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Abstract

In recent years, aerial vehicles have allowed exploring scenarios with
harsh conditions. These can conduct reconnaissance tasks in areas that
change periodically and have a high spatial and temporal resolution. The
objective of a reconnaissance task is to survey an area and retrieve strategic
information. The aerial vehicles, however, have inherent constraints in
terms of energy and transmission range due to their mobility. Despite
these constraints, the Data Foraging problem requires the aerial vehicles
to exchange information about profitable data sources. In Data Foraging,
establishing a single path is not viable because of dynamic conditions
of the environment. Thus, reconnaissance must be focused on periodi-
cally searching profitable environmental data sources, as some animals
perform foraging. In this work, a data-foraging-oriented reconnaissance
algorithm based on bio-inspired indirect communication for aerial vehi-
cles is presented. The approach establishes several paths that overlap
to identify valuable data sources. Inspired by the stigmergy principle,
the aerial vehicles indirectly communicate through artificial pheromones.
The aerial vehicles traverse the environment using a heuristic algorithm
that uses the artificial pheromones as feedback. The solution is formally
defined and mathematically evaluated. In addition, we show the viability
of the algorithm by simulations which have been tested through various
statistical hypothesis.
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1 Introduction

In recent years, the use of Unmanned Aerial Vehicles (UAVs) has become
important in numerous tasks, such as security surveillance, transportation [1],
rescue and environmental monitoring. An outstanding capacity of these vehicles
is that they can allow not only monitor environments with harsh conditions
where humans cannot have access, but they can also monitor scenarios that
change periodically, with a high spatial and temporal resolution [2].

For example, in flood monitoring it is necessary to identify the increase
in water levels of certain regions in the environment. The water level can
move in an uncontrolled way and change with a high frequency. Therefore, to
identify these changes it is necessary to perform reconnaissance (Reconnaissance
refers to the task of traveling with the purpose of discovering new territories,
unknown spaces, roads and routes.) tasks over an area. This implies frequently
collecting and selecting the most relevant data about the current status of the
environment. Once the reconnaissance task has been done, oversampling some
regions is necessary to determine which regions are relevant despite changes in
the environmental conditions.

A feasible solution is to employ UAVs to perform the reconnaissance task.
In this sense, some UAVs can sample the area through various flights, exchang-
ing partial views to determine the regions with relevant environmental data.
However, due to their mobility, UAVs have inherent constraints in terms of
energy and transmission range. Thereby, it is necessary not only to perform the
communication among these vehicles even with a lack of direct coupling among
senders and receivers, but also to tackle the problem of monitoring a changing
environment.

In nature, some animals face similar problems when foraging for food, and
the main objective is to retrieve the most profitable food resources by considering
various restrictions, including energy. In order to communicate the findings
obtained through reconnaissance to other animals, several species use indirect
communication such as segregation of pheromones. Data Foraging is related to
the selection of profitable data sources in a dynamic environment with mobile
sensors.

Many approaches related to reconnaissance with mobile sensors have been
proposed, especially in robotics, where the main objective is to find an optimal
path to maximize the knowledge over a particular area [3, 4, 5, 6, 7, 8].

Finding a single optimal reconnaissance path is not suitable for data foraging,
particularly when an operational environment with highly changing attributes is
considered, and where the objectives may change dynamically.

In this sense, Data Foraging-Oriented Reconnaissance (DFORE) requires
establishing multiple dynamic paths to ensure that a profitable data source can
be identified. Figure 1a depicts how a group of ants performs the exploration
and the exploitation of their environment. In some species, food collection is
achieved by thousands of workers travelling along well-defined foraging trails.
These trails emerge from a succession of pheromone deposits that can result in
a complex network of interconnected routes [9]. To perform DFORE, a UAV
searches for points of interest in an unknown environment, as depicted in Figure
1b. Through various trips, the UAV can identify a region which has something of
interest to the application. Both systems are dynamic; therefore, several paths
must be explored in order to exploit useful resources.
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(a) (b)
Figure 1: Both the ants and the UAV forage resources. They must be able to
identify dynamic resources with limited energy and temporal constraints. (a)
Ants foraging; (b) UAV performing DFORE.

In this work, we propose a Data Foraging-Oriented Reconnaissance algorithm
for a single aerial vehicle. Inspired by the stigmergy principle, aerial vehicles com-
municate indirectly through an artificial pheromone to create several paths and
to explore the operational environment with limited movement capabilities; thus,
the focus of the research is how these devices through indirect communication
can do a reconnaissance task. A hexagonal grid to represent the operational envi-
ronment is used. Hexagonal models allow for a better movement representation
in 2D due to the uniform distance in any direction. We assume the aerial vehicle
has limited movement capabilities, and for this reason, the aerial vehicle needs to
be recharged as many times as needed at a base station. The required movement
capacity of the aerial vehicle per trip to explore an operational environment is
identified based on the size of the hexagonal grid. The algorithm accomplishes
the temporal constraints that are defined for DFORE. It is proved in a formal way
that the algorithm satisfies such constraints. A computational cost analysis and
a simulation are presented to show the viability of our solution. We compare our
proposed algorithm to MULES [10], adapted to the foraging reconnaissance task,
which is a random walk with uniform distribution algorithm to collect data from
the environment. MULES has similarities with our proposed mechanism, they
both use indirect communication through an intermediary in our case artificial
pheromones and in MULES the use of a mobile data relay. We measured the
number of trips by each algorithm in different conditions. The comparison with
MULES is justified since this proposal is the baseline algorithm for indirect
communication among mobile sensors. Also, this algorithm is extensively used
in recent works to solve problems like patrolling, source location privacy, data
collection, etc. [11, 12, 13].

The organization of this document is as follows: A survey of recent literature
is presented in Section 2. In Section 3, the preliminaries are explained along
with the system model. Our proposed solution is presented in Section 4. The
analysis of the proposed algorithm is shown in Section 5. In Section 6, the proof
to validate our proposed algorithm is discussed. A series of experiments are
shown in Section 7. The discussion of our algorithm is presented in Section 8.
Conclusions are presented in Section 9. As a quick guide to follow this work, the
notation is presented in Table 1 and acronyms are listed in Table 11.
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Table 1: Notation table.

U ≜ Set of Mobile Data Foragers, where each u ∈ U = {u1, u2,⋯, uq}
R ≜ The operational environment represented by a set of regions r
H ≜ The Hextille that represents the operational environment
Gh ≜ The Data Foraging graph to model Hextille H with radius hex
nh ≜ Number of cells of Gh

ph ≜ Depth of Gh

εh ≜ Required steps to traverse Gh

eu ≜ Endurance of mobile sensor u
Fc ≜ Set of food pheromones
Ft ≜ Set of travel pheromones
F ≜ Set of pheromones. The union of Fc ∪ Ft

Fr ≜ The set of pheromones present at region r
η ≜ The farthest region from the base within the main line
ζ ≜ The region r where the base station is located
TexpMax ≜ Maximum reconnaissance time
Tstart ≜ Reconnaissance’s start time
Tstampt(r) ≜ The time when the region r is stamped

2 Related Work

There are several remarkable works related to our proposal from different perspec-
tives. In this section, the related work for constrained exploration is presented,
where a mobile agent must interrupt, return to the base station and refuel before
continuing exploration. Next, the works that address the reconnaissance problem
are discussed, which is a special type of exploration where the objective is to
gain strategic information from uncertain environments with an optimal path.
Finally, the differences between reconnaissance and Data-Foraging Oriented
Reconnaissance are presented.

