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Abstract
History- and hereditary history-preserving bisimulation (HPB and HHPB) are classical equivalences
relations for denotational models of concurrency that are meaningful to study reversible computation.
Finding their counterpart in process algebras is an open problem, with some partial successes: there
exists in Calculus of Communicating Systems (CCS) an equivalence based on causal trees that
corresponds to HPB. In Reversible CSS (RCCS), there are bisimulations corresponding to HHPB,
but they consider only restricted classes of process. We propose equivalences on RCCS processes
that correspond to HPB and HHPB on all processes. The equivalences exploit not only reversibility
but also the memory mechanism of RCCS, and our development shows why both are needed.
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1 Introduction

Reversing Concurrent Computation Reversible systems have the possibility of backtracking
to return to some previous state. Implementing reversibility in a programming language often
requires a mechanism to record the history of the execution. Ideally, this history should be
complete, so that every forward step can be backtracked, andminimal, so that only the relevant
information is saved. Concurrent programming languages have additional requirements:
the history should be distributed, to avoid centralization, and should prevent steps that
required a sychronization with other parts of the program to backtrack without undoing
this synchronization. To fulfill those requirements, Reversible Calculus of Communicating
Systems (RCCS) [5, 6] uses memories attached to the threads of a process.

Equivalences for Reversible Processes A theory of reversible concurrent computation relies
not only on a syntax, but also on “meaningful” behavioral equivalences. This paper studies
behavioral equivalences defined on configuration structures [18], a classical denotational
model for concurrency. In configuration structures, an event represents an execution step,
and a configuration—a set of events that occurred—represents a state. A forward transition is
then represented as moving from a configuration to one of its supersets. Backward transitions
have a “built-in” representation: it suffices to move from a configuration to one of its
subset. Multiple behavioral equivalences have been defined for configuration structures ;
some of them, like history- and hereditary history-preserving bisimulations (HPB and HHPB)
[2, 3, 8, 12, 15], use that “built-in” notion of reversibility.
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2 History-Preserving Bisimulations on RCCS

JORK

xR

Figure 1 The encoding of OR, of the future and of the past of a reversible process R.

Encoding Reversible Processes in Configuration Structures An ongoing research effort [1,
11] is to transfer equivalences defined on denotational models, which are by construction
adapted for reversibility, back into reversible process algebras. Of course, showing that an
equivalence on configuration structures corresponds to one on RCCS processes depends on
the encoding of RCCS processes into configuration structures. A previously developed [1]
encoding considered only reachable reversible processes: a process R is reachable if it can
backtrack to a process OR with an empty memory, called its origin, that corresponds to its
state before the execution started. Then in the configuration structure JORK, obtained using
the common mapping for CCS processes [18], a configuration xR is identified corresponding
to the current state of R. In this set-up, the encoding of R is one configuration xR, in JORK:
every configuration “below” is the “past” of R, every configuration “above”, its “future”
(Fig. 1).

Contribution This paper improves on previous results [1, 10, 12] by defining relations on
RCCS processes that correspond to HPB and HHPB on all processes. We introduce an
encoding of memories into identified configuration structures, an extension to configuratin
structures. This encoding is independent from the rest of the process and we show that, as
expected, the “past” of a process corresponds to the encoding of its memory. The memories
attached to a process are no longer only a syntactic layer to implement reversibility, but
become essential to define equivalences. This result gives an insight on the expressiveness of
reversibility, as the back-and-forth moves of a process are not enough to capture HHPB.

Related work The correspondences between HHPB and back-and-forth bisimulations for
restricted classes of processes [1, 10] inspired some of the work presented here. Our approach
shares similarity with causal trees—in the sense that we encode only part of the execution, its
“past”, in a denotational representation—where some bisimulation corresponds to HPB [7]. To
some extent, HPB and HHPB are considered “the gold standard” for measuring equivalence
classes on configuration structures. However, no relation on labeled transition systems (being
CCS, RCCS, or CSSK [9, 11]) was known to capture it. We summarize the current state of
knowledge in Fig. 6.

Outline & Prerequisite We start by recalling the definitions of configuration structures
(Sect. 2.1), of the encoding of CCS terms in configuration structures (Sect. 2.2), and of RCCS
(Sect. 2.3). We then recall the definitions of (hereditary) history-preserving bisimulations on
configuration structures (Sect. 3.1) and introduce our definition of back-and-forth bisimulation
on RCCS that we use to recall previous results (Sect. 3.2). The new material is presented
in Sect. 4, which starts by defining identified configuration structures (Sect. 4.1). Sect. 4.2
defines and illustrates with examples how identified configuration structures can encode
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memories, and state some properties about them. Finally, Sect. 4.3 uses this encoding to
define relations on RCCS processes that are then proven to correspond to HPB and HHPB on
configuration structures and connects them to our back-and-forth bisimulation, and Sect. 5
concludes with an interesting connection to our previous formalism.

Sect. 2 is compact and serves more as a reminder than as an actual introduction to the
topic at stake, but the relations under study as well as RCCS are introduced in great detail
and with numerous examples that should guide the reader. As it is common in the study of
concurrent computation [17, 19], we use category theory as a “common language”. Only the
notion of isomorphism, that is recalled in the body of our work, is really needed, but the
curious reader can find a more rigorous development in Appendix A. All the proofs and some
auxiliary results are gathered in Appendix B, but we tried to give insights and intuitions on
how, and why, the results hold.

2 Preliminary Definitions

We recall the definitions of configuration structures and some of their restrictions (Sect. 2.1),
and how to encode CCS processes into configuration structures (Sect. 2.2). Reversible CCS
is recalled last (Sect. 2.3).

We write ⊆ the set inclusion, P the power set, \ the set difference, A→ B (resp. A ⇀ B)
the set of (resp. partial) functions between A and B, f�C the restriction of f : A→ B to
C ⊆ A, f ∪ {a 7→ b} the function defined as f : A→ B on A that additionally maps a /∈ A
to b, and inversely we write f \ {a 7→ b} if f : A→ B and f(a) = b for f�A\{a}.

Let N = {a, b, c, . . . } be a set of names and N = {a, b, c, . . . } its set of co-names. The
complement of a (co-)name is given by a bijection · : N→ N, whose inverse is also written ·.
We write −→a for a list of names a1, · · · , an. We define the set of labels L = N ∪ N ∪ {τ}, and
use α (resp. λ, ν, µ) to range over L (resp. L\{τ}).

2.1 Configuration Structures
I Definition 1 (Configuration structure). A configuration structure C is a tuple (E,C,L, `)
where E is a set of events, L is a set of labels, ` : E → L is a labeling function and C ⊆ P(E)
is a set of subsets satisfying:

∀x ∈ C,∀e ∈ x, ∃z ∈ C finite, e ∈ z, z ⊆ x (Finiteness)
∀x ∈ C,∀d, e ∈ x, d 6= e⇒ ∃z ∈ C, z ⊆ x, d ∈ z ⇐⇒ e /∈ z (Coincidence Freeness)

∀X ⊆ C, ∃y ∈ C finite,∀x ∈ X,x ⊆ y ⇒
⋃
X ∈ C (Finite Completeness)

∀x, y ∈ C, x ∪ y ∈ C ⇒ x ∩ y ∈ C (Stability)

We denote 0 the configuration structure with E = ∅, and write x −−→e y and y ::→e x for
x, y ∈ C such that x = y ∪ {e}.

For the rest of this paper, let x, y, z range over configurations, d, e range over events, and
assume that we are always given C = (E,C,L, `) and Ci = (Ei, Ci, Li, `i), for i = 1, 2.

I Definition 2 (Causality, concurrency, and maximality). For x ∈ C and d, e ∈ x, the causality
relation on x is given by d <x e iff d 6x e and d 6= e, where d 6x e iff for all y ∈ C with
y ⊆ x, we have e ∈ y ⇒ d ∈ y. If, for every x ∈ C such that d, e ∈ x, we have d <x e, then
we write d < e. The concurrency relation on x is given by d cox e iff ¬(d <x e ∨ e <x d).
Finally, x is maximal if ∀y ∈ C, x = y or x 6⊆ y.
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∅

{a1} {a2}

(a) Ja + aK

∅

{a1} {a2}

{a1, a2}

(b) Ja | aK

∅

{a} {a}

{a, a}{a, b}

{a, a, b}

{τ}

{τ, b}

(c) Ja | a.bK

Figure 2 Examples of configuration structures encoding CCS processes

I Definition 3 (Generation of a structure from a configuration). For x ∈ C, the configuration
structure generated by x is x ↓= (x, {y | y ∈ C, y ⊆ x}, {α | ∃e ∈ x, `(e) = α}, `�x)1.

I Example 4. Consider the configuration structures of Fig. 2, where we make the abuse
of notation of writing the events as their labels (with a subscript if multiple events have
the same label), and where the sets of events, of configurations and of labels can be read
from the diagram. Note that two events with complementary names can happen at the same
time (Fig. 2c), in which case they are labeled with τ , as is usual in CCS. In Fig. 2c, we
have a < b and τ < b; and in Fig. 2b, a1 and a2 are concurrent in the configuration {a1, a2}.
A configuration structure can have one (Fig. 2b) or multiple (Fig. 2a and 2c) maximal
configurations. Finally, we grayed out {a, a} ↓ in Fig. 2c.

We now recall how process algebra constructors are defined on configuration structures [17].
The definition below may seem technical, but the encoding of CCS processes into configuration
structures (Definition 8) will make it clear that it captures the right notions. Product,
relabeling and restriction are needed only to define parallel composition.

This definition uses the product (×?, p1, p2) of the category which has sets as objects and
partial functions as morphisms [17, Appendix A]: letting ? denote undefined for a partial
function and C? = C ∪ {?} for a set C, we define, for two sets A and B,

A×? B = {(a, ?) | a ∈ A} ∪ {(?, b) | b ∈ B} ∪ {(a, b) | a ∈ A, b ∈ B}

with p1 : A×? B → A? and p2 : A×? B → B? the two projections.

I Definition 5 (Operations on configuration structures [1, 14]).
The product of C1 and C2 is C1×C2 = (E1×?E2, C, L, `). Define the projections πi : C → Ci

and the configurations x ∈ C such that:

∀e ∈ E, πi(e) = pi(e), πi(`i(e)) = `i(πi(e))
πi(x) ∈ Ci, with πi(x) = {ei | πi(e) = ei 6= ? and e ∈ x}
∀e, e′ ∈ x, π1(e) = π1(e′) 6= ? or π2(e) = π2(e′) 6= ?⇒ e = e′

∀e ∈ x, ∃z ⊆ x finite, π1(x) ∈ C1, π2(x) ∈ C2, e ∈ z
∀e, e′ ∈ x, e 6= e′ ⇒ ∃z ⊆ x, πi(z) ∈ Ci, e ∈ z ⇐⇒ e′ /∈ z

1 For the reader familiar with event structures, a configuration x defines an event structure (x,6x, `). The
construction here mirrors the transformation from an event structure to a configuration structure [19].
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The labeling function ` : E1 ×? E2 → L = L1 ∪ L2 ∪ (L1 × L2) is

`(e) =


`1(e1) if π1(e) = e1 6= ? and π2(e) = ?

`2(e2) if π1(e) = ? and π2(e) = e2 6= ?

(`1(e1), `2(e2)) otherwise

The relabeling of C1 along r : E1 → L is r ◦ C1 = (E1, C1, L, r).
The restriction of a set of events A ⊆ E1 in C1 is C1�A = (E1 \ A,C,L, `1�E1\A), where

x ∈ C ⇐⇒ x ∈ C1 and x ∩A = ∅, and L = {α | ∃e ∈ A, `1(e) = α}.
The restriction of a name a in C1 is C1�a = C1�Ea

1
where Ea1 = {e ∈ E1 | `(e) ∈ {a, a}}.

For −→a = a1, . . . , an a list of names, we define similarly C1�−→a = C1�E−→a1 for E−→a1 = {e ∈
E1 | `(e) ∈ {a1, a1, . . . , an, an}}.

