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Abstract

This paper deals with the use of control theoretical concepts, essentially flatness,
along with structural analysis, in the context of private communication. A new
and systematic methodology to design a cryptographic architecture belonging
to the special class of ciphers called Self Synchronizing Stream Ciphers (SSSC)
is proposed. Till now, the constructions of SSSC were based on automata with
finite input memory involving shifts or triangular functions (T–functions) as
state transition functions. Besides, only ad-hoc approaches were available in
the literature. The contribution of this paper is to propose a general framework
to design SSSC involving dynamical systems taking the form of switched linear
systems over finite fields with arbitrary state transition functions. An example
of cipher with complete specifications is given. Its implementation on a small
scale breeding of an ICS-SCADA equipment is described.

Keywords: flatness, LPV and switched linear systems, structural analysis,
ciphers

1. Introduction

Synchronization has been an important topic in automatic control for years.
Roughly speaking, by synchronization, it is meant correlated (according to given
criteria) behaviors of at least two or more interconnected entities in virtual or
physical networks. Throughout the past centuries, scientists have attempted to
explain the emergence of order through the concept of synchronization. C. Huy-
gens in 1665 can be considered as a pioneer. A lot of examples of synchronized
phenomena (see [26]) are borrowed from nature, biology, neuroscience, physiol-
ogy and more recently social networks.

Synchronization can be a very efficient way of tackling engineering issues
as well. For example, there is a growing interest in cooperative control prob-
lems. Such problems involve several autonomous entities (also called agents)
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which try to collectively reach a global objective by a suitable connectivity or
by adequate couplings. The related applications are mobile robots, unmanned
and autonomous vehicles, satellites, air traffic control. Synchronization is also
central in communication: video broadcasting, Phase Lock Loop-based equip-
ment. When synchronization must occur in a peer-to-peer communication setup
without any external control, it is called self-synchronization. It turns out that
self-synchronization is central in cryptography, more specifically, in symmetric
cryptography involving the so-called Self-Synchronizing Stream Ciphers (SSSC)
(see [20]). Such ciphers are based on generators which can take the form of
dynamical systems operating on finite fields and must deliver sequences of high
complexity. Those sequences are used to scramble the information to be safely
transmitted. For proper decryption, those sequences must be self-synchronized.

Self-Synchronizing Stream Ciphers were patented in 1946. The self-synchro-
nization property has many advantages and is especially relevant to group com-
munications. Since 1960, specific SSSC have been designed and are still used to
provide bulk encryption (for hertzian line, RNIS link, . . . ) in military applica-
tions or governmental radio mobile networks. In the early 90s, studies have been
performed in [19, 12] to propose secure designs of SSSC. These works have been
followed by effective constructions ([12, 24, 11]), but till now, all of these SSSC
have been broken, which motivates the search of new constructions of SSSC. It
is this issue that is investigated in this paper.

More precisely, we aim at addressing the design of SSSC in terms of con-
trol theoretical concepts. The ciphers being viewed as dynamical systems, the
main result is that the concepts of flatness together with structural analysis and
graph-theory allow for a convenient and systematic way to construct classes of
SSSC which are more general than the ones proposed so far. Indeed, it will
be shown that the resulting ciphers can incorporate dynamical systems with
state transition functions more general than the so-called T -functions which are
known to suffer from weakness [22]. Hence, we can expect that this generaliza-
tion yields more secure SSSC. The special class of flat Linear Parameter Varying
(LPV) systems is motivated. Let us stress that since the dynamics operate on
finite fields, all the variables, including the varying parameters, take value in a
finite set of elements. Hence, the LPV system can be considered as a switched
linear system with a number of modes depending on the cardinality of this set.

The paper is organized as follows. Section 2 is devoted to the problem
statement. The architecture of Self-Synchronizing Stream Ciphers is presented
in terms of dynamical systems. In Section 3, the special class of LPV dynamical
systems is presented, the definition of difference flatness is introduced and is
particularized to this class. An algebraic characterization in terms of state
space matrix representation is provided. The connection between flatness and
SSSC is made. It is shown that an automaton with a finite input memory, as
required for an SSSC, can be systematically obtained from the left inverse of
a flat system. In Section 4, a construction of a family of SSSC involving LPV
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automata is provided. It is based on structural analysis and graphs. A simple
example of construction is given to make a clear understanding of the method.
Then, the design of a realistic example and its implementation on a small scale
breeding of an ICS-SCADA equipment are described.

2. Self-Synchronizing Stream Ciphers and dynamical systems

2.1. Generalities on stream ciphers

For a stream cipher, it must be given an alphabet A, that is, a finite set
of basic elements named symbols. Hereafter, the index k will stand for the
discrete-time. On the transmitter part, the plaintext (also called information
or message) m ∈ M (M is the message space) is a string of plaintext symbols
mk ∈ A. Each plaintext symbol is encrypted, by means of an encryption (or
ciphering) function e, according to:

ck+b = e(zk+b,mk), (1)

where zk ∈ A is a so-called keystream (or running key) symbol delivered by a
keystream generator. The function e is invertible for any prescribed zk. The
resulting quantity ck ∈ A is the ciphertext symbol. The integer b ≥ 0 stands
for a potential delay between the plaintext mk and the corresponding cipher-
text ck+b. This is explained by computational or implementation reasons, for
instance pipelining (see [8] for example). Consequently, for stream ciphers, the
way how to encrypt each plaintext symbol changes on each iteration. The re-
sulting ciphertext c ∈ C (C is called the ciphertext space), that is the string of
symbols ck, is conveyed to the receiver through a public channel.
At the receiver side, the ciphertext ck is decrypted according to a decryption
function d which depends on a running key ẑk ∈ A delivered, similarly to the
cipher part, by a keystream generator. The decryption function d obeys the
following rule. For any two keystream symbols ẑk+b, zk+b ∈ A, it holds that

m̂k+b := d(ck+b, ẑk+b) = mk whenever ẑk+b = zk+b. (2)

Equation (2) means that the running keys zk and ẑk must be synchronized for a
proper decryption. The generators delivering the keystreams are parametrized
by a secret key denoted in the sequel by θ ∈ K (K is the secret key space). The
distinct classes of stream ciphers (synchronous or self-synchronizing) differ each
other by the way on how the keystreams are generated and synchronized. Next,
we detail the special class of stream ciphers called Self-Synchronizing Stream
Ciphers.