2.1 Constrained Exploration

Exploration of an unknown environment has been studied in numerous occasions
[14]. In most proposals, the unknown environment is modeled as a graph. For
such approaches, the task is to explore a given graph while optimizing the
exploration routes. In general, exploration algorithms can be classified into
two main types: offline and on-line. Offline exploration occurs when the graph
information is known in advance. In contrast, during an on-line exploration,
the information about the graph can only be learned in the execution of the
exploration algorithm. Based on the concept of on-line exploration, the most
used algorithms are the Depth First Search (DFS) and the Breadth First Search
(BFS) [15]. A variation of on-line exploration was introduced by Betke et al.
[16]. In this variation, called piecemeal search model (PSM), two constraints
were added to the problem of graph exploration:

• Continuity: An agent must traverse the graph by passing through incident
nodes. There is no teleportation of the agent to any node.
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• Interruptibility: The agent must return to the start node s after traversing
ϑ steps to recharge energy, where ϑ is a constant . In this sense, for PSM,
the agent’s energy (required to travel ϑ steps), is set to 2(1 + α)r; where r
is the distance to the farthest node from the starting node s and α > 0 is a
constant. The agent’s energy is proportional to α.

With these constraints, BFS and DFS are not able to solve the piecemeal
search problem [17]. Thus, several algorithms have been proposed to tackle
such a problem. Betke et al. [16] present two algorithms: Wavefront and Ray.
The Wavefront algorithm is based on BFS. It expands knowledge in waves from
a starting node, just like a pebble expands a wave when thrown in a pond.
The graph is decomposed into four regions, and each region is explored through
ripples. The authors also present an algorithm based on DFS, which is called
Ray and is similar to Wavefront, but it considers the shortest path from the
starting node and any point in the ray. The main objective of these algorithms
is to reduce the uncertainty of new routes to traverse an area. To the best of our
knowledge, there are only three more works that deal with the restrictions pro-
posed by Betke et al. [16]: Argamon et al. [18], Duncan et al. [17], P. B. Sujit
and Debasish Ghose [19]. Moreover, in opportunistic routing, Shah et al. [10]
presented another work that can be extended to satisfy the PSM constraints.

Argamon et al. [18] present an on-line exploration while performing algorithm
for a repeated task(s). A repeated task must be done continuously, more than
once. An agent needs to go from two points at least r times. The goal of the
agent is to minimize the overall cost of performing the task(s). The agent also
searches for new paths in the graph that are not explored. Movement is done
through the expected utility of each path taken. The path between the two
known points, improves over time. This movement is not restricted by energy
constraints, and it is assumed that the agent has enough energy to get to the
two points.

In Duncan et al. [17], the authors present an optimal constrained graph
exploration algorithm called Bounded Deep First Exploration (bDFX), which
uses a rope of size (1 + α)r for some constant α > 0 and a known radius r. To
be able to access every node in the graph, bDFX prunes the nodes beyond the
rope and maintains a list of disjoint subtrees of the original graph whose union
contains all the nodes not visited. After applying a deep first search algorithm
to each subtree, an agent can visit all the nodes of that particular subtree.

P. B. Sujit and Debasish Ghose [19] introduce game theory, where two UAVs
explore an area in order to minimize the uncertainty of the sampling area. They
proposed computing a non-cooperative Nash equilibrium to coordinate the two
UAVS. However, it is very expensive to compute it. Furthermore, they have a
q-ahead look-up policy, which makes calculating the Nash equilibrium even more
costly.

In opportunistic routing, mobile sensors have uncontrolled mobility and
move in a random fashion, similar to a random walk. Despite not using the
constraints of the PSM, Shah et al. [10] proposed a three-tier architecture with
a mobile sensor named Data Mobile Ubiquitous LAN Extensions (MULEs) to
collect data from sensors and transfer them to the sink. Thus, the MULEs are a
mechanical carrier of information and achieve indirect communication between
sensors. In order to include the constraints of the PSM, it is necessary to limit
the movement of the MULEs and make them return to a base station after
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some steps. Using the approach of indirect communication, the network life is
extended as indirect communication removes the burden of control information
from the sensor, although latency is increased because the sensors have to wait
for a MULE to approach before they can transfer data. As a result, high latency
is the main disadvantage of such approaches.

2.2 Reconnaissance Problem

There have been many works that tackle the reconnaissance problem with aerial
vehicles. Most of them are focused on the path taken by these aerial vehicles; thus,
the interest is to find the optimal path under a series of constraints. Strategic
information is represented as targets. The targets can remain fixed or change
with respect of time, i.e., the operational environment is dynamic and uncertain.
Therefore, the task of reconnaissance is divided into two approaches: Static and
Dynamic.

Static path optimization relies on knowledge about the operational environ-
ment. Traditional approaches such as Particle Swarm Optimization [20], Genetic
Algorithms [21] and Ant Colony [22] are used to obtain an optimal path for
the aerial vehicles. Several other constraints to find an optimal path have been
studied. Time is one of them; thus, the problem of task assignment has been
researched in [23, 24]. The minimum number of turns required to cover an
area is explored in [25]. Formation for several aereal vehicles is also analysed
in [26]. There are also others interesting optimization approaches based on
techniques like Taguchi-methods, differential evolution, hybrid Taguchi-cuckoo
search algorithm [27, 28, 29] that have given nice result optimizing objectives
in multiples scenarios such as two degrees of freedom compliant mechanism,
micro-displacement sensors, and positioning platforms.

The main disadvantage of these approaches regarding an unknown environ-
ment is the assumption of information known a priori. Another issue is that the
optimal path obtained by these approaches must remain constant; however, there
are dynamic environments where new conditions must be taken into account in
order to get a useful path, e.g. the aerial vehicles must avoid moving obstacles.
Dynamic reconnaissance for unknown environments has been studied in the
following works. The aerial vehicles must respond to the dynamic changes in the
environment. The use of probability distributions with a priori information has
been addressed in [30, 31], where the main idea is to adapt the path taken by
the aerial vehicles based on the probability of new threats or emerging targets.
To avoid obstacles, a hybrid approach was proposed in [32].

2.3 Differences between Reconnaissance and Data-Foraging
Oriented Reconnaissance

There are differences between common reconnaissance and Data Foraging-
Oriented Reconnaissance (DFORE). In common reconnaissance, every node
must be visited with equal priority, and a single trip is sufficient to gather
data from the nodes. However, for DFORE, the priority of every node can
change based on the retrieved information of the node; thus, the interest is to
overlap several trips. Therefore, in the common reconnaissance problem, the
movement capability to traverse the whole graph is greater than the number of
nodes: ε ≥ αn where ε is the movement capability a mobile agent has, α > 1 is

6



a constant and n is the number of nodes. Then, the objective is to minimize
ε with an optimal route because every node has the same priority. On the
other hand, DFORE considers multiple trips to explore the whole graph due
to the movement constraints of the mobile elements. Thus, the objective is
to obtain valuable data sources based on the overlapping paths generated by
several trips in unknown environments. Most of the cited works do not meet the
constraints imposed by DFORE, with the exception of MULES [10] modified to
have movement constraints. The objective of our work is to explore a delimited
area with endurance constraints for a dynamic environment by using a single
aerial vehicle to obtain valuable data sources, which meet the constraints of the
DFORE problem.