The parallel composition of C1 and C2 is C1 | C2 =
(
r ◦ (C1 × C2)

)
�E⊥3 , with

C1 × C2 = C3 = (E3, C3, L3, `3) is the product;
r ◦ C3 with r : E3 → L1 ∪ L2 ∪ {⊥} defined as follows:

r(e) =


`3(e) if `3(e) ∈ N ∪ N
τ if `3(e) ∈ {(a, a), (a, a), τ | a ∈ N}
⊥ otherwise

(r ◦ C3)�E⊥3 , where E⊥3 = {e ∈ E3 | r(e) = ⊥}.
The coproduct of C1 and C2 is C1 + C2 = C, where E = ({1} × E1) ∪ ({2} × E2) and

C = {{1} × x | x ∈ C1} ∪ {{2} × x | x ∈ C2}. The labeling function ` is defined, for
π1(e) = i, as `(e) = `i(π2(e)) and L = L1 ∪ L2.

The prefixing of C1 by the name λ is λ.C1 = (e ∪ E1, C, L1 ∪ {λ}, `), for e /∈ E1, where
x ∈ C ⇐⇒ x = ∅ ∨ ∃x′ ∈ C1, x = x′ ∪ e ; `(e) = λ and ∀e′ 6= e, `(e′) = `1(e′).

As detailed in Appendix A, configuration structures and “structure-preserving” functions
form a category. This development can be omitted, except for the notion of isomorphisms:

I Definition 6. We write C1 ∼= C2 if there exists an isomorphism f = (fE , fL, fC); a bijection
such that fE : E1 → E2 preserves labels, `2(fE(e)) = fL(`1(e)), for fL : L1 → L2; and
fC : C1 → C2 is defined as fC(x) = {fE(e) : e ∈ x}.

Some constraints were used in showing equivalences between process algebra and configu-
ration structures:

I Definition 7 (Constraints on configuration structures). If ∀x ∈ C,
∀e1, e2 ∈ x, `(e1) = `(e2) implies e1 = e2, then C is non-repeating [10, Definition 3.5].
∀e1, e2 ∈ x, e1 cox e2 and `(e1) = `(e2) implies e1 = e2, then C is without auto-
concurrency [16, Definition 9.5].
∀e, e′ /∈ x,

(
x −−→e y, x −−→e′ y′, `(e) = `(e′) and C \ y ∼= C \ y′

)
implies e = e′, where

C \ z = (E \ z, {z′ | z′ ∪ z ∈ C}, `�E\z), then C is singly labeled [1, Definition 26].

2.2 CCS and its Encoding in Configuration Structures
The set of CCS processes is inductively defined:

P,Q := P | Q ‖ λ.P + ν.Q ‖ P\a ‖ 0 (CCS Processes)

We often omit 0, and write e.g. a | (b+c) for a.0 | (b.0+c.0). We work up to the structural
congruence ≡ of CCS–that we suppose familiar to the reader–, and write e.g. P1 | P2 | P3
without parenthesis since (P1 | P2) | P3 ≡ P1 | (P2 | P3). Finally, alpha-equivalence is written
=α and supposed familiar as well.
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∅

{a}

{a, b}

(a) Ja.bK

∅

{c}

{c, a}

(b) Jc.aK

∅

{a} {c}

{a, b} {a, c} {c, a} {c, τ}

{a, b, c} {a, c, a} {c, τ, b}

{c, a, a, b}

(c) J(a.b) | (c.a)K

∅

{a}

{a, b} {c, a}

{c}

{c, a, b}

(d) Ja.b | cK

Figure 3 (Identified) Configurations structures of Examples 9 and 28.

I Definition 8 (Encoding a CCS process [19]). Given a CCS process P , its encoding JP K as
a configuration structure is built inductively:

Jλ.P + ν.QK = Jλ.P K + Jν.QK Jλ.P K = λ.JP K JP\aK = JP K�a
JP | QK = JP K | JQK J0K = 0

I Example 9. In addition to the examples of Fig. 2, the encoding of the processes a.b, c.a,
and their parallel composition (a.b) | (c.a), as well as a.b | c, are given in Fig. 3, where the
grayed out parts are {c, τ, b} ↓ and {c, a} ↓.

I Definition 10 (Restrictions on CCS processes). A process P is non-repeating (resp. without
auto-concurrency, singly labeled) if JP K is (Definition 7).

I Example 11. Every non-repeating configuration is without auto-concurrency, but the
other pairs of restrictions are independent, as suggested below:

Non-repeating Without auto-concurrency Singly labeled
a X X X
a.a X X X

(a.b) | a X X X
a+ a X X X

a.(a+ a) X X X
a | (a.(b+ b)) X X X

2.3 Reversible CCS
Let I be a set of identifiers, and i, j range over its elements: an identifier can be anything,
but a reasonable implementation would use integers or Linux’s pid_t datatype. The set of
reversible processes R is built on top of the set of CCS processes by adding memory stacks to
the threads:

e := 〈i, λ, P 〉 (Memory Events)
m := ∅ ‖ g .m ‖ e.m (Memory Stacks)
T := m� P (Reversible Thread)

R,S := T ‖ R | S ‖ R\a (RCCS Processes)

We will treat CCS and “memory-less” reversible processes to be the same, i.e. we will
sometimes treat P as being identical to ∅ B P : we come back to this in Definition 15.
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i /∈ I(m) act.
(m B λ.P +Q)−−−→i:λ 〈i, λ,Q〉.m B P

R−−−→i:λ R′ S −−−→i:λ S′
syn.

R | S −−−→i:τ R′ | S′

i /∈ I(m) act.∗
〈i, λ,Q〉.m B P :::→i:λ m B (λ.P +Q)

R :::→i:λ R′ S :::→i:λ S′
syn.∗

R | S :::→i:τ R′ | S′

R−−−→→i:α R′
i /∈ I(S) par.

R | S −−−→→i:α R′ | S

R−−−→→i:α R′ a /∈ α
res.

R\a−−−→→i:α R′\a

R1 ≡ R−−−→→i:α R′ ≡ R′1 ≡
R1−−−→→i:α R′1

Figure 4 Rules of the labeled transition system

I Definition 12 (Sets of identifiers and names). We denote I(e) (resp I(m), I(R)) the set of
identifiers occurring in e (resp. m, R), and always take I = N. For a memory m, we let
nm(m) = {α | α ∈ N or α ∈ N occurs in m} be the set of (co-)names occurring in m.

I Definition 13 (Structural equivalence [1, Definition 5]). Structural equivalence on R is the
smallest equivalence relation generated by the following rules:

m� (λ.P + ν.Q) ≡ m� (ν.Q+ λ.P ) (Sum Symmetry)
m� ((λ.P + ν.Q) + µ.R) ≡ m� (λ.P + (ν.Q+ µ.R)) (Sum Associativity)

P =α Q

m� P ≡ m�Q
(α-Conversion)

m� (P | Q) ≡ (g.m� P | g.m�Q) (Distribution of Memory)
m� P\a ≡ (m� P )\a with a /∈ nm(m) (Scope of Restriction)

The labeled transition system for RCCS is given by the rules of Fig. 4. We use −−−→→i:α

for the union of −−−→i:α (forward) and :::→i:α (backward transition), and if there are indices
i1, . . . , in and labels α1, . . . , αn such that R1−−−−→→

i1:α1 · · · −−−−→→in:αn Rn, then we write R1−−→→? Rn.
Note that those rules are presented with the guarded sum of CCS for concision and clarity,

but we will consider for instance ∅� a.P −−−→1:a 〈1, a, 0〉.∅� P to be a legal transition.

I Example 14. An example of valid (forward-only) execution, or trace, is:

∅� (a.b | c.a) ≡ (g.∅� a.b) | (g.∅� c.a) (Distribution of Memory)
−−−→1:c (g.∅� a.b) | (〈1, c, 0〉.g .∅� a) (act.)
−−−→2:τ (〈2, a, 0〉.g .∅� b) | (〈2, a, 0〉.〈1, c, 0〉.g .∅� 0) (syn.)

−−−→3:b (〈3, b, 0〉.〈2, a, 0〉.g .∅� 0) | (〈2, a, 0〉.〈1, c, 0〉.g .∅� 0) (act.)

Reading it from end to beginning and replacing −−−→_:_ with :::→_:_ gives a backward-only
execution. Of course, an execution can be a mix of forward and backward transitions.

I Definition 15 (Reachable [1, Lemma 1]). If there is a CCS term P such that ∅� P −−→→? R,
we say that R is reachable, that P is the origin of R and write P = OR.

An important result [5, Lemma 10] furthermore states that this transition ∅� P −−→→? R

can always be taken to be forward-only. Also, note that multiple RCCS terms can have
the same origin, but that a reachable RCCS term has one unique origin (up to structural
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∅

{a}

{a, b1} {a, b2}

(a) Ja.(b + b)K

∅

{a1} {a2}

{a1, b1} {a2, b2}

(b) J(a.b) + (a.b)K

∅

{a1} {b}

{a1, b}{a1, a2}

{a1, a2, b}

(c) J(a.a) | bK

∅

{a1} {a2} {b}

{a1, a2} {a1, b} {a2, b}

{a1, a2, b}

(d) Ja | a | bK

Figure 5 Examples of configuration structures that are or not in HPB and HHPB relations

equivalence). We consider only reachable terms: unreachable terms are “dysfunctional”, since
their memory is not coherent [6] and they can not be “rewinded” back to an origin process.

I Definition 16 (Restrictions on RCCS processes). A process R is non-repeating (resp. without
auto-concurrency, singly labeled) if JORK is (Definition 7).

3 Reversible Bisimulations

In this section we introduce bisimulations on configuration structures (Sect. 3.1) and on
RCCS (Sect. 3.2), which aim at capturing reversibility.

3.1 History-Preserving Bisimulations in Configuration Structures
History-preserving bisimulation (HPB) [2, 12, 13] and hereditary history-preserving bisim-
ulation (HHPB) [2, 3] are equivalences on configuration structures that use label- and
order-preserving bijections between the events of the two configuration structures.

I Definition 17 (Label- and order-preserving functions). A function f : x1 → x2, for xi ∈ Ci,
i ∈ {1, 2} is label-preserving if `1(e) = `2(f(e)) for all e ∈ x1. It is order-preserving if
e1 6x1 e2 ⇒ f(e1) 6x2 f(e2), for all e1, e2 ∈ x1.

I Definition 18 (HPB and HHPB). A relation R ⊆ C1 × C2 × (E1 ⇀ E2) such that
(∅, ∅, ∅) ∈ R, and if (x1, x2, f) ∈ R, then f is a label- and order-preserving bijection between
x1 and x2 and (1) and (2) (resp. (1–4)) hold is called a history- (resp. hereditary history-)
preserving bisimulation (HPB, resp. HHPB) between C1 and C2.

∀y1, x1−−→
e1 y1 ⇒ ∃y2, g, x2−−→

e2 y2, g�x1 = f, (y1, y2, g) ∈ R (1)
∀y2, x2−−→

e2 y2 ⇒ ∃y1, g, x1−−→
e1 y1, g�x1 = f, (y1, y2, g) ∈ R (2)

∀y1, x1 ::→
e1 y1 ⇒ ∃y2, g, x2 ::→

e2 y2, g = f�y1 , (y1, y2, g) ∈ R (3)
∀y2, x2 ::→

e2 y2 ⇒ ∃y1, g, x1 ::→
e1 y1, g = f�y1 , (y1, y2, g) ∈ R (4)

We write that C1 and C2 are (H)HPB if there exists a (H)HPB relation between them.

I Example 19. Note that HPB and HHPB are two different relations, and that HHPB is not
the structural congruence of CCS: the classical example [16] of processes whose encodings
are HPB but not HHPB is (a | (b+ c)) + (a | b) + ((a+ c) | b) and (a | (b+ c)) + ((a+ c) | b).
The two processes a.(b+ b) and (a.b) + (a.b) are not structurally congruent in CCS, but their
encodings, presented in Fig. 5a and 5b, are HHPB.
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1. F-R bisimulation (Definition 20) on non-repeating CCS processes (Definition 10)
corresponds to HHPB on their encoding [10].