2.2. Keystream generators for Self-Synchronizing Stream Ciphers

A well-admitted approach to generate keystreams has been first suggested in
[19]. It is based on the use of so-called state automata with finite input memory
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as described below. This is typically the case in the cipher Moustique [18]. At
the ciphering side, the automaton delivering the keystream takes the form:{

qk+1 = gθ(qk, ck+b),
zk+b = hθ(qk)

(3)

where qk ∈ A is the internal state, g is the next-state transition function
parametrized by θ ∈ K. As previously stressed, the delay b is due to the fact
that the output (also called filtering) function h is pipelined with an architec-
ture involving b stages. If such an automaton has finite input memory, it means
that, by iterating (3) a finite number of times, there exists a function `θ and a
finite integer M such that

qk = `θ(ck+b−1, . . . , ck+b−M ), (4)

and thus,
zk+b = hθ(`θ(ck+b−1, . . . , ck+b−M )). (5)

Actually, the fact that the keystream symbol can be written in the general form

zk+b = fθ(ck−`, . . . , ck−`′), (6)

with fθ a function involving a finite number of past ciphertexts from time k − `
to k − `′ (`, `′ ∈ Z), is a common feature of the SSSC. Equation (6) is called the
canonical equation.

Remark 1. The outcome of implementing the recursive form (3) instead of
directly implementing the canonical form (6) is that we can obtain nonlinear
functions fθ of high complexity by implementing simpler nonlinear functions gθ.
The complexity results from the successive iterations which act as composition
operations.

At the deciphering side, the automaton takes the form{
q̂k+1 = gθ(q̂k, ck+b),
ẑk+b = hθ(q̂k)

(7)

where q̂k is the internal state. Following the same reasoning, since gθ corre-
sponds to the state transition function of an automaton with finite input mem-
ory, it is clear that after a transient time of maximal length equal to M , it holds
that, for k ≥M ,

q̂k = qk and ẑk+b = zk+b. (8)

In other words, the generators synchronize automatically after at most M iter-
ations. Hence, the decryption is automatically and properly achieved after at
most M iterations too. No specific synchronizing protocol between the cipher
and the decipher is needed. This explains the terminology Self-Synchronizing
Stream Ciphers. The quantity M is called the synchronization delay.
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2.3. Motivation on the use of LPV systems

To obtain a finite input memory feature, the solutions proposed in the open
literature call for state transition functions gθ in the form of shifts or more gener-
ally T–functions (T for Triangle), which are functions that propagate dependen-
cies in one direction only. Till now, none of the proposed SSSC have involved non
triangular state transition functions although T–functions are known to suffer
from weakness [22]. Indeed, T–functions get linear properties which make them
easier to cryptanalyse. Furthermore, for the existing SSSC ([16, 9, 10]), the
design relied more on ad-hoc approaches than on systematic rules of construc-
tion. It is explained by the fact that no systematic methodology for constructing
automata with finite input memory and involving general non triangular state
transition functions was proposed so far. As a clue to tackle those issues, we
first restrict our investigation on the class of linear systems. Let us consider the
finite state automaton given by{

qk+1 = Pqk +Qck+b,
zk+b = Rqk

(9)

ck+b = zk+b + Smk (10)

and {
q̂k+1 = P q̂k +Qck+b,
ẑk+b = Rq̂k

(11)

m̂k+b = S−1(ck+b − ẑk+b). (12)

where P , Q, R and S are square matrices. Their entries belong to the set A.
Assume that the following condition holds:

∃K ∈ N, such that P l = 0 for any l ≥ K. (13)

In other words, if the matrix P is nilpotent (the integer K is the index of
nilpotency of P ), then after a finite number K of iterations of (9) (resp. (11)),
qk (resp. q̂k) becomes independent of the initial condition q0 (resp. q̂0) and
so, the automaton (9) (resp. (11)) has finite input memory, as required for
an SSSC. Equations (9) and (10) (resp. (11) and (12)) define respectively the
cipher and the decipher part of an SSSC. The following correspondences apply:

• zk+b = Rqk plays the role of the keystream symbol of the cipher;

• ẑk+b = Rq̂k plays the role of the keystream symbol of the decipher;

• the function (zk+b,mk) 7→ zk+b + Smk plays the role of e (encryption
function);

• the function (ẑk+b, ck+b) 7→ S−1(ck+b − ẑk+b) plays the role of d (decryp-
tion function);