3 Preliminaries

In this section, the system model, as well as the formal definition of DFORE
with its restrictions, are discussed.

3.1 Problem Definition

The problem of DFORE is related to the reconnaissance task in uncertain
environments, where valuable regions can change with respect to time due to
their dynamic nature. More precisely, each profitable region has a lifetime
associated to it. Each of these regions has different values according to the
application. Considering the conditions of the operational environment, it is
necessary to oversample it through various trips and to selectively choose the
more profitable regions, taking into account the temporal constraints of the
regions. Therefore, the reconnaissance step must ensure that the entire sampling
area is examined before a maximum time t1.

3.2 Modeling the Operational Environment

Exploring the operational environment is done through a single aerial vehicle. The
aerial vehicle lifts off the base station ζ, explores the operational environment,
and returns to the base station to refuel. These three activities, together,
determine a trip. Due to the flight endurance, which refers to the amount of
time a mobile element spends in flight without landing, it might be impossible to
visit all the regions of the operational environment in a single trip. In this work
we assume that the mobile element must return to a base station to recharge
fuel; that is, the flight endurance of the mobile element is not enough to explore
the whole environment. For these reasons, the aerial vehicle needs to perform
several trips in order to explore the operational environment.

3.3 System Model

Next, the system model is defined in order to describe and represent our system.

• Mobile Data Foragers. The explorer entities in the system are modeled
as MDF. Each MDF belongs to the set U = {u1, u2, . . . , uq}. An MDF
u ∈ U represents aerial vehicles flying over the operational environment.
Each u ∈ U has a finite amount of steps it can make, limited storage and

7



computational resources. Every time the MDF moves to an adjacent region,
the number of steps of the MDF is reduced by one.

• Pheromones. Since there is no single reconnaissance route, each MDF u ∈ U
is guided by a trail of pheromones. In this work, a pheromone is defined
as an abstract data type as follows. A pheromone f ∈ F is represented
as a tuple f = {r, counter}, where r is the identifier of the region where
the pheromone was placed, and counter is the number of pheromones
placed in such region. There are two types of pheromones: food and travel
pheromones. Food pheromones indicate that in a specific region there is
something of interest to the application; food pheromones are denoted by
the set Fc. On the other hand, travel pheromones indicate that the region
has been visited; they are denoted by the set Ft. The set F of pheromones
is the union of food and travel pheromones, that is F = Fc ∪ Ft. Each
pheromone belongs to the set F = {f1, f2, . . . , fk}. Each pheromone f has
a lifetime associated to the maximum time a pheromone can be in a region.

• Operational environment. We represent the operational environment as a
Hextille H of radius hex in the form of a set R = {r1, r2, . . . , ri}, where each
r ∈ R is a sampling region. The radius hex of the Hextille H is defined as
the linear distance from the center of the Hextille to the farthest hexagon
of the Hextille in any of the six directions. Figure 2 shows an example
of the environment as a tilled hexagonal grid. It should be noted that
the hexagonal grid is not restricted just to the specific radius shown in
Figure 2 and can vary in radius. A two-dimensional space is considered
along with the knowledge of the environment in the form of a map, but
without the characteristic and conditions of the environment; that is, there
is no information about where valuable data sources are located. Exploring
the environment is done through one MDF. The MDF starts at the base
station, explores the environment, and returns to the base station to refuel;
this is called a trip. The sampling area is a subset S ⊆ R, where each
region r ∈ S is a hexagon with a diameter equal to the sensing range of
an MDF u ∈ U. Only one u ∈ U can be in the environment at any given
time. It should be noted that each region r ∈ S has dynamic changing
conditions, which means that regions that are valuable do not necessarily
remain valuable indefinitely. Each r ∈ R has a number of pheromones f
⊆ Fr, where Fr is the set of pheromones present at region r.

• Base station. The base station ζ is a processing unit, associated to the
physical place where each MDF lifts to explore the environment and drops
the retrieved data after each expedition. It is assumed that the base station
has enough resources to process, and send control messages to the MDFs.
There is a unidirectional channel between the base station and the MDF
present in the environment.

• Maximum reconnaissance time: This refers to the maximum time to cover
the sampling area. It is denoted by TexpMax. According to Duncan et al.
[17] the upper bound of exploration under energy constraints is O(n2),
where n is the number of regions.
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Figure 2: Environment as a Hextille.

4 Data Foraging-Oriented Reconnaissance

In order to explore the whole area, the Hextille first is modeled as a special
graph called a Data Foraging Graph (DFG). The graph must be labeled and its
properties are analyzed. Our algorithm is designed and implemented based on
the properties of the DFG.

4.1 Creating a Data Foraging Graph

We are interested in a graphical representation with morphological properties,
such as uniform distance and symmetry. The focus is twofold; first, to reduce the
overhead complexity of the algorithm, and second, to understand how Hextilles
grow in order to obtain the properties used to propose our solution. Thus, any
Hextille H with radius hex is modeled as a connected undirected graph G called
a Data Foraging Graph (DFG) of size h (Gh). The approach to create a DFG is
as follows. First, the position of the base station is chosen. In this work, the
base station can be located on the border of Hextilles; this means that the base
is placed outside the sampling area for practical reasons. Due to the symmetrical
properties, any hexagon in the border of a Hextille can be chosen and the DFG
will remain the same; for example, in Figure 2, hexagons 1, 3, 5, 7, 9 and 11 can
be used interchangeably to place the base station. Figure 3 shows an example
with a DFG G3. For every hexagonal cell, a node is created. Nodes are related
with edges if they share a vertex. Therefore, any node has a maximum of six
neighbors.
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Figure 3: A Data Foraging Graph is created from the Hextille of Figure 2. The
square represents the base station while the circles represent the regions of the
Hextille. Every region has adjacent regions which are connected with edges
between the circles.

4.2 Enumerating a Data Foraging Graph

To identify the nodes in a unique way, it is necessary to label the graph with
numbers. There are many ways to enumerate the nodes of a DFG. Our approach
is based on the previously defined representation:

• The root of the graph (base station) is numbered as 0. The next node to
be numbered is chosen from a clockwise spiral, as shown in Figure 4.

• The process stops when all nodes of the DFG are numbered.

This approach is used because it simplifies comprehension and readability of
the DFG.

Figure 4: Enumerating the graph.

4.3 Data Foraging Graph Properties

The properties of any given DFG Gh of size h are introduced. The properties
help us formally define the problem of Data Foraging-Oriented Reconnaissance
(DFORE) for any Hextille of radius hex and analyze our algorithm to prove it
satisfies the restrictions of DFORE.
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The linear distance between the base station and the farthest region is called
the depth of the DFG.

Property 1. For any given DFG Gh where h ≥ 1, its depth ph is equal to:

ph = 2h − 1. (1)

To show that Property 1 a straight line is drawn from the base station of
Gh to the farthest node of the graph and count the number of regions the lines
cross are counted.

The hexagonal tilling consists of a number of hexagons bordered by other
hexagons. It is necessary to know the number of hexagons for any Hextille with
radius hex. This allows us to know how the sampling area grows and to measure
the performance of our algorithm compared to others, in terms of the number
of regions they visit. The DFG will also have the same number of nodes as the
Hextille.