2. Back-and-forth barbed congruence on singly labeled CCS processes (Definition 10)
corresponds to HHPB on their encoding [1].

3. Back-and-forth bisimulation (Definition 20) and Hereditary history-preserving
bisimulation (resp. history-preserving bisimulation) (Definition 32) on all CCS processes
correspond to HHPB (resp. HPB) on their encoding (Theorem 36, Corollary 38).

Figure 6 Syntactical characterizations of HHPB

3.2 Back-and-forth Bisimulations in Reversible CCS
Let us now review the preliminary attempts to capture HHPB as a relation on process
algebra terms [1, 10], and present the relation we will be using. We use the setting of RCCS
to present these results, and synthesize them, along with our new result, in Fig. 6.

I Definition 20 (B&F, SB&F, FR bisimulations). A relation R ⊆ R× R× (I ⇀ I) such that
(∅� P1, ∅� P2, ∅) ∈ R and if (R1, R2, f) ∈ R, then f is a bijection between I(R1) and I(R1)
and (5–8) hold is called a back-and-forth-bisimulation (B&F bisim) between R1 and R2.

∀S1, R1−−−→i:α S1 ⇒ ∃S2, g, R2−−−→
j:α

S2, g = f ∪ {i 7→ j}, (S1, S2, g) ∈ R (5)

∀S2, R2−−−→i:α S2 ⇒ ∃S1, g, R1−−−→
j:α

S1, g = f ∪ {i 7→ j}, (S1, S2, g) ∈ R (6)

∀S1, R1 :::→i:α S1 ⇒ ∃S2, f, R2 :::→
j:α

S2, g = f \ {i 7→ j}, (S1, S2, g) ∈ R (7)

∀S2, R2 :::→i:α S2 ⇒ ∃S1, g, R1 :::→
j:α

S1, g = f \ {i 7→ j}, (S1, S2, g) ∈ R (8)

If f = id, we call R a forward-reverse bisimulation (FR bisim), and if we remove the
requirements on f , we call R a simple back-and-forth bisimulation (SB&F bisim). We write
that R1 and R2 (resp. P1 and P2) are B&F bisim if there exists a B&F bisim relation between
them (resp. between ∅ B P1 and ∅ B P2), and similarly for FR bisim and SB&F bisim.

FR bisim [9, 10] was used to get the first result on capturing HHPB:

I Theorem 21 ([10, Theorem 5.4]). Two CCS processes with non-repeating events are in
FR bisim iff their encoding are HHPB.

However, back-and-forth bisimulations do not use in a meaningful way the identifiers
when restricted to non-repeating processes, which are trivially without auto-concurrency:

I Theorem 22. On the class of processes without auto-concurrency, B&F bisim and SB&F
bisim are the same relations.

The intuition behind this theorem is that since two concurrent transitions sharing the
same label can not be fired at the same time, the process being without auto-concurrency,
the identifiers do not add any information. The proof is easy for the forward transitions, and
uses an order on the transitions enforced by causality for the backward traces.

I Example 23. Observe that the bisimulation relation obtained from Definition 20 by only
considering (5) and (6) and ignoring the identifiers is the “standard” bisimulation of CCS.
The processes (a.a) | b and a | a | b are in this “standard” bisimulation, but their encodings,
presented in Fig. 5c and 5d, are not HPB. Also note that those two processes are SB&F
bisim but that their encodings are not HHPB. This example shows that SB&F bisim does
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not characterize HHPB on processes with auto-concurrency, and supports that both the
bijection on identifiers and the backward transitions are necessary to capture HHPB.

A second attempt [1] to capture HHPB used a back-and-forth barbed congruence on
RCCS processes which was proven to correspond to HHPB on their encoding for the class
of singly-labeled processes (Definition 10). Even if this restriction may seem lighter than
forbidding not non-repeating structures and easier to justify (it is a restriction relative to “the
future” of the configurations), it is actually an orthogonal restriction to being non-repeating,
and forbid processes as simple as a+a (Example 11). We lift both restrictions in the following,
by proving that B&F bisim captures HHPB on all processes.

4 Lifting the Restrictions

To prove that B&F bisim corresponds to HHPB on all processes (Corollary 38), we first
define bisimulations on RCCS (Sect. 4.3) that are then proven to correspond to (H)HPB
(Theorem 36). The relation that characterizes HHPB coincides with B&F bisim (Theorem 37).
Those relations on RCCS use identified configuration structures (Sect. 4.1) to encode the
memories of reversible processes (Sect. 4.2).

4.1 Identified Configuration Structures
Identified configuration structures arise from the observation that events can carry, on top of
a label, an identifier reflecting the history of a reversible process, as recorded by its memory.

I Definition 24 (Identified configuration structure). An identified configuration structure, or
I-structure, I = (E,C,L, `, I,m) is a configuration structure C = (E,C,L, `) endowed with
a set of identifiers I and a function m : E → I such that

∀x ∈ C,∀e1, e2 ∈ x,m(e1) 6= m(e2). (Collision Freeness)

We call C the underlying configuration structure of I, write F(I) = C, I = C ⊕m, (I being
the domain of m), and write 0 for the identified configuration structure with E = ∅.

For the rest of this paper, we assume always given I = (E,C,L, `, I,m) and Ii =
(Ei, Ci, Li, `i, Ii,mi), for i = 1, 2. Using Definition 5, we define the following operations:

I Definition 25 (Operations on I-structures).
The product of I1 and I2 is I1 × I2 = (E,C,L, `, I,m):

(E1, C1, L1, `1)×(E2, C2, L2, `2) = (E,C,L, `) is the product of configuration structures
with projections πi : (E,C,L, `)→ (Ei, Ci, Li, `i);
I = (I1 ∪ {m?})× (I2 ∪ {m?}), for m? /∈ I1 ∪ I2;
m : E1 ×? E2 → I is defined as

m(e) =


(m1(π1(e)),m?) if π2(e) = ?

(m?,m2(π2(e))) if π1(e) = ?

(m1(π1(e)),m2(π2(e))) otherwise

with the projections θi : I → Ii ∪ {m?} and θi(j1, j2) = ji.
Define the projections γi : I1 × I2 → Ii as the pair (πi, θi).

The relabeling of I1 along r : E1 → L is r ◦ I1 = (E1, C1, L, r, I1,m1).
The restriction of a set of events A ⊆ E1 in I1 is I1�A = (E1, C1, L1, `1)�A ⊕ (m1�E1\A).

Similarly we define the restriction of a name.
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The parallel composition of I1 and I2 is I1 | I2 = (E,C,L, `, I,m), with
I1 × I2 = I3 = (E3, C3, L3, `3, I3,m3) is the product of I-structures.
r ◦ I3, with r : E3 → L ∪ {⊥} defined as follows,

r(e) =



⊥ if π1(e) = e1 6= ? ∧ π2(e) = e2 6= ? ∧m1(e1) 6= m2(e2)
or if π1(e) = e1 6= ? ∧ π2(e) = ? ∧ ∃e2 ∈ E2,m1(e1) = m2(e2)
or if π2(e) = e2 6= ? ∧ π1(e) = ? ∧ ∃e1 ∈ E1,m1(e1) = m2(e2))

τ if π1(e) = e1 6= ? ∧ π2(e) = e2 6= ? ∧m1(e1) = m2(e2)
∧ `3(e) = (α, α)

α if π1(e) = e1 6= ? ∧ π2(e) = e2 6= ? ∧m1(e1) = m2(e2)
∧ `3(e) = (α, α)

`3(e) otherwise

(Err. 1)
(Err. 2)
(Err. 3)

(Sync.)

(Fork)

(r ◦ I3)�F = (E,C,L, `, I,m′), where F = {e ∈ E3 | r(e) = ⊥};
m is defined as m(e) = i for m′(e) = (i,m?) or m′(e) = (m?, i), or if m′(e) = (i, j)
and i = j.

The postfixing of the memory event 〈i, λ, P 〉 to I1, is defined if i is not already an identifier
in I1 as I1 · 〈i, λ, P 〉 = (E,C,L, `, I,m) where

E = E1 ∪ {e}, for e /∈ E1,
C = C1 ∪ {x∪ {e} | x ∈ C1 is maximal},
L = L1 ∪ {λ},
` = `1 ∪ {e 7→ λ},

I = I1 ∪ {i},
m(e′) = m1(e′) if e′ 6= e, and m(e) = i

otherwise.

In parallel compositions, r detects the wrong synchronization (or fork) pairs: if two events
occur at the same time, then they must have the same identifier. In the case where an
event occurs alone, then no other event can occur with the same identifier. The last step
of the parallel composition consists in removing the spurious m? from the events identifiers.
Definition 27 will detail how those operations correspond to the encoding of a memory.

As detailed in Appendix A, I-structures and “structure-preserving” functions form a
category. This development supports the interest and validity of studying I-structures, but
can be omitted, except for the notion of isomorphism, that echoes Definition 6:

I Definition 26. We write I1 ∼= I2 if there exists an isomorphism q = (f, fm), i.e., an
isomorphism f = (fE , fL, fC) between F(I1) and F(I2) endowed with a function fm : I1 → I2
that preserves identifiers: fm(m1(e)) = m2(fE(e)).

4.2 Encoding the Memory of Reversible Processes
We show and illustrates in this section how I-structures can encode memories, and highlight
some properties of this encoding that will be useful in proving our main results.

I Definition 27 (Encoding a RCCS memory). The encoding of the memory of a RCCS process
in a I-structure is defined by induction on the process and on the memory:

dm� P e = bmc dR1 | R2e = dR1e | dR2e dR\ae = dRe
b〈i, λ, P 〉.mc = bmc · 〈i, λ, P 〉 bg.mc = bmc b∅c = 0

The memories of any RCCS process could be encoded into I-structures, but we will
consider only reachable processes (Definition 15), and thus coherent memories.
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For the rest of this paper, we assume given reachable reversible processes R, R1, R2 and
S, we write OR for the origin of R, dRe as (ER, CR, `R, IR,mR) and similarly for S.

The underlying configuration of dRe is included in JORK. We come back on this observation
in Sect. 5, but we can observe that it is suggested by the following examples.

I Example 28. Looking back at the transition detailed in Example 14, we can observe that:

d(〈3, b, 0〉.〈2, a, 0〉.g .∅� 0) | (〈2, a, 0〉.〈1, c, 0〉.g .∅� 0)e
=d〈3, b, 0〉.〈2, a, 0〉.g .∅� 0e | d〈2, a, 0〉.〈1, c, 0〉.g .∅� 0e
=b〈3, b, 0〉.〈2, a, 0〉.g .∅c | b〈2, a, 0〉.〈1, c, 0〉.g .∅c

We can let L = {a, a, b, c}, `(x) = x for x ∈ L, I = {1, 2, 3}, and have:

b〈3, b, 0〉.〈2, a, 0〉.g .∅c = ({a, b}, {∅, {a}, {a, b}}, L, `, I, {a 7→ 2, b 7→ 3}
b〈2, a, 0〉.〈1, c, 0〉.g .∅c = ({c, a}, {∅, {c}, {c, a}}, L, `, I, {c 7→ 1, a 7→ 2})

whose underlying structures are in Fig. 3a and 3b. The product of those two configurations
gives the following set of events (where we keep naming the events after their label):

(a, ?) (ev. 1)
(b, ?) (ev. 2)

(?, c) (ev. 3)
(?, a) (ev. 4)

(a, c) (ev. 5)
(a, a) (ev. 6)

(b, c) (ev. 7)
(b, a) (ev. 8)

When doing the parallel composition, the relabeling step labels with ⊥ events ev. 5, ev.
7 and ev. 8, since the event identifiers do not match in the pair, as well as ev. 1 and ev. 4,
since they have the same identifier but occur unsynchronized. The relabeling also changes
the labels of events ev. 2, ev. 3 and ev. 6 into b, c and τ , respectively. Hence, we obtain the
I-structure whose underlying structure is the gray part of Fig. 3c, with m(?, c) = m(c) = 1,
m(a, a) = m(τ) = 2 and m(b, ?) = m(b) = 3. Observe that the structure underlying the
encoding of the memory is just a particular “path” in that configuration structure.

