (U, P)n - w(XN)do ~ — Z(Vﬁ — UMY w(xM),
OB(XN,1/N) OB(XN,1/N) N i—1
where VN — UN stands for the difference between the velocity on the obstacle B(X}¥,1/N) and the velocity
“at infinity” seen by this obstacle. One important step of the analysis is to justify that we can choose for such
asymptotic velocity a mean of U around B(X}¥,1/N). We obtain finally the identity:

6m
VU Vw+—ZUN (XN) ~ ZVN

We recognize an identity of the form:

VU : Vw + 67 (p" [ZN],U) ~ 67 (5N [ZN], w).
RS
We compare then this weak-formulation with the weak formulation for the Stokes-Brinkman problem (IZ[I) @2).
Taking the difference between both formulations, we apply the duahty argument above to relate the Lloc—norm
of the difference UV [ZN] — u[p, j] to duality distances between p™[ZY] and p, on the one hand, and jV[Z"]
and j, on the other hand. The core of the proof below is to quantify the error terms induced by the symbol “~”
above, especially to justify the application of Stokes law for “favorable” configurations.
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4.1. Main result of this section. To state the main result of this section, we recall the notations introduced
in [I3] to handle the convergence of Uy towards u[p, j]. Given N € N* and Z = (X1, V1,..., XN, Vn) € OV, we
denote:

® dyin[Z] the minimal distance between two different centers X;

e )\[Z] a chosen size for a partition of R? in cubes;

e M|Z) the maximum number of centers X; inside one cell of size A[Z].
If dmin[Z] is sufficiently large and MZ] is sufficiently small, the particles are distant and do not concentrate

in a small box. This is the reason for the name “non-concentrated configurations” of this section. With these
latter notations, the main result of this section is the following estimate:

Theorem 4.3. Let o € (2/3,1), n € (0,1), R > 0 and § > 1/2 be given. There exists a positive constant
K = K(a, R,Q) such that, for N > 1, given ZN € OV such that

1 NB(lfa)/E) UM[ZN] 3
@3 2] 2 gz, M) < Sz = (PR

we have

[UN1ZY] = ulp. om0 < 7 [HJ[ZN] = 10172 g

1 & 1+l 1
L2(Q
+ <1 +5 '2—1 |V;N|2> (T(O) +0° (W + [[p[27] — P||[c§’1/2(1R3)]*) )1

where we recall that

1Y 1Y
N__Z . N__Z N

The remainder of this section is devoted to the proof of this theorem. It is based on interpolating the method
of [19] for dilute suspensions with the construction of [I3]. Though the computations follow the line of these
previous reference, we give an extensive proof for completeness because estimates have to be adapted at each
line.

Proof of Theorem [{.3 From now on, we pick a, 7,4, R as in the assumptions of our Theorem 3] N > 1 and
Z = (X1,Vi,...,XnN,Vn) € ON such that ([@3) holds true. For legibility, we forget the N-dependencies in
many notations in the proof. We recall that, by assumption, Supp(p[Z]) U Supp(j[Z]) C 2 and we denote
Ql = QO + B(O, 1)
To begin with, we note that, by applying the variational characterization associated with the Stokes problem
(see [I3, Theorem 3]), we can construct a constant Cy such that:
o N
0
(4.4) IVUZ][72 sy < 57 oIVl
i=1

This property relies mostly on the fact that Ndpiy[Z] is bounded below by a strictly positive constant. We refer
the reader to [I3], Section 3] for more details.

We want to compute a bound by above on [|U[Z] —u|p, j]|| 2((0,r))- Applying Proposition d.2] this reduces
to compute a bound for:

(U12] = ulp, ]2 = sup{

/, V(U[Z] — ulp,j]) : Vw + 67r/‘ p(U[Z] — ulp, j]) - w| ,w € D(R?) with
R3 R3

IVwllzaes) + V20 2y <1},

or to find a constant K independent of U[Z] and w € D(R?) for which there holds

V(UZ] - ulp,j]) : Voo + 677/

R3 R3

T2~ ulp ) 0] < K [Vl + 7] oes)]
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Hence, in what follows we fix w € D(R?) and we focus on:
Blul = [ VU2~ ulp.gl): Vw67 [ o021 = ulp.i) - w
We apply without mention below that, since 2 is bounded, there holds:

[wll co.sz@my + IV@llLs @) S IVl 2@s) + V2wl L2 @s) =: [[w]| p2(es).-
First, we decompose the error term E[w] into several pieces that are treated independently in the rest of the

proof. Since u[p, j] is the weak solution to the Stokes-Brinkman problem associated with (p, j), this error term
rewrites:

Efw] /RB(VU[Z] : Vw + 6mpU|[Z] - w) — /RB(Vu[p,j] : Vw + 6mpulp, j] - w),

= / (VU[Z] : Vw + 67pU[Z] - w) 767r/ J-w.
R3 R3
We now work on the gradient term involved in this error:

/Rs VU[Z] : Vw,

in the spirit of [13]. Applying the construction in [13, Appendix B], we obtain a covering (T ).czs of R3 with
cubes of width A[Z] such that, denoting

AZ
Zs = {ie{l,...,]\f} s.t. dist <X U an) < L} :
)
KEZ3
there holds:

N
1 2 12 1 2
. — %)< == -
(4.5) N_§<1+|m|>_5NZ1+|m|>
2 S =1

Moreover, keeping only the indices I such that T}; intersects the 1/N neighborhood of €, we obtain a covering
(T.)xek of the 1/N-neighborhood of 5. We do not make precise the set of indices K. The only relevant property
to our computations is that

1]

B

Associated with this covering, we introduce the following notations. For arbitrary x € K, we set
I, ={ie{l,...,N}st. X; €T}, MiZ]:=#TI,.

We note that, since T, has width A\[Z], we have that M[Z] < M]Z] for all k. Moreover, by construction of K,
all the X; are included in one T, so that the (Z,)«ex realizes a partition of {1,...,N}.

(4.6) #K <

We construct then an approximate test-function w® piecewisely on the covering of 2y. Given x € K, we set:
(4.7) wix)= Y, GVw(X)(=z-X;), VzeR?,
€T\ Zs
where G [v] is the unique weak solution to the Stokes problem outside B(0,1/N) with vanishing condition at

infinity and constant boundary condition equal to v € R® on dB(0,1/N). Explicit formulas are available in
textbooks and are recalled in Appendix [Bl We set:

s __ S
w’ = E w, 11, .

We note that w® ¢ HE(R?) because of jumps at interfaces 9T,. It will be sufficient for our purpose that
w* € HY(T},) for arbitrary x € K. Setting:

Eolw] ::/ VU[Z Vw—Z/ Vuy,

KEK

we have:

Elw] = Eofw +Z/ VU[Z] : Vi +67r/3pU[Z]-w—67r/‘j-w.

KEK R3
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Now for arbitrary & € K, we apply in Section [.3] the properties of GV and integrate by parts the integral on
T,.. We obtain an integral on 9T} in which we approximate U[Z] by:

1
Uy 1= ——— UlZ)(x)dx,
I[Tl2s] Jir,00s
where [T}]as is the A[Z]/(26)-neighborhood of 8T}, inside T}. In this way we obtain that

6
/ VU[Z): V=~ S w(Xo) - (Vi — @) + Err.
T, N
e €L\ Zs

where it will arise that Err, is due to the approximation of U[Z] by @, on 9T}, only. So, we set:

Eyfw] = /TVU[Z]:waif%T > w(Xi) - (Vi — )

REK " i€T\Zs

and we rewrite:

Pl = Bl + Bl + T 5w - Y 5

KEK €T, \Z5 KEK €T, \Z5
+67r/ pU[Z] ~w—67r/ J-w.
R3 R3
Eventually, we obtain:

(4.8) Elw] = Eolw] + Er[w] — Eplw] + Ej[w],

where we denote:

671' .
Z Z —671'/sz-w,

nEICzGI \Zs
6m _
E,w] := Z N Z w(X;)| -ax—67 | pU[Z]-w
wek €T\ Zs R3

Applying successively Lemma 4] , Lemma [£3] Lemma and Lemma (.7 below, and recalling (£3) to
replace A[Z], dmin[Z] and M|Z], we obtain respectively:

Bl (=t =) (e LS )
0|W]|| n 52/3 N%(l,a) NSQ,E N — i W|| D2(R2),
56 ,
|E1[w]| /S \/ﬁNHsa E |V| |wHD2(R2)a

|Ej[w]| S (HJ[Z] _jll[cg,l/z(]Rz)]* (1 + = Z |V|2>> Hw||D2(R2)a

1 — V 2 3Y).
WG (+ Z|Q|MDW

Gathering the above estimates, recalling that n € (0,1), 6 > 1/2, and remarking that, since 2/3 < o < 1 there

holds
1—a<2 71 <2+3a
5 5\% 7 3 15

L el | (0
|@ws[ + SO 4 6 + 1012 = Pl gy

we finally obtain:

(I +llpllzz(00)) 6 1 1 Y )
(T0+6 m“”Hp[z]_pll[cl?xlﬂ(RS)]* 1+N21|V;|

+15[2] =l o 0.1/2 gy ] |l p2 ®s),

5
1

1
[Elw]| S ~

~

n

which ends the proof of Theorem (.3 O
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We proceed now to estimate the different error terms Epw], E1[w], Ej[w] and E,[w] appearing in the proof
of Theorem [£3] above. This is done in Sections B2 [£3] 4] and 3] respectively.

