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THE EFFECT OF RECURRENT MUTATIONS ON GENETIC

DIVERSITY IN A LARGE POPULATION OF VARYING SIZE

CHARLINE SMADI

Abstract. Recurrent mutations are a common phenomenon in population genetics. They
may be at the origin of the fixation of a new genotype, if they give a phenotypic advantage
to the carriers of the new mutation. In this paper, we are interested in the genetic signature
left by a selective sweep induced by recurrent mutations at a given locus from an allele A to
an allele a, depending on the mutation frequency. We distinguish three possible scales for
the mutation probability per reproductive event, which entail distinct genetic signatures.
Besides, we study the hydrodynamic limit of the A- and a-population size dynamics when
mutations are frequent, and find non trivial equilibria leading to several possible patterns
of polymorphism.

Introduction

Recurrent mutations are a common phenomenon in population genetics [25]. They may
cause diseases [45, 20, 42], or reduce the fitness of an individual in a given environment [40].
They may also be at the origin of the fixation of a new genotype, if they give a phenotypic
advantage to the carriers of the new mutation [31, 14, 12, 46]. These selective sweeps are
then called ”soft sweeps”, as multiple copies of the selected allele contribute to a substitution
[26]. More precisely, we call them soft selective sweeps from recurrent mutations, to make
the difference with soft selective sweeps from standing variation, when preexisting alleles
become advantageous after an environmental change. The last possibility is a hard selective
sweep, when selection acts on a new mutation. In mathematical works, hard selective sweeps
were until recently the only type of adaptation considered. But soft selective sweeps allow
a faster adaptation to novel environments, and their importance is growing in empirical
and theoretical studies. In particular Messer and Petrov [29] review a lot of evidence, from
individual case studies as well as from genome-wide scans, that soft sweeps (from standing
variation and from recurrent mutations) are common in a broad range of organisms. These
distinct selective sweeps entail different footprints in DNA in the vicinity of the newly fixed
allele, called genetic signatures, and the accumulation of genetic data available allows one to
detect these signatures in current populations (see for instance [31, 48, 35, 43] or references
in [50]). To do this in an effective way, it is necessary to identify accurately the signatures
left by these different modes of adaptation.

In this paper, we are interested in the genetic signature left by a selective sweep induced
by recurrent mutations at a given locus from an allele A to an allele a, depending on the
mutation frequency. We distinguish three possible scales for the mutation probability per
reproductive event, which entail distinct genetic signatures. For the sake of completness,
we also consider back mutations, from a to A. Besides, we study the hydrodynamic limit
of the A- and a-population size dynamics when mutations are likely to happen (mutation
probabilities of order 1), and find non trivial equilibria leading to several possible patterns
of polymorphism. Note that cases of polymorphism maintained by recurrent mutations to
a deleterious allele have been reported in Y chromosome for instance [40]. We consider an
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2 CHARLINE SMADI

asexual haploid population of varying size modeled by a birth and death process with den-
sity dependent competition. Each individual’s ability to survive and reproduce depends on
its own genotype and on the population state. More precisely, each individual is character-
ized by some ecological parameters: birth rate, intrinsic death rate and competition kernel
describing the competition with other individuals depending on their genotype. The differ-
ential reproductive success of individuals generated by their interactions entails progressive
variations in the number of individuals carrying a given genotype. This process, called nat-
ural selection, is a key mechanism of evolution. Such an eco-evolutionary approach has been
introduced by Metz and coauthors in [30] and made rigorous in a probabilistic setting in the
seminal paper of Fournier and Méléard [22]. Then it has been developed by Champagnat,
Méléard and coauthors (see [9, 11, 10] and references therein). This approach has already
been used to study the signature left by hard selective sweeps and soft selective sweeps from
standing variation in [47, 7].

The first theoretical studies of the signature left by selective sweep from recurrent mu-
tations are due to Pennings and Hermisson [37, 36]. They use a Wright-Fisher model with
selection and mutations. They derive the probability of a soft sweep for a sample of the pop-
ulation (i.e. the probability to have different mutational origins in the sample) and describe
how a soft sweep from recurrent mutations affects a neutral locus at some recombinational
distance from the selected locus and which tests can be employed to detect soft sweeps. Fol-
lowing these works, Hermisson and Pfaffelhuber [27] rigorously study sweeps from recurrent
mutations, providing in particular the duration of the sweep, and an approximation of the
genealogies by a marked Yule process with immigration. They use this latter to improve
analytical approximations for the expected heterozygosity at the neutral locus at the time
of fixation of the beneficial allele. Finally, Pokalyuk [38] studies the linkage disequilibrium
of two neutral loci in the vicinity of the selected allele. Unlike our model, in all these works,
the population size is constant and the individuals’ ”selective value” does not depend on
the population state, but only on individuals’ genotype. Moreover, back mutations are not
considered.

The structure of the paper is the following. In Section 1 we describe the model and
review some results of [9] about the population process when there is only one mutation
from A to a. In Section 2 we present the main results of the paper, and comment their
biological implications in Section 3. In Section 4 we introduce a Poisson representation of
the population process, as well as couplings of population sizes with birth and death processes
without competition, during the beginning of the sweep. They are key tools in the different
proofs. Sections 5 to 9 are devoted to the proofs. In Section 10 we illustrate some of the
results. Finally in the Appendix we state technical results.

1. Model

We consider an haploid asexual population and focus on one locus with alleles in A :=
{A, a}. We are interested in the effect of recurrent mutations on the genetic diversity at
this locus after a selective sweep. We assume that mutations occur at birth. Let ᾱ denote
the complementary type of α in A. Mutations occur as follows: when an α individual gives
birth, the newborn is of type α with a probability 1− µαᾱK , and of type ᾱ with a probability
µαᾱK . Here the parameter K is the environment’s carrying capacity, which is a measure of
the maximal population size that the environment can sustain for a long time. We will see
that the genetic diversity at the end of the sweep is very dependent on the scaling of µK
with K. More precisely, we will consider the four following possibilities for α ∈ A:

Assumption 1.

µαᾱK = o

(
1

K logK

)
, K →∞.
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THE EFFECT OF RECURRENT MUTATIONS ON GENETIC DIVERSITY 3

Assumption 2.
µαᾱK ∼ λαᾱK−1, K →∞, λαᾱ ∈ R∗+.

Assumption 3.

µαᾱK ∼ λαᾱK−1+β, K →∞, λαᾱ ∈ R∗+, β ∈ (0, 1).

Assumption 4.
µαᾱK ∼ λαᾱ, K →∞, λαᾱ ∈ (0, 1).

Assumption 1 is a weak mutation limit often considered in adaptive dynamics models
[16, 9]. It leads to hard sweeps: a single mutant is at the origin of the fixation of a new
allele. Under Assumption 2, the mutation rate at the population scale is of order one.
This is the usual scaling for diffusion approximations and has been widely studied with the
constant population assumption (see for instance [32, 24, 34]). In the third regime, the
product of mutation rate and population size increases as a power law. This may be a less
interesting model from a biological point of view but it has the virtue of completing the
pattern by linking the second and fourth regimes. Under the last assumption, mutations are
frequent and the population is large. The highest mutation rates have so far been reported
in viruses: for example 1.5 10−3 mutations per nucleotide, per genomic replication in the
single-stranded RNA phage Qβ10 [17], 2.5 10−3 mutations per site and replication cycle in
Chrysanthemum chlorotic mottle viroid [23], or 4.1 10−3 mutations per base per cell in HIV-
1 virus [15]. Moreover, existing measures of mutation rate focus only on mean rates [18].
In particular, some sites may have a higher mutation rate that what is measured. Besides,
several mutations may generate the same phenotypic change [49], leading to higher effective
mutation rates. Viruses can also have very high population sizes (for example up to 1012

RNA viruses in an organism [33]), and it seems reasonable to consider such sizes as infinite
as an approximation. Hence the parameter range covered by Assumption 4 could be relevant
for such viruses. As we will see in the sequel, this is the only regime where back mutations
(from a to A) have a macroscopic effect on the pattern of allelic diversity (see Section 3.3
for more details).

Under Assumption 1, the allele dynamics has already been studied by Champagnat in
[9]. In this case, a favorable mutant a (see condition (1.6)) has time to fixate before the
occurrence of a new mutation, and all the a individuals are descended from the same mutant.
Under Assumption 2, several mutant populations are growing simultaneously, and we can
approximate the diversity of a individuals at the end of the sweep (see Theorem 2). In
the third case, the a mutants are so numerous that with a probability close to one, two
individuals sampled uniformly at the end of the sweep will be descended from two different
a mutants. Finally, under Assumption 4, the distribution of the alleles a and A in the
population converges to a deterministic limit distribution (see Theorem 3).

Let us denote by fα the fertility of an individual with type α. The birth rate at the
population level of individuals of type α ∈ A is:

(1.1) bKα (n) = (1− µαᾱK )fαnα + µᾱαK fᾱnᾱ,

where nα denotes the current number of α-individuals and n = (nα, α ∈ A) is the current
state of the population. The first term corresponds to clonal births, and the second to births
with mutation. An α-individual can die either from a natural death (rate Dα), or from type-
dependent competition: the parameter Cα,α′ models the impact of an individual of type α′

on an individual of type α, where (α, α′) ∈ A2. The strength of the competition also depends
on the carrying capacity K. This results in the total death rate of individuals carrying the
allele α ∈ A:

(1.2) dKα (n) = DK
α (n)nα =

(
Dα +

Cα,A
K

nA +
Cα,a
K

na

)
nα.
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4 CHARLINE SMADI

Hence the population process

NK = (NK(t), t ≥ 0) =
(

(NK
A (t), NK

a (t)), t ≥ 0
)
,

where NK
α (t) denotes the number of α-individuals at time t, is a nonlinear multitype birth

and death process with rates given in (1.1) and (1.2).
As a quantity summarizing the advantage or disadvantage of a mutant with allele type α

in an ᾱ-population at equilibrium, we introduce the so-called invasion fitness Sαᾱ through

(1.3) Sαᾱ := fα −Dα − Cα,ᾱn̄ᾱ,
where the equilibrium density n̄α is defined by

(1.4) n̄α :=
fα −Dα

Cα,α
.

The role of the invasion fitness Sαᾱ and the definition of the equilibrium density n̄α follow
from the properties of the two-dimensional competitive Lotka-Volterra system:

(1.5) ṅ(z)
α = (fα −Dα − Cα,An(z)

A − Cα,an
(z)
a )n(z)

α , z ∈ RA+, n(z)
α (0) = zα, α ∈ A.

If we assume

(1.6) n̄A > 0, n̄a > 0, and SAa < 0 < SaA,

then n̄α is the equilibrium density of a monomorphic α-population and the system (1.5)
has a unique stable equilibrium (0, n̄a) and two unstable steady states (n̄A, 0) and (0, 0).
Thanks to Theorem 2.1 p. 456 in [21] we can prove that if NK

A (0) and NK
a (0) are of order

K, Assumption 1, 2 or 3 holds, and K is large, the rescaled process (NK
A /K,N

K
a /K) is

very close to the solution of (1.5) during any finite time interval. The invasion fitness SaA
corresponds to the initial growth rate of the a-population, when the first a-mutant appears
in a monomorphic population of individuals A at their equilibrium size n̄AK, when we do
not take into account the mutations. Hence the dynamics of the allele a is very dependent
on the properties of the system (1.5).

In order to study the process in detail and discriminate between distinct haplotypes (i.e.
the genetic materials transmitted by the successive mutants generated from A), we make
a distinction between the descendants of the successive mutants generated from A. Let Ti
denote the time of birth of the ith mutant of type a, and NK

i (t) the size of its descendance
at time t. In particular,

NK
i (t) = 0 ∀t < Ti and NK

a (t) =
∑
i∈N

NK
i (t), ∀t ≥ 0.

The state of the population process at time t ≥ 0 is now represented by the vector

(NK
A (t), NK

1 (t), NK
2 (t), ...).

Note that this representation is well defined as the number of mutations is almost surely
finite in every time interval under our assumptions.

2. results

For the sake of simplicity, we assume that at time 0, the A-population is at its monomor-
phic equilibrium and that the first mutant has just appeared, that is to say

(2.1) NK(0) = (bn̄AKc, 1).

We define the end of the sweep TKF as the time at which all ancestral A type individuals
have died out, i.e. all remaining A-individuals are descendants of an a-individual via a back
mutation.
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THE EFFECT OF RECURRENT MUTATIONS ON GENETIC DIVERSITY 5

Let us now state a result on the selective sweep duration, which makes precise how the
sweep duration decreases when the mutation probability increases:

Theorem 1. Assume that (1.6) and (2.1) hold. Introduce (β1, β2, β3) := (0, 0, β). Then
under Assumption i, i ∈ {1, 2, 3},

lim
K→∞

P(TKF <∞) = 1,

and
TKF

logK

(
(1− βi)
SaA

+
1

|SAa|

)−1

→
K→∞

1, in probability.

Under Assumption 1, this result has been proven in [9].

