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History-Preserving Bisimulations on Reversible

Calculus of Communicating Systems

Clément Aubert1 and Ioana Cristescu2

1 Augusta University, Augusta, GA 30912, USA
2 Inria Rennes, France

Abstract. History- and hereditary history-preserving bisimulation (HPB
and HHPB) are equivalences relations for denotational models of concur-
rency. Finding their counterpart in process algebras is an open problem,
with some partial successes: there exists in calculus of communicating
systems (CCS) an equivalence based on causal trees that corresponds to
HPB. In Reversible CSS (RCCS), there is a bisimulation that corresponds
to HHPB, but it considers only processes without auto-concurrency. We
propose equivalences on CCS with auto-concurrency that correspond to
HPB and HHPB, and their so-called “weak” variants. The equivalences
exploit not only reversibility but also the memory mechanism of RCCS.

Keywords: Formal semantics · Process algebras and calculi · Reversible
CCS · Hereditary history-preserving bisimulation.

1 Introduction

Reversing Concurrent Computation Implementing reversibility in a program-
ming language often requires to record the history of the execution. Ideally, this
history should be complete, so that every forward step can be unrolled, and min-
imal, so that only the relevant information is saved. Concurrent programming
languages have a third requirement: the history should be distributed, to avoid
centralization of information. To fulfill those requirements, Reversible CCS [6,7]
uses memories attached to the threads of a process.

Equivalences for Reversible Processes A theory of reversible concurrent compu-
tation relies not only on a syntax, but also on “meaningful” behavioral equiva-
lences. In this paper we study behavioral equivalences defined on configuration
structures [14], which are denotational models for concurrency. In configuration
structures, an event represents an execution step, and a configuration—a set of
events that occurred—represents a state. A forward transition is then represented
as moving from a configuration to one of its superset, and backward transitions
have a “built-in” representation: it suffices to move from a configuration to one
of its subset. Many behavioral equivalences have been defined for configuration
structures ; some of them, like history- and hereditary history-preserving bisim-
ulations (HPB and HHPB), use that “built-in” notion of reversibility.
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Fig. 1: The encoding of OR, of the future and of the past of a reversible R.

Encoding Reversible Processes in Configuration Structures An ongoing research
effort [1,10] is to transfer equivalences defined in denotational models, which are
by construction adapted for reversibility, back into the reversible process algebra.
Of course, showing that an equivalence on configuration structures corresponds
to one on RCCS processes depends on the encoding of RCCS terms into config-
uration structures. One of them uses the fact that we are typically interested
only in reachable reversible processes—processes R which can backtrack to a
process OR with an empty memory— called its origin. Then, a natural choice is
to consider JORK—the encoding of the origin of R, using the common mapping
for CCS processes [14]—, and to identify in it the configuration corresponding
to the current state of the reversible process. In this set-up, the encoding of R is
one configuration, JRK, in the configuration structure JORK: every configuration
“below” is the “past” of R, every configuration “above”, its “future” (Fig. 1).

Contribution This paper improves on previous results by defining relations on
CCS processes that correspond to HPB, HHPB, and their “weak function” vari-
ants. The result does not require to consider a restricted class of processes. We
introduce an encoding of memories independent of the rest of the process and
show that, as expected, the “past” of a process corresponds to the encoding of its
memory. The memories attached to a process are no longer only a syntactic layer
to implement reversibility, but become essential for defining equivalences. This
result gives an insight on the expressiveness of reversibility, as the back-and-forth
moves of a process are not enough to capture HHPB.

Related work The correspondence between HHPB and back-and-forth bisimula-
tions for processes without auto-concurrency [1,10] motivated some of the work
presented here. Our approach shares similarity with causal trees—in the sense
that we encode only part of the execution in a denotational representation—
where some bisimulations corresponds to HPB [8].

Outline We start by recalling the definitions of configuration structures (Sect. 2.1),
of the encoding of CCS in configuration structures (Sect. 2.2), of (hereditary)
history-preserving bisimulations (Sect. 2.3), of RCCS (Sect. 2.4) and of related
notions. We also recall previous result on HHPB (Theorem 1). We consider the



reader familiar with CCS, in particular with its congruence relations and reduc-
tion rules.

Sect. 3 starts by defining a structure slightly richer than configuration struc-
tures, that we call “identified configuration structures” (Sect. 3.1), and defines
basic operations on them. Sect. 3.2 defines and illustrates with numerous ex-
amples how identified configuration structures can encode memories. Finally,
Sect. 3.3 uses this encoding to define relations on RCCS and CSS processes that
are then stated to correspond to HPB and HHPB on configuration structures.

Sect. 4 concludes, and Sect. A gathers the proofs and establishes the robust-
ness of the tools introduced.

2 Preliminary Definitions

We recall the definitions of configuration structures, auto-concurrency (Sect. 2.1),
how to encode CCS processes into configuration structures (Sect. 2.2) and the
history-preserving bisimulations (Sect. 2.3).

We write ⊆ the set inclusion, P the power set, \ the set difference, Card the
cardinal, ◦ the composition of functions, A → B the set of functions between A
and B, A ⇀ B the partial functions and f↾C the restriction of f : A → B to
C ⊆ A.

Let N = {a, b, c, . . . } be a set of names and N = {a, b, c, . . . } its co-names.
The complement of a (co-)name is given by a bijection [·] : N → N, whose inverse
is also denoted by [·]. We write −→a for a list of names a1, · · · , an. We define the
sets of labels L = N ∪ N ∪ {τ}, letL = P(L), and use α (resp. λ, ν) to range over
L (resp. L\{τ}).

2.1 Configuration Structures

Definition 1 (Configuration structures). A configuration structure C is a
tuple (E, C, L, ℓ) where E is a set of events, L ⊆ L is a set of labels, ℓ : E → L
is a labeling function and C ⊆ P(E) is a set of subsets satisfying:

∀x ∈ C, ∀e ∈ x, ∃z ∈ C finite, e ∈ z, z ⊆ x (Finiteness)

∀x ∈ C, ∀e, e′ ∈ x, e 6= e′ ⇒ ∃z ∈ C, z ⊆ x, e ∈ z ⇐⇒ e′ /∈ z
(Coincidence Freeness)

∀X ⊆ C, ∃y ∈ C finite , ∀x ∈ X, x ⊆ y ⇒
⋃

X ∈ C (Finite Completness)

∀x, y ∈ C, x ∪ y ∈ C ⇒ x ∩ y ∈ C (Stability)

We denote 0 the configuration structure with E = ∅, and write x −−→e y and
y ::→e x for x, y ∈ C such that x = y ∪ {e}.

For the rest of this paper, we often omit L, let x, y, z range over configurations,
and assume that we are always given C = (E, C, ℓ) and Ci = (Ei, Ci, ℓi), for
i = 1, 2.



Definition 2 (Causality, Concurrency, and Maximality). For x ∈ C and
d, e ∈ x, the causality relation on x is given by d <x e iff d 6x e and d 6= e, where
d 6x e iff for all y ∈ C with y ⊆ x, we have e ∈ y ⇒ d ∈ y. The concurrency
relation on x [9, Definition 5.6] is given by d cox e iff ¬(d <x e∨e <x d). Finally,
x is maximal if ∀y ∈ C, x = y or x 6⊆ y.

∅

{a1} {a2}

(a) Ja + aK

∅

{a1} {a2}

{a1, a2}

(b) Ja | aK

∅

{a} {a}

{a, a}{a, b}

{a, a, b}

{τ}

{τ, b}

(c) Ja | a.bK

Fig. 2: Examples of configuration structures

Example 1. Consider the configuration structures of Fig. 2, where the set of
events and of configurations can be read from the diagram, and where we make
the abuse of notation of writing the events as their labels (with a subscript if
multiple events have the same label). Note that two events with complement
names can happen at the same time (Fig. 2c), in which case they are labeled
with τ and called silent transition, as it is usual in CCS (Sect. 2.2).

Definition 3 (Category of configuration structures). We define C the cat-
egory of configuration structure, where objects are configuration structures, and
a morphism f from C1 to C2 is a triple (fE , fL, fC) such that

– fE : E1 → E2 preserves labels: ℓ2(fE(e)) = fL(ℓ1(e)), for fL : L1 → L2;
– fC : C1 → C2 is defined as fC(x) = {fE(e) : e ∈ x}.