I Example 29. The encoding of the memory resulting from the (partial) execution

∅� (a.b | c)−−−→1:c −−−→2:a (〈2, a, 0〉.g .∅� b) | (〈1, c, 0〉.g .∅� 0)

has for underlying structure the gray part in Fig. 3d, with m(c) = 1 and m(a) = 2.

I-structures resulting from the encoding of processes have interesting properties:

I Lemma 30. For all e1, e2 ∈ ER, mR(e1) = mR(e2) implies e1 = e2.

In particular, all memory events in R are either causally linked or concurrent, therefore
the encoding of the memory of R results in a partially ordered set with one maximal element
(Definition 2), linked by the subset relation. This was illustrated by the previous two examples
and is proved by induction on the RCCS process.

I Lemma 31. dRe is a partially ordered set (poset) with one maximal configuration.

4.3 (Hereditary) History-Preserving Bisimulations on CCS
Our main task now is to define relations on CCS, that we named HPB and HHPB (Defi-
nition 32), and then to prove that those relations correspond to their counterparts on the
encoding of terms (Theorem 36) and that HHPB corresponds to B&F bisim on all processes
(Corollary 38). This requires a notion of maximal event that relates to the operational
semantics of RCCS (Lemma 34), and to prove that isomorphisms between I-structures and
label- and order-preserving bijections on the configurations are the same concept (Lemma 35).



C. Aubert and I. Cristescu 13

I Definition 32 (HPB and HHPB on RCCS). A relation R ⊆ R× R× (E1 ⇀ E2) such that
(∅ B OR1 , ∅ B OR, ∅) ∈ R and if (R1, R2, f) ∈ R then f is an isomorphism between dR1e and
dR2e and (10) and (11) (resp. (10–13)) hold is called a history-(resp. hereditary history-)
preserving bisimulation between R1 and R2.

∀S1, R1−−−→i:α S1 ⇒ ∃S2, g, R2−−−→
j:α

S2, g�dR1e = f, (S1, S2, g) ∈ R (10)

∀S2, R2−−−→i:α S2 ⇒ ∃S1, g, R1−−−→
j:α

S1, g�dR1e = f, (S1, S2, g) ∈ R (11)

∀S1, R1 :::→i:α S1 ⇒ ∃S2, f, R2 :::→
j:α

S2, g = f�dS1e, (S1, S2, g) ∈ R (12)

∀S2, R2 :::→i:α S2 ⇒ ∃S1, g, R1 :::→
j:α

S1, g = f�dS1e, (S1, S2, g) ∈ R (13)

If there exists a (H)HPB relation between R1 and R2 (resp. between ∅ B P1 and ∅ B P2),
we say that R1 and R2 (resp. P1 and P2) are (H)HPB.

Note that the definitions above reflect Definition 18: the condition (∅ B OR1 , ∅ B OR, ∅) ∈
R is intuitively the counterpart to the condition that (∅, ∅, ∅) has to be included in the relation
on configuration structures. Also, f shares similarity with the label- and order-preserving
bijection (this will be made formal in Lemma 35).

I Definition 33 (Maximal event). An event e is maximal in I if there is no event e′ such
that e <xm e′, for xm a maximal configuration of I.

Note that by Lemma 31, the encoding of a memory has at most one maximal configuration,
but that does not prevent it from having multiple maximal events: Fig. 3d is an I- structure
resulting from the encoding of a memory with two maximal events, labeled a and c.

The following lemma shows the operational correspondence between a RCCS process and
its encoding in I-configuration structure.

I Lemma 34.
1. For all transitions R−−−→i:α S, dRe ∼= dSe�{e} with e maximal in dSe and mS(e) = i.
2. For all transitions R :::→i:α S, dSe ∼= dRe�{e} with e maximal in dRe and mR(e) = i.
3. For any maximal event e in dRe, there is a transition R ::::::::→mR(e):`R(e)

S with dSe ∼= dRe�{e}.

The proof, for 1, shows that the transition triggered the creation of a maximal event with
the same identifier, and nothing else, and that this event can be “traced” in dSe. It uses
intermediate lemma showing how maximal events are preserved by certain operations on
I-structures. Part 2 follows easily, but 3 is more involved: it requires to show that e can be
mapped to a particular transition in the trace from OR to R, and, using a notion of trace
equivalence, that this particular transition can be “postponed” and done last, so that R can
backtrack on it.

I Lemma 35. Letting xm1 and xm2 be the unique maximal configuration in dR1e and dR2e,
dR1e ∼= dR2e iff there exists a label- and order-preserving bijection between xm1 and xm2 .

I Theorem 36. P1 and P2 are HHPB (resp. HPB) iff JP1K and JP2K are.
In the definition of (H)HPB on configuration structures (Definition 18), removing the

condition that the bijection f on events must be preserved from one step to the next gives
the definition of weak-HPB and weak-HHPB [3, 12]. The same loosening can be done on
the definition of (H)HPB on RCCS (Definition 32), and a theorem similar to Theorem 36
regarding those “weak” relations can easily be proven.

I Theorem 37. HHPB and B&F bisim coincide on all CCS processes.
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The proofs of those two results are relatively easy, once we have all the intermediate
lemmas, and use one relation to define the other. Theorem 36 (resp. Theorem 37) uses
our operational correspondence between RCCS processes (resp. RCCS memories) and their
encodings as configuration structures [1, Lemma 6] (resp. as I-structure (Lemma 34)) to
transition between the semantic and syntactic worlds.

I Corollary 38 (Main result). P1 and P2 are B&F bisim iff JP1K and JP2K are HHPB.

Proof. This is an immediate corollary of Theorem 37 and Theorem 36. J

5 Concluding Remarks

As we stressed, this work offers a “definitive” answer to the question of finding a relation
for process algebras that corresponds to (H)HPB on their encodings for all processes. It
uses the memory mechanism of RCCS, or, more precisely, the encoding of this memory
into an “enriched” configuration structure, called identified configuration structure. This
observation echoes our previous formalism [1] in an interesting way: as mentioned in Sect. 1,
we offered to encode a reversible process R as a pair (JORK, xR) made of the configuration
structure encoding the origin of R, and a configuration xR in it, called the address of R. The
intuition was that we could “match” a partially executed process with a configuration. We
can go further, and observe that the encoding of the memory of R has the same underlying
configuration structure as the structure generated by its address, xR ↓ (Definition 3). This
lemma is actually used to prove Theorem 36, and it reads:

I Lemma 39. The underlying configuration structure of dRe is isomorphic to xR ↓.

We can now come back to the intuitions of Fig. 1 using Example 29: the encoding of the
memory of (〈2, a, 0〉.g .∅� b) | (〈1, c, 0〉.g .∅�0) corresponds the “past” of the process, whose
underlying structure is grayed out in Fig. 3d. What is left to execute, b | 0, corresponds
to the “future” of that process, and is represented by the configuration {c, a, b} in Fig. 3d.
Note that the configuration {a, b} is not part of the past nor of the future of this process, as
reaching this configuration would require to undo c first.

Different versions of the back-and-forth bisimulation have been previously proposed for
reversible processes and with the adequate restrictions on the class of processes, these versions
coincide. But to capture HHPB on all process, B&F bisim uses both the reversibility and
the memory mechanisms of RCCS. As we show with Example 23, using only the backward
transitions does not capture HHPB on processes with auto-concurrency.

As future work, we plan to investigate the versions of HPB and HHPB where the τ
transitions are ignored. We would also like to identify a criteria to determine what the “right”
structural equivalence for RCCS is: as of now, our equivalence excludes e.g. R | 0 ≡ R for
technical reasons that should be overcome.
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A Category Theory

Configuration structures often use the insights provided by the categorical framework [1,
14, 17]. We regroup in this appendix the categorical treatment related to the configuration
structures and to the identified configuration structures.

I Definition 40 (Category of configuration structures). We define C the category of configu-
ration structures, where an object is a configuration structure, and a morphism f : C1 → C2
is a triple (fE , fL, fC) such that

fE : E1 → E2 preserves labels: `2(fE(e)) = fL(`1(e)), for fL : L1 → L2;
fC : C1 → C2 is defined as fC(x) = {fE(e) : e ∈ x}.

If there exists an isomorphism f : C1 → C2, then we write C1 ∼= C2.

Observe that C has 0 for initial object. For simplicity, we often assume that L1 = L2, i.e.,
that all the configuration structures use the same set of labels, take fL to be the identity
and remove it from the notation.

IDefinition 41 (Category of I-structures). We define D the category of identified configuration
structures, where objects are I-structures, and a morphism f : I1 → I2 is a tuple q = (f, fm)
such that

f = (fE , fC) is a morphism in C between the underlying structures of I1 and I2,
fm : I1 → I2 preserves identifiers: fm(m1(e)) = m2(fE(e)).

If there exists an isomorphism q : I1 → I2, then we write I1 ∼= I2.

Observe that D as for initial object 0, and that C is a subcategory of D. In both C and D,
composition is written ◦ and defined componentwise.

I Lemma 42. Identified configuration structures and their morphisms form a category.

Proof. Identity For every I-structure I = (E,C, `, I,m), idI : I → I is defined to be the
identity on the underlying configuration structure id : (E,C, `)→ (E,C, `) from C, that
trivially preserves identifiers. For any morphism f : I1 → I2, f ◦ idI1 = f = idI2 ◦f is
trivial.

Associativity for f : I1 → I2, g : I2 → I3 and h : I3 → I4, h ◦ (g ◦ f) = (h ◦ g) ◦ f is
inherited from the associativity in C, and since f , g and h all preserves identifiers.
Hence D is a category. J

Unsurprisingly, a forgetful functor and an enrichment functor can be defined between
those two categories. The only assumption is that we need to suppose that every configuration
structure can be endowed with a total ordering � on its events.

I Lemma 43. The forgetful functor F : D→ C, defined by
F(E,C, `, I,m) = (E,C, `)
F(fE , fC , fm) = (fE , fC)

and S : C→ D, defined by
S(E,C, `) = (E,C, `, I,m), where I = {1, . . . , |E|} for |E| the cardinality of E, and

m(e) =
{

1 if ∀e′, e � e′

i+ 1 if ∃e′, e′ � e, m(e′) = i and there is no e′′ s.t. e′ � e′′ � e

For (fE , fC) : (E1, C1, `1) → (E2, C2, `2), S(fE , fC) = (fE , fC , fm), where we let
fm(m1(e)) = m2(fE(e2)).
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are functors.

Proof. Proving that F is a functor is immediate.
Proving that S(C) is a I-structure is immediate, since our construction of m trivially

insures Collision Freeness. For (fE , fC) : C1 → C2, proving that S(fE , fC) is a morphism
between S(C1) and S(C2) is also immediate. For the preservation of the identity, we compute:

S(idC) = S(idE , idC)
= (idE , idC , fm)

where fm(m(e)) = m(idE(e)) = m(e), hence fm = idI : I → I,

= (idE , idC , idI)
= idS(C)

For the composition of morphisms, given f = (fC , fE) : C1 → C2 and g = (gC , gE) : C2 → C3,
we write S(Ci) = (Ei, Ci, `i, Ii,mi) and we compute:

S(g) ◦ S(f) = (gC , gE , gm) ◦ (fC , fE , fm)
= (gC ◦ fC , gE ◦ fE , gm ◦ fm)

where, for all e ∈ E1, we compute:

(gm ◦ fm)(m1(e)) = gm(fm(m1(e))
= gm(m2(fE(e))) (Since fm preserves identifiers)
= m3(gE(fE(e))) (Since gm preserves identifiers)

Hence we can conclude:

S(g) ◦ S(f) = S(g ◦ f) J

I Remark 44. In D, every morphism f = (fE , fL, fC , fm) from I1 to I2 is actually fully
determined by fE whenever fL = id. Indeed, given fE : E1 → E2, then we can define for all
x ∈ C1, fC(x) = {fE(e) | e ∈ x} and fm as fm(m1(e)) = m2(fE(e)). We will often make the
abuse of notation of writing fE for f and reciprocally.