We are interested in the effect of selective sweep by recurrent mutations on the genetic
diversity. This diversity will be expressed in terms of the distribution of mutant haplotypes
(NK

1 (t), NK
2 (t), ...) at the end of the sweep. In other words, we want to know if a-individuals

sampled at the end of the sweep originate from the same or from distinct a-mutant indi-
viduals. In order to describe the haplotype distribution, we introduce the so called GEM
distribution, named after Griffiths, Egen and McCloskey:

Definition 2.1. Let ρ be positive. The infinite sequence of random variables (Pi, i ≥ 1) has
a GEM distribution with parameter ρ > 0 if for every i ≥ 1,

Pi
L
= Bi

i−1∏
j=1

(1−Bj),

where (Bi, i ≥ 1) is a sequence of i.i.d. random variables with law Beta(1, ρ) whose density
with respect to the Lebesgue measure is

ρ(1− x)ρ−11[0,1](x).

We are now able to describe the relative proportions of the different haplotypes at the end
of the sweep (plus a time negligible with respect to K):

Theorem 2. Assume that (1.6) and (2.1) hold. For i ≥ 1 and t ≥ 0, denote by N
(i),K
a (t)

the size at time t of the ith oldest family among the mutant populations having survived until
time t. Let fK be a positive function of K such that fK = o(K), G a non-negative constant,
and

TK := TKF +GfK .

Then,

(1) Under Assumption 1 (see [9]),

(NK
a (TK))−1(N (1),K

a (TK), N (2),K
a (TK), ...) →

K→∞
(1, 0, 0, ...), in probability,

(2) Under Assumption 2,

(NK
a (TK))−1(N (1),K

a (TK), N (2),K
a (TK), ...) →

K→∞
(P1, P2, P3...), in law,

where (Pi, i ≥ 1) has a GEM distribution with parameter fAn̄Aλ
aA/fa.

(3) Under Assumption 3,

(NK
a (TK))−1(N (1),K

a (TK), N (2),K
a (TK), ...) →

K→∞
(0, 0, 0...), in probability,

where for x ∈ RN, ‖x‖ = supi∈N |xi|.
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6 CHARLINE SMADI

As a consequence, the relative haplotype proportions at the end of the sweep essentially
differ depending on the mutation probability scale.

Theorems 1 and 2 are still valid if, instead of considering mutation events we consider
migration events occurring at a constant rate. In this case, if we denote by µaK the migration
rates and see µaAK as the probability that a new born emigrates, we have to impose the
conditions µaK � λa/ logK (Assumption 1), µaK ∼ λa > 0 (Assumption 2), µaK ∼ λaKγ

(Assumption 3).

Remark 1. Theorem 2 point (2) shows that in our case taking into account the changes in
population size does not modify the type of the haplotype distribution. A GEM distribution
with parameter fAn̄Aλ

aA/fa is equivalent to an Ewens sampling formula with parameter
Θ := 2fAn̄Aλ

aA/fa. Such a pattern has already been found when the population is modeled
as a Wright-Fisher process [37], but with a parameter (with our notations) Θ := 2n̄Aλ

aA.
We will comment this difference in Section 3.

Theorem 2 allows us to answer the following question: what is the probability that two
individuals sampled uniformly at random at time TK are identical by descent, or in other
words originate from the same individual alive at time 0? To answer this question, we need
to define an equivalence relation between two sampled individuals i and j:

i ∼ j ⇐⇒
{

there is no mutation in the lineages of i and j sampled at time TK

before their more recent common ancestor (backward in time)
}
.

We do not indicate the dependence on TK for the sake of readability but it will be clear in
the statement of the results. Note that the probability of the event i ∼ j does not depend
on the labeling of a-individuals at time TK as they are exchangeable. The following result is
a direct consequence of Theorem 2:

Corollary 2.1. Assume that (1.6) and (2.1) hold. Then,

(1) Under Assumption 1 (see [9]),

lim
K→∞

P(i ∼ j,∀ individuals i and j alive at time TK) = 1.

(2) Under Assumption 2,

lim
K→∞

P(i ∼ j,∀ a-individuals i and j sampled

uniformly at random at time TK) =
1

1 + 2n̄AfAλAa/fa
.

(3) Under Assumption 3,

lim
K→∞

P(i ∼ j,∀ a-individuals i and j sampled uniformly at random at time TK) = 0.

We end this section by the limit behaviour of the A- and a-population size dynamics
when the mutation probabilities per reproductive event are of order one. We do not assume
anymore Condition (2.1) on population state at time 0. In this case we get a deterministic
limit. More precisely, a direct application of Theorem 2.1 p. 456 in Ethier and Kurtz [21]
gives

Lemma 2.1. Let T be a positive real number. Assume that Cα,α′ > 0 and fα > Dα for

(α, α′) ∈ A2 and that (NK
A (0)/K,NK

a (0)/K) converges in probability to z(0) = (zA(0), za(0)) ∈
(R∗+)A × (R∗+)a when K →∞. Then under Assumption 4 and when K →∞, the process

(NK
A (t)/K,NK

a (t)/K, 0 ≤ t ≤ T )
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THE EFFECT OF RECURRENT MUTATIONS ON GENETIC DIVERSITY 7

converges in probability on [0, T ] for the uniform norm to the deterministic solution of

(2.2)

{
ṅA = (fA(1− λAa)−DA − CA,AnA − CA,ana)nA + faλ

aAna, nA(0) = zA(0)
ṅa = (fa(1− λaA)−Da − Ca,AnA − Ca,ana)na + fAλ

AanA, na(0) = za(0).

To specify the properties of this dynamical system we need to introduce some notations:

(2.3) ρα := fα(1− λαᾱ)−Dα, α ∈ A,

(2.4) p :=
ρACa,A − ρaCA,A − fAλAaCAa

faλaACa,a
−

(ρACa,a − ρaCA,a + faλ
aACaA)2

3(faλaACa,a)2
,

(2.5) q :=
ρACa,a − ρaCA,a + faλ

aACaA
27faλaACa,a

(
2(ρACa,a − ρaCA,a + faλ

aACaA)2

(faλaACa,a)2
−

9ρACa,A − ρaCA,A − fAλAaCAa
faλaACa,a

)
−
fAλ

AaCA,A
faλaACa,a

,

(2.6) r :=
ρACa,a − ρaCA,a + faλ

aACaA
3faλaACa,a

and ∆ := −(4p3 + 27q2).

The term ρα corresponds to the growth rate of a small α-population (when we can neglect
competition). The other parameters are technical terms needed to describe the different
types of fixed points that we will encouter (see Figure 1).

Figure 1. The different types of fixed points of system (2.2) (adapted from
Figure 2.13 in [19]).

Then we have the following result when the mutation probabilities do not vanish for large
K:

Theorem 3. The dynamical system (2.2) has no periodic orbit in R2
+ and admits at least

two fixed points in R2
+: (0, 0), and at least one fixed point in (R∗+)2. Moreover, if ρα > 0,

α ∈ A, (0, 0) is unstable and,

• If ∆ < 0, then there is only one fixed point in (R∗+)2,

ña = ρñA =
ρ(ρA + faλ

aAρ)

CA,A + CA,aρ
,

where

ρ = r +

(
−q −

√
|∆|/27

2

)1/3

+

(
−q +

√
|∆|/27

2

)1/3

.

• If ∆ = 0, then there are two fixed points in (R∗+)2,

ñ(i)
a = ρ(i)ñ

(i)
A =

ρ(i)(ρA + faλ
aAρ(i))

CA,A + CA,aρ(i)
, i ∈ {1, 2},
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8 CHARLINE SMADI

where

ρ(1) = r +
3q

p
and ρ(2) = r − 3q

2p
.

• If ∆ > 0, we introduce the real numbers

ρ(i) := r + 2

√
−p
3

cos

(
1

3
arccos

(
−q
2

√
27

−p3

)
+

2iπ

3

)
, i ∈ {0, 1, 2}.

Then the fixed points in (R∗+)2 are,

ña = ρ(i)ñA =
ρ(i)(fA(1− λAa)−DA + faλ

aAρ(i))

CA,A + CA,aρ(i)
, for i ∈ {0, 1, 2} such that ρ(i) > 0.

As a consequence, there is one, two, or three fixed points in (R∗+)2 depending on the

signs of (ρ(i), i ∈ {0, 1, 2}).
When there is one fixed point in (R∗+)2, it is a sink, when there are two fixed points, one
of them is a sink, and the second one a saddle-node, and when there are three fixed points,
either there are two sinks and one saddle, or there are two saddle-nodes and a sink.

Moreover, if ρAρa > faλ
aAfAλ

Aa, (0, 0) is a source, and if ρAρa < faλ
aAfAλ

Aa, (0, 0) is
a saddle.

The conditions implying the different patterns of fixed points in Theorem 3 are not intu-
itive, and the case ρα < 0 for α ∈ A is not considered. We now introduce more intuitive
sufficient conditions to have a unique stable fixed point for the system (2.2), taking into
account the case ρα < 0 for α ∈ A.

Proposition 2.1. The system (2.2) satifies the following properties:

• If Ca,aCA,A > CA,aCa,A, then there is only one fixed point in (R∗+)2 and this fixed
point is a sink.
• If there exists α in A such that

fᾱλ
ᾱα >

ρα
Cα,α

Cα,ᾱ,

then there is only one fixed point ñ in R∗+×R∗+ and this fixed point is a sink. Moreover
it satisfies

fᾱλ
ᾱα

Cα,ᾱ
> ñα >

ρα
Cα,α

and, for ∗ ∈ {<,=, >},

fαλ
αᾱ ∗ ρᾱ

Cᾱ,ᾱ
Cᾱ,α ⇐⇒

fαλ
αᾱ

Cᾱ,α
∗ ñᾱ ∗

ρᾱ
Cᾱ,ᾱ

.

The term

∆(α, ᾱ) := fᾱλ
ᾱα − ρα

Cα,α
Cα,ᾱ

appearing in Theorem 3 has a biological interpretation:

n∗α := ρα/Cα,α

is the equilibrium size of an α-population in which a fraction λαᾱ of offspring emigrates, and
the term ∆(α, ᾱ) compares the mean number of α-individuals killed by competition against
a new ᾱ-mutant occurring in this α-population of size n∗α, with the mean number of new
α-individuals which are created by mutations by this new mutant ᾱ.
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THE EFFECT OF RECURRENT MUTATIONS ON GENETIC DIVERSITY 9

Remark 2. In [2], Billiard and coauthors study the effect of horizontal transfer on the
dynamics of a stochastic population with two allelic types. They also get a two dimensional
dynamical system as a limit for the rescaled process in large population, which is a competitive
Lotka-Volterra system plus some terms representing the exchange of genetic material by
means of horizontal transfer. Interestingly, even if their system is more complex than (2.2)
(horizontal transfer may be frequency- or density-dependent unlike mutations), they obtain
similar behaviours. For example, they get up to three fixed points in the positive quadrant and
the possibility of having two stable fixed points in the positive quadrant. Moreover, the sign
of the invasion fitnesses do not indicate anymore if an allelic type is ”favorable” or not. We
have a similar phenomenon in our case. When the mutation probabilities per reproductive
event are non negligible with respect to 1 (which is the case under Assumption 4) the invasion
fitnesses read:

S̃αᾱ := ρα −
Cα,ᾱ
Cᾱ,ᾱ

ρᾱ.

But according to Proposition 2.1 we can have for example S̃aA, S̃Aa < 0 but one stable
polymorphic equilibrium (if fᾱλ

ᾱα/ρα > Cα,ᾱ/Cα,α).

We end this section with two convergence results for the dynamical system (2.2) under
some conditions on the parameters. Before stating these results, we recall the stable fixed
points of the system (1.5) (which corresponds to the particular case of the system (2.2) when
the mutation probabilities are null):

• If SaA > 0 > SAa, then (1.5) has only one stable fixed point, which attracts all the
trajectories with a positive initial density of a-individuals:

(2.7) n̄(a) = (0, n̄a) ,

where n̄a has been defined in (1.4).
• If SAa > 0, SaA > 0, then (1.5) has only one stable fixed point, which attracts all

the trajectories with a positive initial density of A- and a-individuals:

(2.8) n̄(aA) =

(
Ca,a(βA − δA)− CA,a(βa − δa)

CA,ACa,a − CA,aCa,A
,
CA,A(βa − δa)− Ca,A(βA − δA)

Ca,aCA,A − Ca,ACA,a

)
The first result of Proposition 2.2 has been stated in Theorem 1.2 [13], and the second

one will be proven in Section 9.

Proposition 2.2. • Assume that CA,α = Ca,α for α ∈ A, and that fAλ
Aa = faλ

aA.
Then for any nonnegative and nonnull initial condition, the solution of (2.2) con-
verges exponentially fast to its unique stable equilibrium.
• Let us consider the following dynamical system for λ, p ≥ 0:

(2.9)

{
ṅA = (fA(1− pλ)−DA − CA,AnA − CA,ana)nA + faλna, nA(0) = zA(0)
ṅa = (fa(1− λ)−Da − Ca,AnA − Ca,ana)na + fApλnA, na(0) = za(0).