• the integer K plays the role of the synchronization delay M .
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Thereby, the design of a linear SSSC would be straightforward by choosing
a nilpotent matrix P and arbitrary matrices Q, R and S. Unfortunately,
linear dynamics are prohibited in cryptography because in such a case, it is
well admitted that cryptanalysis is easy. To simply obtain nonlinear systems
(with potentially complex nonlinearities as seen later), we propose here a struc-
ture inspired from the linear one. We replace a prescribed number of time-
invariant entries of the matrices of Equations (9-10) and (11-12) (in partic-
ular matrix P ) by time-varying parameters. If those parameters denoted by
ρi(k) (i = 1, . . . , Lρ with Lρ the number of time-varying parameters) get the
form ρi(k) = ϕi(ck, ck−1, · · · , ck−s) (s ∈ N) where every ϕi is a nonlinear func-
tion, the resulting system becomes nonlinear. It belongs to the class of Linear
Parameter-Varying (LPV) systems. Let us note that the functions ϕi have the
same form as the canonical equation of an SSSC (see (6)). It means that such
an SSSC admits a recursive architecture. This architecture is new regarding the
literature and differs from the serial and parallel ones proposed in the 90s by
Maurer [19].

The point is that, the matrix raised to the power of l, involved in condition
(13) and guaranteeing an automaton with finite input memory in the linear
case, must be replaced by the ordered product of l time-varying matrices in the
LPV case. Following the linear case, a direct design would consist in choosing
parameter-dependent matrices such that the ordered product of l matrices is
zero for l ≥ K, for any initial condition and any values of ρi(k). A non triangular
state transition function would be simply obtained by non triangular matrices
which do not share a common triangular basis. However, that raises a new
problem. Indeed, it is closely related to the problem of mortality. It is said that
a set of matrices is mortal if the zero matrix can be expressed as the product
of a finite number of matrices. And yet, from the papers [23, 4, 6], except from
some very special cases, the problem of checking mortality of a set of matrices
is undecidable. The problem under consideration here is even more challenging
since the matrices are not given but must be chosen. In other words, we are not
concerned with analysis but with synthesis.

Summarizing our purpose, we are seeking for a systematic methodology to
build a family of SSSC. This can be done by designing LPV automata in the
form (9-10) and (11-12) where the linear matrices are substituted by parameter
dependent matrices involving nonlinear functions ϕi of the shifted cryptograms
ck. A direct design cannot be achieved because it is related to the intricate
problem of mortality. In the sequel, it is shown how to tackle this problem.
The key idea is, first, to build a flat LPV system. Next, from this flat LPV
system, an automaton with finite input memory can be systematically obtained
by calculating its left inverse. It is recalled that in control theory, given a dy-
namical system and considering an input sequence and its corresponding output
response, its left inverse is a system that reproduces the input sequence when
it is forced by the output response. This connection between flatness and SSSC
may appear as quite natural, but is new, regarding the literature. It is detailed
in next section.
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3. Connection between flat systems and SSSC

Difference flatness is the discrete-time counterpart of differential flatness,
a property of some continuous-time controlled dynamical systems introduced
in [15]. For a flat discrete-time system, the state variables as well as the input
are written as a function of the flat output (including forward and backward
shifts in the output). The reader can refer to the book [25] for an introduction
on difference flatness and some applications. However, it deals with linear sys-
tems. Results on difference flatness for LPV systems have never been published
before the paper [13] which is the source of the present paper (Subsections 3.1
and 3.2 are recalled from [13]). Since in this paper, only discrete-time dynam-
ical systems are considered, the word flatness will be often used for short but
without confusion.

3.1. Definition of difference flatness for LPV systems

Let us consider a Single Input Single Output (SISO) Linear Parameter-
Varying (LPV) system denoted by Σρ, defined over a field F, described by the
following state space representation:

Σρ :

{
xk+1 = Aρ(k)xk +Bρ(k)mk

ck = Cρ(k)xk +Dρ(k)mk

(14)

where k ∈ N stands for the discrete time, xk ∈ Fn is the state vector, mk ∈ F is
the input, ck ∈ F is the output. The matrices A ∈ Fn×n, B ∈ Fn×1, C ∈ F1×n

and D ∈ F1×1 are respectively the dynamical matrix, the input matrix, the
output matrix and the direct transfer matrix. Such a system is called Linear
Parameter-Varying because it is written with a linear dependency with respect
to the state vector. The set of all varying parameters of A, B, C and D are
collected on a vector denoted by ρ(k) =

[
ρ1(k), ρ2(k), ..., ρLρ(k)

]
∈ FLρ where

Lρ is the total number of non-zero (possibly varying) entries. The matrices A,
B, C and D do not necessarily depend on all the parameters ρi(k). Such systems
can exhibit nonlinear dynamics. Indeed, the nonlinearity is obtained by defining
the varying parameters ρi(k) as nonlinear functions ϕi : Fs+1 → F of the output
ck (or a finite number of shifts) ρi(k) = ϕi(ck, ck−1, · · · , ck−s) with s a natural
number. Let us note that the notation ρi(k) (usual in the literature for LPV
systems) is somehow abusive because it does not reflect an explicit dependency
with respect to the time k but on quantities, here ck, indexed with k. Usually,
in the context of cryptography, the systems operate on the q elements finite
field Fq where q is a prime power. Hence, in this context, LPV systems can be
considered as hybrid systems, and more precisely, switched linear systems with
qLρ modes since every ρi(k) takes values in a finite set.

Now, let us go into more detail. For a non negative integer k, a sequence
{ρ(k), ρ(k+1), . . .} will be called a realization of varying parameters and denoted
with ρ.
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Definition 1. The system (14) is flat, if for every realization ρ, there exists a
variable ck, called flat output, such that all system variables can be expressed as
a function of the flat output and a finite number of its backward and forward
shifts. In other words, there exist two functions Fρ and Gρ parametrized by ρ
such that {

xk = Fρ
(
ck+kF , . . . , ck+k′F

)
mk = Gρ

(
ck+kG , . . . , ck+k′G

) (15)

where kF , k′F , kG and k′G are Z-valued integers.