Property 2. For any given DFG Gh with depth ph (see Equation (1)), the
number of regions nh is given by the following recursion:

nh = (3ph−1 + 3) + nh−1

The close solution for the recurrence is (see Appendix 12.1):

nh = 3h2 − 3h + 1 (2)

The focus is on the minimum number of steps to travel from the base station
to another region of the DFG without having to recharge the MDF.

Property 3. Let εh be the required number of steps that are necessary to reach
any region from the base station. For any DFG Gh, h ≥ 1, the required number
of steps εh is:

εh = 2h − 1. (3)

Since it is necessary to return to the base station, the total number of steps an
MDF can make is 2εh.

Property 4. Let η be the farthest region from the base within the main line.
Let ζ be the base station, which is at the root of the DFG.

It is impossible to get from one region to all the regions of the DFG with
the movement capabilities of the MDF. Only the base station can be reached
from any region of the DFG with the required number of steps (see Property 3).
Therefore, we are interested in defining the set of reachable regions given the
remaining energy of the MDF.

Property 5. Let be two regions, r, r′ ∈ R, r ≠ r′, the remaining number of steps
eu of an MDF and the physical distance between a pair of regions r and r′ noted
as d(r, r′). A region r′ is reachable if and only if there are enough steps Ψ to
visit the region and return to the base station:

Ψ = eu − d(r, r′) − d(r′, ζ) ≥ 0 (4)
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4.4 Problem Definition According to Our Environment
Representation

With our environment representation, the problem of Data Foraging-Oriented
Reconnaissance (DFORE) can be formally defined using the previously defined
properties.

DFORE: The objective of DFORE is to stamp every region in the sampling
area, while visiting nodes according to their priority. This will ensure that the
algorithm obtains points of attraction based on trip overlaps. Each MDF will
stamp regions by retrieving data from the region. Formally, the problem of
DFORE must meet the following restrictions:

Restriction 1. Every region in the sampling area must be visited and stamped
with a pheromone before a maximum time. Let Tstart be the reconnaissance’s
start time, Tstampt(r) be the time of the visit and stamping of a region r ∈ R
with a pheromone f in the set F at step t, related to the number of regions visited
since Tstart. Finally, let TexpMax be the maximum reconnaissance time, the
reconnaissance step must meet:

∀r ∈ R, ∣Tstampt(r) − Tstart∣ ≤ TexpMax (5)

Restriction 2. Every MDF must return to the base station ζ within its specified
maximum endurance. Let eu be the endurance of an MDF u

Tstampt(ζ) ≤ eu. (6)

Restriction 3. Continuity: Every move of an MDF must be done only on
adjacent regions. That is, an MDF cannot jump from one region to another one
which is not adjacent to it.

Restriction 4. Interruptibility: The MDF must return to the base station ζ in
at most 2εh steps, where εh is the required number of steps to arrive from the
base station ζ to the farthest region η.

4.5 Proposed Algorithm

At the beginning of the mission, there is no information about the sampling
area. After Hextille H with radius hex is selected, we construct a DFG Gh of the
sampling area and explore it. Once the MDF has visited a region in Gh, the MDF
stamps the region. The objective of reconnaissance is to expand the knowledge
of the sampling area while visiting nodes based on their priority. In order to
explore new nodes getting to farthest and less stamped nodes is preferred. It
is necessary to satisfy Restrictions 2, 3 and 4 (see Section 4.4). The following
rules are:

Rule 1. Given the remaining energy eu of an MDF, the set of potential nodes
Lr, the minimum number of steps εh to traverse the DFG Gh, a region r, its
neighbors Vr, the next potential node r′ to be visited by an MDF is a r′ ∈ Lr ⊆ Vr.
The set Lr is determined by:

• (a) if eu > εh, Lr ← {r′ ∈ Vr : d(r′, ζ) ≥ d(r′′, ζ)∀r′′ ∈ Vr},
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• (b) otherwise, Lr ← {r′ ∈ Vr : d(r′, ζ) ≤ d(r′′, ζ)∀r′′ ∈ Vr }.

Rule 2. Given a region r and its neighbors Lr, an MDF can only move if
∃r′ ∈ Lr such that the estimated remaining energy between r and r′, Ψ ≥ 0 (see
Constraint 5) .

The rules are implemented in the algorithm. The main function of the
algorithm is shown in Algorithm 1. The detailed description of the DFORE
algorithm is presented in Appendix 12.4.

Algorithm 1 Exploration algorithm.

1: function [List<Cell>, int] exploration(int eu, List<Cell> area)

2: int time← 0

3: Cell r ← 0

4: while eu ≥ 0 do

5: if (eu − 2) − ebase- ≥ 0 then

6: Cell r′ ← choose(neighbors(r)) /* See Appendix 12.4 */

7: else

8: Cell r′ ← traceback(neighbors(r), eu) /* See Appendix 12.4 */

9: end if

10: e′u ← eu − 1

11: r′.stamp← r′.stamp + 1

12: time′ ← time + 1

13: r ← r′

14: end while

15: List < Cell > foodCells← getFoodCells(area) /* See Appendix 12.4 */

16: return [foodCells, time]
17: end function

Next, the DFORE algorithm is described. If the environment has not been
visited completely, the reconnaissance continues its execution while the MDF
has enough number of steps to continue exploring the DFG. In order to choose
the next node to be visited, it is necessary to verify whether the MDF has
enough remaining steps to proceed (function EXPLORATION line 4, Rule 2)
or needs to return (function EXPLORATION line 6). If the MDF can proceed,
the following heuristics are applied. First, the MDF selects the adjacent nodes
with the largest distance to the base station ζ (see Rule 1a). Second, the MDF
chooses the nodes with fewer stamps (function choose see Appendix 12.4 line 6).
Third, if all conditions hold, i.e., every node has the same distance to the base
station and the nodes have the same number of stamps, then the MDF chooses
a node at random with a uniform distribution (function choose see Appendix
12.4 line 7). After moving to the last node, the MDF must return to recharge
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energy. Thus, when the MDF cannot proceed, then it will begin to choose nodes
which are nearer to the base station (see Rule 1b); therefore, the MDF will
return to the base station satisfying Restriction 4 (see Section 4.4). See Figure 5
for the following example. All red nodes are stamped, the number of stamps
is represented by the intensity of the color. The MDF is currently on node 0.
At step 0, the MDF chooses node 1 since it has only one choice. At step 1, the
MDF chooses node 13, which is not stamped. Node 19 with less stamps is chosen
at step 2. The MDF chooses randomly node 15 at step 3. In step 4, the MDF
chooses node at random.

Figure 5: Reconnaissance example using the heuristics. The number of stamps
in a node is represented by the intensity of the color.

To show an example of the execution of our algorithm in various trips, Figure
6 depicts an example of the reconnaissance algorithm for a DFG G3. Each color
represents the trip taken. Uncolored nodes are not visited yet. The first trip is
colored in green. When the MDF cannot proceed, it returns to recharge energy
at the base station. In the second trip, the MDF explores unvisited nodes, puts
a pink stamp and returns. Finally, in the last trip, the MDF visits another group
of nodes and paints them blue. In order to explore the entire graph, overlaps
between trips must occur. It can be noted that in the last trip, the MDF exploits
better the movement capabilities since it explores more nodes in one trip.