Assume that fα −Dα > 0, α ∈ A, and that

SaA > 0 > SAa, or SAa > 0, SaA > 0.

Then there exists λ0(p) such that for all λ ≤ λ0(p) the dynamical system (2.9) con-

verges to its unique equilibrium n̄(λ). Moreover, if SaA > 0 > SAa,

n̄
(λ)
A =

fa(fa −Da)

CA,aSaA
λ+O(λ2)

and

n̄(λ)
a = n̄a −

fa
Ca,a

CA,aSaA + (fa −Da)Ca,A
CA,aSaA

λ+O(λ2),

Author-produced version of the article published in Acta Applicandae Mathematicae, 2017, 1(1), 11-51. 
The original publication is available at http://www.sciencedirect.com/ 

doi : 10.1007/s10440-016-0086-x 



10 CHARLINE SMADI

and if SAa > 0, SaA > 0,

(Ca,aCA,A − Ca,ACA,a)(n̄(λ)
A − n̄

(aA)
A ) =

λ

[
Ca,a

(
fan̄

(aA)
a

n̄
(aA)
A

− fAp

)
− CA,a

(
fApn̄

(aA)
A

n̄
(aA)
a

− fa

)]
+O(λ2),

and

(Ca,aCA,A − Ca,ACA,a)(n̄(λ)
a − n̄(aA)

a ) =

λ

[
CA,A

(
fApn̄

(aA)
A

n̄
(aA)
a

− fa

)
− Ca,A

(
fan̄

(aA)
a

n̄
(aA)
A

− fAp

)]
+O(λ2).

Notice that when the λαᾱ, α ∈ A, are close to 0 (Proposition 2.2) or 1 (λαᾱ > (fα−Dα)/fα
for an α ∈ A is enough according to Proposition 2.1), the behaviour of the solutions of the
dynamical system (2.2) is simple: a unique stable equilibrium in the positive quadrant, and 0
as an unstable fixed point. More complex dynamics, such as the presence of two stable fixed
points in the positive quadrant, appear for intermediate values of the mutation probabilities
(Theorem 3).

In the sequel for the sake of readability we will write N. instead of NK
. . We will denote by

c a positive constant whose value can change from line to line, and ε will be a small positive
number independent of K.

3. Discussion

A selective sweep was first defined as the reduction of genetic diversity around a positively
selected allele. But the pattern of genetic diversity around this allele can change significantly
if this beneficial allele is descended from more than a single individual at the beginning of the
selective phase. Indeed, in this case, genetic variation that is linked to any ancestor of the
beneficial allele will survive the selective phase and the reduction in diversity is less severe.
Pennings and Hermisson [37] called the resulting pattern soft sweep to distinguish it from
the classical hard sweep from only a single origin. Various scenarios may lead to soft sweeps.
For example, multiple copies of the beneficial allele can already be present in the population
before the selective phase (adaptation from standing genetic variation [39, 26, 47]). They can
also appear recurrently as new mutations during the selective phase. The results of Pennings
and Hermisson [37], Hermisson and Pfaffelhuber [27] as well as our Corollary 2.1 show that
the probability of soft selective sweeps is mainly dependent on the product of population size
(which has the order of the carrying capacity K) and mutation probability per reproductive
event, θK := n̄AKµ

Aa. Hard sweeps are likely when θK is close to 0. For larger θK , soft
sweeps become more likely.

3.1. Varying population size. The fact that the population size is not constant has no
macroscopic influence under Assumptions 1 to 3 (except that proofs are more technical).
Indeed the equilibrium between the two alleles is already attained at the end of the first
phase of the sweep (see Section 4.1 for a precise definition) during which the total population
size stays close to n̄AK. In particular, the only parameters which appear in Theorem 2 to
describe the distribution of haplotypes are the quotient of birth rates fA/fa, as well as θK .
To see a significant effect of population size changes we should observe a change of order
K of the population size during the first phase, or consider an initial population size N0

such that N0/K or K/N0 is very large. For a study of the probability of soft sweeps when
the population changes over time we refer to [50]. In this paper the authors show that this
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THE EFFECT OF RECURRENT MUTATIONS ON GENETIC DIVERSITY 11

probability is no more essentially determined by the parameter θK but also by the strength
of the selection (SaA/fa with our notations).

Under Assumption 4 the variation of population size is important as the allele dynamics
are given by a Lotka-Volterra type equation with additional mutations. This equation may
have two stable coexisting equilibria with different population sizes. The equilibria strongly
depend on the values of the competition parameters.

3.2. Eco-evolutionary approach. The aim of the eco-evolutionary approach is to take
into account the reciprocal interactions between ecology and evolution. Each individual
is characterized by its birth rate, intrinsic death rate and competition kernel with other
types of individuals, and the differential reproductive success of individuals generated by
their interactions entails progressive variations in the number of individuals carrying a given
genotype. This way of modeling interacting individuals allows one to better understand
the interplay between the different traits of individuals in the population dynamics than
population genetic models were an individual is often only characterized by its “fitness”,
independently of the population state. In the present work for instance we see that under
Assumptions 1 to 3, the parameter fA/fa is important, whereas it was implicitely taken equal
to 1 in previous studies of soft sweeps from recurrent mutations. Similarly in the study of
genetic hitchhiking during a hard sweep, results from population genetics models can be
recovered if we assume fA = fa and SaA/fa = |SAa|/fA [44, 6, 7]. And under Assumption 4,
if we consider competitions independent of the individuals’ type, as in population genetics
models, Equation (2.2) admits at most one equilibrium in the positive quadrant.

More importantly this approach allows one to account for non transitive relations between
mutants: if a mutant 1 invades a resident population 0 and is invaded by an other mutant
population 2, this does not necessarily imply that the resident population 0 would have been
invaded by the mutant population 2 [3, 2]. Frequency-dependent selection is often ignored
in population genetics model, which does not allow to model such a phenomenon

3.3. Back mutations. Another novel aspect of this work is to take into account the pos-
sibility of back mutations. As for the population size variations we prove that their role on
the haplotype diversity is negligible under Assumptions 1 to 3. This is for the same reason:
the most important phase is the first phase of the sweep during which the a-population size
is small. As a consequence, it produces a small number of back mutations. In contrast, back
mutations may strongly affect the population dynamics under Assumption 4. Indeed, the dy-
namical system (2.2) may admit up to two stable fixed points and up to three fixed points in
the positive quadrant (R∗+)2, whereas a two-dimensional competitive Lotka-Volterra system
has at most one fixed point in the positive quadrant.

4. Poisson representation and couplings

In this section, we construct the population process by means of Poisson point processes,
and we describe two couplings with birth and death processes without competition which
will be needed in the proofs.

4.1. Poisson representation. Following the definition of the process in (1.1) and (1.2) we
can associate a birth rate and a death rate to each subpopulation Ni originating from the
ith first generation mutant of type a:

(4.1) bKi (n) = (fa − µaAK )ni,

and

(4.2) dKi (n) =
(
Da +

Ca,A
K

nA +
Ca,a
K

na

)
ni,

where n = (na, n1, n2, ...) is the current state of the population, and na =
∑

i∈N ni.
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In the vein of Fournier and Méléard [22] we represent the A- and a-population sizes in
terms of Poisson measures. Let (QA(ds, dθ), Qm(ds, dθ), Qi(ds, dθ), i ∈ N) be independent
Poisson random measures on R2

+ with intensity dsdθ, and (eA, ei, i ∈ N) be the canonical

basis of RA×N. We decompose on possible jumps that may occur: births and deaths of
A-individuals, arrivals of new mutants of type a, and births and deaths of a-individuals
without mutation (we do not distinguish mutant and non mutant A individuals, as it will
not be needed in the proofs). Let Nm denote the point process describing the arrival of a
mutants:

(4.3) Nm(t) :=

∫ t

0

∫
R+

1θ≤fAµAaK NA(s−)Qm(ds, dθ).

Remark that with this notation,

Ti = inf{t ≥ 0, Nm(t) = i},

with the convention inf ∅ =∞. Recall the birth and death rates of the process in (1.1), (1.2),

(4.1) and (4.2). Then for every real function h on RA×N+ measurable and such that h(N(t))
is integrable:

(4.4) h(N(t)) = h(N(0)) +

∫ t

0

∫
R+

((
h(N(s−) + eA)− h(N(s−))

)
1θ≤bKA (N(s−))

+
(
h(N(s−)− eA)− h(N(s−))

)
10<θ−bKA (N(s−))≤dKA (N(s−))

)
QA(ds, dθ)

+

∫ t

0

∫
R+

(
h(N(s−) + eNm(t))− h(N(s−))

)
1θ≤fAµAaK NA(s−)Qm(ds, dθ)

+
∑
i∈N

(∫ t

0

∫
R+

((
h(N(s−) + ei)− h(N(s−))

)
1θ≤bKi (N(s−))

+
(
h(N(s−)− ei)− h(N(s−))

)
10<θ−bKi (N(s−))≤dKi (N(s−))

)
Qi(ds, dθ)

)
.

In particular, taking h(N) =
∑

i∈NNi in (4.4) we get:

Na(t) =
∑
i∈N

1t≥Ti

{
1 +

∫ t

0

∫
R+

(
1θ≤faNi(s−) − 10<θ−faNi(s−)≤dKi (N(s−))

)
Qi(ds, dθ)

}
.

Let us now introduce a finite subset of N containing the equilibrium size of the A-
population,

(4.5) IKε :=
[
K
(
n̄A − 2ε

CA,a
CA,A

)
,K
(
n̄A + 2ε

CA,a
CA,A

)]
∩ N,

and the stopping times TKε and SKε , which denote respectively the hitting time of bεKc by
the mutant a-population and the exit time of IKε by the resident A-population,

(4.6) TKε := inf
{
t ≥ 0, NK

a (t) = bεKc
}
, SKε := inf

{
t ≥ 0, NK

A (t) /∈ IKε
}
.

We call ”first phase” of the selective sweep the time interval needed for the mutant a-
population to hit a size bεKc. Let us first recall what happens when there is only one
mutant a occurring in an A-population at its equilibrium size bn̄AKc. It is stated in [9] that
the a-population generated by this mutant has a probability close to SaA/fa to hit a size
bεKc, and that there exist two positive constants c and ε0 such that for every ε ≤ ε0,

lim sup
K→∞

P(TKε <∞, TKε > SKε ) ≤ cε,
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THE EFFECT OF RECURRENT MUTATIONS ON GENETIC DIVERSITY 13

and ∣∣∣P((1− cε) logK

SaA
≤ TKε ≤ (1 + cε)

logK

SaA

∣∣∣TKε <∞
)
− SaA

fa

∣∣∣ ≤ cε.
We will see that in the case of recurrent mutations the a-population hits the size bεKc with
a probability close to 1 and that the duration of the first phase depends weakly on the value
of λAa and λaA under Assumptions 1 to 3. The proof of this result lies on couplings of the
subpopulations (Ni, i ≥ 1) with independent birth and death processes that we will now
describe.

4.2. A first coupling with birth and death processes. In this subsection, we introduce
couplings of the population process with birth and death processes without competition,
which will be needed to prove Theorem 1.

We recall (4.6) and define the rescaled invasion fitness

(4.7) s = SaA/fa,

and, for ε < SaA/(2Ca,ACA,a/CA,A + Ca,a),

(4.8) s−(ε) := s− ε
2Ca,ACA,a + Ca,aCA,A

faCA,A
and s+(ε) := s+ 2ε

Ca,ACA,a
faCA,A

.

Definitions (1.3) and (4.2) ensure that

fa(1− s+(ε)) ≤ dKi (N(t))

Ni(t)
= fa − SaA +

Ca,A
K

(NA(t)− n̄AK) +
Ca,a
K

Na(t) ≤ fa(1− s−(ε)).

Let us define for i ∈ N two supercritical birth and death processes:

(4.9) N∗i (t) = 1{t≥Ti}

(
1 +

∫ t

0

∫
R+

(
1θ≤(1−µaAK )faN∗i (s−)

− 10<θ−(1−µaAK )faN∗i (s−)≤fa(1−s∗(ε))N∗i (s−)

)
Qi(ds, dθ)

)
,

where ∗ ∈ {−,+}. These processes have two fundamental properties. First, almost surely:

(4.10) N−i (t) ≤ Ni(t) ≤ N+
i (t), for all t < TKε ∧ SKε .

Second (
(N−i , N

+
i ), i ∈ N

)
is a sequence of pairs independent conditionally on the mutation times (Ti, i ∈ N). In other
words during the first phase we can couple the subpopulations (Ni, i ≥ 1) with birth and
death processes which evolve independently. This will allow us to study the duration of the
first phase.