4.2. Estimating Ep[w]. We recall that, with the notations above, there holds:

Eo[w]Z(/TNVU[Z]:Vw/

VU[Z] : Vw;i) ,
KEK Tx
We have the following result:

Lemma 4.4. For N > 1, we have:

1 N
(4.9) |Eo[w]| S <1+NZMIQ>.-.

i=1

1(,, MZP MZ]3 M[Z)? M[Z] 5M[z]% 12
@B M Nl Napol2) T N2l ) Naolz) Oy ) 0l

Proof. The proof is a simpler version of [I3] Proposition 11] but keeping track of the dependencies on w of all
constants.

First, we construct an intermediate test-function similar to [I3, pp. 25-26]. We recall here the ideas of
the construction. For arbitrary x € K, we consider the Stokes problem on T \ UiEIN\ 2 B; with boundary
conditions:

u(z) = w(x), ondB;foriel,\ Zs,
(4.10) ' "
u(z) = 0, on 07T .
The analysis of this problem is done in Appendix [B] and yields a solution w,. We keep the symbol w, to denote

its extension to R? (by w on the holes and by 0 outside Tév ). We obtain a divergence-free w, € H!(R?) having
support in ;. We then add the w, into:
W= .

and correct the values of w on the B; when i € Z5 in order that it fits the same boundary conditions as w
on the By, i = 1,..., N. We introduce xV a truncation function such that xV = 1 in B(0,1/N) and x =0
outside B(0,2/N) and we denote:

b= 3 - Xw =By gl wle) VXY - X0
+ H(l—XN(-—Xi))’LTJ-f— Z %Xia%v%[wa(x)'VXN(.T—XZ-)],
€25 icZs

where Bx ,, ,, is the Bogovskii operator that lifts the divergence in bracket with a vector-field in H{ (B(X,72)\

B(X,r1)). Consequently, w — @ € H}(F) is an available test-function in the weak-formulation of the Stokes
problem satisfied by U[Z]. This yields:

VU[Z] : V(w — @) = 0.

R3
We rewrite this identity as follows:
(4.11) Eolw] = €1 + €2,
with:
€= Z/ VU[Z]: V(0 —wy), e :/ VU[Z] : V(i — 0).
rek ¥ Tr o

We control now the error term €;. For arbitrary x € K, we apply Proposition [B.] to w, (noting that "d,,” =
min(dpmin[Z], A\[Z]/8) and the remark at the end of Section [B)) and we obtain:

. M,[Z) 1 5 \'?
IV (wy, — i)l L2y S N (dmin[z] + A[Z]) (llwllgoarz(r,y + IVwl|Locr,)) -

Introducing this bound in the computation of ¢; and recalling the two properties of M[Z] :

(4.12) > MiZ] <N,  supM,< M[Z],

s KREK
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yield:

1

(4.13) lex] S <N2i[fgz] +5zj\\74)\[[zz]]) IVU[Z]|| 2 g3)llw]| p2 (&) -

We compute now a bound for e;. For this, we replace w by its explicit construction. We recall that the
supports of the (x™¥ (- — X;))ieq1,...,n} are disjoint so that:

.....

1= JJa-xN@-X) =) xN@-X), VzeR’

1€EZs 1€EZs
Consequently, we split:
W—w = Z[XN(—Xl)w—%X 12z (@) - VT ( Xl)]}
1EZs
=3 P Xow = By g e w(@) VXN @ - X))
€25

and V(0 —w) =3 e Z? 1 egz)- where, for i € Z5, we denote:

eélz -V [XN(- Xi)w =By, 1 2 [z~ w(x)- VXN (x — Xl)]} ,

) = VXV ( = X)) @B — VBy, 1 2w B(x) - VXV (@ — X)),

I NN
(3) _

€5, = X N(. - X;)Vw.

N’N

We remark here that eg ) has support in B(X;,2/N) whatever the value of £. As previously, a standard Cauchy-
Schwarz argument ylelds

(4.14) le2| S IVUIZ]|| 12 sy (z 3 |e“>|2> .

(=1i€Zs

To complete the proof, it remains to bound the last term in the right-hand side of the above inequality.

First, by applying standard homogeneity properties of the Bogovskii operator (see [13, App. A]) and explicit
computations, we have, for i € Z;:
(1) 1 2 2
L o P Sl + 1700 a, 210

1 2 2
< N (HwHLOC(Ql) + va”LG(B(Xi,Q/N))) :

But, by the choice of the covering (see ([&LH])), we have:

(4.15) 125 < ( Z Vi |2>

so, we obtain finally:

4.16 / les )2 < 1+ 2SO ) el e
(4.16) > XQ/N) P < 5 ZII 0] D rs)-

1€EZs

Secondly, with similar arguments as for egll) , we obtain, for i € Zs:

2 _
/ €212 < N2|] 200,00
B(X;,2/N)

and

Z / (2) N? Z Z HwHLz (B(X;,2)NTy)

iezy Y B(Xi 2/N) i€Zs kEK

2 — s 1|2 2 s 1|2
N2y Y los = wil e mix,, 2ynm + N7 D2 D Wil s, 2, -

KEK I€Zs i€EZs KEK

A

A
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We compute the first term on the last right-hand side thanks to the expansion (B.4) of GV and remarking that,
since the diameter of B(X;, %) is infinitely smaller than the one of T}, for N sufficiently large, one B(X;,2/N)
intersects at most 8 distinct T),. Repeating ([d.15]), we conclude:

Z Z HwiH%Z(B(X 2)NTy) ~ Z 8Sup ”w ||L2(B 5 2))0

i€Z;5 nEK i€Z5
N
IM[Z]]? T+ m 2 Vil o
~ NAd2, [Z] S HU}HL‘X’(QI)'

As for the other term, we introduce, for x € K, the set Z5 ,, of indices ¢ such that B(X;, %) NT,. # 0, and we
obtain, by repeated use of Holder’s inequality, that:

_ s112 — s |12
Z Z ||’LU;{ 7wl‘éHL2(B(Xi,%)ﬁTm) = Z Z H'LU;{ 7U}I€HL2(B(X7;,%)QTN)

KREK IEZs KEK iEZa r

|ﬁZ§H|3 o s
S Z n—wn)H%G(n)
KEK
1 3 3
S 2 Zﬁzm <Z [ (w ||L6T)> :
REK KEK

By comparing the size of T,; and B(X;,2/N), we obtain again that:

5 . [N 1 Y
< 3 < | il |2
> tZsx Nw%|wl5<1+N;Jw>

KREK
which, combined with Proposition [B] and (@I2]), yields:

, 1+ & 20 ViP5 IM[Z)P? (1 J
- s 2 < ( N 1=1 v 2 .
> 2 @~ iap x, 20nm) S SEN? N (dmm[zl * A[Z]) )

KEK I€EZs

2
3

Combining the above inequalities and recalling ([@.4]), we conclude that:

N

1
417) / P < 1+ =D Vil -
(4.17) o) €2 ~ 2 Vil

1€EZs =1

1 |M[z]]? +LIM[Z]I5/‘°’ s3I MIZ IR .
§ |Ndmin[Z]]2  02/3 Ndpin|Z] N)Z] D2(®?)"