3.2. Conditions for flat outputs

First, it must be pointed out that for a given dynamics (first equation of
(14)), whether ck is a flat output or not necessarily depends on the matrices C
and D. Besides, for some specific matrices A and B, it may happen that none
of the matrices C and D yield to a flat output. As a result, the conditions which
guarantee that an output of (14) is flat must be expressed in terms of properties
verified by the 4-tuple of state matrices (A,B,C,D). Before proceeding further,
it is necessary to deal with the relative degree of (14). We recall below a usual
general definition.

Definition 2. The relative degree of a SISO discrete-time dynamical system is
the minimal number r of iterations such that the output ck+r at time k + r is
sensitive to the input mk.

Now, let us restrict this general definition to the system defined by equa-
tion (14). To this end, for k2 ≥ k1, let us denote by

∏k1
l=k2

Aρ(l) the product

of matrices Aρ(l) from k2 to k1. For k2 < k1,
∏k1
l=k2

Aρ(l) = 1n (the identity

matrix of dimension n). Let us introduce the quantity T i,jρ(k) defined for j ≤ i as

T i,jρ(k) = Cρ(k+i)

∏k+j+1
l=k+i−1Aρ(l)Bρ(k+j) if j ≤ i− 1 and

T i,iρ(k) = Dρ(k+i).
(16)

From (14), it holds that ck+1 = Cρ(k+1)Aρ(k)xk+T 1,0
ρ(k)mk+T 0,0

ρ(k+1)mk+1. Then,

by iterating the output ck and noting that T i,jρ(k+1) = T i+1,j+1
ρ(k) for i ≥ 0, it follows

that

ck+i = Cρ(k+i)

k∏
l=k+i−1

Aρ(l)xk +

i∑
j=0

T i,jρ(k)mk+j . (17)

Hence, if (14) admits a finite relative degree r, it follows from Definition 2 that
it is:

1. r = 0 if T 0,0
ρ(k) 6= 0 for any realization ρ;

2. the smallest non-zero integer r such that for any realization ρ;

T i,jρ(k) = 0 for i = 0, . . . , r − 1 and j = 0, . . . , i,

T r,0ρ(k) 6= 0.
(18)
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Hence, it holds that

ck+r = Cρ(k+r)

k∏
l=k+r−1

Aρ(l)xk + T r,0ρ(k)mk. (19)

In the sequel, to make the notation less cluttered, we will merely write T instead
of T r,0ρ(k).

Proposition 1. If the LPV system (14) has a relative degree r < ∞, the
following condition involving product of matrices, fulfilled for a positive integer
K and any realization ρ

Pρ(k+K−1:k+K−1+r)Pρ(k+K−2:k+K−2+r) · · ·Pρ(k:k+r) = 0 (20)

with

Pρ(k:k+r) = Aρ(k) −Bρ(k)T −1Cρ(k+r)

k∏
l=k+r−1

Aρ(l) (21)

is equivalent to ck is a flat output.

Proof 1. If the LPV system (14) has a relative degree r < ∞, the following
dynamical system can always be defined since T is non-zero.{

qk+1 = Pρ(k:k+r)qk +Bρ(k)T −1ck+r

m̂k+r = T −1(Cρ(k+r)

∏k
l=k+r−1Aρ(l)qk − ck+r)

(22)

Iterating K − 1 times the first equation of (22) yields

xk = Pρ(k−1:k−1+r) · · ·Pρ(k−K:k−K+r)xk−K+∑K−1
i=1

[∏i−1
j=0 Pρ(k−j−1:k+r−j−1)

]
T −1Bρ(k−i−1)ck−i−1+r.

(23)

Let us define εk = xk − qk. By simple manipulations, it can be shown that εk
verifies εk+1 = Pρ(k:k+r)εk. Hence, after a finite transient time equal to K,
since (20) holds, one has qk = xk. Hence, since the parameters ρi(k) depend on
shifted outputs, the state vector xk exclusively depends on shifted outputs if and
only if (20) holds. Finally, xk reads

xk =

K−1∑
i=0

[ i−1∏
j=0

Pρ(k−j−1:k+r−j−1)

]
T −1Bρ(k−i−1)ck−i−1+r, (24)

which gives the explicit function Fρ involved in (15). Letting ωk = mk − m̂k+r

and following the same reasoning, it is shown that mk exclusively depends on
shifted outputs. The explicit form of Gρ involved in (15) is obtained by substi-
tuting (24) into the second equality of (22). It shows that the system defined by
Equation (14) is flat with ck as flat output if and only if (20) holds.

Remark 1. The system defined by Equation (22) is nothing but the left inverse
system of the LPV system (14).
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3.3. Connection

In this subsection, we bring out the connection between flat LPV systems
and SSSC.

Proposition 2. If the LPV system (14) has relative degree r <∞ and is flat,
then the finite state automata given by{

qk+1 = Pρ(k:k+r)qk +Bρ(k)T −1ck+r,

zk+r = Cρ(k+r)

∏k
l=k+r−1Aρ(l)qk

(25)

ck+r = zk+r + Tmk (26)

and {
q̂k+1 = Pρ(k:k+r)q̂k +Bρ(k)T −1ck+r,

ẑk+r = Cρ(k+r)

∏k
l=k+r−1Aρ(l)q̂k

(27)

m̂k+r = T −1(ck+r − ẑk+r) (28)

define an SSSC.