4.3. A second coupling with birth and death processes. We will apply some results
of Richard [41] on birth and death processes with immigration to prove Theorem 2. In order
to do this we need to introduce new couplings. Let N∗m, ∗ ∈ {−,+, 0} be three counting
processes, defined with the same Poisson measure Qm as Nm (see Equation (4.3)) by

N∗m(t) :=

∫ t

0

∫
R+

1θ≤λ∗K(ε)Qm(ds, dθ),

where

(4.11) λ0
K(ε) := fAµ

Aa
K Kn̄A and λ∗K(ε) := fAµ

Aa
K K(n̄A ∗ 2εCA,a/CA,A), ∗ ∈ {−,+}.

Denote by T ∗i their respective jump times

(4.12) T ∗i = inf{t ≥ 0, N∗m(t) = i}.
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14 CHARLINE SMADI

The jump times T ∗i are the arrival times of individuals generating new populations Z
(∗)
i ,

which can be represented as follows:

(4.13) Z∗i (t) = 1{t≥T ∗i }

(
1 +

∫ t

0

∫
R+

(
1θ≤fa(1−µaAK )Z∗i (s−)

− 10<θ−fa(1−µaAK )Z∗i (s−)≤fa(1−s∗(ε))Z∗i (s−)

)
Q∗i (ds, dθ)

)
,

where s0(ε) = s has been defined in (4.7), and for ∗ ∈ {−,+, 0, ∅} the Poisson measures
(Q∗j , j ≥ 1) are independent and chosen in a way such that:

If ((i1, ∗1), (i2, ∗2)) ∈ (N× {−,+, 0, ∅})2 such that T ∗1i1 = T ∗2i2 , then Q∗1i1 = Q∗2i2

(recall that the sequence of measures (Qi, i ≥ 1) appeared in the definition of the population
process in (4.4)). Finally we introduce the sum of these population processes for ∗ ∈ {−,+, 0}

Z∗(t) =
∑
i∈N

Z∗i (t).(4.14)

Then by construction we have almost surely:

T+
i ∧ T

K
ε ∧ SKε ≤ Ti ∧ TKε ∧ SKε ≤ T−i ∧ T

K
ε ∧ SKε , for all i ≥ 1.

(4.15) Z−i (t) ≤ Ni(t) ≤ Z+
i (t), for all i such that T+

i = Ti = T−i and t < TKε ∧ SKε .

(4.16) Z−i (t) ≤ Z0
i (t) ≤ Z+

i (t), for all i such that T+
i = T 0

i = T−i and t ≥ 0.

and

Z−(t) ≤ Na(t) ≤ Z+(t), for all t < TKε ∧ SKε .
Notice that if the introductions of Z− and Z+ are quite natural to get lower and upper

bounds for the a population size, the process Z0 has been introduced only for technical
reasons: we will need in Section 6 to apply limit theorems to population processes at time
| ln ε|/4SaA when ε goes to 0. This is feasible only if the definitions of the population processes
do not depend on ε, which is not the case of Z− and Z+.

5. Proof of Theorem 1

Each mutant has a positive probability to generate a population which survives during a
long time. As a consequence, the limit probability for the total a-population size to hit the
value bεKc when K is large is equal to one. We do not prove the first point of Theorem 1
as it has already been stated in [9]. Recall Definition (4.6). To prove the second point, we
will first establish the following Lemma:

Lemma 5.1. Under Assumption 2 (in this case β = 0) or 3, there exist two positive constants
c and ε0 such that for every ε ≤ ε0,

lim inf
K→∞

P
(

(1− cε)(1− β)
logK

SaA
≤ TKε ≤ (1 + cε)(1− β)

logK

SaA

)
≥ 1− cε.

Proof. The proof of Lemma 5.1 relies on comparisons of the a-population dynamics with
these of branching processes. Broadly speaking mutants occur according to a Poisson pro-
cess with parameter fAn̄Aλ

AaKβ and are successful (i.e. generate a large population) with
probability s. Hence successful mutants follow approximately a Poisson process with param-
eter fAn̄Asλ

AaKβ. This is only an approximation, as the A-population size varies over time.
Once a number of order Kβ of successful mutant populations have occurred, which takes a
time of order 1, their total growth is close to this of a supercritical branching process with
birth and death rates fa(1−µaAK ) and fa(1− s) conditioned on non-extinction and they take
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THE EFFECT OF RECURRENT MUTATIONS ON GENETIC DIVERSITY 15

a time of order (1− β) logK/SaA to hit a size bεKc (see (A.3)).

Before deriving upper and lower bounds for the time TKε , we recall that according to (A.4)
there exists a positive constant V such that

(5.1) lim
K→∞

P(SKε < TKε ∧ eKV ) = 0.

This is a direct consequence of Theorem 3 (c) in [9], which is recalled in Appendix (see
Lemma A.1).

Upper bound: Let us take ε0 such that n̄A − 2ε0CA,a/CA,A ≥ n̄A/2. By definition, on the

time interval [0, TKε ∧ SKε ], new a-mutants occur with a rate larger than

fAK
(
n̄A − 2ε

CA,a
CA,A

)
µAaK ≥ fAn̄A

λAa

2
Kβ

for K large enough under Assumption 2 or 3. We couple each new mutant population i

with a birth and death process N
(−)
i as described in (4.9) and (4.10). We introduce for

every integer k the first time Tk(success) when k ”successful mutants” have occurred in the
following sense:

Tk(success) := inf
{
t ≥ 0,#{i, Ti ≤ t,N−i does not get extinct} = k

}
.

Note that Tk(success) is not a stopping time. According to (A.1) for each i the probability
that the process N−i does not get extinct is s−(ε) ≥ s/2 for ε small enough. Hence by

construction, if TKε ∧ SKε is large enough, Tk(success) is smaller than the sum of k inde-
pendent exponentially distributed random variables with parameter fAn̄Aλ

AasKβ/4. As a
consequence, adding (5.1) we get that

(5.2) lim inf
K→∞

P(Tk(success) ∧ TKε ≤ ε logK) ≥ 1− cε

for ε small enough, where c is a positive constant.
The time needed by these k successful mutant populations to hit a size bεKc satisfies

(5.3) lim
K→∞

P
( inf{t− Tk(success) ≥ 0,

∑
1≤m≤kN

−
im

(t) = bεKc}
(1− β) logK

≤ 1

fas−(ε)

)
= 1,

where N
(−)
im

is the mth mutant population such that N
(−)
im

does not get extinct and we have
applied (A.3). Combining (5.1), (5.2) and (5.3) yields the existence of a positive c such that
for ε small enough

(5.4) lim inf
K→∞

P
(
TKε ≤ (1 + cε)(1− β)

logK

SaA
∧ SKε

)
≥ 1− cε.

Lower bound: Equation (5.4) implies that with a probability close to one up to a constant
times ε, the number of a-mutants occurring during the first phase, Nm(TKε ), is smaller than
a Poisson process with parameter

fAK
(
n̄A + 2ε

CA,a
CA,A

)
µAaK

taken at time (1 + cε)(1− β)logK/SaA. Adding Assumption 2 or 3 yields

P(Nm(TKε ) > Kβ+ε) ≤ E[Nm(TKε )]

Kβ+ε
≤ cKβ logK

Kβ+ε
≤ cε

for a constant c, ε small enough and K large enough, where we used Markov Inequality. Using
this last inequality and the definition of Coupling (4.10), we see that with a probability close
to one the a-population size during the first phase is smaller than a birth and death process
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N (β+ε) with individual birth rate (1−µaAK )fa, individual death rate fa(1− s+(ε)) and initial

state Kβ+ε. But according to (A.3), there exists a positive c such that for ε small enough

lim
K→∞

P
(
N (β+ε)(t) < bεKc, ∀t ≤ (1− cε)(1− β)

logbεKc
SaA

)
= 1.

This yields the desired lower bound for TKε and ends the proof of Lemma 5.1. �

Once the number of a-individuals is large enough, we can compare the evolution of the
a- and A-population sizes with the solution of a deterministic system. Recall that n(z) =

(n
(z)
α , α ∈ A) is the solution of the dynamical system (1.5) with initial condition z ∈ RA+.

Then we have the following comparison result:

Lemma 5.2. Let z be in (R∗+)A × (R∗+)a and T > 0. Suppose that Assumption 2 or 3 holds

and that NK(0)/K converges to z in probability. Then

lim
K→∞

sup
s≤T

‖NK(s)/K − n(z)(s)‖ = 0 in probability

where ‖.‖ denotes the L1-Norm on RA.

The proof relies on a slight modification of Theorem 2.1 p. 456 in Ethier and Kurtz [21].
We do not detail it and refer the reader to Lemma 4.1 in [47] for a similar derivation.

Combining Lemmas 5.1 and 5.2 we are now able to prove the point 2 of Theorem 1.

Proof of Theorem 1. For ε ≤ Ca,a/Ca,A∧2|SAa|/CA,a and z in RA+× (Ra+ \{0}) we introduce

a deterministic time tε(z) after which the solution n(z) of the dynamical system (1.5) is close
to the stable equilibrium (0, n̄a):

(5.5) tε(z) := inf
{
s ≥ 0,∀t ≥ s, (n(z)

A (t), n(z)
a (t)) ∈ [0, ε2/2]× [n̄a − ε/2,∞)

}
.

Under condition (1.6) n(z) never escapes from the set [0, ε2/2] × [n̄a − ε/2,∞) once it has
reached the latter. Moreover, tε(z) is finite and,

(5.6) t(ε) := sup{tε(z), z ∈ [ε/2, ε]× [n̄A − 2εCA,a/CA,A, n̄A + 2εCA,a/CA,A]} <∞.

Recall that β2 = 0 and β3 = β. Combining Lemma 5.1, and Equations (5.1) and (5.6),
we get under Assumption i for i ∈ {2, 3} that after a time of order (1 − βi) logK/SaA,
the A-population size is close to ε2K/2 and the a-population size is close to n̄aK. Under
Assumptions 2 and 3, λαᾱ, α ∈ A, are negligible with respect to 1. As a consequence, we
can use the proof in [9] to get that the time needed to end the sweep after time TKε + t(ε) is
close to logK/|SAa| with high probability. This proof lies on a coupling of the A-population
dynamics with this of a subcritical birth and death process with individual birth rate fA and
individual death rate DA + CA,an̄a = fA + |SAa|. This ends the proof of Theorem 1. �

6. Proof of Theorem 2

The first point of Theorem 2 has already been stated in [9] and we will focus on Assump-
tions 2 and 3. We assume along this section that (1.6) and (2.1) hold, and refer to Section
4.3 for the definitions of the different processes coupled with the population process N .

6.1. Proof of Theorem 2 point (2). We suppose in this subsection that Assumption 2
holds. The idea is to cut the first phase into two parts: the first part, which has a duration
| ln ε|/4SaA, is long enough for a sufficient number of mutants to appear, and short enough
to construct efficient couplings of processes (Ni, i ≥ 1) with birth and death processes. We
then show that the relative sizes of the populations generated by the successive a-mutants
stay approximately the same until the end of the sweep.
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THE EFFECT OF RECURRENT MUTATIONS ON GENETIC DIVERSITY 17

For the sake of readability, we introduce the time

(6.1) lε := | ln ε|/4SaA,

and we recall the definitions of (T ∗i , Z
∗
i , i ≥ 1, ∗ ∈ {−,+, 0}) in (4.12) and (4.13).

We want to control the relative sizes of the populations generated by the successive a-
mutants at time lε. If we define the event

(6.2) Tid := {T−i = T 0
i = Ti = T+

i , ∀i such that T+
i ≤ lε},

we get

P(Tid) =
∑
k≥0

P
(
N+
m(lε) = k, T id

)
≥ e−λ

+
K(ε)lε

∑
k≥0

(λ+
K(ε)lε)

k

k!

(λ−K(ε)

λ+
K(ε)

)k
= exp

((
λ−K(ε)− λ+

K(ε)
)
lε
)
≥ 1− ε1/4

for ε small enough and K large enough, where λ−K(ε)/λ+
K(ε) is the probability that the

Poisson process N−m jumps at a given time conditionally on having a jump of the Poisson
process N+

m at the same time. Moreover, we have from the definition of Z− in (4.14) and
thanks to (A.2),

P(Z−(lε) = 0) =
∞∑
k=0

P(Z−(lε) = 0, N−m(lε) = k)

≤ e−λ
−
K(ε)lε

∞∑
k=0

1

k!

(
λ−K(ε)lε(1− s−(ε))

)k
= e−s−(ε)λ−K(ε)lε = εs−(ε)λ−K(ε)/4SaA .

From the two last inequalities we get the existence of two positive constants c and γ such
that for ε small enough,

(6.3) lim inf
K→∞

P(Tid, Z−(lε) ≥ 1) ≥ 1− cεγ .

By Couplings (4.15) and (4.16) we have almost surely on the event Tid and for every
i ≥ 1,

(6.4)
Z−i (lε)

Z+(lε)
≤ Z0

i (lε)

Z0(lε)
,
Ni(lε)

Na(lε)
≤
Z+
i (lε)

Z−(lε)
.