Finally, we have similarly:

Z / 621 S Z Z V@3 2(x:.2/8)T)
iezs ’ B(Xi,2/N) i€Zs KEK
’S Z Z ”vw“ vwK”LQ(B i, 2 )NT%) + Z Z ||V’LUK||L2(B X, 2)NT.)
KREK IEZs 1€EZs KEK

and we can reproduce the previous arguments relying on Proposition [B.Il This yields, on the one hand:

s M?[Z]
> IVwillZzmx,, 29nm) S SIN dnn ZI[* (1 + Z |V|2> [l Be(gs),

I€EZ5 KEK
and, on the other hand:

DD Ve = Voiliapix, 2)nm) S D I1VE: = Vo liar,)
KEK 1EZs KEK

Mz [ 1 5 ,

We obtain finally that:

N
! 1 M2z M|Z] M]Z)
418 / 3325 1+_ ‘/iQ (_ + +6 ) ’LU22 3)-.
( ) Z B(Xu2/N) ’ | N ;l | ) |Ndmin[Z]|4 Ndmin[z] N/\[Z] H HD (R3)

1€EZs
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Introducing (£16), [@I7) and (@I8) into [@I4) yields:
| X
Z 2
(419) |€2|§ <1+N .71|V1‘| )

N

Ly, M[Z)? N M[Z]3 N M[Z]? N M(Z] N 5M[Z]§ ol e
5273 [Ndpin|Z]2 |~ NdpinlZ] | [Ndmm|Z]* )~ Ndmm|Z]  NA[z] | "1P2ED
We complete the proof by combining (Z.I3)-(£.19). O

4.3. Estimating F;[w]. We proceed with the computation of E;[w] defined by:

/VU Vw: — 6m Z — Uy)

KEK 1€, \25

We control this error term with the following lemma:

Lemma 4.5. Given N > 1, we have:

M]
Balull £ 3 ( +—Z|V|2) ol e

Proof. For N sufficiently large and x € IC, let simplify at first:
I ::/ VU[Z] : Vw, .
T,
By definition, we have that:
wi(x) = Z GNw(X)](x — X;), YaeR3,
i€T\Zs

so that, introducing the associated pressures x — P [w(X)](x — X}¥), we obtain (after several integration by
parts as depicted in [13 pp. 32-33)):

61 _
(4.20) Iy =+ | > (w(Xi) Vi — w(Xy) - k) + Err,
€L\ Zs

with:
Err, = /GT ie@z\zg GV [w(Xi)|(- = Xi) = PN [w(X,))(- = Xi)n p - (U[Z] - @.)do .

Summing over k € K, we obtain that

Z/VU

I
;;Nz

KEK KEK
67 _
= > ~ > (w(Xi) Vi —w(Xi) k) + Y Err,
KEK i€T\Zs KEK
and also:
w] = Z Err.
KEK

For k € K, we adapt (up to notations) the computations of [I3| pp. 34-35]. The point here is to lift the
boundary condition U[Z] — @, via a standard truncation process in order to yield a divergence-free vector-field v
which vanishes at a distance \[Z]/(26) of 9T,.. Applying that (G¥ [w(X;)], PV [w(X;)]) solves the Stokes equation
on [T,]a2s (since this subset contains no holes with index in Z,; \ Z5) we obtain:

(4.21) |Erre] < Cu[20)(1+ Cpw(26) S > IVGN[w(X)I( = Xi)ll2(m0as) ¢ IVUIZ] 2217005 -
€L\ Zs

where, denoting A(0,1 — 1/§,1) the cubic annulus | — 1, 1[3\[-(1 — 1/§),1/4]3, we used the symbols:
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e Cp[d] for the norm of the Bogovskii operator B ;_1/5,1 seen as a continuous linear mapping L3(A(0,1—
o Cpw|[d] for the constant of the Poincaré-Wirtinger inequality on H'(A(0,1 —1/6,1)).
The asymptotics of these constants when § — oo are analyzed in Appendix [Cl

To bound the first term on the right-hand side of this inequality, we remark again that for any i € Z,;\ Z5 the
minimum distance between X; and [T}]2s is larger than A\[Z]/(2d). Hence, applying the explicit formula (B.4])
of the Stokeslet GV [w(X;)] we obtain that

> dr :
VGN’LUXl '_Xi 2 26 S N2 wXZ-
VG (X~ X lazman </Mz1/<25>1vr> ()
V20
mW(XM-

Combining these computations for the (at most) My[Z] indices i € Z,; \ Z5 entails that:

(4.22) > VG (XD = Xl L2 (an) S \/ H WL (qy) -
i€T\Zs

Plugging [@.22) into (d.21]) and recalling the fundamental properties [@I2) of M;[Z] we conclude that
26 M |Z]
[Erw]] < Cx[20)(1+ Cpw(20]) NATZ] IVUIZ]|| 23y |wll co.r /2 @ry-

We conclude the proof of Lemma by applying that Ces[20](1 + Cpw[26]) < §'/2 (see Appendix [C) and
recalling (4.4). O

4.4. Estimating E;[w]. We proceed with the error term
:g bm g w(Xi)-Vi—6ﬂ'/j-w.
N -
KEK ZEZN\Zg
Lemma 4.6. Given N > 1, there holds:

N
. 1 1
1 Ej[w]] < (HJ[ = illicorrzgay- + 3 (1 + NZIVHQ)) [w]| D2 s) -

Proof. As w € C°(R3) and (T )xex is a covering of Supp(j[Z]) we have that:
oD wXi)- Vi = (j[Z]w).
KEK 1€L,
Consequently, complementing the sum in E; with the indices in Zs, we have:
. . 67
jlw] = 6m(j[Z] — j,w) + N Z w(X;) - V.
€25

The first term on the right-hand side is estimated straightforwardly:

[1Z] =, w)| < 1512 = jllicorr2 ey lwll corre gy

while repeating the proof of [I3] Lemma 15|, we obtain, for N > 1 :

61 1
N > wX) VNS S5 <1+ —Z|V|2> wllzoe (1)

1€EZsNLs
which yields the expected result and completes the proof of Lemma O
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4.5. Estimating E,[w]. We end up by estimating the remainder term

DAY %” > w(Xi) ~ﬁ,{767r/RSpU[Z]~w.

KEK i€T\Zs

Lemma 4.7. For N sufficiently large, there holds:

1 M|Z) 1 M[z] \V*
|E,w]| S (5—% ( NNZIP + |P||L2(Qo)> NG (N|)\[Z]|3)

N
1
+59/2 ()\[Z] + Hp[ ] pH 01/2(]1@)] )) <1+ NZ|VZ|2> ||wHD2(]R3)'
1=1

Proof. The proof is adapted from [19, Proposition 3.7]. As previously, let first complete the sum by reintroducing
the Zs indices:

(4.23) %” ST wXi) -tk = %” SN w(Xy) i — Err

KEK €T \Zs KEK I€T,

~ 6
ETTZNWZ Z

kEK i€TNZ;s

where:

We have then:

w]:%z Zw(Xi)-ﬂﬁ—&T/Q pU[Z] -w — Err.

KEK 1€L,
We remark that we may rewrite the first term on the right-hand side of this equality by introducing:

—1
1\3

E,|lw] = 67T/Q [0 — pw] - U[Z] — Err.

Finally, we introduce Us[Z] := U[Z] * {52 in this identity (in order to regularize U[Z] so that we may make the
difference between p[Z] and p appear) where we recall that ({,), is a sequence of mollifiers. We apply below
that

which yields

| VU 2]z
(4.24) 1Us1Z) oy < 02 IVUIZ ey, NUTZLs = U220y S 55—

Indeed, by classical computations there holds
1Us[Z]l| cor @y S 1Us[Z]N| L (21) + IVUs[Z]]| L (1) S IVUIZ]]| 2Ry (1 + [1Co3 | L2 () )

which yields the first inequality, and moreover

\US|Z) - U(Z) 20, = / ‘ / UG~ ) - U@l

5//<1|U[Z](:c%)U[Z](:c)Idedsc
S 56//||<1| |2/ \VU(Z](z — t&)|*dtdzdx

< s VU e
which implies the second one.

