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EXPERIMENTAL STUDY OF BUBBLE DETECTION

IN LIQUID METAL

R.Guichou 1, P.Tordjeman 1, W.Bergez 1, R. Zamansky 1, K. Paumel 2

1 Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse,
CNRS-INPT-UPS, Toulouse, France

2 CEA, DEN, Cadarache, STCP/LIET, F13108 St Paul lez Durance, France

Bubble detection in liquid metal is an important issue for various technological applic-
ations. For instance, in the framework of Sodium Fast Reactors design, the presence of
gas in the sodium flow of the primary and secondary loops is an issue of crucial import-
ance for safety and reliability. Here, the two main gas measurement methods in sodium
are ultrasonic testing and eddy-current testing; we investigate the second method in our
study. In a first approach, we have performed experiments with liquid metal galinstan
containing insulating spherical beads of millimeter size. The liquid metal is probed with
an Eddy-current Flowmeter (ECFM) in order to detect the beads and characterize their
diameter and position. Results show that the signal measured by the ECFM is correl-
ated with the effect of these parameters. Finally, an analytical model is proposed and
compared to the experimental results.

Introduction. Bubble detection and characterization in opaque media, such
as liquid metals, is an open subject of research, which finds applications in several
industrial domains from the nuclear energy in the Sodium Fast Reactors (SFR)
to the metallurgy. In the SFRs, the liquid sodium is used as a coolant of the
nuclear core, and the presence of bubbles in the flow could indicate a leak occur-
ing in the sodium–gas exchanger between the secondary and the tertiary circuit.
Due to the physical properties of sodium, two measurement methods distinguish
themselves for the gas detection: the eddy-current method which is the prin-
ciple we investigated, and Ultrasonic testing. Eddy-current testing is commonly
used for the detection of superficial defects in metallic bodies. Besides, flowmetry
with eddy currents has already been implemented successfully for various liquid
metals [1], [2], [3].

The main objective of the study is to develop a robust method to detect
inclusions, such as bubbles or impurities, in liquid metals with the aid of an Eddy-
Current Flowmeter (ECFM). In this paper, we also present models that have been
developed to understand and analyze the measured signals. These models are
based on a perturbative approach of the magnetic flux due to the two-phase liquid
metal at small skin depths (δ = 1/

√
µσπf ≪ D) and low magnetic Reynolds num-

ber (Rm = µσUδ ≪ 1), where µ is the magnetic permeability, σ is the electrical
conductivity, f is the frequency, D is the characteristic length of the flow and U
the flow velocity. A perturbative model has already been developed in [4], [5]. It
states that the total magnetic flux φ in the two-phase liquid can be expanded at
first order in the flow velocity U and void fraction α: φ ≈ φ0 + φU + φα, where
φ0 is the flux in the absence of motion and due to Faraday effects, φU is the flux
due to motion effects, and φα is the perturbation of the flux due to the dispersed
phase.

In the first section, we present the experimental setup consisting of a tube of
liquid metal (galinstan) containing insulating beads arranged with known position
and diameters. An ECFM translates along the tube to probe the liquid metal.
The frequency range of the current supplying the ECFM is between 1000Hz and
3000Hz (Rm ≪ 1 and 4.8 < δ < 8.3mm). In the second section, we study the
ECFM response by varying the current frequency f , the ECFM velocity U and
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Fig. 1. (a) Explanatory layout of the ECFM. (b) ECFM wiring diagram.

the bead diameter D (the bead position is fixed). In the third section, we propose
an analytical model of the perturbation of the magnetic field by one bead and
compare it with the experimental results.

1. Experimental setup. The setup (Fig. 1a) consists of a vertical tube
made from non-conducting non-ferromagnetic Macor ceramic tube (inner diameter
25mm, outer diameter 29mm) containing a static two-phase liquid metal: galin-
stan (alloy of Gallium, Indium and Tin). Spherical beads (with four diameters
of 2, 3, 4 and 5mm) made of polymer material by 3D printing are disposed in
the galinstan. The radial position of the beads is fixed with a thread (diameter
50µm) at three different distances from the axis of the tube (3.5, 6.5 or 9.5mm).
Each tube contains one thread at a given position, where two beads of different
diameters are stuck at a distance of 90mm one to the other, in order to avoid the
overlap effect on the ECFM signal. A control tube containing only galinstan is
used as a reference to enlighten the influence of the beads on the measurements.

The ECFM is composed of three coaxial coils mounted on a PEEK polymer
ring (inner diameter 31mm, outer diameter 35mm): a primary coil P (length
20mm, inner diameter 35mm) and two secondary coils S1 and S2 (length 10mm,
diameter 35mm) on either sides (Fig. 1b). Each coil is composed of two layers of
winding (copper wire of 0.4mm in diameter).

The ECFM is fixed to an uniaxial displacement controller piloted by the
computer 2 (Fig. 2) and translates vertically along the tube at velocities from
1mm/s to 1000mm/s. Hence (by referentia1l change), the ECFM probes a two-
phase plug-flow. For each measurement, the ECFM is translated back and forth
several times.