If there exists an isomorphism f : C1 → C2, then we write C1
∼= C2.

We omit the fL part of the morphisms when it is the identity morphism.
We now recall how process algebra constructors are defined on configuration

structures [13]. The definition below may seem technical, but Definition 6 should
make it clear that they capture the right notion.

This definition uses the product (×⋆, p1, p2) of the category of sets and partial
functions [13, Appendix A]: letting ⋆ denote undefined for a partial function,
C⋆ = C ∪ {⋆} for a set C, we define, for two sets A and B,

A ×⋆ B = {(a, ⋆) | a ∈ A} ∪ {(⋆, b) | b ∈ B} ∪ {(a, b) | a ∈ A, b ∈ B}

with p1 : A ×⋆ B → A⋆ and p2 : A ×⋆ B → B⋆.



Definition 4 (Operations on configuration structures [1,12]).

The product of C1 and C2 is C1 × C2 = (E1 ×⋆ E2, C, ℓ). Define the projections
πi : C → Ci and the configurations x ∈ C such that:

∀e ∈ E, πi(e) = pi(e), πi(ℓi(e)) = ℓi(πi(e))

πi(x) ∈ Ci

∀e, e′ ∈ x, π1(e) = π1(e′) 6= ⋆ or π2(e) = π2(e′) 6= ⋆ ⇒ e = e′

∀e ∈ x, ∃z ⊆ x finite, π1(x) ∈ C1, π2(x) ∈ C2, e ∈ z

∀e, e′ ∈ x, e 6= e′ ⇒ ∃z ⊆ x, πi(z) ∈ Ci, e ∈ z ⇐⇒ e′ /∈ z

The labeling function ℓ : E1 ×⋆ E2 → L1 ∪ L2 ∪ (L1 × L2) is

ℓ(e) =











ℓ1(e1) if π1(e) = e1 6= ⋆ and π2(e) = ⋆

ℓ2(e2) if π1(e) = ⋆ and π2(e) = e2 6= ⋆

(ℓ1(e1), ℓ2(e2)) otherwise

The relabeling of C1 along r : E1 → L is r ◦ C1 = (E1, C1, r).
The restriction of C1 to E ⊆ E1 is C1↾E = (E, C, ℓ↾E), where x ∈ C ⇐⇒ x ∈

C1 and x ⊆ E. The restriction of C1 to a name a is C1↾a := C1↾Ea
1

where
Ea

1 = {e ∈ E1 | ℓ(e) /∈ {a, a}}. For −→a = a1, . . . , an a list of names, we define
similarly C1↾−→a = C1↾E

−→a
1

for E
−→a
1 = {e ∈ E1 | ℓ(e) /∈ {a1, a1, . . . , an, an}}.

The parallel composition of C1 and C2 is C1 | C2 =
(

r ◦ (C1 × C2)
)

↾F , with
– C1 × C2 = C3 = (E3, C3, ℓ3) is the product;
– r ◦ C3 with r : E3 → L1 ∪ L2 ∪ {⊥} defined as follows:

r(e) =











ℓ3(e) if ℓ3(e) ∈ {a, a}

τ if ℓ3(e) ∈ {(a, a), (a, a), τ}

⊥ otherwise

– (r ◦ C3)↾F , where F = {e ∈ E3 | r(e) 6= ⊥}.

The coproduct of C1 and C2 is C1 +C2 = C, where E = ({1}×E1)∪ ({2}×E2)
and C = {{1} × x | x ∈ C1} ∪ {{2} × x | x ∈ C2}. The labeling function ℓ is
defined as ℓ(e) = ℓi(π2(e)) when π1(e) = i.

The prefixing of C1 by the name λ is λ.C1 = (e ∪ E1, C, ℓ), for e /∈ E1 where
x ∈ C ⇐⇒ x = ∅ ∨ ∃x′ ∈ C1, x = x′ ∪ e ; ℓ(e) = λ and ∀e′ 6= e,
ℓ(e′) = ℓ1(e′).

Definition 5 (Auto-concurrency [9, Definition 9.5]). If ∀x ∈ C, ∀e1, e2 ∈
x, e1 cox e2 and ℓ(e1) = ℓ(e2) implies e1 = e2, then C is without auto-concurrency.

Any configuration structure where configurations have at most one event
(like Fig. 2a) are without auto-concurrency. Fig. 2b, on the other hand, is a
configuration structure with auto-concurrency: for x = {a1, a2} we have that
a1 cox a2, ℓ(a1) = ℓ(a2), and yet a1 6= a2.



2.2 CCS and its Encoding in Configuration Structures

The set of CCS processes P is inductively defined:

P, Q := λ.P ‖ P | Q ‖ λ.P + ν.Q ‖ P \a ‖ 0 (CCS Processes)

In the category of configuration structures C (Definition 3) one can “match”
the process constructors of CCS with the categorical operations of Definition 4.

Definition 6 (Encoding a CCS process [15, p. 57]). Given a CCS process
P , its encoding JP K as a configuration structure is built inductively:

Jλ.P K = λ.JP K JP | QK = JP K | JQK Jλ.P + ν.QK = Jλ.P K + Jν.QK

JP \aK = JP K↾a J0K = 0

For now on we assume that all structures use the same set of labels L.

Definition 7 (Auto-concurrency in CCS). A process P is without auto-
concurrency if JP K is.

2.3 (Hereditary) History-Preserving Bisimulations

HPB [11,10], [2, Theorem 4] and HHPB [3, Definition 1.4], [2, Theorem 1] are
equivalences on configuration structures that use label- and order-preserving
bijections between the events of the two configuration structures.

Definition 8 (Label- and order-preserving functions). A function f :
x1 → x2, for xi ∈ Ci, i ∈ {1, 2} is label-preserving if ℓ1(e) = ℓ2(f(e)) for all
e ∈ x1. It is order-preserving if e1 6x1

e2 ⇒ f(e1) 6x2
f(e2), for all e1, e2 ∈ x1.

Definition 9 (HPB and HHPB). A relation R ⊆ C1 × C2 × (E1 ⇀ E2) such
that (∅, ∅, ∅) ∈ R, and if (x1, x2, f) ∈ R, then f is a label- and order-preserving
bijection between x1 and x2 and (1) and (2) (resp. (1–4)) hold is called a history-
(resp. hereditary history-) preserving bisimulation between C1 and C2.

∀y1, x1 −−→
e1 y1 ⇒ ∃y2, g, x2 −−→

e2 y2, g↾x1
= f, (y1, y2, g) ∈ R (1)

∀y2, x2 −−→
e2 y2 ⇒ ∃y1, g, x1 −−→

e1 y′
1, g↾x1

= f, (y1, y2, g) ∈ R (2)

∀y1, x1 ::→
e1 y1 ⇒ ∃y2, g, x2 ::→

e2 y2, g = f↾x1
, (y1, y2, g) ∈ R (3)

∀y2, x2 ::→
e2 y2 ⇒ ∃y1, g, x1 ::→

e1 y1, g = f↾x1
, (y1, y2, g) ∈ R (4)

Note that the bijection on events is preserved from one step to the next. This
condition can be weakened, and we call the corresponding relations the weak-
function HPB and weak-function HHPB [3, Definition1.4], [10, Definition3.11].3

3 The names weak-HPB and weak-HHPB are more common [3,10], but can be confused
with the weak equivalences of process algebra, which refers to ignoring τ -transitions.



Definition 10 (wf HPB). A weak-function history-preserving bisimulation be-
tween C1 and C2 is a relation R ⊆ C1 × C2 × (E1 ⇀ E2) such that (∅, ∅, ∅) ∈ R
and if (x1, x2, f) ∈ R, then f is a label- and order-preserving bijection between
x1 and x2 and

∀y1, x1 −−→
e1 y1 ⇒ ∃y2, g, x2 −−→

e2 y2, (y1, y2, g) ∈ R

∀y2, x2 −−→
e2 y2 ⇒ ∃y1, g, x1 −−→

e1 y1, (y1, y2, g) ∈ R

Similarly one defines wf HHPB. If there is a HPB between C1 and C2, we just
write that C1 and C2 are HPB, and similarly for HHPB, wf HPB and wf HHPB.