Proof 2. If the system (14) has relative degree r < ∞ and is flat, then T is
non-zero and thus, systems (25-26) and (27-28) are well defined. Systems (25)
and (27) are the left inverse system of (14) as emphasized in Remark 1. The
property (20), that is flatness, ensures that systems (25) and (27) are automata
with finite input memory. They can respectively be identified with the system
(3) and with the system (7). Identifying (26) with (1) and (28) with (2) gives
respectively the encryption and the decryption function.

The following correspondences hold:

• zk+r = Cρ(k+r)

∏k
l=k+r−1Aρ(l)qk plays the role of the keystream symbol

of the cipher;

• ẑk+r = Cρ(k+r)

∏k
l=k+r−1Aρ(l)q̂k plays the role of the keystream symbol

of the decipher;

• r (relative degree) plays the role of b (delay);

• the function (zk+r,mk) 7→ zk+r + Tmk plays the role of e (encryption
function);

• the function (ẑk+r, ck+r) 7→ T −1(ck+r − ẑk+r) plays the role of d (decryp-
tion function);

• the integer K plays the role of the synchronization delay M .

It is recalled that the nonlinearity is obtained by defining the values of ev-
ery varying parameters ρi(k) (i = 1, . . . , Lρ) involved in the matrices of (25-
28) as nonlinear functions ϕi of a finite number of past cryptograms (ρi(k) =
ϕi(ck, ck−1, · · · , ck−s)). In cryptography, those functions are called S-boxes.
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Remark 2. The encryption function e and the decryption functions d are quite
simple. This is a common feature for SSSC. For example in the Boolean case,
those functions are often nothing but the exclusive or. Actually, the security is
essentially based on the properties of the keystream sequences delivered by (25)
and (27).

To sum up, as an alternative to a direct design of automata with finite input
memory required for SSSC, which is in general impossible because related to the
problem of mortality, an indirect approach has been proposed. It consists, first,
on the design of a flat LPV system (14). Next, we deduce the automata (25)
and (27) by calculating the left inverse system of the LPV system. It is central
to emphasize that since the LPV system is flat, the automata are necessarily
with finite input memory. The outcome of such an approach is that the matrix
Pρ(k:k+r) involved in (25) and (27) define a state transition function which is not
necessarily triangular and thus, may represent a larger class than T–functions.
This approach is new in cryptography.
In our context, the flatness property must be guaranteed for any non-zero en-
tries of the matrices involved in (25) and (27). Indeed, some entries correspond
to time-varying coefficients, the other ones are constant entries. But all of these
entries are parametrized by the secret key θ which ranges in the key space K,
a huge set of values. All in all, flatness must be ensured from a structural
point of view. Hence, structural analysis can be a natural and relevant solution
to construct structural flat systems. The construction is detailed in next section.

4. Construction of structural flat systems and SSSC

4.1. Structured systems and digraphs

The core idea is that the LPV system (14) can be considered as an admissi-
ble realization of a corresponding structured linear system. A structured linear
system is a system only defined by the sparsity pattern of the state space real-
ization matrices. In other words, for a structured linear system, we distinguish
between the entries that are fixed to zero and the other ones that can take any
value in F, including the ones which are time-varying. Hence, a structured linear
discrete-time system is a system that admits the form:

ΣΛ : xk+1 = IAxk + IBmk (29)

The entries of the matrices of ΣΛ are ’0’ or ’1’. In particular, the entries A(i, j)
of IA (resp. B(i) of IB) that are ’0’ means that there are no relation (dynamical
interaction) between the state xik+1 at time k + 1 and the state xjk at time k
(resp. the state xik+1 at time k + 1 and the input mk at time k). The entries
that are ’1’ means that there is a relation. As a simple example, let us consider
an LPV system with the setting

Aρ(k) =

(
a 0
1 ρ1(k)

)
and Bρ(k) =

(
ρ2(k)

0

)
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where a is a constant element in F, ρ1(k) and ρ2(k) are varying parameters in
F. The dynamical matrix and the input matrix IA and IB of the corresponding
structured linear system read:

IA =

(
1 0
1 1

)
, IB =

(
1
0

)
As a consequence, if the structural linear system (29) derived from (14) is flat,
the flatness will hold for any realization ρ of (14). Hence, the challenge is
to define a methodology to construct flat linear structural systems. A graph-
based approach is suggested below to that purpose. It is based on the result
provided in [21]. Let us recall some basic requirements on digraphs. A digraph
G(ΣΛ) describing the structured linear system associated to the state equations
(14), is the combination of a vertex set V and an edge set E . The vertices
represent the states and the input components of ΣΛ while the edges describe
the dynamic relations between these variables. One has V = X ∪ {m} where
X is the set of state vertices defined as X =

{
x1, . . . , xn

}
and m is the input

vertex. The edge set is E = EA ∪ EB , with EA =
{

(xi,xj) |A(i, j) 6= 0
}

and

EB =
{

(m,xi) |B(i) 6= 0
}

. They also correspond to the weights of the edges of
the digraph. In the sequel, we will denote by vj, (j = 0, . . . , n) a vertex of the
digraph G(ΣΛ) regardless whether it is the input or a state vertex.

• A directed path P is a sequence of successive edges directed in the same
direction which connect a sequence of vertices. It is said that the path P
covers a vertex if this vertex is the begin or the end vertex of one of the
edges of P;

• In a directed path from a vertex vi to a vertex vj, it is said that vj is a
successor of vi and conversely, vi is a predecessor of vj;

• A simple path is a path which contains no repeated vertices;

• The length of a directed path P is equal to the number of edges involved
in P. We let `(vi,vj) denote the minimal length of a path connecting vi

to vj;

• Vess(vi,vj) is the set of vertices, called essential vertices from vi to vj,
which are common to all the paths connecting vi to vj.