Hence, if we are able to show that (Z+
i /Z

−)(lε) and (Z+
i /Z

−)(lε) are close for every i, it
will imply that (Z0

i /Z
0)(lε) and (Ni/Na)(lε) are close for every i. Let us first notice that for

every t ≥ 0, the following inequality holds

1{Z−(t)≥1,T id}

(
Z+(t)

Z−(t)
− Z−(t)

Z+(t)

)
= 1{Z−(t)≥1,T id}

(Z+(t)− Z−(t))(Z+(t) + Z−(t))

Z−(t)Z+(t)

≤ 21{T id}(Z
+(t)− Z−(t)).

In order to use Lemma A.2, we bound the last term as follows:

1{T id}(Z
+(t)− Z−(t)) ≤ Z−(t)

(
efa(s+(ε)−s−(ε))t − 1

)
+

1{T id}

N+
m(t)∑
i=1

efas+(ε)(t−T 0
i )
(
Z+
i (t)e−fa(s+(ε)−µaAK )(t−T 0

i ) − Z−i (t)e−fa(s−(ε)−µaAK )(t−T 0
i )
)
.

Author-produced version of the article published in Acta Applicandae Mathematicae, 2017, 1(1), 11-51. 
The original publication is available at http://www.sciencedirect.com/ 

doi : 10.1007/s10440-016-0086-x 



18 CHARLINE SMADI

We are now able to compare the relative mutant population sizes. Applying (6.3) and the
two last remarks, we get

(6.5) P
(
∃i,

Z+
i (lε)

Z−(lε)
−
Z−i (lε)

Z+(lε)
> ε1/8

)
≤ cεγ + P

(
2(Z+(lε)− Z−(lε)) > ε1/8, T id

)
≤ cεγ + 2ε−1/8E[1{T id}(Z

+(lε)− Z−(lε))]

≤ cεγ + 2ε−1/8
{(

efa(s+(ε)−s−(ε))lε − 1
)
E[Z−(lε)] + efas+(ε)lε

E
[
E
[
1{T id}

N+
m(lε)∑
i=1

∣∣∣Z+
i (t)e−fa(s+(ε)−µaAK )(lε−T 0

i ) − Z−i (t)e−fa(s−(ε)−µaAK )(lε−T 0
i )
∣∣∣∣∣∣(N+

m(t), t ≤ lε)
]]}

.

But we know that conditionally on Tid and on (N+
m(t), t ≤ lε), the random variables

Z+
i (t)e−fa(s+(ε)−µaAK )(t−T 0

i ) − Z−i (t)e−fa(s−(ε)−µaAK )(t−T 0
i )

are independent martingales with zero mean, and according to Lemma A.2 we can couple each
(Z+

i , Z
−
i ) with a pair of processes (Z̃+

i , Z̃
−
i ) such that Z∗i and Z̃∗i have the same distribution

for ∗ ∈ {−,+}, and

sup
t≥0

E
[(
Z̃+
i (t)e−fa(s+(ε)−µaAK )(t−T 0

i ) − Z̃−i (t)e−fa(s−(ε)−µaAK )(t−T 0
i )
)2]
≤ s+(ε)− s−(ε).

As a consequence, recalling Definition (4.8) and using Cauchy-Schwarz Inequality, the last
expectation in (6.5) can be bounded by

E
[(
N+
m(lε)(s+(ε)− s−(ε))

)1/2]
≤ λ+

K(ε)(s+(ε)− s−(ε))1/2 ≤ cε1/2

for ε small enough and K large enough, where c is a finite constant.
Furthermore, the first expectation in (6.5) can be computed explicitely. Let δ be in (0, 1).

Then there exists a finite c such that for ε small enough(
efa(s+(ε)−s−(ε))lε − 1

)
E[Z−(lε)]

=
(
efa(s+(ε)−s−(ε))lε − 1

) λ−K(ε)

(s−(ε)− µaAK )fa

(
e(s−(ε)−µaAK )falε − 1

)
≤ cε1−δε−1/4 = cε3/4−δ.

Adding that for ε small enough and K large enough,

efas+(ε)lε ≤ ε−1/4−δ

and taking δ = 1/16, we conclude that for ε small enough,

(6.6) lim sup
K→∞

P
(
∃i,

Z+
i (lε)

Z−(lε)
−
Z−i (lε)

Z+(lε)
> ε1/8

)
≤ c(εγ + ε1/16),

where c is a finite constant.
Let us now consider for every t ≥ 0 and ∗ ∈ {−,+, 0} the subsequence of mutant popula-

tions which survive until a given time:

(Z
(∗)
i,t , i ≥ 1) = (Z∗j , j ≥ 1 and Z∗j (t) ≥ 1),
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THE EFFECT OF RECURRENT MUTATIONS ON GENETIC DIVERSITY 19

where the index i increases with the birth time of the mutant at the origin of the surviving

population. We introduce similarly the sequence (N
()
i,t, i ≥ 1) for surviving processes Ni.

For every i such that T−i = T+
i ≤ lε, the probability that Z+

i survives until time lε and

Z−i does not survive until time lε is bounded by cε for a finite c (thanks to (A.2) and because

λ+
K(ε) − λ−K(ε) is of order ε). Adding (6.4) and (6.6), we finally get the existence of three

positive constants (γ1, γ2, c) such that,

(6.7) P
(∥∥∥(N ()

i,lε
(lε)

Na(lε)
, i ≥ 1

)
−
(Z(0)

i,lε
(lε)

Z(0)(lε)
, i ≥ 1

)∥∥∥ > εγ1
)
≤ cεγ2 ,

where ‖x‖ = supi |xi|.
To study the evolution of the relative population sizes during the end of the first phase we

will proceed in two steps: first we will show that the a-population at time TKε is essentially
constituted by descendants of a-mutants born from A-individuals before the time lε; then
we will show that the relative sizes of the a-populations generated by the a-mutants born
before the time lε stay approximately the same during the time interval [lε, T

K
ε ]. Hence as a

first step we prove that there exists a finite c such that for ε small enough, K large enough,
and t ≥ lε,

(6.8) E
[N̄a(t ∧ TKε ∧ SKε ) + 1

Na(t ∧ TKε ∧ SKε ) + 1

]
≥ 1− c

∫ t

lε

E
[1{Na(s∧TKε ∧SKε )≥1}

Na(s) + 1

]
ds,

where N̄a denotes the population generated by the a-mutants born before time lε. To prove
this inequality, we use an equivalent representation of the a-population. Let Q(ds, dθ) and
R(ds, dθ) be two independent Poisson random measures with intensity dsdθ, independent of
Qm, and recall Definition (1.2). Then on the time interval [lε, T

K
ε ], the triplet (N̄a, Na, NA)

has the same law as ( ˜̄Na, Ña, ÑA) defined by:

˜̄Na(t) = Na(lε) +

∫ t

lε

∫
R+

Q(ds, dθ)
(
1
θ≤(1−µaAK )fa

˜̄Na(s−)

− 1
0<θ−(1−µaAK )fa

˜̄Na(s−)≤DKa (Ñ(s−)) ˜̄Na(s−)

)
= Na(lε) +

∫ t

lε

∫
R+

f(s−)Q(ds, dθ),

(Ña − ˜̄Na)(t) =

∫ t

lε

∫
R+

(
1

0<θ−((1−µaAK )fa+DKa (Ñ(s−))) ˜̄Na(s−)≤(1−µaAK )fa(Ña− ˜̄Na)(s−)

− 1
0<θ−((1−µaAK )faÑa(s−)+DKa (Ñ(s−)) ˜̄Na)(s−)≤DKa (Ñ(s−))(Ña− ˜̄Na)(s−)

)
Q(ds, dθ)

+

∫ t

lε

∫
R+

1θ≤µAaK fAÑA(s−)Qm(ds, dθ) =

∫ t

lε

∫
R+

f̄(s−)Q(ds, dθ) +

∫ t

lε

∫
R+

g(s−)Qm(ds, dθ),

and

ÑA(t) = NA(lε) +

∫ t

lε

∫
R+

(
1θ≤(1−µAaK )fAÑA(s−)+faµaAK Ña(s−)

− 10<θ−(1−µAaK )faÑA(s−)−faµaAK Ña(s−)≤DKA (Ñ(s−))ÑA(s−)

)
R(ds, dθ).
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20 CHARLINE SMADI

We get from Itô’s formula for t ≥ lε,

(6.9)
˜̄Na(t) + 1

Ña(t) + 1
= 1−

∫ t

lε

∫
R+

g(s−)( ˜̄Na(s
−) + 1)

(Ña(s−) + 1)(Ña(s−) + 2)
Qm(ds, dθ)

+

∫ t

lε

∫
R+

f(s−)(Ña − ˜̄Na)(s
−)− f̄(s−) ˜̄Na(s

−)

(Ña(s−) + 1)(Ña(s−) + 1 + f(s−) + f̄(s−))
(Q(ds, dθ)− dsdθ).

Taking the expectation at time t ∧ TKε ∧ SKε yields

E
[N̄a(t ∧ TKε ∧ SKε ) + 1

Na(t ∧ TKε ∧ SKε ) + 1

]
≥ 1−

∫ t

lε

E
[
1{Na(s∧TKε ∧SKε )≥1}

µAaK fANA(s)

Na(s) + 1

]
ds

≥ 1− µAaK fAK
(
n̄A − 2ε

CA,a
CA,A

)∫ t

lε

E
[1{Na(s∧TKε ∧SKε )≥1}

Na(s) + 1

]
ds,

which implies (6.8) under Assumption 2.
Reasoning similarly as in the proof of Lemma 3.1 in [47], we get the existence of two

integers (k0, k1) and two pure jump martingales (M0,M1), such that for s ≥ 0,
(6.10)

1{Na(s∧TKε ∧SKε )≥1}

Na(s ∧ TKε ∧ SKε ) + k0
e
SaA(s∧TKε ∧S

K
ε )

2(k0+1) ≤ (k0 + 1)M0(s ∧ TKε ∧ SKε ), E[M0(s)] =
1

k0 + 1
,

and
(6.11)

1{N̄a(s∧TKε ∧SKε )≥1}

N̄a(s ∧ TKε ∧ SKε ) + k1
e
SaA(s∧TKε ∧S

K
ε )

2(k1+1) ≤ (k1 + 1)M1(s ∧ TKε ∧ SKε ), E[M1(s)] =
1

k1 + 1
.

Hence we get for a finite c and K large enough,

E
[N̄a(t ∧ TKε ∧ SKε ) + 1

Na(t ∧ TKε ∧ SKε ) + 1

]
≥ 1− c

∫ t

lε

e−SaAs/(2(k0+1))E
[
1s≤TKε ∧SKε

eSaAs/(2(k0+1))

Na(s) + 1

]
ds

≥ 1− c
∫ t

lε

e−SaAs/(2(k0+1))E
[eSaA(s∧TKε ∧SKε /(2(k0+1)))

Na(s ∧ TKε ∧ SKε ) + 1

]
ds

≥ 1− c
∫ t

lε

e−SaAs/(2(k0+1))ds ≥ 1− cε1/(8(k0+1)).

Markov Inequality then yields

(6.12) lim sup
K→∞

P
(

1− N̄a(T
K
ε ∧ SKε ) + 1

Na(TKε ∧ SKε ) + 1
> ε1/(16(k0+1))

)
≤ cε1/(16(k0+1)),

for ε small enough, where c is a finite constant. As a consequence to get the distribution
of the relative a-population sizes at time TKε it is enough to focus on the evolution of the

processes ((N
()
i,lε

+ 1)/(N̄a + 1), i ≥ 1) over the time interval [lε, T
K
ε ], where we recall that

N
()
i,lε

is the ith a-mutant population which survives at least until time lε. Applying Itô’s

formula as in (6.9), we get that the processesM (i)(t) :=
N

()
i,lε

(lε + t) + 1

N̄a(lε + t) + 1
, t ≥ 0

 , i ≥ 1
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THE EFFECT OF RECURRENT MUTATIONS ON GENETIC DIVERSITY 21

are martingales, whose quadratic variations satisfy

(6.13)
d

dt
E[〈M (i)〉2t ] = E

[
faN

()

i,lKε
(lε + t)

( (N̄a −N ()

i,lKε
)(lε + t)

(N̄a(lε + t) + 1)(N̄a(lε + t) + 2)

)2

+DK
a (N(lε + t))N

()

i,lKε
(lε + t)

( (N̄a −N ()

i,lKε
)(lε + t)

N̄a(lε + t)(N̄a(lε + t) + 1)

)2

+ fa(N̄a −N ()

i,lKε
)(lε + t)

( N
()

i,lKε
(lε + t)

(N̄a(lε + t) + 1)(N̄a(lε + t) + 2)

)2

+DK
a (N(lε + t))(N̄a −N ()

i,lKε
)(lε + t)

( N
()

i,lKε
(lε + t)

N̄a(lε + t)(N̄a(lε + t) + 1)

)2]
≤ E

[ fa
N̄a(lε + t) + 1

((N̄a −N ()

i,lKε
)(lε + t)

N̄a(lε + t) + 2

)2
+
DK
a (N(lε + t))

N̄a(lε + t) + 1

(N ()

i,lKε
(lε + t)

N̄a(lε + t)

)2]
≤ E

[
1{N̄a(lε+t)≥1}

fa +DK
a (N(lε + t))

N̄a(lε + t) + 1

]
.