Figure 6: Reconnaissance of the DFG G3. Each trip can be different. The base
station is placed at node 0. The MDF is restricted to visit 10 nodes.
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5 Algorithm Analysis

In this section, the mathematical analysis of our algorithm is discussed to show
that it satisfies the restrictions of the problem. The number of trips required to
explore any DFG with n regions is analyzed. The first part is devoted to the use
of the required number of steps εh to traverse the whole DFG, both in the best
and in the general case of reconnaissance. Based on this analysis, the minimum
and expected number of trips for any DFG with n regions is obtained. Finally,
the number of trips required to visit every node in the DFG is analyzed with a
greater number of steps than εh.

5.1 Number of Trips Using the Required Number of Steps:
Best Case

The best case occurs when there is almost no overlap of paths to visit every
node in the DFG. If the graph Gh is divided by a straight line between the base
station and the farthest region η, symmetrical sub areas are obtained. Figure 7
shows the environment divided in half. If the process continues, eventually only
a straight line is obtained. Thus, it is possible to apply a divide and conquer
strategy. Formally, this behavior is defined as follows. Let f(n) be the problem
of exploring an environment represented by graph G with n regions.

Figure 7: A central line divides the environment in half. Step 1 divides the
Hextille in two symmetric parts. Step 2 continues to do this until there is only
one straight line at Step 3.

Definition 1. Each time the DFG Gh is divided, f(n) is split into two equal
subsets with the same cardinality. In order to combine the solution, at least n
steps need to move towards the base station. Therefore, for any given environment
f(n) can be expressed by:

f(n) = 2f(n/2) + c (7)

where c is a constant.

We have a linear time to explore n nodes, that is: f(n) = O(n) (see Appendix
12.2). However, there is a precise way of calculating the minimum number of
trips required to explore any DFG Gh, given the required number of steps εh
available. There are two ways that a main line can be traversed: Either by
choosing a main line and returning to the base using the same regions, or by
backtracking using the next row of regions. However, the farthest region η of
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the next row will not be marked. Figure 8 shows an example of this situation. It
can be seen that the minimum number of trips for any given DFG Gh is equal
to its depth ph.

Definition 2. The minimum number of trips Th to explore any given DFG Gh

is equal to its depth ph (see Equation (1)) .

Th = ph. (8)

For any DFG Gh, in every trip, the number of nodes traversed is 2(2h − 1).
Since there are Th trips, the total number of nodes traversed required to explore
the DFG Gh is 2Th(2h − 1). Based on Equation (8), the previous equation is
2(2h − 1)2. Expanding the equation yields:

f(n) = 8h2 − 8h + 2 (9)

However, to obtain profitable data sources, various trips must overlap in
order to discriminate valuable sources from common ones. Therefore, a general
case of reconnaissance where various trips overlap must be addressed.

Figure 8: The best way to explore a graph with the required number of steps is
by having each trip visits both a line and its adjacent line. Since there are ph
lines, that is the minimum number of trips to explore the whole graph. In this
particular example, ph is equal to five.

5.2 Number of Trips Using the Required Number of Steps:
General Case

In the general case, the interest is to visit several nodes repeatedly in order to
obtain valuable nodes, contrary to the goal in the best case. Therefore, the focus
is to obtain the average number of trips to explore the DFG considering the
heuristics of our proposal. In order to calculate the average number of trips, the
environment is divided into rows and columns. The rows correspond to the levels
in the graph while the columns are represented by the width of the graph. This
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division is shown in Figure 9. The columns correspond to the blue nodes, and
the levels start at the base station. Only the blue nodes are considered because
if a blue node is visited, there is a chance to visit all the nodes in the column
due to the heuristics of the proposed solution. For example, if the current node
is 3, the MDF will choose 4 over 14 and 2 because the distance from 4 to the
base station is greater than all the adjacent nodes of the current node.

Figure 9: Lines divide the environment in rows and columns.

Since there are many possibilities to travel in the blue nodes, it is necessary
to calculate the number of trips on average to stamp every node in the column.
Table 2 shows the average ways we need to pass by each blue node in order to
stamp every node in that column. The first column of Table 2 contains each blue
node, and the second column presents the average number of ways a particular
blue node can have all its siblings visited based on the DFORE algorithm. The
number of average trips is the number of edges the MDF can take from a blue
node using the heuristics of the algorithm. For example, for the blue node 2,
there are four possible edges. The first edge is in the line that consists of nodes
{14, 15, 6}; the second edge is from node 2 to 3; the third edge is from 14 to 4;
and the last edge is from 15 to 5. There is not an edge between 6 and 5 since it
is impossible to get from 6 to 5 with the required number of steps. Therefore,
the number of edges of all blue nodes is the average number of trips required to
explore the graph. We show the equation of the expected number of trips for
any given DFG.

Table 2: Average trips to cover all the siblings on the line of each blue node.

Node Average Ways

1 9
2 4
3 1
12 4
11 1

Definition 3. Given a DFG Gh with depth ph (see Equation (1)). The expected
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average number of trips Th is:

Th = 2ph + 2
h−2

∑
j=1

(ph − j) + 1. (10)

However, there is a simpler way to calculate the expected average number of
trips for any given DFG. To obtain the expression, a table for each environment
is built. Table 3 shows each DFG Gh with the correspondent variables. In the
first column, the size of each DFG is shown. The second column contains the
number of nodes in each DFG. The third column shows the depth of the graphs.
Finally, the difference between the number of nodes of DFG of size h and h − 1
is presented in the last column. We note that each successive environment grows
by a fixed amount of six as shown in the last row of the table. For example, with
the DFG G3, the number of nodes is 19, while for the DFG it is 7, and their
difference is 19 − 7, which is equal to 12.

Table 3: Variables for each environment.

DFG size h Number of nodes nh Depth of Gh nh − nh−1
1 1 1
2 7 3 6
3 19 5 12
4 37 7 18
5 61 9 24
6 91 11 30
7 127 13 36
8 169 15 42
9 217 17 48
10 271 19 54
11 331 21 60

Taking into consideration the growth of each successive Hextille, the number of
regions for any Hextille is given by the following expression: nh = 3h2−3h+1 (see
Appendix 12.2). Finally, the expected average number of trips is Th = 3h2−3h+1
(see Appendix 12.1). Therefore, Th = nh.

Furthermore, to get the computational cost of the general case, consider that
the number of nodes visited by each trip is 2εh. Therefore, if there are Th trips,
the total number of nodes is 2Thεh. Since Th = nh, the expression is 2nhεh. Also,
notice that nh > 2εh. Since 2εh is a constant, we ignore it. Thus, the general
case of exploration is linear O(n) with respect to the number of nodes in any
DFG.