Remark 2. In graph theory, the terminology may be different according to
authors. A directed path as defined here may be called a walk. A simple path as
defined here may be merely called a path.

We recall from [21] the necessary and sufficient conditions which must be
satisfied for any vertex vi (i ∈ {1, . . . , n}) of the digraph G(ΣΛ) to be associated
to a flat output cFk = xik (i ∈ {1, . . . , n}) of (14). In such a case, the output
state space matrix Cρ(k) = C is constant and has zero entries except the entry
located at the column number i which is equal to one. The direct transfer matrix
Dρ(k) = D is the zero matrix.
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Theorem 1. The output cFk = xik (i ∈ {1, . . . , n}) of the structured linear
system (29), associated to the vertex vF ∈ X in the associated digraph G(ΣΛ),
is generically a flat output iff, the three following conditions hold:
C0. vF is a successor of m;
C1. Any simple paths from m to vF have the same length equal to `(m,vF);
C2. Any cycles cover at least an element of Vess(m,vF).

Actually, as shown in [21], Conditions C0-C2 ensure that the state and the
input of the structured linear system (29) do no longer depend on the initial state
after a finite transient time regardless of the weights of the edges. Consequently,
it is shown that they can be exclusively expressed as some functions of shifted
outputs parametrized by the weights of the edges. Since a weight is a constant
or a function ϕi of shifted outputs (in our context, the shifted cryptograms),
both the state and the input depend exclusively on shifted outputs (here, the
cryptograms). Hence, Conditions C0-C2 are instrumental for the construction
of structural flat dynamical systems. A systematic construction of digraphs
fulfilling C0-C2 is proposed below.

4.2. Construction of flat LPV systems

The digraph G(ΣΛ) related to the system ΣΛ of dimension n involves n+ 1
vertices. The input is assigned to the vertex denoted by v0. The other n vertices
are denoted by v1, . . . ,vn. Let vr be the vertex that corresponds to the flat
output vr, that is vF = vr.

Step 1: For, i = 0, . . . , n − 1, add the edges (vi,vi+1). There are r edges
which connect v0 to vr. Hence, the relative degree of the corresponding struc-
tured dynamical system is r.

After Step 1, Conditions C0-C2 are fulfilled for vF = vr. However, this line
topology corresponds to quite trivial dynamical systems since it corresponds to
state transition functions in the form of simple shifts. Let us recall that we aim
at designing an automaton possibly involving state transition functions more
general than T–functions. A shift is a special and trivial T–function. To this
end, the following steps provide a way of adding edges (vi,vj) while guarantee-
ing that Conditions C0-C2 are still fulfilled.

Step 2: Add the edges (vr+i,vr+i+1) for i = 1, . . . , n− r− 1. Step 2 allows
vertex vj, j = r+1, . . . , n to have a predecessor. Indeed, if not so, the dynamics
of the corresponding vertex vj would reduce to xjk+1 = 0 and would be clearly
useless. The resulting path will be called main directed path and is depicted in
Figure 1.

v0 v1 v2 vr−1 vr vn

Figure 1: Digraph obtained after completion of Step 1-2. The vertex vr corresponds to the
flat output
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Step 3: Add the edges (vr,vi), i = 1, . . . , n that connect the vertex vr to
any other vertices of the graph (except the vertex v0 related to the input).

Step 4: For every vertex vi, i = 1, . . . , r − 1, add the directed edge (vi,vj)
for j = 1, . . . , i. Note that those edges introduce cycles, including cycles of order
1, but those cycles satisfy Condition C2 since vi, for i = 0, . . . , r− 1, belong to
Vess(m,vr).

The graph obtained after Step 1-4 is depicted in Figure 2.

v0 v1 v2 vr−1 vr vr+1 vi vn

Figure 2: Graph obtained after Step 1-4.

Step 5: For every vertex vi, i = r + 1, . . . , n, add the directed edge (vi,vj)
for j = 1, . . . , r and j = i+ 2, . . . , n. Let us note that this step generates again
cycles but Condition C2 is still satisfied.

The resulting digraph after completion of Step 1-5 is depicted in Figure 3.

v0 v1 v2 vr−1 vr vr+1 vi vn

Figure 3: Graph obtained after completion of Step 1-5.

As a result, a digraph is parametrized by the triplet (n, r, na). The number of
vertices of the digraph is equal to n+1 (being n the dimension of the system (29)
and (14)). Indeed, there are n vertices assigned to the state components and
one assigned to the input. The relative degree r fulfilling (18) gives the number
of edges in the main directed path. The integer na defines the desired number of
edges in the digraph G(ΣΛ). It must satisfy na ≤ nM , where nM is the maximal
number of edges resulting from the construction Step 1-5. A simple counting
leads to:

nM =
n(n+ 1)

2
+ r. (30)

During the construction, at each step, we can decide whether we actually add
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the edges or not. That introduces flexibility in the perspective of providing
distinct graphs and thus, distinct SSSC as detailed in Subsection 4.3.