I Lemma 45. The product of I-structures is the product in D.

Proof. First note that I1 × I2 is an I-structure as it is a configuration structure endowed
with an m function, where by definition every event in a configuration has a unique label.
Secondly, it is easy to show that the projections γi : I1 × I2 → Ii are morphisms, since they
are defined as the pair (πi, θi). Lastly to show that the structure I1 × I2 has the universal
property, we proceed in two steps:

the underlying configuration structure is the product of the underlying configuration
structures, by definition of the product in configuration structure:

F(I1 × I2) = F(I1)×F(I2);

for any I ′ which projects into I1 and I2, then F(I ′) projects into F(I1) and F(I2) and
therefore there exists a unique morphism h : F(I ′)→ F(I1 ×I2). It is easy to show that
since the projections preserve identifiers, then so does h which concludes our proof.

This lemma also follows from [19, Proposition 85]. J
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B Proofs and Auxiliary Lemmas

In this section we detail the proofs missing from the main text, as well as introducing some
intermediate results that are necessary for the proofs.

B.1 Proof for Sect. 3.2
I Theorem 22. On the class of processes without auto-concurrency, B&F bisim and SB&F
bisim are the same relations.

Proof. Let R1, R2 be two reversible processes without auto-concurrency. We want to show
that
1. (R1, R2) ∈ R for R a SB&F bisim implies that there exists f a bijection between I(R1)

and I(R2) such that (R1, R2, f) ∈ R′ is a B&F bisim.
2. (R1, R2, f) ∈ R′ for R′ a B&F bisim implies that (R1, R2) ∈ R for R a SB&F bisim.

For 1, we first note that there exists forward-only traces from ∅�OR1 to R1 [5, Lemma 10].
We pick one, θ1, and construct the bijection f between I(R1) and I(R2) using it. We start by
letting (∅ B OR1 , ∅ B OR2 , ∅) ∈ R′. Then, assuming θ1 starts with ∅ B OR1 −−−→

i:α R′1, since
(R1, R2) ∈ R, we know there are R′2 and j such that ∅ B OR2 −−−→

j:α
R′2 and (R′1, R′2) ∈ R,

and we let (R′1, R′2, {i→ j}) ∈ R′. We iterate this construction until we obtain the bijection
f such (R1, R2, f) ∈ R′. That this bijection can be extended in case of forward transitions
from R1 or R2 is obvious, using R. The more difficult part of the proof is to show that f
is “right”, i.e., that if R1 or R2 does a backward transition to a term S, and if S is paired
with S′ in R, then it is the case that the identifiers of the transitions leading to S and S′ are
“matched”, i.e., in bijection in f .

Stated formally, we want to show that for any (R1, R2) ∈ R with f constructed as above,
then for all R1 :::→i:α S1 and R2 :::→

j:α
S2 such that (S1, S2) ∈ R, {i → j} ∈ f . We show it

by contradiction: let us then take (R1, R2) ∈ R and f : I(R1) → I(R2). We want to show
that (R1, R2, f) ∈ R′ is a valid relation, and for this we must show that it can accommodate
the backward transitions. Suppose that we have two pairs of indexes {i→ j}, {i′ → j′} in f ,
and that R1 :::→i

′:α S1 and that R2 :::→
j:α

S2 such that (S1, S2) ∈ R.
First, observe that all four indexes, i, i′, j and j′, are associated to the same label α: due

to the way f was constructed, following R, it cannot be the case that two transitions with
different labels have their identifiers paired. Secondly, since R2 :::→

j:α
S2 and {i→ j} is in f ,

it must be the case that there is a transition in θ1 with the identifier i by construction of f .
Let us denote ti : S′1−−−→

i:α R′1 and ti′ : S1−−−→i
′:α R1.

The following paragraphs are necessary for the proof but are more general and can also
be read as standalone.

Interlude: Concurrency in a Trace and Trace Equivalence Concurrency on events corre-
sponds to a notion of concurrency on transitions in a trace. We introduce here the concepts
needed for this proof, as they are defined in [5, Definition 7 and Lemma 8].

Two transitions t1 = R −−−−→i1:α1 R1 and t2 = R′ −−−−→i2:α2 R2 are composable if R1 = R′,
and doing t1, then t2 is written as the composition t1; t2. Given n composable transitions
ti : Ri−−−→

i:αi Ri+1 and their composition t1; . . . ; tn, we say that ti is a direct cause of tk for
1 6 i < k 6 n and write ti < tk (or, for short, i < k) if there is a memory stack m in Ri+1
and a memory stack m′ in Rk+1 such that m < m′, where the order on memory stacks is
given by prefix ordering.
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Let R−−−→i:α S be a transition. If α 6= τ , we write mR/S = {m} where

R =(· · · ((R3 | ((R1 | (m� P )) | R2)\
−→
b1) | R4)\

−→
b2 · · · | Rn)\

−→
bm

S =(· · · ((R3 | ((R1 | 〈i, a,Q〉.m� P ) | R2)\
−→
b1) | R4)\

−→
b2 · · · | Rn)\

−→
bm

for some Ri any of which could be missing and for some
−→
bj , possibly missing as well. If

α = τ , then mR/S will contain the pair of memory stacks that has been changed by the
transition. Intuitively, the notation mR/S is useful below to extract the memory stack(s)
modified by a forward transition from R to S.

Two transitions are coinitial if they have the same source process and cofinal if they
have the same target process. We say that two coinitial transitions t1 = R−−−−→i1:α1 S1 and
t2 = R −−−−→i2:α2 S2 are concurrent if mR/S1 ∩mR/S2 = ∅, that is, if the transitions modify
disjoint memories in R.

The square lemma [5, Lemma 8] says that moreover, given two such concurrent transitions,
there exists two cofinal and concurrent transitions t′1 = S1 −−−−→

i2:α2 S and t′2 = S2 −−−−→
i1:α1 S.

The name of the lemma comes from this picture:

R

S1 S2

S

t1 t2

t′1 t′2

Moreover, the traces θ1 = t1; t′1 and θ2 = t2; t′2 are equivalent [5, Definition 9]. This
allows one to define equivalence classes on transitions: t1 in θ1 is equivalent to t′2 in θ2 if θ1
is equivalent to θ2 and t1 and t′2 have the same index. Then in the trace t1; t′1 we are now
allowed to say that t1 is concurrent to t′1.

In a trace t1; t2 we have that t1 is concurrent to t2 iff t1 is not a cause of t2. This
follows from a case analysis using the definitions of concurrency and causality. Thanks to
trace equivalence, we also have that in a trace t1; . . . ; tn either t1 is a cause of tn or the
two transitions are concurrent. We refer the reader to [4] for the complete treatment of
concurrency and causality in the trace of a CCS process.

The definitions of concurrency for forward coinitial traces and of causality for forward
traces can easily be “flipped” into definitions of concurrency for backward cofinal traces,
and of causality for backward traces. Also, the concurrency and causality relations between
transitions can be “lifted” to one between indexes in a trace. We will use them below.

Back to our Proof Observe that i and i′ cannot be concurrent in θ1. If they were, then
in the encoding of R1, there would be two events–the one introduced by t′i and the one
introduced by tj–that are concurrent, with the same label, but that is not possible since R1
is without auto-concurrency. Since two transitions are either concurrent or causal, it follows
that either i < i′ or i′ < i.

As the cause cannot backtrack before the effect it follows that the case i′ < i is not
possible.
Then i < i′. We now reason by cases on j < j′ or j′ < j.

If j < j′ then R1 must have already backtracked on j′, which implies that the there is
no j′ in f as we assumed.
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The case j′ < j is not possible. Note that i < i′ implies an order in which the pair of
indexes are added to the bijection, in this case the pair {i→ j} occurs before {i′ → j′}
and therefore it cannot be that j′ < j.

From this reasoning, we get that for any R1 :::→i:α S1 and R2 :::→
j:α

S2 such that (S1, S2) ∈
R, {i→ j} ∈ f . We still need to show that (S1, S2, f \{i→ j}) ∈ R′ is a “valid” relation. We
only need to show that f \{i→ j} matches the “right” indices in case of a backward transition,
but we can simply iterate the previous reasoning until we reach (∅ B OR1 , ∅ B OR2 , ∅) ∈ R′.
This concludes this direction of the proof.

For 2, there is nothing to prove, since we are dropping a requirement, the existence of
the bijection. J

B.2 Operations on Identified Configurations Preserve Them (Sect. 4.1)
Our main goal here is to prove that the operations of Definition 25 preserve I-structures
(Lemma 48), and that requires the following intermediate lemma:

I Lemma 46. For every reversible thread m � P of a reachable process R, and for all
i ∈ I(m), i occurs once in m.

Proof. We prove it by induction on the structure of m.
if m = ∅, then it is obvious.
if m = g.m′, then by induction hypothesis, for all i ∈ I(m′), i occurs only once in m′,
and since no identifier occur in g, i occurs only once in m.
if m = 〈j, λ,Q〉.m′ then there exists S such that m′ � S −−−→j:λ 〈j, λ,Q〉.m′ � P since R is
reachable. By induction we know that for all i ∈ I(m′), i occurs once in m′. We reason
on the derivation tree of the transition that add the memory event 〈j, λ,Q〉 and we have
that for any such transition, the rule act. of Fig. 4 is applied as axiom at the top of the
derivation tree. By the side condition of the rule act., we know that j /∈ I(m′), hence that
for all i ∈ I(m), i occurs once in m. J

I Remark 47. Note that the property above holds for reversible threads, and not for
RCCS processes in general: we actually want memory events to sometimes share the same
identifiers. Indeed, two memory events need to have the same identifiers if they result from a
synchronization (i.e., the application of the syn. rule of Fig. 4) or a fork (i.e., the application
of the Distribution of Memory rule of structural equivalence, Definition 13).

I Lemma 48. The operations of Definition 25 (product, relabeling, restriction, parallel
composition and postfixing) preserve I-structures.

Proof. Let us note that (i) the product, relabeling, restriction, and parallel composition
on configuration structures from Definition 5 preserve configuration structures, as their are
adaptations from [17, 18], and that (ii) any configuration structure endowed with a valid
identifier function (i.e., such that no two events in the same configuration have the same
identifier, cf. Collision Freeness) is a valid I-structure.

For the product, it follows trivially from Lemma 45.
Relabeling does not change anything but the labels, so we have nothing to prove.
The restriction only removes events in configurations and keeps the identifier function

intact. Hence if the initial structure has a valid identifier function, then the identifier function
of the new structure is a valid one by assumption.

Let us now consider the parallel composition of two I-structures, denoted I1 | I2 =
(E,C,L, `, I,m). Proving that the identifier function m is valid follows from a case analysis.
Given a configuration x ∈ C and two events e, e′ ∈ x, these are the possible cases:
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π2(e) = ? and π2(e′) = ?. In this case, looking at the definition of the product in
I-structures, m(e) = (m1(π1(e)),m?) and m(e′) = (m1(π1(e′)),m?). If m(e) = m(e′),
then m1(π1(e)) = m1(π1(e′)) in the configuration π1(x) in I1. But that’s a contradiction,
since π1(e) and π1(e′) are in the same configuration and the identifier function of I1 is
valid.
π1(e) = ? and π1(e′) = ?. This case is similar as the previous one, except that it uses
that the identifier function of I2 is valid.
π1(e) 6= ? and π2(e′) 6= ? (with either π1(e′) = ? or π1(e′) 6= ?). If m(e) = m(e′), then
mi(πi(e)) = mi(πi(e′)) for i = 1, 2. Then in this case,

either one of them, say, e, is a synchronization or a fork: in this case, m1(π1(e)) =
m2(π2(e)) = m2(π2(e′)), and e′ was relabeled ⊥ at the relabeling stage of the parallel
composition, and then removed during the restriction. Hence a contradiction: e and e′
cannot be two events in the same configuration.
or none of them is a synchronization, in which case both events were removed by the
restriction. Hence, again, a contradiction: e and e′ cannot be two events in the same
configuration.