∅

{a1} {b}

{a1, b}{a1, a2}

{a1, a2, b}

∅

{a1} {a2} {b}

{a1, a2} {a1, b} {a2, b}

{a1, a2, b}

Fig. 3: There is no HHPB relation between Ja.a | bK and Ja | a | bK.

Example 2. Observe that Ja.a | bK and Ja | a | bK, presented in Fig. 3, are HPB,
but not HHPB. Any HHPB relation would have to associate the maximal con-
figurations {a1, a2, b} of the two structures and to construct a bijection: taking
(a1 7→ a1, a2 7→ a2, b 7→ b) wouldn’t work, since Ja | a | bK can backtrack on a2

and Ja.a | bK cannot. Taking the other bijection, (a1 7→ a2, a2 7→ a1, b 7→ b), fails
too, since Ja | a | bK can backtrack on a1 and Ja.a | bK cannot.

Example 3 ([9]). The processes a | (b+c)+a | b+(a+c) | b and a | (b+c)+(a+c) |
b is another example of processes whose encodings are HPB but not HHPB.

Example 4. Finally, observe that a.(b + b) and a.b + a.b are not structuraly con-
gruent in CCS, but the encoding of the two processes are HHPB.

2.4 Reversible CCS and Coherent Memories

Let I be a set of identifiers, and i, j, k range over elements of I. The set of RCCS
processes R is built on top of the set of CCS processes P (Sect. 2.1):

e := 〈i, λ, P 〉 (Memory Events)

m := ∅ ‖ g .m ‖ e.m (Memory Stacks)

T, U := m � P (Reversible Thread)

R, S := T ‖ T | U ‖ R\a (RCCS Processes)



We denote I(m) (resp. I(R), I(e)) the set of identifiers occurring in m (resp.
R, e), and always take I = N. A structural congruence ≡ can be defined on RCCS
terms [1, Definition 5], the only rule we will use here is distribution of memory:
m � (P | Q) ≡ (g.m � P ) | (g.m � Q). We also note that R ≡ (

∏

i mi � Pi)\
−→a ,

for any reversible process R and for some names −→a , memories mi and CCS
processes Pi, writing

∏

i the i-ary parallel composition.

i /∈ I(m) act.
(m ⊲ λ.P + Q) −−−→i:λ 〈i, λ, Q〉.m ⊲ P

R −−−→i:λ R′ S −−−→i:λ S′

syn.
R | S −−−→i:τ R′ | S′

i /∈ I(m) act.∗
〈i, λ, Q〉.m ⊲ P :::→i:λ m ⊲ (λ.P + Q)

R :::→i:λ R′ S :::→i:λ S′

syn.∗
R | S :::→i:τ R′ | S′

R −−−→→i:α R′

i /∈ I(S) par.
R | S −−−→→i:α R′ | S

R −−−→→i:α R′ a /∈ α
res.

R\a −−−→→i:α R′\a

R1 ≡ R −−−→→i:α R′ ≡ R′

1

≡
R1 −−−→→i:α R′

1

Fig. 4: Rules of the labeled transition system

The labeled transition system for RCCS is given by the rules of Fig. 4. We use
−−−→→i:α as a wildcard for −−−→i:α (forward) or :::→i:α (backward transition), and if there

are indices i1, . . . , in and labels α1, . . . , αn such that R1 −−−−→→
i1:α1 · · · −−−−→→

in:αn Rn,
then we write R1 −−→→⋆ Rn. If there is a CCS term P such that ∅ � P −−→→⋆ R,
we say that R is reachable, that P is the origin of R [1, Lemma 1] and write
P = OR. Similarly to what we did in Definition 7, we will write that R is without
auto-concurrency if JORK is. An example of the execution of a reversible process
is given at the beginning of Example 7.

Note that we cannot work up to α-renaming of the identifiers: concurrent,
distributed computation is about splitting threads between independent units of
computation. If one of unit were to re-tag a memory event 〈89, λ, P 〉 as 〈1, λ, P 〉,
and another were to try to backtrack on the memory event 〈89, λ, P 〉, then the
trace of the synchronization would be lost, and backtracking made impossible.
Since we don’t want to keep a “global index” which would go against the benefits
of distributed computation, the only option is to forbid α-renaming of identifiers.

Memory coherence [6, Definition 1] was defined for RCCS processes with less
structured memory events (i.e., without identifiers), but can be adapted.

Definition 11 (Coherence relation). Coherence, written ⌢, is the smallest
symmetric relation on memory stacks such that rules of Fig. 5 hold.

Note that ⌢ is not reflexive, and hence not an equivalence, nor anti-reflexive.
For the rest of this paper, we will just write “memory” for “memory stack”.



em.
∅ ⌢ ∅

m ⌢ m′

I(e) /∈ I(m) ∪ I(m′) ev.
e.m ⌢ m′

m ⌢ m′

i /∈ I(m) ∪ I(m′) syn.
〈i, λ, P 〉.m ⌢ 〈i, λ, Q〉.m′

m ⌢ ∅
fo.

g.m ⌢ g.m

Fig. 5: Rules for the coherence relation

Definition 12 (Coherent processes, [6, Definition 2]). A RCCS process is
coherent if all of its memories are pairwise coherent, or if its only memory is
coherent with ∅.

We require the memory to be coherent with ∅ to make it impossible to have
〈1, λ, P 〉.〈1, ν, Q〉.∅ as a memory in a coherent process.

Lemma 1 ([7, Lemma 5]). If R −−→→⋆ S and R is coherent then so is S.

Corollary 1. For every reachable m � P and i ∈ I(m), i occurs once in m.

Note that the property above holds for reversible threads, and not for RCCS
processes in general: indeed, we actually want memory events to have the same
identifiers if they result from a synchronization or a fork.

Definition 13 (Back-and-forth bisimulation). A back-and-forth bisimula-
tion in RCCS is a relation R ⊆ R × R such that if (R1, R2) ∈ R

∀S1, R1 −−−→i:α S1 ⇒ ∃S2, R2 −−−→
j:α

S2, (S1, S2) ∈ R

∀S2, R2 −−−→i:α S2 ⇒ ∃S1, R1 −−−→
j:α

S1, (S1, S2) ∈ R

∀S1, R1 :::→i:α S1 ⇒ ∃S2, R2 :::→
j:α

S2, (S1, S2) ∈ R

∀S2, R2 :::→i:α S2 ⇒ ∃S1, R1 :::→
j:α

S1, (S1, S2) ∈ R

Example 5. The processes ∅ � (a.a | b) and ∅ � (a | a | b) are in a back-and-forth
bisimulation.

Theorem 1 ([1, Theorem 2],[10]). Back-and-forth bisimulation on RCCS
processes without auto-concurrency corresponds to HHPB on their encoding.

Note that this result does not hold for the processes in Example 5 (see also Ex-
ample 2). This does not contradict the theorem, as the processes in Example 5
are with auto-concurrency.

3 Lifting the Restrictions

To define a bisimulation on RCCS (with auto-concurrency) that corresponds
to HHPB we first have to encode the memories of a reversible process into a
structure similar to the configuration structures, called identified configuration
structures (Sect. 3.1). We can then define the encoding (Sect. 3.2), and the
equivalences in RCCS that use this encoding of memories (Sect. 3.3).



3.1 Identified Configuration Structures

Definition 14 (Identified configuration structure). An identified configu-
ration structure, or D-structure, D = (E, C, ℓ, I,m) is a configuration structure
C = (E, C, ℓ) endowed with a set of identifiers I and a function m : E → I such
that,

∀x ∈ C, ∀e1, e2 ∈ x,m(e1) 6= m(e2) (Collision Freeness)

We call C the underlying configuration structure of D and write D = C +m. We
write 0 for the identified configuration structure with E = ∅.

For the rest of this paper, we omit I, and assume that we are always given
D = (E, C, ℓ,m) and Di = (Ei, Ci, ℓi,mi), for i = 1, 2.

Example 6. Fig. 2c, with m(a) = 1, m(a) = 2, m(b) = 3 and m(τ) = 4, is a
D-structure. Note that it is possible to have fewer identifiers than events: take
I = {1, 2, 3} and m(a) = m(τ) = 1, m(a) = 2 and m(b) = 3.