From the definition of DK
α , and TKε and SKε in (1.2) and (4.6), respectively, we see that for

t ≤ TKε ∧ SKε ,

DK
a (N(t)) ≤ Da + Ca,A

(
n̄a + 2ε

CA,a
CA,A

)
+ Ca,aε.

As a consequence, a direct application of (6.11) yields the existence of a positive constant
such that for ε small enough and t ≥ 0,

(6.14) E

N ()

i,lKε
(TKε ∧ SKε ∧ t) + 1

N̄a(TKε ∧ SKε ∧ t) + 1
−
N

()

i,lKε
(lε) + 1

N̄a(lε) + 1

2
≤ c

∫ ∞
lε

e−SaAs/(2(k1+1))E
[eSaA(s∧TKε ∧SKε /(2(k1+1)))

N̄a(s ∧ TKε ∧ SKε ) + k1

]
ds ≤ cε1/(8(k1+1)).

To end the proof of Theorem 2, we need to bound the term

∥∥∥(N ()

i,TKε ∧SKε
(TKε ∧ SKε )

Na(TKε ∧ SKε )
, i ≥ 1

)
−
Z

(0)

i,lKε
(lε)

Z(0)(lε)

∥∥∥,
and to show that the second term of the difference has a distribution close to the GEM
distribution (defined in Definition 2.1) with the desired parameter. But from inequalities
(5.1), (6.12) and (6.14), we see that with high probability it amounts to focus on the difference

∥∥∥(N ()

i,lKε
(TKε )

Na(TKε )
, i ≥ 1

)
− (

Z
(0)

i,lKε
(lε)

Z(0)(lε)
, i ≥ 1)

∥∥∥.
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Let i be smaller than #{j ≥ 1, Nj(T
K
ε ) ≥ 1}. Then, on the event {N̄a(T

K
ε ) ≥ 1} (which

implies that Na(T
K
ε ) = bεKc), the triangle inequality yields∣∣∣∣∣∣

N
()

i,lKε
(TKε )

Na(TKε )
−
Z

(0)

i,lKε
(lε)

Z(0)(lε)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
N

()

i,lKε
(TKε )

Na(TKε )
−
N

()

i,lKε
(TKε ) + 1

Na(TKε ) + 1

∣∣∣∣∣∣+

∣∣∣∣Na(T
K
ε )− N̄a(T

K
ε )

Na(TKε ) + 1

∣∣∣∣
+

∣∣∣∣∣∣
N

()

i,lKε
(TKε ) + 1

N̄a(TKε ) + 1
−
N

()

i,lKε
(lε) + 1

N̄a(lε) + 1

∣∣∣∣∣∣+

∣∣∣∣∣∣
N

()

i,lKε
(lKε ) + 1

N̄a(lKε ) + 1
−
N

()

i,lKε
(lε)

N̄a(lε)

∣∣∣∣∣∣+

∣∣∣∣∣∣
N

()

i,lKε
(lε)

N̄a(lε)
−
Z

(0)

i,lKε
(lε)

Z(0)(lε)

∣∣∣∣∣∣
≤ 1

bεKc+ 1
+

∣∣∣∣Na(T
K
ε )− N̄a(T

K
ε )

Na(TKε )

∣∣∣∣+

∣∣∣∣∣∣
N

()

i,lKε
(TKε ) + 1

N̄a(TKε ) + 1
−
N

()

i,lKε
(lε) + 1

N̄a(lε) + 1

∣∣∣∣∣∣
+

1

Na(lKε ) + 1
+

∣∣∣∣∣∣
N

()

i,lKε
(lε)

Na(lε)
−
Z

(0)

i,lKε
(lε)

Z(0)(lε)

∣∣∣∣∣∣ .
The second term can be bounded thanks to (6.12), the third one thanks to (6.14), the fourth
one thanks to (6.10), and the last one thanks to (6.7). As there is a number of order ln ε of
surviving mutant populations at time lε, we conclude by using Markov Inequality that there
exist three positive constants (γ3, γ4, c) such that for ε small enough,

(6.15) P
(∥∥∥(N ()

i,Tε∧SKε
(Tε ∧ SKε )

Na(Tε ∧ SKε )
, i ≥ 1

)
−
(Z(0)

i,lKε
(lε)

Z(0)(lε)
, i ≥ 1

)∥∥∥ > εγ3
)
≤ cεγ4 ,

which is equivalent to the following convergence in probability:

(6.16)
(N ()

i,Tε∧SKε
(Tε ∧ SKε )

Na(Tε ∧ SKε )
, i ≥ 1

)
−
(Z(0)

i,lKε
(lε)

Z(0)(lε)
, i ≥ 1

)
→

K→∞
0.

But a direct application of Theorem 2.2 in [41] gives the behavior of the relative mutant

population sizes in the process Z(0):

(6.17) lim
ε→0

(Z(0)(lε))
−1
(
Z

(0)
1,lε

(lε), Z
(0)
2,lε

(lε), ...
)

= (P1, P2, ...) a.s.,

where the sequence (P1, P2, ...) has a GEM distribution with parameter λ0
K/(1 − µaAK ) and

λ0
K has been defined in (4.11). Hence, using Slutsky’s theorem we get

(6.18)
(N ()

i,Tε∧SKε
(Tε ∧ SKε )

Na(Tε ∧ SKε )
, i ≥ 1

)
→

K→∞
(P1, P2, ...) in law.

The next step of the proof consists in checking that during the ”deterministic phase”, the
relative mutant population sizes do not vary. Let i be smaller than #{j ≥ 1, Nj(T

K
ε ) ≥ 1}.

Then applying again Theorem 2.1 p. 456 in Ethier and Kurtz [21], we can show that on the
event TKε ≤ SKε ,

(N
()

i,Tε∧SKε
/K,Na/K,NA/K)

converges in probability on the time interval [TKε , T
K
ε + t(ε)] (defined in (5.6)) to the solution

of the deterministic system:
ṅA = (fA −DA − CA,AnA − CA,ana)nA
ṅ

(i)
a = (fa −Da − Ca,AnA − Ca,ana)n(i)

a

ṅa = (fa −Da − Ca,AnA − Ca,ana)na,
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with initial condition

(N
()

i,Tε∧SKε
(TKε )/K,Na(T

K
ε )/K,NA(TKε )/K).

In particular,

d

dt

(
n

(i)
a

na

)
= 0.

Now, if we introduce

TKF (ε) := inf{t ≥ 0, NK
A (t) ≤ ε2K/2, NK

a (t) ≥ K(n̄a − ε/2)},
then for ε small enough,

lim
K→∞

P(TKε + t(ε/2) ≥ TKF (ε)|TKε ≤ SKε ) = 1,

and moreover, after the time TKF (ε) the A-population size stays, for a very long time and
with a probability close to one, smaller than ε. More precisely following [9], we get the
existence of c, ε0, V > 0, such that for every ε ≤ ε0,

(6.19) lim sup
K→∞

P

(
sup

TKF (ε)≤t≤eKV

∥∥∥ 1

K
(NK

A (t), NK
a (t))− (0, n̄a)

∥∥∥ ≤ ε) ≤ cε.
The last step of the proof consists in showing that the fractions

Fi(t) :=
N

()

i,TKF (ε)
(TKF (ε) + t)

Na(TKF (ε) + t)

stay almost constant during a time Gfk, where the constant G and the function fK have been
introduced in Theorem 2. The proof of this fact is similar to the proof of Proposition 1 in
[47]. It consists in applying Itô’s formula with jumps (see [28] p. 66) to compute expectation
and quadratic variation of Fi(t). We get

E [Fi(t)− Fi(0)] = −fAλAa
∫ t

0
1Na(TKF (ε)+s)≥1

NAN
()

i,TKF (ε)

Na(Na + 1)

 (TKF (ε) + s)

and

〈Fi〉t =

∫ t

0

{
1{Na(TKF (ε)+s)≥1}fa(1− λ

aA)

N ()

i,TKF (ε)
(Na −N ()

i,TKF (ε)
)

Na(Na + 1)2

 (TKF (ε) + s)

+ 1{Na(TKF (ε)+s)≥1}fAλAa

NA(Na −N ()

i,TKF (ε)
)2

N2
a (Na + 1)2

 (TKF (ε) + s)

+ 1{Na(TKF (ε)+s)≥2}D
K
a (N(TKF (ε) + s))

N ()

i,TKF (ε)
(Na −N ()

i,TKF (ε)
)

Na(Na − 1)2

 (TKF (ε) + s)
}
ds,

where DK
a has been defined in (1.2). Adding (6.19) allows us to conclude that with a

probability close to 1, Fi(t) stays almost constant during any time negligible with respect
to K. Using the fact that for a given ε, a number of mutant subpopulations large but
independent from K is enough to constitute a fraction 1− ε of the a-population at time TKε ,
we get that

(6.20)
(N ()

i,Tε∧SKε
(Tε ∧ SKε )

Na(Tε ∧ SKε )
, i ≥ 1

)
−
(N ()

i,T KF
(T KF )

Na(T KF )
, i ≥ 1

)
→

K→∞
0 in probability.
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We conclude the proof of Theorem 2 point (2) by another application of Slutsky’s theorem
with (6.18) and (6.20).

6.2. Proof of Theorem 2 point (3). Introduce two positive constants c1 = c1(K, ε) and
c2 = c2(K, ε) such that

(6.21) (ε2Kβ−c1ε + 1)efas+(ε)(1−β+c2ε) logK/SaA = ε2K.

Notice that for ε small enough and K large enough, we can choose c1 and c2 weakly dependent
of (K, ε). More precisely, in this case, we get by using (4.7) and (4.8)

c1 − c2 ∼ 2(1− β)
Ca,ACA,a
SaACAA

.

Let i be smaller than Nm(TKε ∧ SKε ). Then we can define a martingale M+
i via

M+
i (t) = Z+

i (Ti + t)e−fas+(ε)t − 1, t ≥ 0.

An application of Doob’s Maximal Inequality then gives

P

(
sup

t≤(1−β+c2ε) logK/SaA

|M+
i (t)| > ε2Kβ−c1ε

)
≤

E
[(
M+
i ((1− β + c2ε) logK/SaA)

)2
]

(ε2Kβ−c1ε)2

≤ 2− s+(ε)

s+(ε)
ε−4K−2β+2c1ε.

As a consequence, applying Definition (6.21) entails

P

(
sup

t≤(1−β+c2ε) logK/SaA

Z+
i (t) > ε2K

)
≤ 2fa
SaA

ε−4K−2β+2c1ε.

Recalling point (2) of Theorem 1 and (5.1) we get the existence of a positive constant c such
that for ε small enough

lim inf
K→∞

P

(
∀i ≤ Nm(TKε ∧ SKε ), sup

t≤TKε ∧SKε
Ni(t) ≤ ε2K

)

≥ lim inf
K→∞

(
1− 2fa

SaA
ε−4K−2β+2c1ε

)c logKKβ

− cε ≥ 1− 2cε.

This is equivalent to point (3) of Theorem 2.

7. Proof ot Theorem 3

Let us first check that the system (2.2) admits no periodic orbit lying entirely in R2
+.

To do this we apply Dulac’s Theorem (see Theorem 7.12 in [19]). Introduce φ : (nA, na) ∈
(R∗+)2 7→ 1/nAna ∈ R+. Then for every (nA, na) ∈ (R∗+)2,

∂nA(φṅA) + ∂na(φṅa) = −
(CA,AnA + Ca,ana

nAna
+
faλ

aA

(nA)2
+
fAλ

Aa

(na)2

)
< 0,

which ensures that (2.2) has no periodic orbit on R2
+.

Recall that the parameters (ρα, α ∈ A) have been defined in (2.3), and that in this section,
we assume that ρα > 0, α ∈ A.

We now focus on the fixed points of system (2.2). Finding a fixed point (ñA, ña) ∈ (R∗+)2

is equivalent to finding a positive real number ρ such that ña = ρñA. Indeed, if such a ρ
exists, then ñA and ña are uniquely determined by

ñA = (ρA + faλ
aAρ)/(CA,A + CA,aρ) and ña = ρñA.
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By substituting in system (2.2) we see that such a ρ is an admissible solution if and only if
it is positive and satisfies:{

ρA + faλ
aAρ− (CA,A + CA,aρ)nA = 0,

ρaρ+ fAλ
Aa − (Ca,Aρ+ Ca,aρ

2)nA = 0,

and hence,

nA =
ρA + faλ

aAρ

CA,A + CA,aρ
=

ρaρ+ fAλ
Aa

ρ(Ca,A + Ca,aρ)
,

or equivalently,

(faλ
aACa,a)ρ

3 + (faλ
aACa,A + ρACa,a − (ρa)CA,a)ρ

2

+ (ρACa,A − ρaCA,A − fAλAaCA,a)ρ− fAλAaCA,A = 0.