This entails that: 5 " _
E,lw] = Err + Err — Err
where
Err = 67T/ (o —pw) - (U[Z] - Us[Z]), Err = 6”/ (0 — pw) - Us[2Z].
ol Q1

We proceed by estimating these three error terms independently.
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We first remark that the (Z,;).cxc form a partition of {1,..., N}. This entails that:

M,
lollzrian <> v wllz=@) < [wllz~ay)-
KEK

Straightforward computations imply also that:

N\ Mz
ol < (1—(1—@) gl

M[Z]

By interpolating the above inequalities to control the L?-norm of o and combining with ([E24]), we deduce:

[Brrl S (lollza@ + ez lwl L@y 1Us[Z] = U[Z]] 220

MZ) IVUI[Z]| 1> rs)
S < 5W + |p||L2(Ql)> TH“’HL@(QQ
1 M|Z
(4.25) < 5572 ( W[Zhg + |p||L2(Ql)> ||VU[Z]HLz(Rs)HwHLw(Ql).

Then, we note that we may rewrite:
V4
Errf—ZZ/ A*GT(/ pUs[Z] - w
KREK IEL, 26 | 931
where we rewrite the first term:

Z 3 / ) - Us[Z]

HE’C €L, 26'

67 < Us(Z] — Us|Z)(X,))
= TS w(x, zz/ &L -

i=1 /{EK) €L, N]26|

Because Us[Z] is Lipschitz, and by the estimate [@24]) on its Lipschitz norm, we have:

UslZ] — UsZ)(X0)
oy o =

I{E’C €T, H]Qél

S AMZNUs 2 o o 1wl e )

S 69/2)‘[Z]||VU[Z]HL2(]R3)||wHL°°(91)-
On the other hand, we have:

61 N
P w(X;) - Us[Z)(X;) — 67 /szl pUs[Z] - w = 67 (p[Z] — p,w - Us[Z))

so that, introducing again the control on the C%!-norm of Us[Z], we derive:
67
N

=1

cho,1/2(§Tl)-

w(X;) - Us[Z)(X;) — 67T/Q pUs[Z] - w

S OP2|IVULZ| 2z l1p[Z] = ol o172 sy

We finally obtain
(4.26) (Brrl S 6%/2 (AZ] + 1012] — ol o raqgony-) IFULZ] ooy ol ooy
which completes the proof for the term Err.

For the remaining term, we introduce:

7= (1 B <1 B 2%5)3> _1 NI)\ P> <lezznzg )|> e

KEK
so that:

\Errl g/Q 5(2)|U[Z)(2)|dz .

27
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With similar arguments as in the previous computations, we have, applying ([@3]):

N
_ 1 1 1
I5lz1 () < G#Zslwllzei) < 5lwllze) <1 tN > |Vz'|2> :
i=1
Furthermore, we have:

. M|Z)
||0||Loc(91) S 5W||w”m¢((zl)-

Consequently, by interpolation, we obtain:

3
) 1/ M[z] \"* 1L L)
19114 1) = 75 (N|>\[Z]|3) hollzen | 1+ 57 Zi:l Vi

Applying Sobolev embedding H'(R?) € L*(€;) with @) we conclude that:

3
N 1 1/4
. 1 1 , MI[Z]
(4.27) |Err| < 7 (1 ¥ ;:1 Vil > <W lwllcorrz@p IVUIZ]|| L2 (rs) -
We conclude the estimate of E,[w] by adding up @25), (£26]), [@.217) and recalling ([@.4). O

5. PROOF OF THE MAIN RESULT

We are now able to prove our main result Theorem [[LT] as well as the Corollary

We hence consider the framework of Theorem [[LI] The main idea is to split the expectation we want to
estimate into two parts: one taking into account the non-concentrated configurations (which has been treated
in Section M), and the other taking into account the concentrated configurations (treated in Section [2).

Let us fix @ € (2/3,1), n = min(1/(2C1e), 1) (see Assumption [AT] or Proposition [24] to remind the meaning
of constant C7) and R > 0. Given N € N* we denote:

3(1—a)

M 1/3
MN =N and >\N = <77—N) .

N
We can then introduce the corresponding decomposition of configurations with N particles:
N N N N N N
ON = (ON\ (O3, ary VOI)) U (OX, sy UOY).
We emphasize that, since n < 1, for any Z» € ON\ (OiVMMN UOX), the associated configuration satisfies ({3).

5.1. Proof of Theorem [I.I. We want to compute the expectation of the distance with u := u[p, j]. We split
the expectation into the non-concentrated configurations and the concentrated configurations as follows

E [|UN[ZY] = ullz2(B0,r)] = E [ION\(ON Loy (ZN) ||UN[ZN] - UJHLZ(B(O,R))}

AN, My

+E Loy, voy (BY) [UNIZN] = ull oo

AN My
= Il + IQ.
Let us first estimate the term I. Since we have chosen 7 sufficiently small, Proposition 2.4 entails that:
P(ZY € O, py VO S N=Ge=2 0 when N — oo.

Consequently, with Corollary B.8 we obtain that:

1
2

N
K 1 1
N N N N\ 5 N |2
E [1zNeo;VN,MNuogy IVUIZE 2| < w5 + P27 € OXay VO )P E [N ; Vil
—
N 2

Finally we get

LSE[loy Loy (@) IUNZY e +E [Toy . uoy (ZY) el tas.n)]
1 N N N 1
§@+P[Z GOAN,MNUOa] S NEZ
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We now turn to the term I;. For N sufficiently large, noting that ||p™[Z"] — p||[co,1/2 < 2, we can apply
b

(R3]
Theorem [4.3] choosing

5
L+ [lpll £2(20)

J =
1
(nga + HpN[ZN] - p”[cgvl/Z(Rs)]*)

This yields that, for arbitrary ZV € OV \ (OF 5, UOL), we have:

Gl

5
N 4
1 18 1
IUN[ZY] = ullL2so,m) S <1 TN > |‘/;N|2> (1 + llollL2(00) ™ (NlTa +1p™Z"] - P|[cg,1/2(R3)]*>
i=1

+ HjN[ZN] - jH[C;’vl/Q(RS)]*-

Taking expectation and using the hypotheses of the theorem, this yields

5
(1 +[lpll2@ ))?IS 1 v ’
I < 0 E 1 N |2
1 ngsa + N ;:1 | i |

5
N 1
1 F . ,
+E (”NE_;W'Q) 16121 = Pl g |+ W02~ Glcprsguny.
(5.1)

s+ lpllz2(00) T 75 . )
s[M5<F1N>]z( i A E 10V = pllparagay | )+ B (152 = ooy

95

(a—

o
95

1
19 )

SE IV 1ZY] = ooy | +E (17N = dlligoaragay. | + N

(d-a)

SE WiV (2, 0] 7 + B[V 2] - dllcpr -] + N

where we have used Lemma in last line.

We complete the proof of (I.9)) by gathering previous estimates, and the last part of the theorem immediately
follows from it. 0

5.2. Proof of the Corollary Let f satisfy the hypotheses of Corollary We shall construct here
a sequence (FV)yey- of symmetric probability measures on OV that satisfy Assumption [AT] and that is f-

chaotic with quantitative estimates (in the sense of Definition 2.T]), hence also satisfies Assumption thanks
to Lemma 231

A classical way in statistical physics to construct chaotic probability measures in the phase space of a N-
particle system is to take the N-tensor product of a probability measure on the phase space of one particle that
we condition to the energy surface of the system. More precisely, given a probability measure f on Qy x R? we
define a probability measure IIV[f] on OV by

(5.2) IY[f](dz") := W' (f) Laveon f7 (d2™),
where Wi (f) is the partition function
W)= [ dpveon N aY),
(20 XR3)N
We now verify that the sequence (ITV[f])yen- satisfies Assumption [AIl We start with a technical remark:
Lemma 5.1. For any 1 <m < N and N large enough there holds
1< WRN)Wr—m(f) < (1= 8cg N2 pll oo rsy) ™™ < 100N llelloeeay

where ¢y = | Bgrs| is the volume of the unit ball in R3.
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Proof. We have

i=1

Win = 1 m 1. B (21 Zmy Zmat) 21 .. d2m
+1(f) /(RsxRS)m+1 (210002 ) EO™ [ £] <H |zl—zm+1>ﬁ>f (21 Zms Zm+1) dz1 - .. dzm

— Xm
- /<R3Xugs>m {/RR 11 (1= Lzt f(z’"“)dz’”“} Lorzmeomigl f77 (21 Zm) da o

.....