For the following remark, we need to suppose that every configuration struc-
ture is endowed with a total ordering on its events.

Remark 1. Every configuration structure can be mapped to a D-structure.

The mapping is trivial: take I to be {1, . . . , Card E}, and define m : E → I
to follow the ordering on E. Note that, in this case, m is a bijection.

Definition 15 (Category of D-structures). We define D the category of
identified configuration structure, where objects are D-structures, and a mor-
phism f from D1 to D2 is a triple (fE , fC , fm) such that

– (fE , fC) is a morphism in C from (E1, C1, ℓ1) to (E2, C2, ℓ2);
– fm : I1 → I2 preserves identifiers: fm(m1(e)) = m2(fE(e)).

We denote F : D → C the forgetful functor.

Definition 16 (Operations on D-structures).

The product of D1 and D2 is D1 × D2 = (E, C, ℓ,m):
– (E1, C1, ℓ1) × (E2, C2, ℓ2) = (E, C, ℓ) is the product in the category of

configuration structures with projections πi : (E, C, ℓ) → (Ei, Ci, ℓi);
– m : E1 ×⋆ E2 → (I1 ∪{m⋆}) × (I2 ∪{m⋆}), for m⋆ /∈ I1 ∪ I2, is defined as

m(e) =











(m1(π1(e)),m⋆) if π2(e) = ⋆

(m⋆,m2(π2(e))) if π1(e) = ⋆

(m1(π1(e)),m2(π2(e))) otherwise

with the projections pi : m → mi ∪ {m⋆}.
Define the projections γi : D1 × D2 → Di as the pair (πi, pi).

The relabeling of D1 along r : E1 → L is r ◦ D1 = (E1, C1, r,m1).
The restriction of D1 to E ⊆ E1 is D1↾E =

(

(E1, C1, ℓ1)↾E +m1↾E

)

.



The parallel composition of D1 and D2 is D1 | D2 =
(

r ◦ (D1 × D2)
)

↾F , with
– D1 × D2 = D3 = (E3, C3, ℓ3,m3) is the product of D-structures.
– r ◦ D3, with r : E3 → L ∪ {⊥} defined as follows,

r(e) =















































































⊥ if π1(e) = e1 6= ⋆ ∧ π2(e) = e2 6= ⋆ ∧m1(e1) 6= m2(e2)

or if π1(e) = e1 6= ⋆ ∧ π2(e) = ⋆

∧(∃e2 ∈ E2, s.t. m1(e1) = m2(e2))

or if π2(e) = e2 6= ⋆ ∧ π1(e) = ⋆

∧(∃e1 ∈ E1, s.t. m1(e1) = m2(e2))

τ if π1(e) = e1 6= ⋆ ∧ π2(e) = e2 6= ⋆ ∧m1(e1) = m2(e2)

and ℓ3(e) = (α, α) (Valid Synchronisations)

α if π1(e) = e1 6= ⋆ ∧ π2(e) = e2 6= ⋆ ∧m1(e1) = m2(e2)

and ℓ3(e) = (α, α) (Valid Forks)

ℓ3(e) otherwise

– (r ◦ D3)↾F , where F = {e ∈ E3 | r(e) 6= ⊥}.

In the definition of parallel composition, r detects the wrong synchronization
(or fork) pairs: if two events occur at the same time, then they must have the
same identifier. And if an event occurs alone, then no other event can occur with
the same identifier.

3.2 Encoding the Memory of Reversible Processes

Definition 17 (Encoding a RCCS memory). The encoding of the memory
of a RCCS process in a D-structure is defined4 by induction on the process:

⌊m � P ⌋ = ⌊m⌋ ⌊R1 | R2⌋ = ⌊R1⌋ | ⌊R2⌋ ⌊R\a⌋ = ⌊R⌋

⌊〈i, α, P 〉.m⌋ = (E, C,m) ⌊g.m⌋ = ⌊m⌋ ⌊∅⌋ = 0

For ⌊〈i, α, P 〉.m⌋, letting ⌊m⌋ = (Em, Cm, ℓm,mm) and e /∈ Em, we let (E, C, ℓ,m)
be E = Em ∪ e, C = Cm ∪ {x ∪ {e} | x ∈ Cm is maximal}, ℓ = ℓm ∪ {e 7→ α}
and m(e′) = mm(e′) if e′ 6= e, and m(e) = i otherwise.

The memories of any RCCS process could be encoded into D-structures, but
we will encode only reachable (and thus coherent) processes (Definition 12).

Example 7. Consider the following transitions:

∅ � (a.b | c.a) ≡ (g.∅ � a.b) | (g.∅ � c.a)

−−−→1:c (g.∅ � a.b) | (〈1, c, 0〉. g .∅ � a)

−−−→2:τ (〈2, a, 0〉. g .∅ � b) | (〈2, a, 0〉.〈1, c, 0〉. g .∅ � 0)

−−−→3:b (〈3, b, 0〉.〈2, a, 0〉. g .∅ � 0) | (〈2, a, 0〉.〈1, c, 0〉. g .∅ � 0)

4 We make the abuse of notation of writing ⌊·⌋ for the encoding of both a reversible
process and a memory, into a D-structure.
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{a}

{a, b}

(a)

∅

{c}

{c, a}

(b)

∅

{(⋆, c)}

{(⋆, c), (a, a)}

{(⋆, c), (a, a), (b, ⋆)}

(c)

∅

{a}

{a, b} {c, a}

{c}

{c, a, b}

(d)

Fig. 6: (Identified) Configurations Structures of Examples 7 and 8

∅

{(⋆, c)}

{(⋆, c), (a, a)}

{(⋆, c), (a, a), (b, ⋆)}

∅

{(a, ⋆)} {(⋆, c)}

{(a, ⋆), (b, ⋆)} {(a, ⋆), (⋆, c)} {(⋆, c), (⋆, a)} {(⋆, c), (a, a)}

{(a, ⋆), (b, ⋆), (⋆, c)} {(a, ⋆), (⋆, c), (⋆, a)} {(⋆, c), (a, a), (b, ⋆)}

{(⋆, c), (a, ⋆), (⋆, a), (b, ⋆)}

Fig. 7: Configurations Structure of Example 7 (Continued)



Now, observe that:

⌊(〈3, b, 0〉.〈2, a, 0〉. g .∅ � 0) | (〈2, a, 0〉.〈1, c, 0〉. g .∅ � 0)⌋

=⌊〈3, b, 0〉.〈2, a, 0〉. g .∅ � 0⌋ | ⌊〈2, a, 0〉.〈1, c, 0〉. g .∅ � 0⌋

=⌊〈3, b, 0〉.〈2, a, 0〉. g .∅⌋ | ⌊〈2, a, 0〉.〈1, c, 0〉. g .∅⌋

If we let (with the obvious labeling functions ℓ(x) = x for x ∈ {a, a, b, c}):

⌊〈3, b, 0〉.〈2, a, 0〉. g .∅⌋ = ({a, b}, {∅, {a}, {b, a}}, {a 7→ 2, b 7→ 3}

⌊〈2, a, 0〉.〈1, c, 0〉. g .∅⌋ = ({c, a}, {∅, {c}, {c, a}}, {c 7→ 1, a 7→ 2})

Then we respectively get the structures of Figures 6a and 6b.
The product of those two configurations results in the following set of events

(where we keep naming the events after their label):

(a, ⋆) (ev. 1)

(b, ⋆) (ev. 2)

(⋆, c) (ev. 3)

(⋆, a) (ev. 4)

(a, c) (ev. 5)

(a, a) (ev. 6)

(b, c) (ev. 7)

(b, a) (ev. 8)

When doing the parallel composition, the relabeling labels with ⊥ events ev.
5, ev. 7 and ev. 8, since their event identifier do not match, as well as ev. 1 and
ev. 4, since they have the same identifiers but occur unsynchronized. Hence, we
obtain the D-structure of Fig. 6c, with m(⋆, c) = 1, m(a, a) = 2 and m(b, ⋆) = 3.

Observe the encoding of the origin of this process, a.b | c.a, in Fig. 7: the
underlying configuration of the encoding of the memory previously exposed is
just a particular path in that configuration structure. This remark is made formal
in Lemma 2.