If we introduce z = ρ − r, where r has been defined in (2.6), this sytem is equivalent to
z3 + pz + q = 0, where p and q have been defined in (2.4) and (2.5), respectively. But the
solutions of this equation are well known and can be computed by using Cardano’s Method
(see [8]), which gives the number of fixed points stated in Theorem 3.

Let us now focus on the stability of the fixed points. The first step consists in evaluating
the Jacobian matrix at a fixed point ñ:

J(ñ) :=

(
∂ṅA
∂nA

∂ṅA
∂na

∂ṅa
∂nA

∂ṅa
∂na

)
|n=ñ

=

(
ρA − 2CA,AñA − CA,aña −CA,añA + faλ

aA

−Ca,Aña + fAλ
Aa ρa − 2Ca,aña − Ca,AñA

)
.

In particular, if ñ = (0, 0),

J(ñ) =

(
ρA faλ

aA

fAλ
Aa ρa

)
.

As the trace of J(0, 0) is positive, this matrix has at least one positive eigenvalue. The sign
of the second eigenvalue depends on the sign of the determinant of J(0, 0),

Det(J(0, 0)) = ρAρa − faλaAfAλAa.
If Det(J(0, 0)) > 0 the two eigenvalues are positive and (0, 0) is a source (see Figure 1), and
if Det(J(0, 0)) < 0 the two eigenvalues have opposite signs and (0, 0) is a saddle (see Figure
1).

If ñ belongs to (R∗+)2, the Jacobian matrix equivalently writes

J(ñ) :=

(
−CA,AñA − faλaAña/ñA −CA,añA + faλ

aA

−Ca,Aña + fAλ
Aa −Ca,aña − fAλAañA/ña

)
,(7.1)

and has a negative trace. Hence at least one of the eigenvalues is negative and ñ cannot be
a source. To get the nature of the fixed points, we need to introduce the notions of sectorial
decomposition and index for a fixed point. We say that a vector field has the finite sectorial
decomposition property if it has the finite sectorial decomposition property at every isolated
fixed point. Roughly speaking this means that if we trace a circle with a small enough
radius around an isolated fixed point, we can divide this circle in sectors where the vector
field adopts one of the patterns described in figure 2 inside each sector (see [19] p 17-18 for
a rigorous definition).

When a vector field has the finite sectorial decomposition property, each isolated fixed
point is given a characteristic couple (e, h) which corresponds to the minimal number of
elliptic and hyperbolic sectors, respectively, in a finite sectorial decomposition. The term
minimal here has to be understood as follows: when a vector field has the finite sectorial
decomposition property, the number of sectors around a fixed point is not unique, but if
we gather adjacent sectors of the same type we get a ’minimal’ decomposition with a given
number of hyperbolic and elliptic sectors. As in our case the vector field is polynomial
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Figure 2. The different types of sectors around a fixed point (adapted from
Figure 1.8 in [19]).

and there may be only hyperbolic and semi-hyperbolic fixed points, the vector field has the
finite sectorial decomposition property and we can apply results on the minimal sectorial
decompositions. In particular, combining Theorems 1.20 and 2.19 in [19], we get that in our
case (negative trace for the Jacobian matrix) there are only three possible minimal sectorial
decompositions (see Figure 3 for the corresponding phase portraits).

• (e, h) = (0, 4)
• (e, h) = (0, 0)
• (e, h) = (0, 2)

Figure 3. (a): e = 0, h = 4, (b): e = 0, h = 0, (c): e = 0, h = 2 (adapted
from Figure 2.13 in [19]).

Consider now a closed path σ containing a finite number of isolated fixed points. Then
we can define the index of this path, which is equal to the algebric number of turns of
the vector field when moving along the closed path. This index only depends on the fixed
points enclosed in the path (see Figure 4 for its computation in our case). As a consequence,
we can define an index for each isolated fixed point, which corresponds to the index of a
canonical closed path enclosing only this fixed point. Applying the Poincaré Index Formula
(see Proposition 6.32 in [19]) we get that the index i(ñ) of an hyperbolic or semi-hyperbolic
fixed point ñ is given by

i(ñ) =
e− h

2
+ 1.

Moreover, according to the Poincaré-Hopf Theorem (Theorem 6.26 in [19]), the index of a
closed path is equal to the sum of the indices of the enclosed fixed points. The two last
properties stated will allow us to define the topological nature of the fixed points of system
(2.2). The first step consists in computing the index of a closed path containing all the fixed
points in (R∗+)2. We choose a quarter circle centered at 0, included in R2

+ and a radius large
enough to enclose all the positive fixed points, and we exclude 0 by substracting a quarter
circle centered at 0 with a small radius. The index of this closed path does not depend on
the parameters of system (2.2) and is equal to 1 as shown in Figure 4. As a consequence, the
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sum of the indices of the positive fixed points is also equal to 1, and we have the following
possibilities:

(1) One fixed point: index 1 (sink)
(2) Two fixed points: one with index 1 (sink), one with index 0 (saddle-node)
(3) Three fixed points:

• two with index 0 (saddle-nodes), one with index 1 (sink)
• two with index 1 (sinks), one with index −1 (saddle)

Figure 4. Computation of the index of a closed path containing all the
positive fixed points.

8. Proof of Proposition 2.1

Recall Definition (2.3) and, for the sake of readability, introduce the four following condi-
tions

Assumption A. CA,aρA < CA,Afaλ
aA

Assumption B. CA,aρA ≥ CA,AfaλaA

Assumption C. Ca,Aρa < Ca,afAλ
Aa

Assumption D. Ca,Aρa ≥ Ca,afAλAa

We are only interested in the fixed points of system (2.2) which belong to R2
+ (no negative

population densities). The fixed points of system (2.2) are the intersection points of two
conics CA and Ca whose equations are given by

CA : (ρA − CA,Ax− CA,ay)x+ faλ
aAy = 0,

and
Ca : (ρa − Ca,Ax− Ca,ay)y + faλ

Aax = 0,

in the canonical orthonormal reference frame (0, ex, ey).
We will make an orthonormal change of coordinates to get the reduced equation of the

conic CA. Let us first find the centre of CA, (xA, yA). Let

x = u+ xA, y = v + yA.

If xA and yA satisfy,

xA =
faλ

aA

CA,a
, yA =

CA,aρA − 2CA,Afaλ
aA

C2
A,a

,
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then the equation of CA writes, in the new coordinates (u, v),

faλ
aA(CA,aρA − CA,AfaλaA)

C2
A,a

− CA,Au2 − CA,auv = 0.

The second step consists in making a rotation to cancel the cross term. Let

e = u cos θ + v sin θ, f = −u sin θ + v cos θ,

with θ in [0, π). Then we get

faλ
aA(CA,aρA − CA,AfaλaA)

C2
A,a

−CA,A(e cos θ−f sin θ)2−CA,a(e cos θ−f sin θ)(e sin θ+f cos θ) = 0,

and to cancel the cross term we need to choose θ such that

tan(2θ) =
CA,a
CA,A

.

At this step we have not totally specified θ as two values in [0, π) (θ ∈ [0, π/4) or [π/2, 3π/4))
may satify the last equality. However, the equation of CA now writes

faλ
aA(CA,aρA − CA,AfaλaA)

C2
A,a

+e2(−CA,A cos2 θ−
CA,a

2
sin(2θ))+f2(−CA,A sin2 θ+

CA,a
2

sin(2θ)) = 0

Rearranging the terms, we get for this choice of θ:

e2
C2
A,aCA,A cos2 θ

faλaA(CA,aρA − CA,AfaλaA) cos(2θ)
− f2

C2
A,aCA,A sin2 θ

faλaA(CA,aρA − CA,AfaλaA) cos(2θ)
= 1.

Hence to get the reduced equation we choose

θA :=
1

2
arctan

(CA,a
CA,A

)
+
π

2
1{CA,aρA<CA,AfaλaA}.

In other words, θA = arctan(CA,a/CA,A)/2 under Assumption B and θA = arctan(CA,a/CA,A)/2+
π/2 under Assumption A. As a conclusion, in the orthonormal reference frame

((xA, yA), cos(θA)ex + sin(θA)ey,− sin(θA)ex + cos(θA)ey),

CA is an hyperbola with equation

x2C2
A,aCA,A cos2(θA)

faλaA(CA,aρA − CA,AfaλaA) cos(2θA)
−

y2C2
A,aCA,A sin2(θA)

faλaA(CA,aρA − CA,AfaλaA) cos(2θA)
= 1.

The asymptote ”under the graph” is

y = − x

| tan(θA)|
,

and the asymptote ”over the graph” is

y =
x

| tan(θA)|
.

Let us now go back to the canonical orthonormal reference frame (0, ex, ey). Denote by
bA the branch of the hyperbola CA which has a part in R2

+. Under Assumption A, this
branch crosses the y-axis in (0, 0) and (ρA/CA,A, 0), and its asymptote is the vertical line

x = xA = faλ
aA/CA,A. Direct calculations give that the part of bA belonging to R2

+ satisfies

x ∈ [ρA/CA,A, xA = faλ
aA/CA,a], and makes an angle

θ ∈
[
arctan

(
ρACA,A

faλaACA,A − ρACA,a

)
,
π

2

]
with the x-axis, which goes to π/2 when x goes to (faλ

aA/CA,A)−.
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(a) (b)

Figure 5. Hyperbolas CA and Ca under Assumptions A and D (a) and A and
C (b). The case B and C can be obtained by exchanging the two axes. The
parameter values for these two figures are given in array (10.1). The conic Ca
is represented with dotted line.

Similarly, under Assumption C, the branch ba of the hyperbola Ca which has a part in R2
+

satisfies y ∈ [ρa/Ca,a, fAλ
Aa/Ca,A], and makes an angle

θ ∈
[
0,
π

2
− arctan

(
ρaCa,a

fAλAaCa,a − ρaCa,A

)]
with the x-axis, which goes to 0 when y goes to (fAλ

Aa/Ca,a)
−.

Finally, we consider Assumption D. In this case, ba crosses only once the y-axis, at
(0, ρa/Ca,a), its asymptote is horizontal, and ba makes an angle

θ ∈
[
arctan

(
ρaCa,a

fAλAaCa,a − ρaCa,A

)
, 0

]
with the x-axis, which goes to (fAλ

Aa/Ca,a)
+.

The last statements imply that the conics CA and Ca have only one fixed point on (R∗+)2

under Assumptions A and C or A and D. They also imply the relative position of this point
with respect to xA, ρA/CA,A, xa and ρa/Ca,a stated in Proposition 2.1.

Let us now focus on the stability of this fixed point, ñ. According to (7.1) the trace of the
Jacobian matrix is negative at ñ, and it is enough to check that the determinant is positive
to show its stability:

(8.1)

Det(J(ñ)) =
(
CA,AñA+

faλ
aAña
ñA

)(
Ca,aña+

fAλ
AañA
ña

)
−(Ca,Aña−fAλAa)(CA,añA−faλaA)

= (CA,ACa,a − Ca,ACA,a)ñAña + Ca,a
faλ

aA

ñA
(ña)

2 + CA,A
fAλ

Aa

ña
(ñA)2

+ Ca,Añafaλ
aA + CA,añAfAλ

Aa.

By definition, ñ satisfies

CA,aCa,AñAña = CA,a(ρAñA − CA,Añ2
A + fañaλ

aA)
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Hence

Det(J(ñ)) = CA,ACa,añAña + CA,añA(CA,AñA − ρA) + Ca,a
faλ

aA

ñA
(ña)

2

+ CA,A
fAλ

Aa

ña
(ñA)2 + CA,añAfAλ

Aa.

But we have shown that under Assumption A, CA,AñA > ρA. This proves that ñ is a stable
fixed point. We prove in the same way the stability of ñ under Assumption C by using

CA,aCa,AñAña = Ca,A(ρaña − Ca,añ2
a + fAñAλ

Aa).