> / (1- 87ncON_3||p||Loo(R3))1(Z1 ) EOM[ L] O™ (21, 2m) d2y .. Az,
(R3xR3)™

We note here that, to pass from the second to the last line, we only remark that the indicator functions
deletes at most m balls of radius 2/N in R3. From the last inequality, we deduce Wy,+1(f) > Wi (f)(1 —
8mcoN 2| p|| Lo (rz)). We conclude the proof of the first claimed inequality by induction.

For the second inequality, observe that z — 2z + log(1 — z) is nonnegative for 0 < x < 1/2, therefore for N
large enough (so that 16comN ~2||p|| oo sy < 1) we get

(1 —=8co N7?|lpll poe(ray) ™™ < 16c0mN " llpll oo (g3

O
As a consequence we obtain the following bounds on (IIV[f]) nen«:
Lemma 5.2. Given N sufficiently large, for any 1 < m < N there holds:
16comN 2 o m
||H%[f]||L§oL%(Om[%D < elbo ol oo (z3) [l g5y
21" T [f)]] 22 21 3 sy < e10coN el e ey / |21 [* f (21)d 21,
o R3 xRS
oIS T oo 13 (022 < 20N Pl || pf| L sup / o1 [* f (21, v1)dvr,
o N z1€ER3 JR3
where TIY [f] denotes the m-marginal of TIV|[f].
Proof. We write
N
NGy 2m) SW;fl(f)l(zl,...,zm)eom[%] f®m(z1,,.,,zm)/ o H Lio—ay>2 H f(z;)dz;
(REXREN =T 1 <N j=mt1
< W&l(f)WN—m(f)l(zl VVVVV 2m)EOM[L] f®m(2;1, ey Zm)
Each estimate then follows easily by using the bound of Lemma [5.11 O

This lemma shows that (IIV[f])nen- satisfies Assumption [AIl We shall prove now that (IIV[f])yen- is
f-chaotic with quantitative estimates, which hence implies that it satisfies Assumption [A2] To this end, we
recall that we denote (Z")nen a sequence of random variables on OV with corresponding laws (ITV[f]) yen-
and that proving that (IIV[f])nen~ is f-chaotic reduces to measuring the expectation of the Wasserstein W-
distance between the empirical measure ™V [Z"] and f. This is the content of the following lemma, from which
Corollary follows straightforwardly.

Lemma 5.3. Consider the framework of Corollary (L2 Let (ZN)nen- be a sequence of random variables on
ON with laws (TN [f])nen+ defined by (5.2). There holds

and E[Wi(uN[ZN], £)] < .

EWL (0" [2], p)] < 5 -

~ N1/3
Proof. We shall only prove the second estimate, the first one being similar arguing with the random variable
XY on OF (coming from ZV = (XV V).

Let (WY)yen+ be a ii.d. sequence of random variables on (R? x R3)Y with common law f, and u’¥ [W¥]
be the associated empirical measure. We split

Wi (uN(ZN], f) < Wi(pN WY ) + Twveon Wi(p™ [ZN], pN W) + Ty gon Wi (p™ [ZV], N W),

dz,
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which implies
E [Wi(u"[Z"], )] SE Wi WY, )] +E [Lwyeor WiV [ZV], 1N W)
1 1
+ P [WN ¢ OV E (W (2], N W)

The first term on the right-hand side can be controlled by N~1/¢ thanks to [9) Theorem 1], since W¥ is a i.i.d.
sequence of common law f and using the fact that f has support included in Qg x R? as well as a finite moment
of order 5. The second term is bounded (up to a constant) by the first one, indeed

Neon fEN(dz
G L R N R T

< W () VE [ (N W], 6 (W)

1WN€ONf®N (dWN)

SE WiV W], )] +E (W (N W), 5]

where W is an independent copy of W¥. Finally the third term is bounded by N~/ since P [WN g oN ] <
N~! (thanks to a similar argument as in Lemma [2.6)) and

E [Wi(u"[ZN], uM W] S E [Ma(pV [ZV])] + E [Ma(pN W) = Mo (T [f]) + Ma(f),

which are uniformly bounded. O

APPENDIX A. CONSTRUCTION OF w;

This section is devoted to the proof of Lemma and Lemma We recall first the frame of these
results. We assume that IV € N is given and strictly positive in the whole section and we drop the parameter N
in most of notations. We consider N balls B;, i = 1,..., N, of centers (X1,..., Xx) € R*¥ and common radii
1/N. We assume that |X; — X;| > 2/N for j # i so that these balls are disjoint.

We begin with Lemma on the possible intersections of (B(Xj, %))1211\/ We recall the statement of
this lemma and give a proof:

Lemma A.1. Leti € {1,...,N}. Setting
T, :={je{l,....N} s.t. B(X;,5%)NB(X;,55%) # 0},

we have that I; contains at most 64 distinct indices.

Proof. The idea of this proof is adapted from [17].

Let i € {1,...,N} be fixed. Without restriction we may assume that ¢ = 1 and X; = 0. For arbitrary

j € Iy we have that B(Xj, 53-) N B(0, 5% ) # 0. This entails that |X;| <3/N and B(X;, +) C B(0, =). As the

B(X;, %) are disjoint by assumption, we have then:
4
Ly 4

Jj€Ty

This completes the proof. (I

We proceed with Lemma that we recall with the notations of Section [3}

Lemma A.2. Giveni € {1,...,N}, there exists w; € D(R3) satisfying

(A1) w; =V; on By and w; =0 on Bj for j #1,
2 |Vl|2 1 1\Xi—X*\<zL

i | X = Xl =

for a universal constant C.
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The remainder of this section is devoted to the proof of this result. Without loss of generality, we assume
that 4 = 1 and X; = 0. We look for w; of the form:

(A4) wy(x) =1 (Nx), VaecR>

To define the constraints to be satisfied by w;, we introduce notations for the shape of the fluid domain after
dilation. Namely, we denote:

X, =NX;, B; =B(NX;,1), Yi=1,...,N.
In particular, B; = B(0,1). We want now to construct @; € D(R?) such that:
(A.5) w; = V; on By and @, = 0 on Bj for j > 1,
(A.6) Supp(wn) € B(0, 3),

A natural candidate for @, is obtained by focusing on (A.6). Indeed, introducing a truncation function xq €
C*(R) which satisfies:

{1 i<l
XOWW' =N 0 ift > 1+ ho,
with hg € (0,1/2) to be fixed later on, we may set:

Vixao

w10 =V X { X0(|z|)} .

This candidate satisfies indeed w1 o € D(R3) with
W10 = Vi on By, Supp(iw1,0) C B(0,1+ ho) C B(0,3),

However, it does not take into account the balls that are too close to Bl. To match the further condition on
these balls, we modify our candidate.

For this, let fix j € {1,...,N}. To describe the geometry between B; and Bj we introduce a system of
coordinates (x1, z2, z3) such that z3 corresponds to the coordinates directed along es = X, /|X;|. The associated
cylindrical coordinates read:

1
r=aJai a3, er = —mm—(21,2,0), V(r1,22,23) € R\ {x3 =0}.

z% + x5
We remark that, in these coordinates, close to (0,0, 1) the boundary dB is the graph of the function (z1,zs) —

(/23 + x3) where:
Ww(r)=v1—-r2, Vre(0,1).

Furthermore, denoting by h; = dist(B, Bj), we have also that close to (0,0,1+ h;), the boundary 8Bj is the
graph of the function (z1,29) — v¢(\/23 + 23) where:
ve(r) =2+ h; —m, Vre (0,1).
Given § > 0 we set, in these cylindrical coordinate:
&;[0] := {(z1, 29, 23) €R® s.t. r€(0,0) and w3 € (W(r), V(7)) },
;0] := {(z1, 29, 23) € R® s.t. 7€ (5/2,0) and x5 € (%(r), W (6/2))}.
These notations are illustrated by Figure [Il

We note that, whatever the value of § € (0,1) we have that €;[6] and 2;[d] are Lipschitz, and that 2;[d] C
€;[d]. We have also the following technical property:

Proposition A.3. There exists hpmqas € (0,1/2) and dg € (0,1/2) such that, if h; < hmag the following holds
true:

i) €;[60] C B(0,3),
i) €[0] C R3\ Uiy, Bi,

i11) for arbitrary j' # j such that hj < hymaz, there holds €[00 N € [d0] = 0.
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FIGURE 1. Notations 2;[0] and €;[d]
On the left a typical configuration is presented (in 2D). The gray zone corresponds to
the set €;[0]. On the right is a zoom on €;[d] where the subset 2;[§] appears in the red
color. We emphasize that the 3D geometry is obtained by revolution around the axis of
the figure so that 2(;[6] is indeed connected.