Example 8. Similarly, we can encode the execution

∅ � (a.b | c) −−−→1:c −−−→2:a −−−→3:b (〈3, b, 0〉.〈2, a, 0〉. g .∅ � 0) | (〈1, c, 0〉. g .∅ � 0)

and obtain the structure of Fig. 7, with m(c) = 1,m(a) = 2 and m(b) = 3.

For the rest of this subsection, we assume given a coherent reversible process
R whose origin is written OR. As expected the underlying configuration of ⌊R⌋
is included in JORK (this will be a direct consequence of Lemma 4):

Lemma 2. F(⌊R⌋) ⊆ JORK.5

The following lemma states that all memory events in R are either causally
linked or concurrent. Therefore their encoding results in partially ordered set
(poset) with one maximal element (Definition 2), linked by the subset relation.
This is illustrated by Examples 7 and 8, and proved by induction on the RCCS
process.

Lemma 3. ⌊R⌋ is a poset with one maximal configuration.

5 Formally, C1 = (E1, C1, ℓ1) ⊆ C2 = (E2, C2, ℓ2) iff E1 ⊆ E2, C1 ⊆ C2 and ℓ1 ⊆ ℓ2.



Another way to encode a reachable memory in a configuration structure [1]
is to encode R as a configuration, called the address of R, inside JORK6:

JRK = (JORK, x) where x is a configuration in JORK.

Definition 18 (Generation). Given (E, C, ℓ) and x ∈ C, the configuration
structure generated by x is x ↓= (x, Cx, ℓ↾x), where Cx = {y | y ∈ C, y ⊆ x}.7

The encoding of the memory of R, ⌊R⌋, is the configuration structure gen-
erated by the configuration x. In other words, the memory of R is “everything
under” the address of R in JORK. We state this formally in the following lemma:

Lemma 4. For JRK = (JORK, x), F(⌊R⌋) ∼= x ↓.

We can now make the intuitions of Fig. 1 formal, letting R ≡ (
∏

i mi�Pi)\
−→a

and OR be its origin. Informally speaking, the memories of R, i.e. the mi, is the
“past” of R, and the process (

∏

i Pi)\
−→a is its “future”: in the configuration

structure JORK, they are respectively represented by F(⌊R⌋) and J(
∏

i Pi)\
−→a K.

Consider Example 7: the past of the process is the structure shown in Fig. 6c,
which corresponds to the gray part in Fig. 6d. The future of this process is empty,
as all actions have been consumed.

However, we cannot recover the origin process from the encoding of the past
and future of a reversible process. There is a loss of information that occurs for
the synchronisation events when encoding memories into identified configuration
structures: we label τ such events, whereas in the memories of a RCCS process
the synchronised events keep their input (or output) label.

3.3 (Hereditary) History-Preserving Bisimulations on CCS

We adapt the (hereditary) history-preserving bisimulations of Sect. 2.3 to CCS,
making the bijections becomes isomorphisms between memory encodings.

Below, we let P1 and P2 be two CCS processes (possibly with auto-concurrency,
Definition 7), and JPiK = (Ei, Ci, ℓi), for i = 1, 2.

Definition 19 (HPB and HHPB on CCS). A relation R ⊆ R×R×(E1 ⇀ E2)
such that (∅�P1, ∅�P2, ∅) ∈ R and if (R1, R2, f) ∈ R then f is an isomorphism
between F(⌊R1⌋) and F(⌊R2⌋) and (6) and (7) (resp. (6–9)) hold is called a

6 By abuse of notation, J·K denotes two different encodings, on CCS and RCCS pro-
cesses.

7 For the reader familiar with event structures, a configuration x defines an event
structure (x,6x, ℓ) for 6x the causality in x. The construction here mirrors the
transformation from an event structures to a configuration structure [15].



history-(resp. hereditary history-) preserving bisimulation between P1 and P2.

∀S1, R1 −−−→i:α S1 ⇒ ∃S2, g, R2 −−−→
j:α

S2, g↾F(⌊S1⌋) = f, (S1, S2, g) ∈ R (6)

∀S2, R2 −−−→i:α S2 ⇒ ∃S1, g, R1 −−−→
j:α

S1, g↾F(⌊S1⌋) = f, (S1, S2, g) ∈ R (7)

∀S1, R1 :::→i:α S1 ⇒ ∃S2, f, R2 :::→
j:α

S2, g = f↾F(⌊S1⌋), (S1, S2, g) ∈ R (8)

∀S2, R2 :::→i:α S2 ⇒ ∃S1, g, R1 :::→
j:α

S1, g = f↾F(⌊S1⌋), (S1, S2, g) ∈ R (9)

Definition 20 (wf HPB on CCS). A weak-function history-preserving bisim-
ulation between P1 and P2 is a relation R ⊆ R × R × (E1 ⇀ E2) such that
(∅ � P1, ∅ � P2, ∅) ∈ R and if (R1, R2, f) ∈ R, then f is a isomorphism between
F(⌊R1⌋) and F(⌊R2⌋) and

∀S1, R1 −−−→i:α S1 ⇒ ∃S2, g, R2 −−−→
j:α

S2, (S1, S2, g) ∈ R

∀S2, R2 −−−→i:α S2 ⇒ ∃S1, g, R1 −−−→
j:α

S1, (S1, S2, g) ∈ R

Of course, wf HHPB on CCS is defined similarly.
Note that the definitions above reflect definitions 9 and 10: the condition

(∅�P1, ∅�P2, ∅) ∈ R is intuitively the counterpart to the condition that (∅, ∅, ∅)
have to be included in the relation on configuration structures. Also, f shares
similarity with the label- and order-preserving bijection. Finally, note that, to
keep the definitions concise, we wrote R, but one needs only to consider the
reachable processes from ∅ � P1 and ∅ � P2.

Theorem 2 (Main result). P1 and P2 are HHPB (resp. wf HHPB, HPB,
wf HPB) iff JP1K and JP2K are.

4 Conclusion

In this paper, we recalled how the previous attempt to characterize syntactically
HHPB gave partial result (Theorem 1). Then, we defined a series of bisimulations
on CCS processes that corresponds to HPB, HHPB, and their “weak function”
variants, on configuration structures. We managed therefore to define an equiv-
alence on CCS which distinguishes for instance a.a | b from a | a | b, whose
encodings are not HHPB. We would like to conclude with three observations.

Fist, we should stress that our relations are defined in terms of CCS processes:
on the surface, this paper offers a new result on non-reversible CCS, using tools
stemming from the study of reversible computation. We believe this is an interest-
ing contribution, that witnesses the relevance of studying concurrent reversible
computation.

Our paper also introduces a natural technical tool, identified configuration
structure, to encode information on memory events. It should be noted that a
memory event is made of three elements, 〈i, α, Q〉, and that configuration struc-
tures encode names α, and D-structures furthermore encode identifiers i. We



could take a step further and also enclose information about the residual pro-
cess Q in a sum. Representing the “whole memory” in denotational model could
lead to interesting new bisimulation on processes, but we leave this for a future
possible extension.

Other CCS bisimulations such as the pomset bisimulations [5] or the localities
bisimulations [4] are known to be different from the history-preserving ones.
However, these bisimulations add some information on auto-concurrent events,
that can be used to distinguish them. A possible direction of future work is then
to adapt these bisimulations to the reversible setting to maybe capture HHPB.
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A Appendix

The appendix is divided in three subsections.
Sect. A.1 gathers results about identified configuration structures, introduced

in Sect. 3.1. They are not required to understand the rest of the technical de-
velopment, but illustrates why we believe this notion is “solid”, and gives some
insights on how to manipulate it.

The main purpose of Sect. A.2 is to prove Lemma 4, stated in Sect. 3.2. This
apparently intuitive result actually requires a heavy machinery to be proven:
not only do we prove Lemma 3, but we also state and prove some intermediate
lemmas.

The immediate advantage of Lemma 4 is that it makes the proof of Theorem 2,
in Sect. A.3, almost straightforward.