A lock-in amplifier piloted by the computer 1 (Fig. 2) generates AC signals
of given frequency (1000 to 3000Hz) and voltage (1V). The transconductance
amplifier produces an AC output current i0 of constant amplitude (0.5A) supplied
to the primary coil P. The generated magnetic field produced by the coil P induces
eddy currents inside the galinstan, whose distribution is modified by the motion of
the liquid metal and by the presence of the insulating beads. The total magnetic
flux induces an e.m.f. in the secondary coils S1 and S2. The voltage difference
∆V = VS2 − VS1 between the two secondary coils is measured and amplitude-
demodulated by a lock-in amplifier with i0 as the phase reference. We note the



Fig. 2. Functional scheme of the experimental setup.

in-phase component ∆V‖ and the quadrature component ∆V⊥. We note also the

module |∆V | =
√

(∆V‖)2 + (∆V⊥)2 and the phase Θ = arctan(∆V⊥/∆V‖).

2. Experimental results. Typical demodulated signals of the ECFM are
depicted in Fig. 3, where the bead diameter is 5mm and the current frequency is
2000Hz for the whole velocity range. The ECFM position coordinate corresponds
to the middle of the primary coil. The measured voltage is the voltage difference
between the two secondary coils (in-phase and quadrature components). The
reproductivity of the results has been tested by measuring the signal for several
translations of the ECFM and the mean standard deviation is below 2µV, which
is much smaller than ∆V (∼ 1mV).
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Fig. 3. Demodulated signal: (a) in-phase ∆V‖ and (b) quadrature ∆V⊥ components
vs. ECFM position (frequency f =2000 Hz, bead radial position r=9.5mm).



4

3

2

1

0 1000800600400200

80

60

40

20

0 1000800600400200
-20

0

120

100

(a)

|∆
V
U
|
×

1
0
4
,
[V

]

U , [mm/s]

1000 [Hz]

1500

2000

2500

3000

Theory

(b)

Θ
U
,
[d
eg
]

1000 [Hz]

1500

2000

2500

3000

Theory

Fig. 4. (a) Module |∆VU | and (b) phase ΘU vs. ECFM velocity U .

At 1mm/s and without bead, the induction due to motion is negligible, and
we have ∆V‖ ≈ ∆V0,‖ and ∆V⊥ ≈ ∆V0,⊥. It can be noticed that ∆V0,‖ and ∆V0,⊥

should be zero for an ideal ECFM. The Lorentz induction in the galinstan, due
to its motion, manifests itself in two offsets ∆VU,‖ and ∆VU,⊥. The presence of
the bead manifests itself by an oscillation of the amplitudes ∆Vα,‖ and ∆Vα,⊥

centered at the bead position (at 35mm in Fig. 3).

Fig. 4 depicts the variations of |∆VU | and ΘU versus the ECFM velocity for
the tube without beads. The module |∆VU | varies linearly with velocity, which
is in agreement with [3]. The phase ΘU is invariant for a velocity larger than
20mm/s. For a velocity smaller than this value, the voltage offset measurement
is subject to larger uncertainties due to its small value.

The frequency effect is shown in Fig. 5 for the same tube. The module in-
creases with f up to a maximum occuring at 2000Hz independent of the velocity.
The phase ΘU increases monotonically with frequency for the whole range of ve-
locities.

The bead effects are illustrated in Fig. 6 to Fig. 8. Fig. 6 depicts |∆Vα| and
Θα versus the velocity U for a bead of 5mm in diameter. As in [3], we observe
that |∆Vα| and Θα approximately do not depend on the velocity. This result is
fundamental to decouple the velocity effects and the void fraction effects and is the
basis for bubble detection [3]. On the contrary, the oscillation amplitude depends
strongly on the frequency, as it is shown in Fig. 7 for a velocity of 1mm/s. As
the frequency rises, |∆Vα| increases as a consequence of the intensification of the
current density in the galinstan (Faraday induction law). On the other hand, Θα

decreases with frequency for the whole range of bead diameters.
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Fig. 5. (a) Module |∆VU | and (b) phase ΘU vs. frequency f .

1.2

1.0

0.8

0.6

0 1000800600400200
0.4

1.6

1.4

0

-10

-20

-30

0 1000800600400200
-40

20

10

(a)

|∆
V
α
|
×

1
0
3
,
[V

]

U , [mm/s]

1000 [Hz]

1500

2000

2500

3000

(b)

Θ
α
,
[d
eg
]

1000 [Hz]

1500

2000

2500

3000

Fig. 6. (a) Module |∆Vα| and (b) phase Θα vs. ECFM velocity U (bead diameter
D=5mm).
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Fig. 7. (a) Module |∆Vα| and (b) phase Θα vs. frequency f (U =1mm/s).

Fig. 8 depicts |∆Vα| and Θα of the oscillation amplitude versus the bead
volume for a velocity of 1mm/s. |∆Vα| increases with the volume of the bead.
The phase Θα of the oscillation decreases as the bead volume increases, and this
decrease is even more important as the frequency increases.