Proof. We compute restrictions on the values for §p and hq, in order to fulfill the three conditions ), ii) and
i41). This will yield an open set of admissible values for 6y and Apqy-

For the proof, we only give two draws which explain where the restrictions come from. Let j € {1,...,N}
such that dist(Bl, Ej) =: hj < hmag- In Figure 2 we illustrate that there exists a ball V; centered in X,;; (the
unique point in the closure of B; realizing the distance between B; and B;) such that ¢;[8] (in blue on the
figure) is contained in V; (empty circle on the figure). The radius ry of this neighborhood is controlled by hmqx
and d. In particular, for h.,,., and o sufficiently small we have B(X;1,79) C B(0,1 + hmae + r0) C B(0,3/2)
and i) is realized.

Second, we illustrate with Figure3l that given another particle Bj/, the distance between Bj/ and the segment
[X1, X,] joining the centers of By and Bj; is minimal when Bj. is in simultaneous contact with B; and B; (several
configurations are provided in red, the optimal one is the most opaque one). The minimal distance rféin between
Bj/ and [Xl, XJ] is then a decreasing function of h; vanishing when h; = 2(v/3—1). The minimal distance (")
between the point X1 (the point in the closure of Ejr realizing the distance with Bl) and X1 is also realized
with this configuration. It is then a continuous function of h; which converges to 1 when h; — 0. So, with the
notations of the proof, for hy,q. and &y small we have that ro < r(j)-n and 2r¢ < rUJ") so that ii) and iii) hold

mu

true. O

With the proposition above, we can now fix h.,qz, 0o sufficiently small so that the conclusion of the proposition
above holds true. Associated with dg we set:

2
52 2
ho= |+ (241~

%
2

- 1.

If necessary, we restrict the size of §p so that ho < min(1/2, hyas). Associated with Ay, we introduce:
J = {j € {2,...,N} s.t. dist(By, B;) < hmam} ,
We note that, by construction, we do have hg > 0 and that:

e since hg < Apmaqz, W1,0 vanishes on B; for i ¢ J.

o for j € J, xo vanishes on 0¢; N B’j at a distance larger than dg/2 from the axis Res.
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F1GURE 2. Construction of a neighborhood of X;; containing €;.

Furthermore, the (€;);cs are disjoint and do not intersect the (Bi)izlyw ~. So, in what follows, we construct
w; on the (&) ecs. We shall then extend w; by @1, on the remaining fluid domain and by the expected values

on the (Bi)izly,,,7]\].
Let j € J and make precise w; = (71)1)|€]_. We decompose w; = wj(l) — wj(?). For w;-l), we set:
W) () = v Vi _ P Ye(r) — = 1_ Vi
wg (.'L') X ) X (IZI 63) CO(T) ’Yt(r) — ’Yb(r) +( CO(T))X0(|x|) ) Xz
where P(t) = (3t — 2t3) for t € R and (o € C°°(R) is a truncation function such that:

1 ift < 8o/2,
Gol(t) = .
0 ift> 3(50/4

Clearly, we have that wj(l) e C>® (C_j) is divergence-free. Expanding the curl operator, we obtain:

0 if 2 € 0€; NIB; (i.e.z = v(r)),
/ ~
(A7) 'u);l)(x) ={ V1— COT(T)(Vl X e3) x e ifxedl;NOB (ie. z=y(r)),
11)170(:17) if x € 8€j \ (631 U 8Bj) (26 r= (5)

All these identities derive from the choices for xo,(o and P. To obtain the first of these identities, it is worth
noting that, with our choice for hg, dy the function x +— (1 — (o(r))x0(r) vanishes on 9B; N OC;.

Finally, we obtain that there exists a constant Cy,q, depending only on (., d) such that:

Cmaz|V |2
(A8) Vw32, < h—

Indeed, away from the axis (i.e. on €; N {r > d9/2}), w§1)

contribution to ||Vw§1) |22 is bounded by C|V;|?> where C' is independent of h; and depends only on &g, hmaz-

depends smoothly on the parameter h;. Hence, the
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FIGURE 3. Minimizing configuration

When r < dy/2, we have:

w(z) = V x [% x (z—e3) P (ﬁﬂ

Explicit computations show that, the worst term in |Vw§1)| corresponds to two differentiations of the P-term
w.r.t. z, which we may bound by

1

Vi)
8Zw(-1) < |—1 r—e . —
Ozl < 5 e = el ) — (O

z = (r) s —
0..p (=200 < Clval(r -+ 1= = (0))

Remarking that |z — 7,(0)| < C|h; + 7| on €;, we derive

do ) 2
/ ValV)tae < o [
esnir<infa) o Tul — )

Combining then that v;(r) — 5 (r) > h; +cr? on (0,dp) for some ¢ > 0 (since 5y < 1/2) and a change of variable
r = v/h;s in the integral, we obtain (A.8)). More details on these computations can be found in [I4].

In order that wj fits the right boundary condition on 9By, we add a corrector wj(?) that compensate the error

term that appears on the second line of (A7), namely:
. Go(r) Go(r)

wj (r) = 5 V1 x es] X e, = 5 (V1 - ep)es,

To construct w§-2), we note that w} is smooth and has compact support in 0%; N OB;. Hence, we may extend

w} by 0 on 92, \ OB;. We obtain then a vector field wj € C°°(9%;) such that, by symmetry:

/ w;‘onda:/ _wi(z) -ndo =0
BQlj BQljﬂaBl
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Since, there exists a Bogovskii operator on the Lipschitz domain 2;, we construct w](?) € H'(2;) such that:

(A.9) div wj(?) =01in wj(?) = wj on 0%;.
and such that:
ol a,) < Cllw e on,)-
We note here that all the 2(; are isometric so that this last constant C' is fixed by the values of dy only and does
not depend on j. Hence, there exists Ci,q, depending only on §y for which:

(A.10) i 12ty < Crmaa | Vi,

We note also that, on 9%l;, w} vanishes outside 9%1; N OB so that we may extend it by 0 on ¢; \ 2. We keep

the same notations for simplicity. This yields a divergence-free vector-field w](?) eH 1(ij) defined on €;.
By combination, it is then straightforward that w; = w§-1) - wj(?) € H'(¢;) satisfies:

i) divw; =0 on ¢;
i7) the following boundary conditions on 0¢;:
0 if 2 € 9¢; N OB,
wj(z) = 1% ifz € 6€] N 6]?1 ~

wl,o(a:) ifz e 6€] \ (631 U 6B])

i4i) the bounds (with a constant Cy,,, depending only on &g, himaz):
1V e,y < ComaelVal? |14 5
wj L2(¢;) = Ymax|V1 hj :

In particular, the above construction of w; on €; for fixed j € J, satisfies the right boundary conditions in
order to extend it by w;,¢ on the remaining fluid domain. So, we set:

Vi ifze B
wi(r) fzed;,jed
0 ifzeBj,j#1

wyo(z) else.

(A.11) w1 (z) =

Combining ([(A7)-(A9) we obtain that @w; € H'(R3) is divergence-free and satisfies the required conditions on

the obstacles (Ei)izl,___7 ~. Furthermore, combining (A7)-([AI0), we obtain a constant Cy,,, depending only
on dq, hymae such that:

N
- Z 1 Z 1 X;|<5/2
valH%Z(RL") S Cmaz|V1|2 1 + h_ S Cmam"/1|2 1 + M
jeg ' = X -2

The associated vector-field wy (via the scaling (A4])) satisfies then all the requirements of Lemma [A2]

APPENDIX B. ANALYSIS OF THE CELL PROBLEM

In this appendix, we fix (N, M,)\) € (N\ {0})? x (0,00), and a divergence-free w € C°(R3). We denote T
an open cube of width A and B; = B(X;, %) Cc T fori=1,...,M. We assume further that there exists d,,

satisfying

4
. . . . . v S 4
(B.1) in, {dlst(Xz,aT),r;rl;?(|Xl X]|)} > dpy > N
We consider the Stokes problem:
M
(B.2) { diva — 0. 1n.7-'—T\L_JlBZ,

completed with boundary conditions

u(lz) = w(x), inB;,Vi=1,...,M,
(B.3)
u(x) = 0, on 0T .
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Assumption (B.]) entails that the B; do not intersect and do not meet the boundary 97 So, the set T'\ Uzj\i1 B,
has a Lipschitz boundary that one can decompose in M + 1 connected components corresponding to 97 and
0B; fori=1,..., M.