Before doing so, we need to prove the only new result of Sect. 2:

Proof (Corollary 1, page 9). Since m � P is reachable, m � P is coherent by
Lemma 1, and hence m ⌢ ∅ by Definition 12. Looking at Definition 11, the only
way to derive m ⌢ ∅ is to start with em., and then to apply ev. to “stack” the
memory events. If an identifier were to appear in two memory event in m, we
would not be able to use ev. to add the second memory event, since the side-
condition would forbid it. ⊓⊔

A.1 On the Robustness of Identified Configuration Structures

This subsection gathers elementary results on the structures introduced in Sect. 3.1.
These results, e.g., that the category of D-structures of Definition 15 is indeed a
category (Lemma 5) or that the operations on D-structures of Definition 16 are
well-defined (Lemma 7), were not stated in the body of the document, but are
implicitely used.

Lemma 5. Identified configuration structure and their morphisms (Definition 15,
page 10) form a category .

Proof. Identity For every D-structure D = (E, C, ℓ, I,m), idD : D → D is
defined to be the identity on the underlying configuration structure id :
(E, C, ℓ) → (E, C, ℓ) from C, that trivially preserves identifiers. For any mor-
phism f : D1 → D2, f ◦ idD1

= f = idD2
◦f is trivial.

Associativity for f : D1 → D2, g : D2 → D3 and h : D3 → D4, h ◦ (g ◦ f) =
(h ◦ g) ◦ f is inherited from the associativity in C, and since f , g and h all
preserves identifiers.
Hence D is a category. ⊓⊔

Lemma 6. The product of D-structures of Definition 16, page 10, is the product
in D.

Proof. First note that D1 ×D2 is a D-structures as it is a configuration structure
and from the definition of m every event in a configuration has a unique label.
Secondly, it is easy to show that the projections are morphisms. Lastly to show
that the structure D1 × D2 has the universal property, we proceed in two steps:



– the underlying configuration structure is the product of the underlying con-
figuration structures, by definition:

F(D1 × D2) = F(D1) × F(D2);

– for any D′ which projects into D1 and D2, then F(D′) projects into F(D1)
and F(D2) and therefore there exists a unique morphism h : F(D′) →
F(D1 × D2). It is easy to show that since the projections preserve identifiers,
then so does h which concludes our proof.

This lemma also follows from [15, Proposition 85]. ⊓⊔

Lemma 7. The operations of Definition 16 (product, relabeling, restriction and
parallel composition), page 10, preserve D-structures.

Proof. Let us note that (i) the product, relabeling, restriction, and parallel com-
position on configuration structures from Definition 4 preserve configuration
structures and that (ii) any configuration structure endowed with a valid iden-
tifier function (i.e., such that no two events in the same configuration have the
same identifier, cf. Collision Freeness) is a valid D-structure.

For the product, it follows trivially from Lemma 6.
Relabeling does not change anything but the labels, so we have nothing to

prove.
The restriction only removes events in configurations and keeps the identifier

function intact. Hence if the initial structure has a valid identifier function, then
the identifier function of the new structure is a valid one by assumption.

Let us now consider the parallel composition of two D-structures, denoted
D1 | D2 = (E, C, ℓ,m). Proving that the identifier function is valid follows from
a case analysis. Given a configuration x ∈ C and two events e, e′ ∈ x, these are
the possible cases:

– π2(e) = ⋆ and π2(e′) = ⋆. In this case, looking at the definition of the prod-
uct in D-structures, m(e) = (m1(π1(e)),m⋆) and m(e′) = (m1(π1(e′)),m⋆).
If m(e) = m(e′), then m1(π1(e)) = m1(π1(e′)) in the configuration π1(x)
in D1. But that’s a contradiction, since π1(e) and π1(e′) are in the same
configuration and the identifier function of D1 is valid.

– π1(e) = ⋆ and π1(e′) = ⋆. This case is similar as the previous one, except
that it uses that the identifier function of D2 is valid.

– π1(e) 6= ⋆ and π2(e′) 6= ⋆ (with either π1(e′) = ⋆ or π1(e′) 6= ⋆). If m(e) =
m(e′), then mi(πi(e)) = mi(πi(e

′)) for i = 1, 2. Then in this case,
• either one of them, say, e, is a synchronisation or a fork: in this case,
m1(π1(e)) = m2(π2(e)) = m2(π2(e′)), and e′ was relabeled ⊥ at the
relabeling stage of the parallel composition, and then removed during
the restriction. Hence a contradiction: e and e′ can’t be two events in
the same configuration.

• or none of them is a synchronisation, in which case both events were
removed by the restriction. Hence, again, a contradiction: e and e′ can’t
be two events in the same configuration.



The symmetric case (where π2(e) 6= ⋆ and π1(e′) 6= ⋆) is similar.
⊓⊔

The following lemma makes more formal the intuition of Remark 1, page 10.
Remember that we assumed that for every configuration structure (E, C, ℓ), E
was endowed with a total order, that we write �.

Lemma 8. F : D → C, defined by

– F(E, C, ℓ, I,m) = (E, C, ℓ)
– F(fE , fC , fm) = (fE , fC)

and S : C → D, defined by

– S(E, C, ℓ) = (E, C, ℓ, I,m), where I = {1, . . . , Card E} and

m(e) =

{

1 if ∀e′, e � e′

i + 1 if ∃e′, e′ � e, m(e′) = i and there is no e′′ s.t. e′ � e′′ � e

– For (fE , fC) : (E1, C1, ℓ1) → (E2, C2, ℓ2), S(fE , fC) = (fE , fC , fm), where
fm(m1(e)) = m2(fE(e2)).

are functors.

Proof. Proving that F is a functor is immediate.
Proving that S(C) is a D-structure is immediate, since our construction of

m trivially insures Collision Freeness. For (fE , fC) : C1 → C2, proving that
S(fE , fC) is a morphism between S(C1) and S(C2) is also immediate. For the
preservation of the identity, we compute:

S(idC) = S(idE , idC)

= (idE , idC , fm)

where fm(m(e)) = m(idE(e)) = m(e), hence fm = idI : I → I,

= (idE , idC , idI)

= idS(C)

For the composition of morphisms, given f = (fC , fE) : C1 → C2 and g =
(gC , gE) : C2 → C3, we write S(Ci) = (Ei, Ci, ℓi, Ii,mi) and we compute:

S(g) ◦ S(f) = (gC , gE , gm) ◦ (fC , fE , fm)

= (gC ◦ fC , gE ◦ fE , gm ◦ fm)

where, for all e ∈ E1, we compute:

(gm ◦ fm)(m1(e)) = gm(fm(m1(e))
= gm(m2(fE(e)))
= m3(gE(fE(e)))

And hence we can conclude:

S(g) ◦ S(f) = S(g ◦ f)

⊓⊔



A.2 Proofs for Sect. 3.2

In the following, we start by observing that Lemma 2 follows from Lemma 4.
Lemma 4, on its side, requires a bit of work: on top of proving Lemma 3, we
state and prove some intermediate lemmas (Lemma 9, 10 and 11) needed to
obtain it.

Proof (Lemma 2, page 13). Follows from Lemma 4. ⊓⊔

Lemma 9. For all RCCS process R, letting ⌊R⌋ = (E, C,m), for all e1, e2 ∈ E,
m(e1) = m(e2) implies e1 = e2.

Proof. We proceed by structural induction on R. From Corollary 1 the only
interesting case is the parallel composition, i.e. R = R1 | R2. From the definition
of parallel composition in D-structures (Definition 16), it follows that m(e1) =
m(e2) implies e1 = e2. ⊓⊔

Proof (Lemma 3, page 13). We proceed by induction on R.
If R is m � P , we prove that ⌊m⌋ is a poset with one maximal element by

induction on m. The base case, if m is ∅, is trivial, since ⌊∅⌋ = 0 is a poset
with one maximal element. If m is g.m′, then it follows by induction hypothesis,
since ⌊g.m′⌋ = ⌊m′⌋. If m is 〈i, α, P 〉.m′, then by induction hypothesis, ⌊m′⌋ is a
poset with one maximal element, and the construction of ⌊〈i, α, P 〉.m′⌋ detailed
in Definition 17 preserves that property.