We have calculated the average number of trips for any DFG with the required
number of steps εh. When the number of steps of the MDF eu is bigger than the
required number of steps εh of a given DFG Gh, that is eu > εh, the number of
regions visited is increased by a constant factor. Therefore, the expected number
of trips remains the same; thus, the reconnaissance time is linear with respect to
the number of nodes visited: f(n) ⊆ O(n).
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6 Correctness Proof

Section 5 shows that our algorithm has a linear time O(n) while the upper
bound of exploration under interruption is O(n2). Now we prove that our
proposal satisfies the DFORE’s restrictions. Reconnaissance must satisfy the
following restriction: ∀r ∈ R, ∣Tstampt(r) − Tstart∣ ≤ TexpMax (see Section 4.4).
The maximum reconnaissance time for any given DFG Gh where i ∈ N under
interruptibility is n2h. This is the time needed to explore the graph using DFS
[17]. If the reconnaissance time of our proposed algorithm is greater than n2h,
then it is not better than DFS, and therefore, our proposed algorithm does not
satisfy the restriction of the DFORE problem. For this particular proof, we define
the reconnaissance time of our algorithm as the sum of the differences between
each stamp of a region with respect to the start time Tstart, in other words,
the time taken by our algorithm to stamp every region in Gh. By definition,
the stamping time at time t is equal to: Tstampt(r) = Tstampt−1(r′) + t where
r ≠ r′ and Tstamp0(ζ) = Tstart.

Definition 4. For a DFG Gh the number of nodes is nh = 3h2−3h+1; therefore,
the reconnaissance time TexpMax is equal to:

TexpMax = (3h2 − 3h + 1)2. (11)

The following restriction should be satisfied:

Restriction 5. The reconnaissance time of our algorithm TexpAlgorithm is less
than the maximum reconnaissance time: TexpAlgorithm < TexpMax.

In order to satisfy Restriction 5, the whole area should be explored within
the given time TexpMax. Therefore, both the best and general case must be
analyzed. The following theorems state that our algorithm satisfies Restriction
5.

Theorem 1. The divide and conquer reconnaissance algorithm for the best case
satisfies Restriction 5 for any given DFG Gh.

Theorem 2. The reconnaissance algorithm for the general case satisfies Re-
striction 5 for any given DFG Gh.

To prove Theorem 1, the time taken by the reconnaissance step and the
time to sample the entire area are calculated. According to Definition 4, the
reconnaissance time for any given DFG Gh is TexpMax = (3h2 − 3h + 1)2. The
time it takes to explore Gh is calculated using the divide and conquer method
TexpDivide which is equal to TexpAlgorithm. We know that TexpDivide = 2εhph
(see Section 5.1). The depth of any given DFG Gh where h ∈ N is ph = 2h − 1.
Therefore, TexpDivide = 2(εh)2. To prove that TexpMax > TexpDivide, analyzing
the inequality:

(3h2 − 3h + 1)2 > 2(εh)2 (12)

(9h4 − 18h3 + 15h2 − 6h + 1) > (8h2 − 8h + 2) (13)

The inequation holds if the DFG is greater than one; therefore, TexpMax >
TexpDivide if h > 1 ∎.

Now, the general case for Theorem 2 is proven. Based on the analysis, the
average number of trips is Th = 3h2 − 3h + 1. Since every trip takes 2εh of steps,
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the average reconnaissance time TexpAlgorithm is: 2Thεh. It is necessary to verify
that TexpAlgorithm < TexpMax:

TexpMax > TexpAlgorithm

2(Th)2 > 2Thεh

Th > εh
3h2 − 3h + 1 >2 (2h − 1)

3h2 − 3h + 1 >4 h − 2

TexpMax > TexpAlgorithm∣h > 2∎

(14)

We have proved that both the best and the general case of our algorithm,
for any given DFG, satisfies DFORE’s restrictions. In the following section, our
theoretical results are compared with the experimental values.

7 Experiments

To determine the performance of our algorithm under various conditions, two
experiments were defined.

In the first experiment, the movement range of the MDF was set between εh
and 2εh to measure the average number of trips required to place a pheromone
in every node of the DFG. The second experiment compares the performance
of the DFORE algorithm versus the one obtained by MULES [10], adapted to
the foraging reconnaissance task. The comparison with MULES is justified since
this proposal is the baseline algorithm for indirect communication among mobile
sensors.

7.1 Simulation Versus Theoretical Value

This experiment is conducted in two phases. The first phase is to determine the
difference between the average number of simulated trips versus the theoretical
bound. In the second phase, the experiments are validated through statistical
inference.

7.1.1 Experimental Setup

This experiment includes 5,000,000 flights since the number of simulations
provided sufficient data to measure the average number of trips, such that the
difference among several simulations was not significant. To determine if the
proposed algorithm accomplishes the constraint on the average number of trips
given by Th = 2ph+2∑h−2

i=1 (ph− i)+1, the number of trips required to travel every
DFG Gh were measured. The number of steps was set in the range of [εh,2εh],
with increments of two units, since a unitary increment does not change the
behavior of the algorithm due to Restriction 2 (see Section 4.4). Table 4 shows
the results of this experiment.
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Table 4: Average number of trips per DFGs with our algorithm.

DFG Depth h AVG Trips Std. Deviation Variance Max Min

2 3.8890 0.8315 0.6915 5 3
3 10.6992 2.9336 8.6060 32 5
4 19.7592 5.3702 28.8388 59 7
5 33.2963 9.2975 86.4443 114 11

Figures 10–12 show the distribution of trips for every DFG considering the
different number of steps that the MDF can make. Each colored line represents
a histogram with the corresponding trips per steps. The required steps εh to
traverse Gh is colored blue. When the number of steps increases by a factor of
two, the data distribution is skewed towards the left around a peak value.

Figure 10: DFG G3 with the variation of the required number of steps εh for the
5,000,000 flights. The average number of trips for G3 with εh is 10 trips with a
frequency between 500,000 and 1,000,000 flights to explore the whole DFG. If
the number of steps is incremented, the average number of flights reduces.

Figure 11: DFG G4 with the variation of the required number of steps εh for the
5,000,000 flights. The average number of trips for G4 with εh is 19 trips with a
frequency close to 500,000 to explore the whole DFG. If the number of steps is
incremented, the average number of flights reduces.
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Figure 12: DFG G5 with the variation of the required number of steps εh for the
5,000,000 flights. The average number of trips for G5 with εh is 33 trips with a
frequency between 200,000 and 300,000 flights to explore the whole DFG. If the
number of steps is incremented, the average number of flights reduces.

7.1.2 Statistical Inference

A statistical inference test was done to prove that the average number of trips
performed by the proposed algorithm is different from the theoretical value Th.
For this, 50 random samples of flights were taken, as statistical sample, for every
DFG. We define the null hypothesis H0 as: the average number of trips θ is
equal to Th and the alternative hypothesis H1 as: the average number of trips θ
is less than Th. Considering the p-value obtained from each set of experiments,
the null hypothesis is rejected with a 95% level of confidence, as it can be seen
in Table 5.

A t-test is applied since we obtain a normal distribution due to the randomness
of the movements performed in the experiments. In addition, due to the size
of the sample, the variance between trips is homogeneous and there are no
significant outliers. Table 6 shows the statistic test. Since the significance level
α is 0.05, for every DFG Gh the test passed.

Table 5: T-statistics for each DFGs G3,G4,G5 with the samples. For each row,
we have tested H0 against the results.

DFG Depth h AVG Trips T-Statistic p-Value H0

3 10.8 6.82 <0.00001 Reject
4 20.9 4.01 0.002289 Reject
5 33.37 2.84 0.005388 Reject

Table 6: Average trips per DFGs G3,G4,G5 taken from a sample of 50 random
flights.