Besides, if Assumption A does not hold but CA,ACa,a − Ca,ACA,a > 0, (8.1) shows that
the determinant is positive and all fixed points in (R∗+)2 are sinks. But according to the
Poincare-Hopf Theorem, this is only possible if there is a unique fixed point in (R∗+)2. This
ends the proof of Proposition 2.1

9. Proof of Proposition 2.2

The first step of the proof consists in studying the dynamical system (2.9) when λ = 0.
This system has a unique stable equilibrium which is n̄ = (0, (fa −Da)/Ca,a) if SAa < 0 <

SaA, and n̄(aA) = (n
(aA)
A , n

(aA)
a ) (which has been defined in (2.8)) if SAa > 0 and SaA > 0. If

we introduce the function V : (R∗+)2 → R

V (nA, na) = nA − n̄(aA)
A − n̄(aA)

A ln
nA

n̄
(aA)
A

+ na − n̄(aA)
a − n̄(aA)

a ln
na

n̄
(aA)
a

,

then (V (nA(t), na(t)), t ≥ 0) is a Lyapunov function (see [5] pp 20-21 for a proof). As
a consequence, the solutions of (2.9) with λ = 0 converge to n̄ as soon as na(0) > 0 if
SAa < 0 < SaA, and as soon as nα(0) > 0, α ∈ A, if SAa > 0 and SaA > 0. Moreover,
applying Poincaré-Hopf Theorem as in the proof of Theorem 3, we get that n̄ is an hyperbolic
fixed point, and more precisely a sink. The dynamical system (2.9) has a second fixed point,
(0, 0), which is a source. We will now make a perturbation of this dynamical system by
taking λ small, and will show that it keeps the same dynamical properties as when λ is null.
First, we prove that whatever the initial condition of the dynamical system, the solutions
enter a stable compact excluding the unstable fixed point (0, 0). A direct calculation gives
that as long as nA + na ≥ 2((fA −DA) ∨ (fa −Da))/ infα,α′∈{A,a}2 Cα,α′ ,

ṅA + ṅa ≤ −((fA −DA) ∨ (fa −Da))(nA + na),

and as long as nA + na ≤ ((fA −DA) ∧ (fa −Da))/(2 supα,α′∈A2 Cα,α′),

ṅA + ṅa ≥
(fA −DA) ∧ (fa −Da)

2
(nA + na),

and this independently of λ. We deduce that the compact

C :=

{
n ∈ RA+,

1

2

(fA −DA) ∧ (fa −Da)

supα,α′∈{A,a}2 Cα,α′
≤ nA + na ≤ 2

(fA −DA) ∨ (fa −Da)

infα,α′∈{A,a}2 Cα,α′

}
is reached in finite time by the solutions of the dynamical system (2.9) with a nonnull initial
condition. The two last inequalities also show that the set C is invariant under (2.9).

Let us sum up our findings until now: if we introduce the function

f(nA, na, λ) := ((fA(1− pλ)−DA − CA,AnA − CA,ana)nA + faλna,

(fa(1− λ)−Da − Ca,AnA − Ca,ana)na + fApλnA),

then all the solutions of the dynamical systems defined by ((ṅA, ṅa) = f(nA, na, λ), λ > 0)
with nonnull initial conditions reach in finite time the compact set C. Moreover, the fixed
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point ñ of the system when λ = 0 is hyperbolic (a sink) and attracts all the trajectories of
the system with nonnull initial conditions. Then inverse function theorem and the uniform
continuity of the flows on the compact set C entail that there exists a positive λ0(p) such
that for every λ ≤ λ0(p), the dynamical system defined by (ṅA, ṅa) = f(nA, na, λ) has
a unique fixed point in C, stable and globally attracting for solutions with nonnull initial
conditions. The first order approximation of this stable equilibrium with respect to λ follows
from standard calculations. This ends the proof of Proposition 2.2.

10. Illustration of Theorem 3

In this section, we present some examples of the behaviour of system (2.2). In Figures 5
and 6 we have drawn some examples of the conics CA and Ca. The parameters chosen for
these illustrations are given in Table (10.1), and we now compute numerically the Jacobian
matrices associated to the three fixed points in Figure 6 (c).

(a) (b) (c)

Figure 6. Hyperbolas CA and Ca under Assumptions B and D. In subfigure
(a) they have one intersection point, two in subfigure (b) and three in subfig-
ure (c). The parameter values for these three figures are given in array (10.1).
The conic C2 is represented with dotted line.

(10.1)

Fig 5.(a) Fig 5.(b) Fig 6.(a) Fig 6.(b) Fig 6.(c)
ρA 0.5 0.5 4.075 3.1 3.92
CA,A 3.36 3.36 1 1 1
fa 5 5 2.19 5 5

λaA 0.436 0.436 0.154 0.321 0.321
CA,a 2.86 2.86 4.17 5 5
ρa 2.8 0.5 1.02 2.6 2.6
Ca,a 0.68 1.71 1 1 1
fA 1.64 5 5 5 5

λAa 0.18 0.18 0.185 0.05 0.05
Ca,A 2 2 3 2 2

For the first fixed point in Figure 6 (c) we get

J(0.562166, 1.56545) =

(
−5.0315705 −1.20583
−2.8809 −1.6552271

)
,

and the eigenvalues of the jacobian matrix are (−5.8581153,−0.8286822), which implies that
this point is stable.
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For the second fixed point in Figure 6 (c) we get

J(1.03865, 0.83403) =

(
−2.3274558 −3.58825
−1.41806 −1.1453647

)
,

and the eigenvalues of the jacobian matrix are (−4.0682955, 0.5954749), which implies that
this point is unstable.

For the third fixed point in Figure 6 (c) we get

J(2.99029, 0.208302) =

(
−3.1020934 −3.58825
−0.166604 −3.7971898

)
,

and the eigenvalues of the jacobian matrix are (−2.601935,−4.2973482), which implies that
this point is stable.

In Figure 7, we have drawn two trajectories of the system with intial conditions close to
the unstable fixed point (1.03865, 0.83403).

(a) (b)

Figure 7. Behaviour of the solution of the system (2.2) when the initial
condition is close to the unstable fixed point: (1.03865, 0.83403) for the fig-
ure (a), where the solution converges to the first stable fixed point, and
(0.3866, 0.83403) for the figure (b), where the solution converges to the second
stable fixed point. The a-population density is represented with dotted line.

A. Technical results

In this last section, we recall some results on birth and death processes whose proofs can
be found in Lemma 3.1 in [44] and in [1] p 109 and 112.

Proposition A.1. Let Z = (Zt)t≥0 be a birth and death process with individual birth and
death rates b and d. For i ∈ Z+, Ti = inf{t ≥ 0, Zt = i} and Pi (resp. Ei) is the law (resp.
expectation) of Z when Z0 = i. Then

• For (i, j, k) ∈ Z3
+ such that j ∈ (i, k),

(A.1) Pj(Tk < Ti) =
1− (d/b)j−i

1− (d/b)k−i
.

• If d 6= b ∈ R∗+, for every i ∈ Z+ and t ≥ 0,

(A.2) Pi(T0 ≤ t) =
(d(1− e(d−b)t)

b− de(d−b)t

)i
.

• If 0 < d < b, on the non-extinction event of Z, which has a probability 1 − (d/b)Z0,
the following convergence holds:

(A.3) TN/ logN →
N→∞

(b− d)−1, a.s.
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The next Lemma quantifies the time spent by a birth and death process with logistic
competition in a vicinity of its equilibrium size. It is stated in [9] Theorem 3(c).

Lemma A.1. Let b, d, c be in R∗+ such that b − d > 0. Denote by (Wt, t ≥ 0) a density
dependent birth and death process with birth rate bn and death rate (d+cn/K)n, where n ∈ N
is the current state of the process and K ∈ N is the carrying capacity. Fix 0 < η1 < (b−d)/c
and η2 > 0, and introduce the stopping time

SK = inf

{
t ≥ 0 : Wt /∈

[(b− d
c
− η1

)
K,
(b− d

c
+ η2

)]}
.

Then, there exists V > 0 such that, for any compact subset C of ](b−d)/c−η1, (b−d)/c+η2[,

(A.4) lim
K→∞

sup
k/K∈C

Pk(SK < eKV ) = 0.

We end this section with a coupling of birth and death processes with close birth and
death rates.

Lemma A.2. Let Z1 and Z2 be two birth and death processes with intial state 1 and respective
individual birth and death rates (b1, d1) and (b2, d2) belonging to a common compact set D
in R2

+. Then we can couple Z1 and Z2 in such a way that

(A.5) sup
t≥0

E
[(
Z1(t)e−(b1−d1)t − Z2(t)e−(b2−d2)t

)2]
≤ c(|b2 − b1|+ |d2 − d1|),

where the positive constant c only depends on D.

Proof. For the sake of simplicity, we assume in the proof than b1 < b2 and d1 < d2, but other
cases can be treated similarly. Let B(ds, dθ) and D(ds, dθ) be two independent Poisson
random measures with intensity dsdθ. We can construct the two processes Z1 and Z2 with
respect to the measures B and D. For i ∈ {1, 2}, introduce

Zi(t) = 1 +

∫ t

0

∫
R+

1{θ≤biZi(s−)}B(ds, dθ)−
∫ t

0

∫
R+

1{θ≤diZi(s−)}D(ds, dθ).

We also introduce an auxiliary birth and death process, Z3, with individual birth and death
rates (b3, d3) = (b2, d1), which will allow us to compare Z1 and Z2:

Z3(t) = 1 +

∫ t

0

∫
R+

1{θ≤b2Z3(s−)}B(ds, dθ)−
∫ t

0

∫
R+

1{θ≤d1Z3(s−)}D(ds, dθ).

As b1 < b2 and d1 < d2, we have the following almost sure inequalities:

(A.6) Z1(t) ≤ Z3(t) and Z2(t) ≤ Z3(t) a.s.

Applying Itô’s Formula yields that Mi(t) = Zi(t)e
−(bi−di)t, i ∈ {1, 2, 3} are martingales, and

we can express the quadratic variation of their differences. Using (A.6) we get:

〈M3 −M1〉t =

∫ t

0

(
(b1 + d1)Z1(s)(e−(b1−d1)s − e−(b2−d1)s)2

+ (b2Z3(s)− b1Z1(s))e−2(b2−d1)s + (d1Z3(s)− d1Z1(s))e−2(b2−d1)s
)
ds.
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Then, by taking the expectation, we obtain

(A.7) E
[
(M3 −M1)2(t)

]
=

∫ t

0

(
(b1 + d1)(e−(b1−d1)s − 2e−(b2−d1)s + e−(2b2−b1−d1)s)

+ b2e
−(b2−d1)s − b1e−(2b2−d1−b1)s + d1e

−(b2−d1)s − d1e
−(2b2−d1−b1)s

)
ds

≤ (b1 + d1)
( 1

b1 − d1
− 2

b2 − d1
+

1

2b2 − b1 − d1

)
+

b2
b2 − d1

− b1
2b2 − d1 − b1

+
d1

b2 − d1
− d1

2b2 − d1 − b1
≤ c(b2 − b1),

where for the first inequality we have used that the square of a martingale is a submartingale,
and in the last one the continuity of the functions involved. We obtain similarly

〈M3 −M2〉t =

∫ t

0

(
(b2Z2(s) + d2Z2(s) ∧ d1Z3(s))(e−(b2−d1)s − e−(b2−d2)s)2

+ b2(Z3(s)− Z2(s))e−2(b2−d1)s

+ 1{d1Z3(s)<d2Z2(s)}(d2Z2(s)− d1Z3(s))e−2(b2−d2)s

+ 1{d1Z3(s)>d2Z2(s)}(d1Z3(s)− d2Z2(s))e−2(b2−d1)s
)
ds.

But applying (A.6) we get that

1{d1Z3(s)<d2Z2(s)}(d2Z2(s)− d1Z3(s)) ≤ (d2 − d1)Z2(s) + d2(Z2(s)− Z3(s))

≤ (d2 − d1)Z2(s)

and that

1{d1Z3(s)>d2Z2(s)}(d1Z3(s)− d2Z2(s)) ≤ d2(Z3(s)− Z2(s)),

which yields

〈M3 −M2〉t ≤
∫ t

0

(
(b2Z2(s) + d2Z2(s))(e−(b2−d1)s − e−(b2−d2)s)2

+ b2(Z3(s)− Z2(s))e−2(b2−d1)s + (d2 − d1)Z2(s)e−2(b2−d2)s

+ d2(Z3(s)− Z2(s))e−2(b2−d1)s
)
ds.

Taking the expectation and reasoning similarly as before give for every positive t,

E
[
(M3 −M2)2(t)

]
≤ c(d2 − d1).

Using that for a, b, c ≥ 0, (a− c)2 ≤ 2(a− b)2 + 2(b− c)2 and adding (A.7) end the proof of
Lemma A.2 �
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CS 20085, 63178 Aubière, France and Department of Statistics, University of Oxford, 1 South
Parks Road, Oxford OX1 3TG, UK

E-mail address: charline.smadi@polytechnique.edu

Author-produced version of the article published in Acta Applicandae Mathematicae, 2017, 1(1), 11-51. 
The original publication is available at http://www.sciencedirect.com/ 

doi : 10.1007/s10440-016-0086-x 


	Introduction
	1. Model
	2. results
	3. Discussion
	3.1. Varying population size
	3.2. Eco-evolutionary approach
	3.3. Back mutations

	4. Poisson representation and couplings
	4.1. Poisson representation
	4.2. A first coupling with birth and death processes
	4.3. A second coupling with birth and death processes

	5. Proof of Theorem ??
	6. Proof of Theorem ??
	6.1. Proof of Theorem ?? point (2)
	6.2. Proof of Theorem ?? point (3)

	7. Proof ot Theorem ??
	8. Proof of Proposition ??
	9. Proof of Proposition ??
	10. Illustration of Theorem ??
	A. Technical results
	References