If R is R′\a, then it trivially follows by induction hypothesis.
Finally, if R is R1 | R2, then by induction hypothesis we get that ⌊R1⌋ and

⌊R2⌋ are both posets with a maximal configuration. We also know by Lemma 9
that they have disjoint identifiers. Looking at the definition of parallel composi-
tion for D-structures (Definition 16), we may observe that ⌊R⌋ = ⌊R1 | R2⌋ =
⌊R1⌋ | ⌊R2⌋ =

(

r ◦ (⌊R1⌋ × ⌊R2⌋)
)

↾F .
We show that there exists more than one maximal configurations in ⌊R1⌋ ×

⌊R2⌋ and that all but one are removed by the restriction.
We show this by first showing that there exists more than one maximal con-

figurations in F(⌊R1⌋) × F(⌊R2⌋), denoted here with C. From the definition of
product (Definition 4), we have that there exists y1, · · · yn maximal configura-
tions in C such that π1(yi) and π2(yi) are maximal in C1 and C2, respectively. As
⌊R1⌋ × ⌊R2⌋ = (F(⌊R1⌋) × F(⌊R2⌋)) +m it follows that the maximal configura-
tions of C are preserved in ⌊R1⌋ × ⌊R2⌋.

A second step is then to show that the restriction keeps only one maximal
configuration. Let yi, yj be two maximal configurations. As they are maximal it
implies that yi ∪ yj /∈ C, for i 6= j 6 n. In turn, this implies that there exists
ei ∈ yi and ej ∈ yj such that π1(ei) = π1(ej) and ei 6= ej , as otherwise yi ∪ yj

would be defined. Here we assume that π1(ei) = π1(ej) but we could also take
π2(ei) = π2(ej) and the argument still holds.

Let us now take d an event in C1 and take e1, . . . , em the subset of events in
E where π1(ei) = d. The restriction in the parallel composition of ⌊R1⌋ | ⌊R2⌋
keeps only one such event ei and removes the rest. Therefore, from all maximal
configurations y1, . . . , ym such that ei ∈ yi, i ≤ m, only one remains.



By applying the argument above to all events in ⌊R1⌋ (and ⌊R2⌋), we have
that the restriction removes all but one yi, which is then the maximal configu-
ration in ⌊R1⌋ | ⌊R2⌋.

⊓⊔

Let us write xmax the maximal configuration from Lemma 3.
For the following proof, we need to introduce the causality relation on mem-

ory events and on transitions from [7]. We write i1 <R i2 for R a proces and
i1, i2 ∈ I if there exist a memory stack m.〈i1, α1, P1〉.m′.〈i2, α2, P2〉.m′′ in R. We
write i1 ≤R i2 for the transitive closure of < over all memories of R.

Lemma 10. Let R be a reversible process and ⌊R⌋ = (E, C, ℓ,m) be the encoding
of its memory, with xmax the maximal configuration in C. Let 〈i1, α1, P1〉 and
〈i2, α2, P2〉, i1 6= i2 be two memory events in R and let e1, e2 ∈ E be the two
corresponding events, i.e. m(ej) = ij, j ∈ {1, 2}. Then i1 ≤R i2 ⇐⇒ e1 ≤xmax

e2.

Proof. Follows by a structural induction on R.

We also import from [7, Definition 1] the definition of causality on transitions
t1 and t2, of a trace θ, that we denote here with t1 ≤θ t2. We do not give the
definition formally, as it is lengthy, but intuitively, it is the causality relation on
memory events lifted to transitions.

Let R be an RCCS process and θ : OR −−→→⋆ R a trace. Also, let JORK =
(E, C, ℓ) and let x be a configuration such that JRK = (JORK, x). We define
a bijection from transitions in θ to events in x, that we write te. We define
the bijection by induction on the trace θ using the fact for each transition t :

R′ −−−→
i,α

R′′ in θ, there exists x′ a configuration and e′ an event in JORK such
that JR′K = (JORK, x′) and JR′′K = (JORK, x′ ∪ {e′}). Then te(t) = e′.

Lemma 11. Let t1 and t2 be two transitions of a trace θ : OR −−→→⋆ R and let
JRK = (JORK, x). Then t1 ≤θ t2 ⇐⇒ te(t1) ≤x te(t2).

Proof. Follows by induction on the trace θ.

Proof (Lemma 4, page 14). We reformulate the hypothesis and show a stronger
(in the sense that it is more specific) result from which Lemma 4 follows.

As R is reachable there exists a forward-only trace OR −−−−→
i1,α1 · · · −−−−−→

in,αn
R [1,

Lemma 1], denoted by θ. We write ⌊Rj⌋ = (Ej , Cj , ℓj,mj) for Rj a process in

the trace above and θj : OR −−−−→
i1,α1 · · · −−−−→

ij ,αj

Rj a subtrace of θ.
Let JORK = (E, C, ℓ). From [1] we have that JRjK = (JORK, xj) for xj ∈ C.

We show that there exists three bijections:

– tej between transitions in the trace θj and events in JORK, i.e. tej : θj → E;
– mtj between events in ⌊Rj⌋ and transitions, i.e. mtj : Ej → θj ;
– mej between events in ⌊Rj⌋ and events in JORK, i.e. mej : Ej → E, such

that mej = tej ◦ mtj .



Moreover, all three bijections preserve the labels and the causality relations. In
particular, me is label and order preserving for all events in xmax, the maximal
configuration in ⌊Rj⌋:

mej(xmax) = xj (10)

e1 ≤xmax
e2 ⇐⇒ mej(e1) ≤xj

mej(e2). (11)

From Definition 18, x ↓= (x, Cx, ℓ↾x), for Cx = {y | y ∈ C, y ⊆ x}. We can write
⌊Rj⌋ = xmax ↓, and therefore have F(⌊Rj⌋) ∼= (mej(xmax)) ↓.

We proceed by induction on the trace θ, and at each step we extend the three
bijections above.

For a transition Rj −−−→
i,α

Rj+1 and a trace θj we have by induction that

– F(⌊Rj⌋) ∼= xj ↓, for JRjK = (JORK, xj);
– there exists tej : θj → E, mtj : Ej → θj and mej : Ej → E

as defined above.
There is an operational correspondence between Rj and its encoding [1,

Lemma 6], and therefore there exists e an event in JORK such that

(JORK, xj) −−→e (JORK, xj ∪ {e}) (12)

with ℓ(e) = α and where we write xj+1 = xj ∪ {e}.
We have to show that F(⌊Rj+1⌋) ∼= xj+1 ↓. More specifically we show that

Ej+1 \ Ej = {ej+1} and that we can extend the bijections such that

tej+1 = tej ∪ {(Rj −−−→
i,α

Rj+1) 7→ e} (13)

mtj+1 = mtj ∪ {ej+1 7→ (Rj −−−→
i,α

Rj+1)} (14)

mej+1 = mej ∪ {ej+1 7→ e} (15)

As mej+1 is a label and order preserving bijection on xmax, the maximal config-
uration in ⌊Rj+1⌋, it follows that mej+1(xmax) = xj+1. As ⌊Rj+1⌋ ∼= xmax ↓ it
follows F(⌊Rj+1⌋) ∼= xj+1 ↓.

We now proceed by cases on the transition Rj −−−→i:α Rj+1. We distinguish
two cases: α is an unsynchronized input or output, and α = τ .

– Let us suppose w.l.o.g. that α = a. Then we can rewrite the transition as
follow:

Rj = (
−→
b )(S | m � a.P + Q) −−−→

i,α
Rj+1 = (

−→
b )(S | 〈i, α, Q〉.m � P )

Let us also define the following projection on events: πS(e) = es if there exists
es ∈ ⌊S⌋ such that e, es have the same identifiers and undefined otherwise.
Similarly define πm for the projections of events from ⌊Ri⌋ to ⌊m⌋.
Note that we can extend tej+1 as in Equation 13. We show that there exists

an event in ⌊Rj+1⌋ which corresponds to the transition Rj −−−→
i,α

Rj+1. Let



us unfold the encoding of the two processes above:

⌊Rj⌋ = ⌊(
−→
b )(S | m � a.P + Q)⌋ =

(

r ◦ (⌊S⌋ × ⌊m⌋)
)

↾⊥↾−→
b

⌊Rj+1⌋ = ⌊(
−→
b )(S | 〈i, α, Q〉.m � a)⌋ =

(

r ◦ (⌊S⌋ × ⌊〈i, α, Q〉.m⌋)
)

↾⊥↾−→
b

.