The adjacency matrix, denoted by I, associated to the digraph G(ΣΛ) and
obtained after completion of Step 1-5, can be defined as follows. It is the
(n+ 1)× (n+ 1) matrix

I =


0 ItB
0

ItA...
0

 (31)

where ItA and ItB stands respectively for the transpose of the structured matrices
IA and IB . The entries Iij are defined as follows for 1 ≤ i, j ≤ n

Iij =

{
1 if there exists an edge from vj to vi

0 otherwise.
(32)

The adjacency matrix associated to G(ΣΛ), obtained after completion of
Step 1-5, is given by

v0 v1 v2 v3 · · · vr vr+1 · · · vn−1 vn



v0 0 1 0 0 · · · 0 · · · 0 0 0
v1 0 1 1 0 · · · 0 · · · 0 0 0
v2 0 1 1 1 · · · 0 · · · 0 0 0
v3 0 1 1 1 · · · 0 · · · 0 0 0
...

...
...

...
...

. . . 0 0 0 0 0
vr 0 1 1 1 · · · 1 1 1 1 1

vr+1 0 1 1 1 · · · 1 0 1 1 1
...

...
...

...
...

...
...

...
. . .

. . .
...

vn−1 0 1 1 1 · · · 1 0 0 0 1
vn 0 1 1 1 · · · 1 0 0 0 0

(33)

This being the case, we could reformulate Step 1-5 in terms of adjacency
matrix. However, the design has been given in terms of a digraph construction
because it appears as more natural since Conditions C0-C2 involve a digraph
consideration.

The computational complexity of the algorithms for checking Condition C0-
C2 is of the same order than the algorithms used for finding successors and pre-
decessors of vertex subsets or for computing essential vertices in a digraph [5].
Thus, the complexity of the construction is polynomial and is O(n3). The open
source software Sagemath (see http://www.sagemath.org/) is appropriate to
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construct the digraph G(ΣΛ).

We have summed up after Remark 2 the main line of the design of an SSSC
and have raised the problem of constructing a structural flat system. Now,
being this issue fixed, next subsection aims at giving the steps for a complete
design of SSSC leading to Equations (25)-(28). It is illustrated with a simple ex-
ample for a clear understanding. A realistic example will be given in Section ??.

4.3. Construction of SSSC

Step S1: Choose a triplet (n, r, na). Since the flat output cFk is one compo-
nent xik (i = 1, . . . , n), it follows that Cρ(k) = (0 · · · 0 1 0 . . . 0) (the only entry

1 is located at the rth column) and Dρ(k) = (0 · · · 0). It is recalled that cFk will
play the role of the ciphertext.
Example: Consider the triplet (n = 2, r = 2, na = 5). As the relative degree r
is equal to 2, it means that the component x2

k of the state vector of the corre-
sponding LPV system (14) will be the flat output cFk . Hence, Cρ(k) = C = [0 1]
and Dρ(k) = D = 0.

Step S2: Construct the corresponding digraph G(ΣΛ) according to Step 1-
5.
Example: The graph corresponding to the triplet (n = 2, r = 2, na = 5) is
depicted in Figure 4.

v0 v1 v2

Figure 4: Digraph obtained for n = 2, r = 2, na = nM = 5. The flat output is cFk = x2k and
corresponds to the vertex v2

Step S3: Given the digraph G(ΣΛ) characterized by the triplet (n, r, na),
extract, from the adjacency matrix I, the matrices IA and IB of the structured
linear system.
Example: For the digraph G(ΣΛ) depicted in Figure 4, the adjacency matrix I
and the structured matrices IA and IB as defined by (31) are

I =

 0 1 0
0 1 1
0 1 1

 , IA =

(
1 1
1 1

)
, IB =

(
1
0

)
(34)

Step S4: Replace some of the non-zero entries of IA and IB by a nonlinear
function ρi(k) = ϕi(ck, ck−1, · · · , ck−s) (S-box) to construct the matrices Aρ(k)

and Bρ(k) of (14). Not all ’1’ entries of IA and IB must be assigned to a nonlinear
function. Some of them can be merely constant. The choice must obey a trade-
off between complexity of the architecture and security (a matter only discussed
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in a shallow way in Subsection 4.5). Since the construction ensures structural
flatness, any choice will preserve the self-synchronization property except for
some particular cases which deserve a special treatment. Indeed, it may happen
that cryptograms cause ρi(k) to vanish at time k and thus, the corresponding
edge to be cancelled. To preserve a finite and constant relative degree for any k,
it is sufficient that the weights assigned to the main path connecting the input
vertex v0 to the vertex vr are constant.
Example: Let us keep constant and equal to 1 the first three entries of A and
let the fourth entry be time-varying. It is denoted by ρ1(k). This finally leads
to the following matrices Aρ(k) and Bρ(k):

Aρ(k) =

(
1 1
1 ρ1(k)

)
and Bρ(k) = B =

(
1
0

)
Step S5: Complete the design by deriving the equations of Proposition 2.

In particular, calculate the matrix (21) governing the state transition function
of the automata (25) and (27).

Example: For the example, one has Pρ(k:k+2) = Aρ(k)−B ·C ·Aρ(k+1) ·Aρ(k).
One obtains

Pρ(k:k+2) =

(
−ρ1

(k+1) −ρ1
(k) · ρ1

(k+1)

1 ρ1
(k)

)
.

Let us point out that (20) holds for K = 2. Indeed, it’s a simple matter to see
that Pρ(k+1:k+3)Pρ(k:k+2) = 0. It corroborates that ck is a flat output (but it is
by construction since the digraph G(ΣΛ) fulfills C0-C2).

The approach proposed here gives thereby a systematic procedure to con-
struct a family of SSSC according to the triplet (n, r, na), the type of functions
ϕi and their position in the adjacency matrix. It remains to show that the
state transition functions are likely to be non triangular. Next subsection pre-
cisely illustrates that, even for this simple example, the state transition matrix
Pρ(k:k+2) is non triangular.