For any ¢« = 1,..., M, direct computations show that:

/ w-nda:/divwzo.
0B; B;

7

Hence, the problem (B.2)-(B.3) is solved by applying [13, Theorem 3] and it admits a unique generalized solution
u € HY(F). We want to compare this solution with:

M
us () = Z G Tw( X)) (z — X3),

where, for arbitrary v € R?, G [v] is the unique vector-field that can be associated to a pressure P [v] in order
to form a pair solution to the Stokes problem outside B(0,1/N). Explicit formulas for these solutions can be
found in standard textbooks:

Sl = L (3L Y, B (11 v
(B.4) G Pl@) = o R AR AT E A
3 vz
N il
(B.5) P )(z) = 2N |23

The main result of this appendix section reads:

Proposition B.1. There exists a constant K independent of (N, M, d,, w,\) for which:

M 1 M
I = w)llzor) + IV = wll ey < K [l sy + IVellsen |\ 57 <¢—N + N—dm> .

Proof. The proof is an adaptation to our notations and assumptions of [I3} Proposition 7]. We split the error
term into two pieces. First, we reduce the boundary conditions of the Stokes problem (B.2)-(B.3)) to constant
boundary conditions. Then, we compare the solution to the Stokes problem with constant boundary conditions
to the combination of Stokeslets us. In the whole proof, the symbol < is used when the implicit constant in the
written inequality does not depend on N, M, d,,,w and A.

So, we introduce u. the unique generalized solution to the Stokes problem on F with boundary conditions:

u. = w(X;), inB,Vi=1,.... M,

(B.6)
. u. = 0, on 0T .

Again, existence and uniqueness of this velocity-field holds by applying [I3, Theorem 3]. We split then:
I —us)lleery < 1w —ue)llLo@m) + (ue = us)l Lo,
IV —=us)llex < [V —ue)lla@r) + [1V(ue = us)llL27)-

To control the first term on the right-hand sides, we note that (v — u.) is the unique generalized solution to the
Stokes problem on F with boundary conditions:

{(u—uc)(x) = w(r)—-w(X;), nB,Vi=1,...,M,
(u—wuc)(xr) = 0, on 0T .

Hence, by the variational characterization of [13, Lemma 4], ||V (u—uc)|| 12 (F) realizes the minimum of || V|| 127
amongst

{w € HY(F) st diva =0, @), =0, @y, =w(-)—w(X;), Vi= 1,...,M} .

We construct thus a suitable w in this space. We set:

M
W=
=1
with, fori=1,..., M :

[z = (w(z) —w(X;)) VXN (z — Xl)D .



38 KLEBER CARRAPATOSO & MATTHIEU HILLAIRET

In this definition x* is again chosen truncation function that between B(0, %) and B(0, %) We assume further
that x is obtained from ' by dilation. The operator B_ 1 2 denotes the Bogovskii operator on the annulus

ONON
1 2 —

AX ) =B(0,%)\ B0, %).

23] N’ N
The properties of this operator are analyzed in [I3, Appendix A] (though these results are nowadays classical
and can also be found in [I] for instance). It is straightforward to verify that the mean of z — (w(z) — w(X;)) -
Vx (z— X;) vanishes so that the above vector-field w; is well-defined. We note that @; has support in B(X;, &)
so that, as d,,, > 4/N, the @; have disjoint supports inside 7. This yields that @ is indeed divergence-free and
fits the required boundary conditions. Furthermore, there holds:

NI

M
V@l 2 < | D IVEl T2, 2 )

=1

o

For i € {1,..., M} we have by direct computations:

Jwl|Z0.1/2
VXV = X)) = wX)) Fapoxv2y) S

lwllZrocr
IV = XV @) = 0X) e vz S

and, by applying [13, Lemma 20]:
IVBxx, 4,2 [o 0 (w@) = w(X) - VXV (@ = X)] 25, x,.2)

S o= (w) —w(Xy)) - VXN (@ - X)

2

; [
||w|‘co,1/2(f)

~ N2 *

Gathering all these inequalities in the computation of w yields finally:

1/2(T + ,
”vw”L?(}‘) < \/MHU}HCO / (T)N ||wHW1 6(T) .

The variational characterization of generalized solutions to Stokes problems entails that we have the same bound

for (u — u.). At this point, we argue that the straightforward extension of v and u. (by w and w(X;) on the B;
respectively) satisfy (u —u.) € H(T) € L(T) so that

lu—uecllpsr < llu—ucllpory S NV(u—ue)ll2(r)

< 9 Hw”%/vl,ﬁ(T)
S IV =ue)lzam) + M—F5——

< m||w|coyl/2(f); HwHleG(T)-

We emphasize that, by a scaling argument, the constant deriving from the embedding H}(T') C L%(T') does not
depend on A so that it is not significant to our problem.

We turn to estimating u. — us. Due to the linearity of the Stokes equations, we split

M
Ue = Z Uc,i,
i=1
where u.; is the generalized solution to the Stokes problem on F with boundary conditions:

{ Ue,i — ’LU(Xi), on 6Bi,

)

Uei = 0, on aTUUj;&i 8B]

We have then
M

(B.7) IV (e = us)l 2y < D IV ey = GV (X)) = X))l 22 ()-

i=1
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Similarly, we expand :
M
Us = ZGi, where G;(z) = GV w(X)](z — X;), Vo ecR3
i=1
For i € {1,...,M} we extend u.; by 0 on R*\ T and B, for j # i. The extension we still denote by u.;
satisfies u.; € H 1(R3 \E), it is divergence-free and constant on dB;. In particular, we have u.; € D(R3 \E)
Consequently, u.; — G; € D(R?\ B;) and:

V(ues = Gl < [ [Vues = VGiP
R3\B;

/ |Vueq)? — 2/ Vue,: VG; +/ IVG;|*.
R3\B; R3\B; R3\B;

To compute the product term, we apply that u.,; and G; = GN [w(X;)](- — X;) have the same trace on B; and
that U; is a generalized solution to the Stokes problem on R3 \E So, integrals of the form fRS\? VG; : Vw

(for w € D(R3\ B;)) depend only on the trace of w on dB;. This entails that:

/ Vuw- : VGZ = |sz|2a
R3\B; R3\B;

IN

and we have:
(B.5) V(e = G)lacry < [ Vuesl = [ IVGiP.
R3\B; R3\B;

To conclude, we find a bound from above for

/ |Vuc7i(:v)|2dx=/ (Ve () P d.
RS\ B, F

As u,,; is a generalized solution to a Stokes problem on F, this can be done by constructing a divergence-free
w; satisfying the same boundary condition as u.;. We define:

Wi = Xdyp/a( = Xi)Gi = By, it ap [z = Gi(x) - VXa, ja(z — X3)]

where xg,,/4 truncates between B(0,d,,/4) and B(0,d,,/2). As previously, we have here a divergence-free
function which satisfies the right boundary conditions because xg,, /4(- — Xi) = 1 on B; (since d,,,/4 > 1/N)
and vanishes on all the other boundaries of OF (since the distance between one hole center and the other holes
or OT is larger than d,, — 1/N > d,;,/2). Again, similarly as in the computation of w; we apply the properties
of the Bogovskii operator 8 X, dm dm and there exists an absolute constant K for which:

HWMEWS/AJMmA*&WQF
R3\B;

LK / IVG(@) 2+ [Vxa, ja( — X) @ Gi(a)?da | |
A(Xy, O )
As we have the same bound for u.;, we plug the right-hand side above into (B8) and get:

Hw%rcmhﬂs/

e, VG2 / Va4 — Xi) @ Gi(o) Pda.