Let us write ⌊m⌋ = (Em, Cm, ℓm,mm). From Lemma 3 we have that there
exists a single maximal configuration in Cm, denoted with xm

max
. Using Defi-

nition 17 we can unfold ⌊〈i, α, Q〉.m⌋ and write

⌊Rj⌋ =
(

r ◦ (⌊S⌋ × (Em, Cm, ℓm,mm))
)

↾⊥↾−→
b

⌊Rj+1⌋ =
(

r ◦ (⌊S⌋×

(Em ∪ {em}, Cm ∪ (xm
max

∪ {em}),

ℓm ∪ {em → α},mm + {em → i}))
)

↾⊥↾−→
b

for some event em /∈ Em. From rules act. and par. of Fig. 4, i is not in
the domain of mm. Therefore all synchronisations in ⌊S⌋ × ⌊〈i, α, Q〉.m⌋ of
the form (es, em), with es ∈ ⌊S⌋, are relabeled ⊥ and removed by the first
restriction. The event (⋆, em) is preserved by the first restriction. It is not

removed by the second restriction as a /∈
−→
b . Remember that from Lemma 3

we have that there exists a single maximal configuration in ⌊Rj+1⌋ and
from the definition of the parallel composition there is only one event in
xmax with the first projection equal to em, denoted ej+1: ej+1 ∈ xmax with
πm(ej+1) = em. It follows that Ej+1 = Ej ∪ {ej+1}. We extend then the
bijections as in Equations 14 and 15. Moreover, ℓ(ej+1) = ℓm(em), and
from Equation 12 it follows that mej+1 is label preserving.
The last part is to show Equation 11. We only have to show that

e′ ≤xmax
ej+1 ⇐⇒ mej+1(e′) ≤xj+1

mej+1(ej+1), (16)

as the rest follows by induction on mej and from Equation 15. To show Equa-
tion 16, consider e′ ≤xmax

ej+1. From Definition 17 there exists a memory
event d = 〈i′, α′, P ′〉 in ⌊Rj+1⌋ such that mj(e′) = i′. From Lemma 10 we
have then that i′ ≤R i and using the definition of causality on transitions
([7, Definition 1]), mtj+1(e′) ≤θ mtj+1(ej+1).
We conclude using Lemma 11 which shows that tej+1(mtj+1(e′)) ≤xj+1

tej+1(mtj+1(ej+1)).
Similarly, we reason for e′ concurrent with ej+1. Lastly, note that there are
no events in conflict with ej+1 (or with e in xj+1 ↓), as there is a single
maximal configuration in both ⌊Rj+1⌋ and in xj+1 ↓.

– Suppose that α = τ and let us write the transitions as follows:

Rj = (
−→
b )(S | m1 � a.P1 + Q1 | m2 � a.P2 + Q2)

−−−→
i,τ

Rj+1 = (
−→
b )(S | 〈i, a, Q1〉.m1 � P1 | 〈i, a, Q2〉.m2 � P2)

We are assuming here, for simplification, that both thread involved in the
synchronisation are under the same set of restricted names. The more general
case, does not change the reasoning here, just adds in technicality.



We show that the transition adds a single event ej+1 in ⌊Rj+1⌋ and that the
bijection me defined on ⌊Rj⌋ extends to ej+1 such that it remains a label
and order preserving bijection between the maximal configuration in ⌊Rj+1⌋
and xj+1. The proof follows the reasoning above.

⊓⊔

A.3 Proof of Theorem 2

Before proving the main theorem, let us make the following observation. Let
f : (E1, C1, ℓ1) → (E2, C2, ℓ2) be a morphism, which is defined as function on
events: f = (fE , fC). As fC is defined by fE , we can w.l.o.g. write f = fE .
Saying that f is an isomorphism is equivalent then to saying that f : E1 ⇀ E2 is
a label- and order-preseving bijection. Therefore the functions f of Definition 9
and Definition 20 are of “the same nature”.

Proof (Theorem 2, page 15). Let us prove the HHPB case, the other three cases
being similar, and actually simpler.

⇒ Let RRCCS be a HHPB between ∅�P1 and ∅�P2. We show that the following
relation

R = {(x1, x2, f) | x1 ∈ JP1K, x2 ∈ JP2K, ∃R1, R2 s.t. OR1
= P1,

OR2
= P2, (R1, R2, f) ∈ RRCCS and

JR1K = (JP1K, x1), JR2K = (JP2K, x2)}

is a HHPB between JP1K and JP2K.
First note that (∅, ∅, ∅) ∈ R: indeed (∅�P1, ∅�P2, ∅) ∈ RRCCS and J∅�PiK =
(JPiK, ∅), for i ∈ {1, 2}.
Let us suppose that (x1, x2, f) ∈ R for JRiK = (JPiK, xi), for i ∈ {1, 2}
and f : x1 → x2 an isomorphism. Moreover, note that F(⌊Ri⌋) ∼= xi ↓, from
Lemma 4, and that ⌊Ri⌋ ∼= xi ↓ +m, for some function m, from Definition 14.
To show that R is a HHPB we have to show that if x1 −−→

e1 y1 (or x1 ::→
e1 y1)

then there exists y2 such that x2 −−→
e1 y2 (or x2 ::→

e2 y2 respectively) and such
that (y1, y2, f ′) ∈ R for some f ′.
Let x1 −−→

e1 y1, hence by definition, y1 = x1 ∪ {e1}. From the correspondence
between RCCS and their encodings (from [1, Lemma 6]), it follows that
R1 −−−→i:α S1 such that JS1K = (JP1K, y1). We therefore deduce that ⌊S1⌋ ∼=
y1 ↓ +(m ∪ {e1 7→ i}).
As (R1, R2, f) ∈ RRCCS and as R1 −−−→i:α S1, it follows that there exists a

transition R2 −−−→
j:α

S2 with f = f ′↾F(⌊R1⌋) and (S1, S2, f ′) ∈ RRCCS.

Again from the correspondence between R2 and JR2K we have that x2 −−→
e2

y2 such that y2 = x2 ∪ {e2} and JS2K = (JP2K, y2). Then we have that
(y1, y2, f ′) ∈ R.
We treat similarly the cases where x2 does a transition, or when the transi-
tions are backwards.



⇐ Let RCONF be a HHPB between JP1K and JP2K. We show that the following
relation

R = {(R1, R2, f) | OR1
= P1, OR2

= P2 and JR1K = (JP1K, x1),
JR2K = (JP2K, x2), with (x1, x2, f) ∈ RCONF}

is a HHPB between ∅ � P1 and ∅ � P2.
We have that (∅ � P1, ∅ � P2, ∅) ∈ R as (∅, ∅, ∅) ∈ RCONF and J∅ � PiK =
(JPiK, ∅), for i ∈ {1, 2}.
We suppose now that (R1, R2, f) ∈ R, with f : F(⌊R1⌋ → F(⌊R2⌋)). It
implies that JRiK = (JPiK, xi), i ∈ {1, 2}, we have that (x1, x2, f) ∈ RCONF.
As F(⌊Ri⌋) ∼= xi ↓, from Lemma 4,f is also defined from x1 to x2.
To show that R is a HHPB we have to show that if R1 −−−→i:α S1 (or R1 :::→i:α

S1) then there exists S2 such that R2 −−−→
j:α

S2 (or R2 :::→
j:α

S2 respectively)
and such that (S1, S2, f ′) ∈ R for some f ′.
Let R1 −−−→i:α S1. We use again the correspondence between RCCS and their
encodings (from [1, Lemma 6]) from which we have that there exists e1 and
y1 = x1 ∪ {e1} such that x1 −−→

e1 y1 and JS1K = (JP1K, y1). As (x1, x2, f) ∈
RCONF it implies that there exists e2, y2 and f ′ such that x2 −−→

e2 y2 and
(y1, y2, f ′) ∈ RCONF. Again, from the correspondence between RCCS and
configuration structures we have that from x2 −−→

e2 y2, there exists S2 and

some j such that R2 −−−→
j:α

S2 with JS2K = (JP2K, y2). Hence F(⌊S2⌋) = y2 ↓.
We conclude therefore that (S1, S2, f ′) ∈ R.
Similarly we show the cases where R1 does a backward transition, or if R2

does a forward or backward transition.
⊓⊔
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