DFG Depth h AVG Trips Std. Deviation Variance Th

3 10.8 3.0017 9.0101 19
4 20.9 6.3365 40.1515 37
5 33.37 8.7532 76.6193 61
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7.2 DFORE Compared with MULES Reconnaissance

In this section the DFORE algorithm is compared with MULES. The MDF
starts at the base station both for the DFORE algorithm and MULES. The MDF
explores the whole environment using the two algorithms in different experiments,
measuring the average number of trips performed by each one over DFGs G3,G4.
In this way, considering a sample of 10,000 flights, the difference between the
average number of visited regions by each algorithm was measured.

We define the null hypothesis H0 as: there is no significant difference between
MULES [10] and our proposed algorithm, i.e., the average number of trips θ of
MULES is not different from the average number of trips ϑ of our proposed
algorithm. The alternative hypothesis H1 is: there is a significant difference
between θ and ϑ. The null hypothesis is rejected with a 95% level of confidence.

Table 7 shows the results of this experiment. There is a clear difference
between the average number of trips of the two algorithms. The proposed
algorithm has a better performance than MULES, since it performs less trips
than MULES.

Table 7: Results of our proposed algorithm compared with MULE for Hextilles
H (2, 3, 4).

Algorithm AVG Trips Std. Deviation Variance Max Min

Proposed alg. H2 3.8922 0.8326 0.6933 5 3
MULES H2 13.7152 10.5584 111.4790 122 3

Proposed alg. H3 10.6784 2.9283 8.5751 26 5
MULES H3 206.6570 181.1481 32,814.6230 2290 6

Proposed alg. H4 19.7463 5.3766 28.9077 54 7
MULES H4 3189.4170 2981.9314 8,891,914.6828 33730 66

8 Discussion

Based on the results obtained from the experiments two facts are concluded.
First, the data obtained shows that the average number of trips falls within the
mathematical bound obtained theoretically. From Figures 10–12, it can be seen
that the data follows a distribution towards the mean, despite the randomness
part of our proposed algorithm. In addition, if the movement capabilities are
increased by two units, the number of trips decreases, as shown in Figure 12.
Furthermore, based on the results of the second experiment (see Section 7.2), we
have evidence that our algorithm has better performance than MULES [10]. This
is explained by the random movement of MULES against the oriented movement
of our proposed algorithm. The orientation towards unexplored regions is done
through indirect communication using the artificial pheromones segregated by
each mobile sensor in the regions. Therefore, the average number of trips required
to deposit at least one pheromone in all the graph using our proposed algorithm
is less than that of MULES. The trade-off between computational time and
run time of the algorithm is shown in a comparison between a random walk
algorithm, such as Data MULES, and our proposed algorithm.
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9 Conclusions

We have presented a data-foraging-oriented reconnaissance algorithm based on
bio-inspired indirect communication for aerial vehicles. One original contribution
is the definition of an artificial pheromone, as an abstract data type, oriented to
perform stigmergy-based communications. Through the virtual segregation of
such pheromones, the algorithm allows aerial vehicles which sense a given area,
to communicate indirectly their findings. In this way, aerial vehicles can create
several paths oriented to explore the environment and recognize profitable data
sources. By considering the energy constraints of aerial vehicles and their impact
on their movement capabilities, the operational environment was discretized in
the form of a set of regions organized into a Hextille. Then, based on the Hextille,
the environment is formally modeled as a connected undirected graph called
Data Foraging Graph (DFG). The artificial pheromones segregated are related to
an area that is the region visited, which corresponds to a node in the DFG. The
Data Foraging-Oriented Reconnaissance problem has been defined. We identify
and define the required and sufficient movement capacity capabilities of the aerial
vehicle per trip to explore an environment according to the depth of the DFG.
The solution proposed was formally specified and mathematically evaluated.
The results prove the viability and efficiency of the solution. Additionally, we
have presented a study increasing the aerial vehicle’s movement capability. The
results of this study show that the average number of trips and the run time to
explore the environment highly decrease as the movement capability increases.
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11 Abbreviations

The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
DFORE Data Foraging-Oriented Reconnaissance
DFS Depth First Search
BFS Breadth First Search
PSM Piecemeal Search Model
bDFX Bounded Deep First Exploration
MULE Mobile Ubiquitous LAN Extension

MDF Mobile Data Forager
DFG Data Foraging Graph

12 Appendix

12.1 General Case of Algorithm

To find the solution of the following recurrence, it should be unfolded:
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Th = 2ph + 2
h−2

∑
j=1

(ph − j) + 1

This expression is in terms of depth p; however, the expression in terms of
the number of nodes n is required. It is possible to see that there is a factor of
six if we subtract every second row of Table 3. Therefore, we calculate a factor
of expansion equal to

n

6
− 1

Also, by checking the table, an expression to calculate the number of regions
in a Hextille H is obtained. Find a close equation for this recurrence is needed;
therefore, we try to unfold it to see a pattern.

nh = (3ph−1 + 3) + nh−1
nh = (3ph−1 + 3) + (3ph−2 + 3) + nh−2

nh = (3ph−1 + 3) + (3ph−2 + 3) + (3ph−3 + 3) + nh−3
nh = (3ph−1 + 3) + (3ph−2 + 3) + (3ph−3 + 3) + (3ph−4 + 3) + nh−4

nh = 4 ∗ 3 + 3(ph−1 + ph−2 + ph−3 + ph−4) + nh−4

There is a pattern in the recurrence; every time the recurrence is unfolded a
3 in depth is obtained. If we continue to unfold the recurrence, we get:

nh = 4 ∗ 3 + 3 ∗ (ph−1 + ph−2 + ph−3 + ph−4) + (3 ∗ ph−5 + 3) + nh−5
nh = 4 ∗ 3 + 3 ∗ (ph−1 + ph−2 + ph−3 + ph−4) + (3 ∗ ph−5 + 3) + nh−5 + . . .

nh = 3k + 3 ∗
k

∑
j=1

(ph−j) + nh−k ∀k

If we set k = h:

nh = 3h + 3 ∗
h

∑
j=1

(ph−j) + nh−h (15)

It is necessary to find ∑h
j=1(ph−j). We unfold this sum:

h

∑
j=1

(ph−j) = ph−1 + ph−2 + . . . + ph−h

h

∑
j=1

(ph−j) = ph−1 + ph−2 + . . . + p0

h

∑
j=1

(ph−j) = ph−1 + . . . + 7 + 5 + 3 + 1

h

∑
j=1

(ph−j) = (h − 1)2
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Therefore:

nh = h ∗ 3 + 3 ∗ (h − 1)2 + nh−h
nh = h ∗ 3 + 3 ∗ (h − 1)2 + n0
nh = h ∗ 3 + 3 ∗ (h − 1)2 + 1

nh = 3h2 − 3h + 1

The depth of Hextille with radius hex is:

ph = 2i − 1

Therefore, the average number of trips for any Hextille with radius hex is:

Th = 2ph + 2
h−2

∑
j=1

(ph − j) + 1

Th = 2(2h − 1) + 2
h−2

∑
j=1

((2h − 1) − j) + 1

Th = 4h − 2 + 2[(h − 2)(2h − 1) −
h−2

∑
j=1

(j)] + 1

Th = 4h − 2 + 2[(h − 2)(2h − 1) −
h−2

∑
j=1

(j)] + 1

Th = 4h − 1 + 2(2h2 − 5h + 2) − 2(h − 1)(h − 2)/2
Th = 4h − 1 + 2(2h2 − 5h + 2) − (h2 − 3h + 2)