4.4. Non triangular state transition function

We aim at proving that the matrix Pρ(k:k+2) is not conjugate to a shift or
to a T–function. To this end, it must be shown that the matrices Pρ(k:k+2), for
any realization ρ, cannot be simultaneously triangularizable. The characteristic
polynomial of Pρ(k:k+2) is given by N(X) = X

(
X+(ρ1(k+1)−ρ1(k))

)
. Hence,

the eigenvalues of Pρ(k:k+2) are 0 and ρ1(k) − ρ1(k + 1). It follows that the
eigenspace related to the eigenvalues of Pρ(k:k+2) is spanned by:

V1 =

(
−ρ1

(k)

1

)
and V2 =

(
−ρ1

(k+1)

1

)
And yet, a necessary condition for simultaneous triangularization (see [14]) is
that the matrices Pρ(k:k+2) share a common eigenvector for any realization ρ.
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As a result, since the parameter ρ1(k) varies, the matrices Pρ(k:k+2) do not fulfill
such a requirement. Clearly, even in this trivial example, we have shown that an
SSSC with state transition function different from a T–function can be obtained.

4.5. Realistic example and platform

A realistic algorithm compatible with some central cryptographic consider-
ations has been designed and experimented. Clearly, detailed considerations
on security are out of the scope of the paper. However, we give below the
main specifications of the SSSC followed by some arguments that motivate the
choices.

• Field on which the cryptosystem operates: Galois field GF (16)

• Dimension n: 40

• S-boxes ϕi: the function ck 7−→ 1
ck

+α2 where α is a primitive element of

GF (16)

• Relative degree r: 3

• Number na of edges in the digraph G(ΣΛ): 120

• Number of S-boxes: 80

The specifications are based on criteria which are, to mention a few, resistance
to time-memory trade-off attacks [17], resistance against algebraic attacks [7],
good diffusion delay [2] and depth [3].

The open source software Sagemath (see http://www.sagemath.org/) has
been used to elaborate the digraph G(ΣΛ) corresponding to the triplet (n =
40, r = 3, na = 120). The code is provided in the Appendix (see Algorithm 1).
The construction has been performed on an Intel CORE i7 CPU 2.26 GHz
running Linux Ubuntu 14.04. All experiments ran single-threaded on the pro-
cessors. It takes 21 ms on the computer to obtain the digraph G(ΣΛ).

The platform is a small scale breeding of an ICS-SCADA (Industrial Con-
trol Systems - Supervisory Control and Data Acquisition) equipment. It involves
several sources of information (temperature sensors, touchscreen, . . . ). Those
information are securely conveyed through a local network, the encryption and
decryption being achieved by the way of Arduino MEGA cards involving an
ATMEGA 2560 processor. It has a 16 MHz Clock Speed and a 256 KB Flash
Memory. The execution of the encryption and decryption algorithms are per-
formed with a throughput of 8.263 ms. A monitoring system (Figure 7) allows
to select the source, the destination and to analyze the self-synchronization
performances.
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Figure 5: The platform involving the sensors, the touch screen, the Arduino MEGA cards and
the oscilloscopes to visualize the analog signals.

Figure 6: Arduino mega 2560 card

5. Conclusion

Cryptography has been investigated as a new field of application of control
theory. A systematic and general construction of Self Synchronizing Stream
Ciphers based on flat Linear Parameter Varying (LPV) dynamical systems has
been proposed. It is based on constructive algebraic and graph-based conditions
guaranteeing structural flatness of an LPV system and so self-synchronizing
property. It holds for any type of nonlinearities (S-boxes) and values of the se-
cret key. More precisely, a systematic methodology has been proposed in order
to obtain SSSC involving non triangular state transition functions. It has been
shown that such an approach allows to enlarge the existing classes of SSSC.
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Figure 7: Supervisor

This new structure allows to circumvent the problem raised by the weakness
of T–functions. Then, a realistic example with detailed specifications has been
proposed. As usual in cryptography, we can expect that eavesdroppers will try
to break this cryptosystem. Time will tell.
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Algorithm 1 Digraph Generation Algorithm
Require: n, na, r
Ensure: G

indexTab = range(n+ 1)
β = binomial(n+ 1, 2) + r
if r > n then

print ’KO! impossible to construct the graph: r > n
return False

end if
if (na < n) or (na > β) then

print ’KO! impossible to construct the graph: number of arc not valid
return False

end if
α = 0
G = DiGraph(loops=True)
prevertex = G.add vertex()
for i in range(r) do

vertex = indexTab[i]
G.add edge(vertex,indexTab[i+ 1])
G.add edge(vertex,vertex,α)
α+ = 1
for j in range(i) do

G.add edge(vertex,indexTab[j],α)
α+ = 1

end for
end for
for i in range(r − 2, r) do

vertex = indexTab[i]
for j in range(i+ 2, n) do

G.add edge(vertex,indexTab[j],α)
α+=1

end for
end for
for i in range(r, n) do

vertex = indexTab[i]
if i < (n− 1) then

G.add edge(vertex,indexTab[i+ 1])
end if
for j in range(r − 1)+range(i+ 2, n) do

G.add edge(vertex, indexTab[j],α)
α+=1

end for
end for
rmvArc lab = random.sample(range(β − n),β − na)
rmvArc list = []
for (u, v, l) in G.edges() do

if l in rmvArc lab then
rmvArc list.append((u, v))

end if
G.delete edges(rmvArc list)

end for
print ’Graph generated succesfully’
return G
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