The symmetric case (where π2(e) 6= ? and π1(e′) 6= ?) is similar.

For the postfixing operation, we have to first prove that the underlying configuration of I1 ·
〈i, λ, P 〉, written (E,C,L, `), is a valid configuration structure. Finiteness is satisfied because
the underlying configuration of I1, written (E1, C1, L1, `1), is a configuration structure, and
every configuration in {x ∪ {e} | x ∈ C1 is maximal} is finite. For Coincidence Freeness,
we also only have to check the configurations in {x ∪ {e} | x ∈ C1 is maximal}. Given
y ∈ {x ∪ {e} | x ∈ C1 is maximal}, there exists y′ such that y = y′ ∪ {e}. Given two
events e1, e2 in y such that e1 6= e2, if e1 = e or e2 = e, then y′ is the configuration we
are looking for. Otherwise, it follows from y′ being a configuration in the configuration
structure (E1, C1, L1, `1). Finite Completeness and Stability trivially follow from the fact
that (E1, C1, L1, `1) is a configuration structure. Hence, I1 · 〈i, λ, P 〉 has a configuration
structure underlying, and we just need to prove that the identifier function is valid. That
follows from the fact that i is not an identifier in the codomain of mi, and hence I1 · 〈i, λ, P 〉
is an I- structure. J

B.3 Properties of Memory Encodings (Sect. 4.2)
Remember that we assume given coherent reversible processes R, R1, R2 and S (without
any restriction), and that we write OR for the origin of R, and dRe as (ER, CR, `R, IR,mR)
and similarly for S.

I Lemma 30. For all e1, e2 ∈ ER, mR(e1) = mR(e2) implies e1 = e2.

Proof. We proceed by structural induction on R. From Lemma 46 the only interesting case
is the parallel composition, i.e. R = R1 | R2. From the definition of parallel composition in
I-structures (Definition 25), it follows that mR(e1) = mR(e2) implies e1 = e2. J

I Lemma 31. dRe is a partially ordered set (poset) with one maximal configuration.

Proof. We proceed by induction on R.
If R is m� P , we prove that dm� P e is a poset with one maximal element by induction

on m. The base case, if m is ∅, is trivial, since b∅c = 0 is a poset with one maximal element,
∅. If m is g.m′, then it follows by induction hypothesis, since bg.m′c = bm′c. If m is
〈i, α, P 〉.m′, then by induction hypothesis, bm′c is a poset with one maximal element, and
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the postfixing construction used to define b〈i, α, P 〉.m′c, detailed in Definition 25, preserves
that property.

If R is R′\a, then it trivially follows by induction hypothesis.
Finally, if R is R1 | R2, then by induction hypothesis we get that dR1e and dR2e are both

posets with a maximal configuration. We also know by Lemma 30 that events in each structure
have disjoint identifiers (however the two structures can share identifiers with each other).
Looking at the definition of parallel composition for I-structures (Definition 25), we may
observe that dRe = dR1 | R2e = dR1e | dR2e consists of the structure

(
r ◦ (dR1e × dR2e)

)
�F

with a different m function.
We show that there exists more than one maximal configurations in dR1e × dR2e and

that all but one are removed by the restriction.
We show this by first showing that there exists more than one maximal configurations in

F(dR1e)×F(dR2e), denoted here with C. From the definition of product (Definition 5), we
have that there exists y1, . . . , yn maximal configurations in C such that π1(yi) and π2(yi) are
maximal in C1 and C2, respectively. As dR1e × dR2e = (F(dR1e)×F(dR2e))⊕m it follows
that the maximal configurations of C are preserved in dR1e × dR2e.

A second step is then to show that the restriction keeps only one maximal configuration.
Let yi, yj be two maximal configurations. As they are maximal it implies that yi ∪ yj /∈ C, for
i 6= j 6 n. In turn, this implies that there exists ei ∈ yi and ej ∈ yj such that π1(ei) = π1(ej)
and ei 6= ej , as otherwise yi ∪ yj would be defined. Here we assume that π1(ei) = π1(ej) but
we could also take π2(ei) = π2(ej) and the argument still holds.

Let us now take d an event in C1 and take e1, . . . , em the subset of events in E where
π1(ei) = d. The restriction in the parallel composition of dR1e | dR2e keeps only one such
event ei and removes the rest. Therefore, from all maximal configurations y1, . . . , ym such
that ei ∈ yi, i 6 m, only one remains.

By applying the argument above to all events in dR1e (and dR2e), we have that the
restriction removes all but one yi, which is then the maximal configuration in dR1e | dR2e. J

B.4 Lemmas and Proofs for Sect. 4.3 and Sect. 5
Our goal here is to prove Theorems 36 and 37, and we use the following organization: first
(Sect. B.4.1), we show that there is an operational correspondence between R and dRe
(Lemma 34), and this requires intermediate lemmas (Lemmas 49, 50, 51) about the encoding
of memories and their relation to maximal events. Then (Sect. B.4.2), we use this result to
identify isomorphisms of I-structures with label- and order-preserving functions (Lemma 35),
and to connect our previous formalism with the encoding of memories (Lemma 39). Finally,
Sect. B.4.3 concludes by proving our two main theorems.

B.4.1 Operational Correspondence
I Lemma 49. If R ≡ S then dRe ∼= dSe.

Proof. Looking back at Definition 13, there are only limited ways for R and S to be
structurally equivalent (i.e., in the ≡ relation), and we review them one by one.

In Sum Symmetry, Sum Associativity and α-Conversion, it should be noted that the
memory is left untouched, so their encodings are equal.

For Distribution of Memory, we have that dm � (P | Q)e = bmc, and d(g.m � P ) |
(g.m�Q)e = d(g.m� P )e | d(g.m�Q)e = bg.mc | bg.mc = bmc | bmc. The construction
of the isomorphism between bmc and bmc | bmc is trivial: let e be an event in bmc. Note
that the only event e′ in bmc | bmc such that π1(e′) = e is (e, e). Indeed, suppose (e, e′′) is
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in bmc | bmc, for e′′ 6= e. Then, by Lemma 30, m(e) 6= m(e′′), since they are both events
in bmc. But by the definition of parallel composition, (e, e′′) should have triggered Err. 1.
Similarly, (e, ?) can not be an event in bmc | bmc, since it should have triggered Err. 2.
Hence, we can map e in bmc and (e, e) in bmc | bmc and obtain our isomorphism.

For Scope of Restriction, we have that have dm� (P\a)e = bmc = d(m� P )\ae. J

I Lemma 50. The event introduced in the postfixing of a memory event to an identified
structure is maximal in the resulting identified structure.

Proof. The proof is immediate: the event introduced occurs only in the maximal configu-
rations of the identified structure, and hence there cannot be any other event that causes
it. J

Furthermore, the maximality of an event can be “preserved” by parallel composition:

I Lemma 51. For all identified structure I1 = (E1, C1, L1, `1, I1,m1) with e1 ∈ E1 a
maximal event in it, and for all identified configuration I2 = (E2, C2, L2, `2, I2,m2) such that
m1(e1) /∈ I2, (e1, ?) is maximal in I1 | I2.

Proof. The definition of parallel composition of identified configuration structure (Defini-
tion 25) should make it clear that the only event in I1 | I2 whose first projection is e1 is
(e1, ?), since m1(e1) /∈ I2: all the other pairings of events from E2 with e1 resulting in Err. 1.
Now, suppose for the sake of contradiction that (e1, ?) is not maximal in I1 | I2. It means
that there is a maximal configuration x in I1 | I2 and an event e ∈ x such that (e1, ?) <x e.

By Definition 5, π1(x) ∈ C1, and we prove that π1(x) is maximal in C1 by contradiction.
Suppose π1(x) is not maximal in C1, then there exists z ∈ C1 such that π1(x) ( z. Assume
z is maximal in C1 (if it is not, then take z′ the maximal configuration such that z ⊆ z′,
which always exists, and note that e1 ∈ z, since e1 ∈ π1(x) and π1(x) ⊂ z. By Stability,
since z ∪π1(x) = z is a configuration in C1, z ∩π1(x) = z \π1(x) also is, and note that for all
events e′ in z \ π1(x), we have that e1 66z\π1(x) e

′. Since e′ ∈ z \ π1(x), e′ ∈ z and e1 66z e′,
we have that z is a maximal configuration in I1 where e1 is not maximal: a contradiction.
Hence, we know that π1(x) is maximal in C1.

Now, we prove that π1(e) 6= ?. For the sake of contradiction, suppose that π1(e) =
?. Then, observe that the underlying configuration structure F(I1 | I2) also have this
configuration x with (e1, ?) <x e. Without loss of generality, we can assume that e is a
an immediate cause of (e1, ?) [1, Definition 20], that is, that there is no e′′ in x such that
(e1, ?) <x e′′ <x e. We can now use [1, Proposition 3] to get that it must be the case
that either π1(e1, ?) <π1(x) π1(e) or π2(e1, ?) <π2(x) π2(e). But since π2(e1, ?) = ? /∈ π2(x),
and since we assumed π1(e) = ? /∈ π1(x), both scenario are impossible, so we reached a
contradiction, and it must be the case that π1(e) 6= ?.

Since π1(x) is maximal in C1, and since π1(e), e1 ∈ π1(x), we reached a contradiction:
π1(e) is not caused by e1, but that cannot be since e1 is not maximal. Hence, there is no
such e ∈ x, and (e1, ?) is maximal in I1 | I2. J

I Lemma 34.
1. For all transitions R−−−→i:α S, dRe ∼= dSe�{e} with e maximal in dSe and mS(e) = i.
2. For all transitions R :::→i:α S, dSe ∼= dRe�{e} with e maximal in dRe and mR(e) = i.
3. For any maximal event e in dRe, there is a transition R ::::::::→mR(e):`R(e)

S with dSe ∼= dRe�{e}.

Proof. We prove the three items separately.
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item 1

We proceed by case on α in the transition R−−−→i:α S:
If α = a For the transition R −−−→i:α S to take place, it must be the case that R contains

a thread T = m � a.P + Q for some m, P and Q, and that T −−−→i:α 〈i, a,Q〉.m � P .
Additionally, the par., res. and ≡ rules of Fig. 4, gives us that it must be the case that

R ≡ ((Rn−1 · · · ((R3 | ((R1 | T ) | R2)\
−→
b1) | R4)\

−→
b2 · · · ) | Rn)\

−→
bm

for some Ri any of which (and its corresponding | constructor) could be missing and for
some

−→
bj , any of which (along with their \ constructor) could be missing as well. Hence,

the transition can be written as

R−−−→i:a ((Rn−1 · · · ((R3 | ((R1 | 〈i, a,Q〉.m� P ) | R2)\
−→
b1) | R4)\

−→
b2 · · · ) | Rn)\

−→
bm︸ ︷︷ ︸

=S′

with S′ ≡ S. By Lemma 50, we know that there is a maximal event e1 in d〈i, a,Q〉.m�P e
that has for identifier i. We show that this event can be “traced through” dS′e, using
four arguments:

From the par. rule in Fig. 4 we have that i /∈ I(R1). Using Lemma 51, it follows that
there exists a maximal event e2 in dR1 | 〈i, a,Q〉.m� P e such that π2(e2) = e1, and
from Definition 25 that its identifier is i.
We can use the same reasoning to prove that there is a maximal event e3 in d(R1 |
〈i, a,Q〉.m� P ) | R2e such that π1(e3) = e2 and such that its identifier is i.
Since dR3 | ((R1 | 〈i, a,Q〉.m� P ) | R2)\

−→
b1e = dR3 | ((R1 | 〈i, a,Q〉.m� P ) | R2)e, it

is trivial that e3 is a maximal event with identifier i in it.
Using those three arguments repeatedly, and “skipping” them if a parallel composition
or a restriction is “missing”, we can “trace” the maximal event with identifier i in
((Rn−1 · · · ((R3 | ((R1 | 〈i, a,Q〉.m� P ) | R2)\

−→
b1) | R4)\

−→
b2 · · · ) | Rn)\

−→
bm.