Th = 3h2 − 3h + 1

12.2 Best Case of Algorithm

To prove the linear time of the best case, a close solution to the following
recurrence must be found:

f(n) = 2f(n/2) + c
where c is a constant.

f(n) = 2f(n/2) + c
= 2(2f(n/4) + c) + c = 4f(n/4) + 3c

f(n) = 4(2f(n/8) + c) + 3c = 8f(n/2) + 7c

⋯
2kf(n/2k) + (2k − 1)c

We need to get rid of f(n/2k) and reach f(1). If log2 n = k, a closest solution
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is possible.

f(n) = 2kf(n/2k) + (2k − 1)c
= 2log2 nf(n/2log2 n) + (2log2 n − 1)c

= nf(1) + (n − 1)c
= n + (n − 1)c

= O(n)

Therefore, we have a linear time to explore n nodes, that is:

f(n) = O(n)

12.3 Multiple MDFs at a Time

In this section, the behavior of our proposal is evaluated in presence of multiple
mobile elements. Each group of MDFs u ∈ U takes off sequentially from the
base station ζ. When all the MDFs of the group return to the ζ, the next
batch of MDFs will lift from the base station, until all regions in the operational
environment have pheromones. The MDFs do not have previous knowledge of the
deposited pheromones by others MDF; thus, the base station must communicate
this information to them. There are two cases to be considered: a) overlapping
regions and b) disjoint regions.

1. Disjoint regions. At any time that a MDF uq is sampling a region ri,
denoted as < uq, ri > then ∀u ∈ U ∣ < u, ri >, then uq ≠ u given that there
are multiple choices from the adjacent regions.

2. Overlapping regions: The mobile elements may share a region at any
time.

Disjoint regions. When no overlap exists at any given time, every MDF
will explore different regions. Figure 13 shows an example of this. MDF uq is
represented by blue while MDF uq−1 is represented by red. In the base station
there is no knowledge about the operational environment. At step 0, since
there is only one region, both MDFs must share a region. The MDFs follow
Rules 1 and 2 from Section 4.5. At step 1, the MDFs have chosen and move to
new regions and select new regions following the rules. After several steps, the
MDFs must return to the base station.

Each one communicates to the base station the deposited pheromones as
shown in Figure 14. Next, the base station combines the information of the
two MDFs into one snapshot of the DFG. In the next cycle, two new MDFs
will continue the reconnaissance task, however each one of them will have the
snapshot from the previous task. Each time new regions are visited, the overall
time required to do DFORE will reduce by a certain amount; however, the
algorithm for DFORE stays the same. This amount is bounded by the depth of
the DFG.
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Figure 13: Two MDFs do the recoinnasance task. Each pheromone deposited by
the MDFs is colored as red or blue.

Figure 14: The operational environment as a causal graph. Some regions are
visited by multiple MDFs when there is only one possibility.

Overlapping regions. Similarly, when overlap occurs, the information can be
shared among the MDFs trough the base station. In the worst case scenario,
every MDF will visit the same region at the same time. Thus, every region will
be visited multiple times. This is equivalent to the single MDF scenario where
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the only difference is the amount of pheromones deposited in each region. The
number of trips in this scenario is bounded between the single case and the
disjoint scenarios. Since the number of trips in the single case is greater than
any of the multiple cases, Restriction 1 is satisfied.
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12.4 Reconnaissance Algorithm

We present the reconnaissance algorithm.

Algorithm A1 Main function.

function List<Cell> main

int accumulatedT ime← 0

List<Cell> inspectionRegions← ∅
while check(r ∈ N) do

[region, time] = reconnaissance(eu, area)

accumulatedT ime← accumulatedT ime + time
inspectionRegions = inspectionRegions ∪ region

end while

return inspectionRegions

end function

Algorithm A3 Obtain regions with food from the Hextille.

1: function List<Cell> getFoodCells(List<Cell> area)

2: List¡Cell¿ foodCells← ∅
3: for all (r ∈ area) do

4: if r.hasFood then

5: foodCells← foodCells ∪ r
6: end if

7: end for

8: return foodCells

9: end function
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Algorithm A2 Reconnaissance algorithm.

function [List<Cell>, int] reconnaissance(int eu, List<Cell> area)

int time← 0

Cell r ← 0

while eu ≥ 0 do

if (eu − 2) − ebase- ≥ 0 then

Cell r′ ← choose(neighbors(r))

else

Cell r′ ← traceback(neighbors(r), eu)

end if

e′u ← eu − 1

r′.stamp← r′.stamp + 1

time′ ← time + 1

r ← r′

end while

List < Cell > foodCells← getFoodCells(area)

return [foodCells, time]
end function
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Algorithm A4 Choose the next cell to visit.

1: function Cell choose(List<Cell> neighbors)
2: List<Cell> markedNeighbors = getMarked(neighbors)

3: if markedNeighbors!= ∅ then

4: Cell new = random(markedNeighbors)

5: else

6: Cell lessStamped = selectMinimumStamps(neighbors)

7: Cell new = random(farthest(lessStamped))

8: end if

9: return new

10: end function

Algorithm A5 Get the marked regions.

1: function List<Cell> getMarked(List¡Cell¿ area)

2: List<Cell> markedCells← ∅
3: for all (r ∈ area) do

4: if r.stamp > 0 then

5: markedCells←markedCells ∪ r
6: end if

7: end for

8: return markedCells

9: end function

Algorithm A6 Get the minimum number of stamps.

1: function List<Cell> selectMinumumStamps(List<Cell> neighbors)
2: List<Cell> leastStampedCells← ∅
3: int minimumStamps← minStamp(neighbors)

4: for all (r ∈ neighbors) do

5: if r.stamp == minimumStamps then

6: leastStampedCells← leastStampedCells ∪ r
7: end if

8: end for

9: return leastStampedCells

10: end function
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Algorithm A7 Get the farthest regions from my current position.

1: function List<Cell> farthest(List<Cell> neighbors)
2: List<Cell> farthestCells← ∅
3: int maxDistance← maxDistance(neighbors)

4: for all (r ∈ neighbors) do

5: if r.distance >= maxDistance then

6: farthestCells← farthestCells ∪ r
7: end if

8: end for

9: return farthestCells

10: end function

Algorithm A8 Get the maximum distance between the adjacent regions.

1: function int maxDistance(List<Cell> neighbors)
2: int max← 0

3: for all (r ∈ neighbors) do

4: if r.distance > max then

5: max← r.distance

6: end if

7: end for

8: return max

9: end function

Algorithm A9 Return to the base station.

1: function Cell traceBack(List<Cell> neighbors(r), int eu)

2: List < Cell > legalNeighbors = checkSteps(neighbors, eu)

3: Cell new = random(legalNeighbors)

4: return new

5: end function
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Algorithm A10 Check if a region can be visited.

1: function List<Cell> checkStep(List<Cell> neighbors, int eu)

2: List¡Cell¿ legalNeighbors← ∅
3: for all (r ∈ neighbors) do

4: if (eu − 1) − r.distance >= 0 then

5: legalNeighbors← legalNeighbors ∪ r
6: end if

7: end for

8: return legalNeighbors

9: end function
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