3. Discussion.

3.1. Analytical solution for a single phase flow. The analytical solution of
a coil surrounding a static metal cylinder can be found in [6]. Here, we extend
the solution to the case of a coil crossed by single-phase liquid metal in stationary
motion. The current in the primary coil (and, therefore, the vector potential A)
is taken as a sinusoidal function of the time i0 = i′

0
ejωt, where ω is the pulsation.

The induction equation of the vector potential is nondimensionalized with the
diameter of the metal cylinder D as the spatial unit and 1/ω as the time unit.
The nondimensional induction equation of the vector potential A in the metal is
given by

ΩD

∂A

∂t
= ∇2A+Rm [u× (∇×A)] , (1)

where ΩD = µ0σωD
2 is the dimensionless frequency, Rm = µ0σU0D is the mag-

netic Reynolds number, with µ0 being the vacuum permeability, σ is the electrical
conductivity of the metal, and U0 is the characteristic velocity of the flow.

As the vector potential is sinusoidal versus time, we have

∂A

∂t
= jA.

It is assumed that the ECFM crossed by the single phase flow is axially symmetric.
The current crossing the primary coil is then strictly orthoradial and the vector
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Fig. 8. (a) Module |∆Vα|. (b) Phase Θα. |∆Vα| and Θα vs. bead volume (U =1mm/s).

potential has a single nonzero component in the θ cylindrical coordinate noted
A = A(r, z). The spatial Fourier transform in the z-coordinate of Eq. (1) expanded
in the θ coordinate leads to

∂2Ã

∂r2
+

1

r

∂Ã

∂r
− Ã

r2
− (2πζ)2Ã+ j2πζRmÃ− jΩDÃ = 0, (2)

where Ã = Ã(r, ζ) is the Fourier transform of A(r, z) along the z-coordinate and
ζ is the spatial frequency. Eq. (2) is a modified Bessel equation of the first order
regarding the r-variable. The exact solution of Ã is obtained for each ζ:

Ã(r, ζ) = C1(ζ)I1(r, ζ) + C2(ζ)K1(r, ζ), (3)

where C1(ζ) and C2(ζ) are the coefficients determined by the boundary conditions,
and I1(r, ζ) and K1(r, ζ) are the modified Bessel functions of the first and second
kind, respectively. The vector potential A(r, z) is then obtained using the inverse
Fourier transform. The current density in the metal is deduced by Ohm’s law and
the voltage induced in the secondary coils is known by Faraday’s law.

The term j2πζRmÃ in Eq. (2) corresponds to the Lorentz induction due to
the motion of the metal. The term −jΩDÃ in Eq. (2) corresponds to the Faraday
induction due to the time variations of the field. One can see that both Faraday
and Lorentz induction terms have only an imaginary part. Therefore, the vector
potential A in the metal is phase-shifted relative to the current i0, which explains
the phase shifts in Fig. 5. As Rm ≪ 1, the Lorentz induction plays barely on
the phase shift. This explains why ΘU is not dependent on the velocity in Fig. 4
and Fig. 5. Moreover, the lower the frequency, the lower the Faraday induction and
the lower the phase shift (with regard to the reference signal). With the reference
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signal (current in the primary coil) being a cosine, the phase shift ΘU shall equal
to 0 as the frequency tends to zero, which seems to be the case in experimental
results (up to the limit of the frequency range).

3.2. Theoretical model of the bead perturbation. To account for the effect
of the bead, we propose to mimic its presence by a magnetic dipole oriented along
the z-axis with a magnetic momentm. The moment is an empirical function of the
bead diameter D, the distance h between the bead and the wall and the frequency
f , on the one hand, and of the spatial distribution of the current density j(z) in the
metal (known from the analytical solution), on the other hand. For the fixed D,
h and f , the dependence of the moment m with j(z) observed in the experiments
can be approximated by a square root function

m(z) = C(D,h, f)

√

j(z)

j(z = 0)
. (4)

Fig. 9 shows the perturbation observed in the measured signal and the per-
turbation due to a magnetic dipole for a bead of 5mm in diameter with its center
at 3mm to the wall, at a velocity of 1mm/s, at a frequency of 1000Hz (left) and
2000Hz (right).

4. Conclusions. In this paper, the ability of the eddy-current flowmeter to
detect an inclusion in the form of an insulating bead inside a liquid metal has been
attested by the experiment. A parametric study has been performed varying the
size of the inclusion, the excitation frequency of the the eddy-current flowmeter
and the relative motion of the liquid metal to the eddy-current flowmeter. The
signal response to the motion versus the velocity follows a linear trend, which



is in agreement with the literature and with the analytical solution. The signal 
response to the passing of a bead appears to be invariant versus velocity but highly 
dependent on the frequency and inclusion size. A theoretical solution for the vector 
potential in a moving liquid metal (plug flow) subject to an AC magnetic field has 
been developed. The effect of a non-conducting particle is modeled by a magnetic 
dipole advected by the flow. The intensity of the dipole varies with the square 
root of the local current density at the position of the particle. This simple model 
can be interesting to simulate the effect of several bubbles in a more complex flow. 
It remains to corellate the magnetic moment with the geometrical parameters.
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