But we still need to find a maximal event whose identifier is i in dSe. Since

((Rn−1 · · · ((R3 | ((R1 | 〈i, a,Q〉.m� P ) | R2)\
−→
b1) | R4)\

−→
b2 · · · ) | Rn)\

−→
bm ≡ S

Lemma 49 gives us that d((Rn−1 · · · ((R3 | ((R1 | 〈i, a,Q〉.m�P ) | R2)\
−→
b1) | R4)\

−→
b2 · · · ) |

Rn)\
−→
bme ∼= dSe. Let us write f this isomorphism, we want to prove that f(e) is maximal

in dSe. To do so, let us use the “if” part of the upcoming Lemma 35 (this part of the
lemma is not proved using the lemma we are currently proving, but the “and only if”
part does, hence the choice of postponing it after this current lemma) and suppose that
f(e) is not maximal in dSe. Then, there exists a maximal configuration xm in dSe and
an event e′ in xm such that f(e) <xm

e′. But since f is an isomorphism, and since f
preserves the order in maximal configurations according to the first part of Lemma 35, we
have that it must be the case that e <f−1(xm) f

−1(e′), which contradicts the maximality
of e in ((Rn−1 · · · ((R3 | ((R1 | 〈i, a,Q〉.m� P ) | R2)\

−→
b1) | R4)\

−→
b2 · · · ) | Rn)\

−→
bm. Since f

is by definition label-preserving, we have that f(e) is a maximal event in dSe such that
mS(e) = i. It is obvious that this event is the only one that was added to the encoding of
R, so that dRe = dSe�{e}.

If α = τ Then it must be the case that R has two threads, T = m � a.P + Q and T ′ =
m′ � ā.P ′ +Q′ for some m,m′, a, P, P ′ and Q,Q′, and that

R = (· · · (R3 | (((R1 | T ) | R2)\
−→
b1 | R4))\

−→
b2 · · · | ((R′1 | T ′) | R′2)\

−→
c1 · · · | Rn)\

−→
bm
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for some Ri, R′i any of which (and its corresponding | constructor) could be missing and
for some

−→
bj ,
−→
ck , any of which (along with their \ constructor) could be missing as well.

Then the transition becomes

R−−−→i:τ (· · · ((R3 | (R1 | (〈i, a,Q〉.m� P ) | R2))\
−→
b1 | R4)\

−→
b2 · · ·

(R′1 | ((〈i, ā, Q′〉.m′ � P ′) | R′2)\
−→
c1 · · · | Rn)\

−→
bm = S.

We use the same reasoning as in the first case above to deduce that there is a maximal
event in d(〈i, a,Q〉.m�P e, let us name it e1, and one in d〈i, ā, Q′〉.m′�P ′e, let us name it
e′1, that both have identifier i. Using the same argument as the first case of the proof, we
can “trace” in parallel e1 and e′1, until the I-structures that hold their “descendants” are
put in parallel: at that point, by Definition 25, it should be clear that a single maximal
event resulting from their composition will emerge, that it will be labeled τ and have
identifier i. Finally, using again the same argument as in the first case, this event resulting
from the synchronization of our two maximal events will still be maximal in dSe, and
hence we can conclude that there exists a maximal event in dSe labeled τ whose identifier
is i.

item 2

If R :::→i:α S, then by the Loop Lemma [5, Lemma 6], S −−−→i:α R. By item 1, we have that
dSe ∼= dRe�{e} with e maximal in dRe and mR(e) = i, which is what we wanted to show.

item 3

For any reachable process R, from Definition 15 and [5, Lemma 10], we have that there exists
a forward-only trace OR−−→→? R. We consider without loss of generality the following trace:
∅�OR = R0−−−−→

1:α1 R1 · · · −−−−→
k:αk Rk = R, for some k, α1, . . . , αk.

Given two processes S1, S2 such that dS1e = dS2e�{e} for some event e, we write for
simplicity that dS2e = dS1e+ e. Using item 1, we have then that dRje = dRj−1e+ ej , for
j 6 k and m(ej) = j. Therefore we can construct a bijection h between events ej in dRe and
transitions tj : Rj−1−−−−→

j:αj
Rj with m(ej) = j.

Let e be a maximal event in dRe and let h(e) = Rj−1−−−−→
j:αj

Rj , where

R0−−−−→
1:α1 R1 · · ·Rj−1−−−−→

j:αj
Rj −−−−−−−→

j+1:αj+1
Rj+1 · · ·Rk−1−−−−→

k:αk Rk = R

As e is maximal, by Definition 33, there exists no event e′ in dRe such that e < e′. From
dRi+1e = dRie+ ei+1, for i 6 k, we have that dRie ⊆ dRi+1e and by induction, dRie ⊆ dRke,
for all i 6 k. Then dRj+ie ⊆ dRke and we have that ei 66 e, for all j + 1 6 i 6 k. It implies
that ei is concurrent with e, for all j + 1 6 i 6 k.

We use here concurrency in a trace and trace equivalence, that have been introduced
in the proof of Theorem 22. Consider two consecutive transitions tj = Rj −−−−−−−→

j+1:αj+1
Rj+1

and tj+1 = Rj+1−−−−−−−→
j+2:αj+2

Rj+2. Using the bijection h defined above between transitions
and events, we have that there exists two event ej , ej+1 in dRj+2e such that h(ej) = tj and
h(ej+1) = tj+1. Suppose that ej is concurrent to ej+1. By an induction on the structure
of memories in dRj+2e, we have that mRj/Rj+1 ∩mRj+1/Rj+2 = ∅ which implies that there
exists a transition t′j = Rj −−−−−−−→

j+2:αj+2
Rj+2 such that tj is concurrent with t′j .

Recall that ei is concurrent with e, for all j + 1 6 i 6 k in our trace. We can now use the
trace equivalence of [5, Definition 9], and use the previous remark repeatedly to re-organize
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our original trace as follows:

R0−−−−→
1:α1 R1 · · ·Rj−1−−−−−−−→

j+1:αj+1
R′j+1 · · ·R′j−1−−−−→

k:αk R′k −−−−→
j:αj

R

The core idea being that we can “postpone” the transition that will create the event e in
the encoding of R, by flipping it with the other transitions, and have it become the last
transition that leads to the same R.

We can use now the Loop Lemma [5, Lemma 6], and have that R ::::→j:αj
R′k. Using item 2

on this transition, we have that dR′ke = dRe�{e}. J

B.4.2 On Connecting Formalisms
I Lemma 35. Letting xm1 and xm2 be the unique maximal configuration in dR1e and dR2e,
dR1e ∼= dR2e iff there exists a label- and order-preserving bijection between xm1 and xm2 .

Proof. Let f : dR1e → dR2e be an isomorphism: using Remark 44, we will take f to be fully
determined by its function between events fE , that we also write f . Then f : xm1 → xm2 is
by definition a label-preserving bijection. For two events e, e′ in dR1e, if e <xm

1
e′ it follows

that for all x1 in dR1e such that e′ ∈ x1 then e ∈ x1. From f an isomorphism we have that
f−1 : dR2e → dR1e is a well defined morphism. As f−1 preserves configurations it follows
that for all x2 in dR2e, there exists x1 in dR1e such that f(x1) = x2. Then for all x2, such
that f(e′) ∈ x2 it implies that e′ ∈ f−1(x2) and e ∈ f−1(x2) and finally, f(e) ∈ x2. Then
f(e) <xm

2
f(e′), as for all x2, x2 ⊆ xm2 . Similarly we proceed for the concurrent events, and

obtain that f is an order-preserving bijection on top of being label-preserving.
For the reverse direction, let f : xm1 → xm2 be a label- and order-preserving bijection. All

events in dR1e are present in xm1 , and therefore f : dR1e → dR2e is a bijection on events.
Remains to show that f preserves configurations, that is, for all x1 ⊆ xm1 , f(x1) = {f(e) | e ∈
x1} is a configuration in dR2e. In other words, f(x1) = x2 must satisfies the properties
of Definition 1.

Finiteness follows from the fact that all configurations in the encoding of an RCCS
memory are finite.
For Coincidence Freeness let us first note that there is a unique and finite maximal
configuration xm2 in which all distinct events are either causal or concurrent. Let us
consider e2 6= e′2 two events in x2. Since e2 6= e′2 then either (i)e2 6xm

2
e′2 (or e2 6xm

2
e′2

but this is similar) or (ii)e2 coxm
2
e′2. As xm2 is the unique maximal configuration, the

relations above hold for x2 as well. In the case (i), as e2 6= e′2 then e′2 66x2 e2. We apply
the definition of causality (Definition 2) to obtain the configuration z ⊆ x2 where e2 ∈ z
and e′2 /∈ z as required by Coincidence Freeness. In the case (ii), we use the definition of
concurrency, which implies that e2 66x2 e

′
2 and e′2 66x2 e2. Then there exists z ⊆ x2 such

that e2 ∈ z and e′2 /∈ z and moreover, there exists z′ ⊆ x2 such that e′2 ∈ z and e2 /∈ z.
To show Finite Completeness, it suffices to note that there exists a unique maximal
configuration xm2 which can be an upper bound for any subset of configurations in dR2e.
To show Stability we first note that because there is a single maximal configuration, the
condition ∀x2, x

′
2 ∈ C2, x2 ∪ x′2 ∈ C2 always holds. Then we have to show that for all

configurations x2, x
′
2, x2 ∩ x′2 is a configuration.

We will show that x2 ∩ x′2 = f(x1 ∩ x′1) is a configuration in dR2e by exploiting the
causality and concurrency relations in x1 ∩ x′1. From the second item of Lemma 34 we
have that there exists a maximal event e1

1 in x1 and from dSe�{e1
1} ⊂ dRe, x1 \ e1 is a

configuration in dR1e. We use the same reasoning for x1 \ e1 in dSe�{e1
1} with e

2
1 maximal
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and dSe�{e1
1,e

2
1} ⊂ dSe�{e1

1} ⊂ dRe. We have then a sequence of events e1
1, · · · en1 such that

x1 \ e1, · · · en = x1 ∩ x′1.
Let us consider e2 6= e′2 two events in x2 and as f is a bijection, let e1 6= e′1 be two
events in f−1(x2) = x1 such that f−1(e2) = e1 and f−1(e′2) = e′1. If e2 6= e′2 then either
e2 6xm

2
e′2 or e2 coxm

2
e′2. It follows that either e1 6xm

1
e′1 or e1 coxm

1
e′1, respectively,

since f−1 is label- and order-preserving as well. As xm1 , xm2 are the unique maximal
configurations the relations above hold for x2 and x1 as well.
We therefore have that f(e1

1) is the maximal event in x2. Again we use the second item
of Lemma 34 and as above we obtain the sequence of events f(e1

1), · · · f(en1 ) such that
f(x1) \ f(e1), · · · f(en) = f(x1 ∩ x′1) is a configuration in dR2e. J

I Lemma 39. The underlying configuration structure of dRe is isomorphic to xR ↓.

Proof. Let us abuse the notation by writing JRK = (JORK, xR).
This encoding is based on the following result : as R is reachable there exists a forward-

only trace [5, Lemma 10] θ : OR−−−−→
i1:α1 · · · −−−−→in:αn R, such that for any transition in θ there

exists a corresponding event in x [1, Lemma 1].
We reason then by induction on the trace θ. As the base case is similar, we only treat

the inductive case.
Suppose that the result holds for R, that is let h : F(bRc)→ xR ↓ be an isomorphism.