A(Xq, O )
With the explicit decay properties for G; (see (B.4)) and Vg, /4 we derive:
/ |vc.(x)|2dx+/ Vxa (e — X0 ® Cile)Pae < M=)
BB, 4 ACxtp gy v N2y

174 T2
Combining these bounds for i =1,..., M in (B) we get:
M|[wl|z=(r)
V(ue —u —_—.
H ( c S)HLQ(}-) = N\/ﬁ
By similar arguments, we also have:
M

ue — usl|zo(F) = |lue — usl Lo (ry < Z ue,i — Gill Lo s\ 57y
=1
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As u.;,G; € D(R?\ B;) and u,,;, G; share the same value on 9B;, there holds u.; — G; € Do(R3 \ B;) and we
may use the classical inequality (see [10] (I1.6.9)]):

llwe,i — Gi“LG(RS\E) S Ve — VG%'”L?(]RS\E) ;o Vi=1,...,M,

(again the constant arising from this embedding does not depend on N by a standard scaling argument). This

yields again the bound:
M |[wl|z~(r)

c — Usg 5 < ——F—.

Finally, combining the error terms between u. and us and between v and u, we obtain

M 1 M
= o) Lo + 190 — w2y < K 5 (ﬁ +yf N—dm> [levllcon gy + IV wllzocr)

This ends the proof. (I

We note that, when we apply Proposition [B] in this article, we will choose M > 1 and d,,, that has to be
small. In that case we have that

and the result of Proposition [B.1] reads:
M

NV,

=) logr) + IV (@ = w)l2r) < K [lwlcosssery + IVwllzom

APPENDIX C. ANALYSIS OF SOME CONSTANTS

In this section, we consider the problem of finding constants for the Poincaré-Wirtinger inequality and the
Bogovskii operator on a cubic annulus A(0,1 — 1/8,1) :=] — 1, 1[3\[—(1 — 1/§),1 — 1/6]%. In both proofs, we
proceed by change of variables (since only the asymptotics of the constant when § — oo is needed). For this,
we fix § > 2. We introduce a odd strictly increasing application ys € C?([—1,1]) such that

For this, we introduce an even ¢ € C*°(R) such that:
1 1/a1/4 < C<1_1/21/2)

We fix a constant k& to be chosen later on and we define x5 as the interpolation between 2(1 —1/§) on [0,1/2]
and k on [1/2 + 1/, 1] that we integrate from ¢ = 0. This means:

xs(x) = /OI 2(1=1/0)¢(6(s = 1/2)4) + k(1 — ¢(6(s — 1/2)4)ds
With this choice, we fix k so that x5(1) = 1 yielding;:
_1-20 —1/5 f01 (6(s = 1/2)4)ds _ 1-2(1-1/8)(1/2+ [, ((65)ds) 0 (1> |
Jo (1= ¢(8(s = 1/2)4)ds Jo? (1= ¢(65))ds

1)
We emphasize that, due to our choice for {, we have fo s)ds < 1/2. This entails that we have also k > 0 and
Xs is indeed strictly increasing.

Consequently, we have that:

e s realizes a C?-diffeomorphism from [—1,1] to [—1, 1] such that xs([—1/2,1/2]) = [-(1—1/68),1—1/4],
[-

[—1
e 1/0 S x5(y) <2and [x5(y |<6foranyy€ 1,1].
We introduce o its converse mapping. It satisfies:

o os(1-(1— 18,1 1/a]) = [-1/2,1/2],
e 1/2 <oj(x) < and |of(x)] < 6* for any z € [—1,1].

Finally, we denote X5 and Yj the corresponding C2-diffeomorphisms between A(0,1/2,1) and A(0,1—1/6,1) :

Xs: A(0,1/2,1) — A(0,1-1/8,1) Ys: A(0,1-1/8,1) — A(0,1/2,1)
(y1,92,93) —  (xs(y1): x5(2), xs(y3))) (z1,22,23) +— (05(21),05(72),05(3)))

We start with the Poincaré-Wirtinger inequality. Our main result reads:
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Proposition C.1. There holds Cpw[0] < 8. Namely, given f € L3(A(0,1—1/6,1))N HY(A(0,1 —1/§,1)), we
have:

C1 *de < 6° Vf(z)da.
(1) Lo Pz 50" [ Vi) Pz

A(0,1-1/8,1)
Proof. We fix f € L3(A(0,1—1/6,1)) N H'(A(0,1 —1/6,1)) and, with the previous notations, let us consider:

) = F(X5(w) — f Foo YyeA®1/2,1),

with

Fr= | )
A(0,1/2,1)
Standard computations show that f € L2(A(0,1/2,1)) N H'(A(0,1/2,1)) so that, by the Poincaré-Wirtinger

inequality we have:
[ VwPws [ il
A(0,1/2,1) A(0,1/2,1)

f(z) = f(Ys(x)) +][f, Vae A0,1—1/5,1).
Hence, because f is mean-free on A(0,1 — 1/4,1), there holds:

B 2
/ P < | @ + A0, 1/2,1)] [f f}
A(0,1-1/6,1) A(0,1-1/68,1)

< /Am,ll/,s,m f(z) —][f2

dx
</ F(Ys(@))Pda
A(0,1-1/5,1)

Conversely, there holds:

We can then transform the geometry to go back in the A(0,1/2,1) and apply the previous inequalities on o :

1
/ |f(z)]*dx < max
A(0,1-1/4,1) . i€

3

3
f Ys(x))|? ok (x;)dx;
op wi€l01] U:s($i)>/,4(o,1—1/5,1)| (¥s(@)l g (@)

1
< / F)Pdy
A(0,1/2,1)

< / IV F(y)dy.
A(0,1/2,1)

At this point, we compute V f with respect to Vf and apply the previous inequalities on xj:

3
oy . 2
/,4(0,1/271) IV f()l dyi/ D X6 )10:f (Xs(y)Pdy

A0,1/2,1) =

3 , 3
X(S(yi) 2 ’
S == —[0: f (X5 ()" | | x5 (v5)dy;
/,4(0,1/2,1> = 1T X5 (v5) E B
=2 IV f(2)]da.
A(0,1-1/6,1)
This ends the proof. (Il

Finally, we consider the Bogovskii operator on the annulus:

Proposition C.2. There holds Cy[0] < 6%2. Namely, given f € L3(A(0,1 — 1/6,1)) there exists u €
H}(A(0,1—1/6,1)) such that

divu = f on A(0,1-1/6,1)

IVullL2ca,1-1751)) S 0”21 fllL2caco,1-1/6,1)
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Proof. We provide a proof by change of variable as for the previous proposition. Given f € L(A(0,1—1/6,1))
we define

Fw) =TI xswf (X)), Vye A0,1/2,1).
i=1
Straightforward computations show that f € L3(A(0,1/2,1)). Consequently, there exists & € HJ(A(0,1/2,1))
such that:

divii= f on A(0,1/2,1)

IVl Lzca,1/2,0)) S [1fllz2cac0,1/2.1))-
We set then:

u(z) = Hog(w)ﬂi(Yg(m)) Vaee A(0,1—-1/6,1).
i i=1,2,3
Since of(x¢)x5(05(xe)) = 1, we may expand the divergence to prove:
divu(zr) = f(x), Vae A(0,1-1/4,1).

It is straightforward that « = 0 on the boundaries of A(0,1 — 1/4,1), and we are left with computing the size
of its gradient. We note that (introducing Kron the Kronecker symbol)

Oyuie) = aplas) | [ ohee) | i (Ya(a)) + (1 — Kronlj, i)os (z) | [] o(we) | @ul¥s(a)):
0F£i LFi,g
Consequently:

g ()2 410,10, z))[? s z))[? o (ze)dx
Lo 2@l s | (5*05s (Vo2 + 8°a(V5 () ) [] o4 e

A(0,1—1/6,1) —1
S [ 0y + i) Py
A(0,1/2,1)

Here we apply the classical Poincaré inequality in Hg(A(0,1/2,1)) and the definition of 4, which yields

/ Qu@P s [ )P
A(0,1—1/6,1) A(0,1/2,1)
We end up by dominating the right-hand side w.r.t. f recalling the bound above for xj :

3 3
/ )Py = / s F (X )12 T X () da
A(0,1/2,1) A(0,1/2,1) ;7 =1

< / (@) Pda.
A(0,1—1/5,1)
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