Remember that F is the identity on events. We use an argument similar to Lemma 35 to
show that instead of an isomorphism, we can reason on h : xm → xR as a label- and order-
preserving bijection, where xm is the maximal configuration of bRc. Indeed, from Definition 3,
xR is the maximal configuration in xR ↓ and we can easily derive an identified structure
S(xR ↓) (Lemma 43).

Let R−−−→i:α S be an RCCS transition. Then by the operational correspondence between
R and (JORK, x) [1, Lemma 6] there exists e an event in JORK such that

(JORK, xR)−−→e (JORK, xR ∪ {e})

with `(e) = α and JSK = (JORK, xR ∪ {e}). By the operational correspondence between
R and dRe (Lemma 34) there exists a memory event e′ such that dRe = dSe�{e′} with e′
maximal in dSe and mS(e′) = i. As there is only one maximal configuration in dSe and as
dRe = dSe�{e′}, it follows that xm ∪ {e′} is the maximal configuration in dSe.

We have then to show that if h : xm → xR is label- and order-preserving bijection then
so is h′ = h ∪ {e→ e′} : xm ∪ {e′} → xR ∪ e. We do this by exploiting the correspondence
with RCCS and following a reasoning similar to the one in Theorem 37. J

B.4.3 Proofs of Theorems 36 and 37
I Theorem 36. P1 and P2 are HHPB (resp. HPB) iff JP1K and JP2K are.

Proof. Let us prove the HHPB case, the other case being similar, and actually simpler.
⇒ Let RRCCS be a HHPB between P1 and P2 (Definition 32). We show that the following

relation

R = {(x1, x2, f) | x1 ∈ JP1K, x2 ∈ JP2K,∃R1, R2 s.t. OR1 = P1, OR2 = P2,

(R1, R2, F ) ∈ RRCCS and JR1K = (JP1K, x1), JR2K = (JP2K, x2), f = F(F )}

is a HHPB between JP1K and JP2K.
We first show that for any tuple (x1, x2, f) ∈ R, f : x1 → x2 is a label- and order-
preserving bijection. For a tuple (R1, R2, F ) ∈ RRCCS with F : dR1e → dR2e an
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isomorphism, we have that F : xm1 → xm2 , the isomorphism restricted to the maximal
configurations xm1 , xm2 , with F a label- and order-preserving bijection, by Lemma 35. The
functor F maps isomorphisms on identified structures to isomorphisms on configuration
structures, by Lemma 43, and therefore f = F(F ) : F(xm1 )→ F(xm2 ).
Moreover, x1 and x2 are the maximal configurations in x1 ↓ and x2 ↓, by Definition 3.
By Lemma 39, F(dRie) ∼= xi ↓ which implies that F(xmi ) = xi, for i ∈ {1, 2}. Thus
f = F(F ) is well defined and indeed, a label- and order-preserving bijection.
The rest of the proof follows the same structure as in [1, Proposition 6]. Note that
(∅, ∅, ∅) ∈ R: indeed (∅� P1, ∅� P2, ∅) ∈ RRCCS and J∅� PiK = (JPiK, ∅), for i ∈ {1, 2}.
Let us suppose that (x1, x2, f) ∈ R for JRiK = (JPiK, xi), for i ∈ {1, 2} and f : x1 → x2 a
label- and order-preserving bijection. Note that F(dRie) ∼= xi ↓, from Lemma 39, and
that dRie ∼= xi ↓ ⊕m, for some function m, from Definition 24.
To show that R is a HHPB we have to show that if x1−−→

e1 y1 (or x1 ::→
e1 y1) then there

exists y2 such that x2−−→
e1 y2 (or x2 ::→

e2 y2 respectively) and such that (y1, y2, f
′) ∈ R for

some f ′ = f ∪ {e1 → e2}.
Let x1 −−→

e1 y1, hence by definition, y1 = x1 ∪ {e1}. From the correspondence between
RCCS and their encodings (from [1, Lemma 6]), it follows that R1 −−−→i:α S1 such that
JS1K = (JP1K, y1).
As (R1, R2, F ) ∈ RRCCS and as R1 −−−→i:α S1, it follows that there exists a transition
R2−−−→

j:α
S2 with F = F ′�dR1e and (S1, S2, F

′) ∈ RRCCS.
Again from the correspondence between R2 and JR2K we have that x2−−→

e2 y2 such that
y2 = x2 ∪ {e2} and JS2K = (JP2K, y2). Then we show that (y1, y2,F(F ′)) ∈ R. The only
missing argument is that F(F ′) = f ∪ {e1 → e2}. Note that, again using Lemma 35,
we can consider F : xm1 → xm2 and F ′ : ym1 → ym2 to be label- and order-preserving
bijections on the maximal configurations of dR1e, dR2e and dS1e, dS2e, respectively. From
the definition of postfixing and parallel composition, in Definition 25, we have that
ym1 = xm1 ∪ {e1} and ym2 = xm2 ∪ {e2}. Therefore F ′ = F ∪ {e1 → e2} by which we
conclude.
We treat similarly the cases where x2 does a transition, or when the transitions are
backwards.

⇐ Let RCONF be a HHPB between JP1K and JP2K. We show that the following relation

R = {(R1, R2, F ) | OR1 = P1, OR2 = P2, JR1K = (JP1K, x1), JR2K = (JP2K, x2),
with (x1, x2, f) ∈ RCONF, F = (f, fm),

fm(i) = j,m1(e) = i,m2(f(e)) = j, for all e ∈ x1}

is a HHPB between ∅� P1 and ∅� P2.
For (R1, R2, F ) ∈ R, let us show that F is an isomorphism between dR1e and dR2e. For
f : x1 → x2 a label- and order-preserving bijection, and for two functions m1 : x1 → I1
(from dR1e) and m2 : x2 → I2 (from dR2e) then there exists a unique function fm : I1 → I2
such that fm(m1(e)) = m2(fE(e)), for all e ∈ x1. This follows from Collision Freeness
in the definition of identified structures and from f being a bijection. We write then
F = (f, fm) : (x1 ⊕ m1) → (x2 ⊕ m1). Moreover, as in the first case, we derive that
x1, x2 are maximal in dR1e, dR2e, respectively. We use Lemma 35 to conclude that
F : dR1e → dR2e is an isomorphism.
We have that (∅ � P1, ∅ � P2, ∅) ∈ R as (∅, ∅, ∅) ∈ RCONF and J∅ � PiK = (JPiK, ∅), for
i ∈ {1, 2}.
We suppose now that (R1, R2, F ) ∈ R, with F : dR1e → dR2e. It implies that (x1, x2, f) ∈
RCONF for JRiK = (JPiK, xi), i ∈ {1, 2} and that F = (f, fm) with f : x1 → x2 label- and
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order-preserving.
To show that R is a HHPB we have to show that if R1−−−→i:α S1 (or R1 :::→i:α S1) then there
exists S2 such that R2−−−→

j:α
S2 (or R2 :::→

j:α
S2 respectively) and such that (S1, S2, F

′) ∈ R
for some F ′.
Let R1−−−→i:α S1. We use again the correspondence between RCCS and their encodings [1,
Lemma 6] from which we have that there exists e1 and y1 = x1 ∪{e1} such that x1−−→

e1 y1
and JS1K = (JP1K, y1). As (x1, x2, f) ∈ RCONF it implies that there exists e2, y2 and
f ′ = f ∪ {e1 → e2} such that x2−−→

e2 y2 and (y1, y2, f
′) ∈ RCONF.

Again, from the correspondence between RCCS and configuration structures we have
that, from x2−−→

e2 y2, there exists S2 such that R2−−−→
j:α

S2 with JS2K = (JP2K, y2). From
f ′ = f ∪ {e1 → e2} it easily follows that F ′ = (f ′, f ′m) = (f ∪ {e1 → e2}, fm ∪ {i→ j}).
We conclude therefore that (S1, S2, F

′) ∈ R.
Similarly we show the cases where R1 does a backward transition, or if R2 does a forward
or backward transition. J

I Theorem 37. HHPB and B&F bisim coincide on all CCS processes.

Proof. Let P1, P2 be two processes and let R be a B&F bisim relation between them
as in Definition 20. Then for any (R1, R2, f) ∈ R, R1, R2 are two RCCS processes and
f : I(R1)→ I(R2) is a bijection on their identifiers. Letting dRie = (Ei, Ci, Li, `i, Ii,mi),
for i ∈ {1, 2}, we show that the relation

S =
{

(R1, R2, F ) | (R1, R2, f) ∈ R, F (e1) = e2 ⇐⇒ f(m1(e1)) = m2(e2)
}

is a HHPB relation as in Definition 32. We do this by induction on the processes R1 and
R2, as any process reachable from P1 has to be in R (and in S) and vice versa. Remember
Remark 44: to define F : dR1e → dR2e = (fE , fC , fm), it is enough to define fE , and we
write F for fE in the following. The base case (∅� P1, ∅� P2, ∅) ∈ S is trivial.
Suppose that for (R1, R2, f) ∈ R, we have that (R1, R2, F ) ∈ S. Now let R1 −−−→i:α S1

for which we have that R2 −−−→
j:α

S2 and g : I(S1) → I(S2) is a bijection defined as f on
I(R1) ⊂ I(S1) and g(i) = j. Let e1 ∈ dS1e such that m1(e1) = i and e2 ∈ dS2e such
that m2(e2) = j. Then G = F ∪ {e1 → e2} is defined by g(m1(e1)) = m2(e2), and thus
(S1, S2, G) ∈ S.
We show now that G is an isomorphism between dS1e and dS2e. G preserves identifiers
by definition; it preserves labels as `1(e1) = `2(e2) = α. Lastly we have to show that
it preserves configurations. We can use Lemma 35 to show instead that G : xm1 → xm2
is a label- and order-preserving function, where xm1 , xm2 are the maximal configurations
in dS1e and dS2e, respectively. Also by Lemma 35 we have that F : ym1 → ym2 is a
label- and order-preserving function on ym1 , ym2 maximal configurations in dR1e and dR2e,
respectively. From Lemma 34, xm1 \ {e1} ∈ dR1e and using Lemma 31 we have that
ym1 = xm1 \ {e1}. Therefore we have that G : xm1 → xm2 is a label- and order-preserving
function on all events e 6= e1.
Let us suppose, by contradiction, that there exists e such that e1 coxm

1
e but that

e2 coxm
2
F (e) does not hold. Take the maximal event e with such a property. More-

over, let F (e) = e′ <xm
2
e2 without loss of generality.

There exists at least one sequence of events e′1 ≤ · · · 6 e′n such that e 6xm
1
e′1 and such

that e′n is maximal. For simplicity we suppose that there is only one such sequence (the
general case uses the same reasoning). From Lemma 34, we have that S1 ::::::::→

m(e′n):`(e′n)
S′1.

We have F (e) < F (e′1) < · · · < F (e′n) and F (e′n) maximal, since F is label- and order-
preserving on all these events. As (S1, S2, g) ∈ R, we have also (S′1, S′2, g′) ∈ R, where g′
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is defined as g. We apply this reasoning until we reach the process T1 where e is maximal.
Then there exists T2 such that (T1, T2, g

′′) and g′′ is defined as g on the identifiers i, j
and m(e).
Then e is maximal however e′ is not and we reach a contradiction: from Lemma 34
S1 :::::::→

m(e):`(e)
S′1 but S2 cannot backtrack on e′. It implies then that G : xm1 → xm2 is a

label- and order-preserving function on all events in xm1 .
Let P1, P2 be two processes and let R be a HHPB relation between them as defined
in Definition 32. Then for any R1, R2 two RCCS processes and f : dR1e → dR2e an
isomorphism such that (R1, R2, f) ∈ R, f is also a bijection on the event identifiers of
the memories of R1, R2. The relation

S =
{

(R1, R2, F ) | (R1, R2, f) ∈ R and
F (i) = j ⇐⇒ f(e1) = e2,m1(e1) = i,m2(e2) = j

}
is a B&F bisim relation as defined in Definition 20. As above, we are using the operational
correspondence of Lemma 34. J
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