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Abstract

We define flag structures on a real three manifold M as the choice of two complex
lines on the complexified tangent space at each point of M . We suppose that the
plane field defined by the complex lines is a contact plane and construct an adapted
connection on an appropriate principal bundle. This includes path geometries and
CR structures as special cases. We prove that the null curvature models are given
by totally real submanifolds in the flag space SL(3,C)/B, where B is the subgroup
of upper triangular matrices. We also define a global invariant which is analogous to
the Chern-Simons secondary class invariant for three manifolds with a Riemannian
structure and to the Burns-Epstein invariant in the case of CR structures. It turns out
to be constant on homotopy classes of totally real immersions in flag space.

1 Introduction

Path geometries and CR structures on real three manifolds were studied by Elie Cartan
in a long series of papers (see [Ca, C] and [B] for a beautiful account of this work). Both
geometries have models which are obtained through real forms of a complex group. More
precisely, the group SL(3,C) acts by projective transformations on both points in P(C3)
and its lines viewed as P(C3∗). The space of flags F ⊂ P(C3) × P(C3∗) of lines containing
points is described as the homegeneous space SL(3,C)/B where B is the subgroup of upper
triangular matrices. The path geometry of the flag space is defined by the two projections
onto points and lines in projective space. Indeed, the kernels of the differentials of each
projection define two complex lines in the tangent space of the flag space at each point. It
turns out that the planes generated in this way form a contact plane field.

The two real models appear as closed orbits of the two non-compact real forms SL(3,R)
and SU(2, 1) in the space of flags. In this work we define a structure over a real manifold
which interpolates between these two geometries. Namely, the structure is a choice of two
complex lines in the complexified tangent space at each point. We call it a flag structure.
Path geometry and CR geometry correspond to a particular choice of lines adapted to the
real structure of the real forms. Flat structures modeled on SU(2, 1) are known as spherical
CR structures and have been studied since Cartan. But it is not known to what extent a
3-manifold may be equipped with such a structure (see [BS1, S, DF] and their references).
A flat path structure on a hyperbolic manifold was recently constructed in [FS] where it
is called a flag structure (as in [Ba] where flat path structures on Seifert manifolds arise
from representations of surface groups into PSL(3,R)). The use of configurations of flags
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associated to triangulations of 3-manifolds to obtain information on representation spaces is
another theme related to this work (see [BFG] and its references).

Non-flat flag structures are abundant. In fact, any 3-manifold has a real path structure
and also a CR structure. We develop the equivalence problem for complex structures on a
real three manifold in the first sections. We obtain an adapted connection in an appropriate
bundle over the manifold which has structure group B. In particular we characterize null
curvature structures as those which can be locally embedded in the flag space F and inherit
the flag structure from the path structure of F . Real path structures and spherical CR
structures of null curvature have a unique embedding up to translations by elements of
SL(3,C).

We define, using the adapted connection, a secondary invariant in the case the bundle
has a global section. The construction follows the same idea as in [BE] for the case of
CR structures. Computing the first variation of the invariant, we obtain, in particular,
that it is invariant under deformations which are obtained from deformations of totally real
immersions into flag space.

Here is a more detailed account of each section. In section 2 we give the definition of flag
structure and the classical examples of CR and real path geometry. Those two geometries
have been studied for a long time and very readable accounts are in [J] for the CR case and
[IL] for real path geometry. The basic examples of embedded totally real submanifolds in
flag space are described in 2.2. Two families of homogeneous examples which are neither CR
nor real path structures are described in the end of the section.

In section 3 we define a coframe bundle Y over a C∗-bundle E over the real manifold
adapted to the structure. The C∗-bundle is the set of contact forms at each point. It is a
complex line bundle with its zero section removed. The coframe bundle Y is then constructed
over this bundle and the final descrition is given in Proposition 3. As a principal bundle over
the real manifold, Y has structure group the group B of upper triangular matrices (up to a
finite cover).

Section 4 is the technical core of the paper. We construct the connection forms and
curvature forms which will be intepreted as a Cartan connection in the following section.
The construction follows Cartan’s technique (see [C, CM] and [J]) but it is engineered to
include at the same time path geometries and CR structures. The definition of Cartan
connection we give (Definition 5.1 in section 5) is slightly more general than usual. We
don’t impose that the tangent space of the fiber bundle be isomorphic to the Lie algebra.
This allows more flexibility and we are able to prove Theorem 5.2 which puts together the
construction in section 4 into a Lie algebra valued connection form. The characterization of
null curvature structures is done in Theorem 5.3 which identifies them locally as totally real
embeddings into flag space. Finally we prove a rigidity theorem (Theorem 5.4) which states
that the only CR or real path structures which admit local embeddings into the flag space
are the flat ones.

In section 6 we introduce our R-valued global invariant for structures in the case the
bundle Y is trivial. This follows Chern-Simons construction and coincides with Burns-
Epstein invariant in the case of CR structures. We do not attempt here to extend the
construction to more refined versions as in [CL] or [BHR] for the CR case. Also missing in
this work is the application to second order differential equations which we plan to develop
in a sequel of this paper. The first variation formula (Proposition 6.3) shows that the critical
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points of the invariant occur at zero curvature structures. In particular, using Theorem 5.3,
we thus prove that totally real immersions are critical points with respect to the invariant.
On the other hand, it follows from Gromov’s h-principle techniques (Theorem 1.4 pg. 245 in
[Fo]) that every real 3-manifold admits a totally real immersion in C3 and therefore into the
flag space (for the number of isotopy classes of totally real immersions see [Bo]). One can
obtain in this way a set of numbers associated to a compact 3-manifold corresponding to the
values of the global invariant on the space of totally real immersions with trivial bundle Y
up to homotopy.

Section 7 concerns a natural reduction of the flag structure (which we call pseudo-flag
structure). Namely, when one choses a contact form, the structure group can be reduced
and one can construct a bundle X with an adapted connection. In the case of CR structures
this reduction (called pseudo-Hermitian structures) was throrougly analyzed in [W] and we
obtain, analogously, a particular embedding X → Y which allows one to describe our global
invariant in terms of easier local data of the reduced bundle (see Proposition 7.2).

In the last section we explicitly compute examples of homogeneous structures on SU(2).
The curvatures for a family of them are non-zero and therefore, applying Theorem 5.3,
they cannot be obtained as totally real manifolds in flag space. It would be interesting to
understand if one can embed a flag structure in higher dimensional flag spaces.

We thank the Réseau Franco-Brésilien en Mathématiques for financial support during
the preparation of this work.

2 Flag structures in dimension 3

Le M be a real three dimensional manifold and TC = TM ⊗ C be its complexified tangent
bundle.

Definition 2.1 A flag structure on M is a choice of two sub-bundles T 1 and T 2 in TC such
that T 1 ∩ T 2 = {0} and such that T 1 ⊕ T 2 is a contact distribution.

The condition that T 1 ⊕ T 2 be a contact distribution means that, locally, there exists a
one form θ ∈ T ∗M ⊗ C such that ker θ = T 1 ⊕ T 2 and dθ ∧ θ is never zero.

This definition contains two special cases, namely,

• CR structures, which arise when T 2 = T 1.

• Path geometries, which are defined when T 1 and T 2 are complexifications of real one
dimensional sub-bundles of TM .

Path geometries are treated in detail in section 8.6 of [IL] and in [BGH] where the
relation to second order differential equations is also explained. CR structures in three
dimensional manifolds were studied by Cartan ([C], see also [J]) and his solution of the
equivalence problem in dimension 3 was generalized to higher dimensions in [CM]. The
goal in this paper is to use the same formalism for both geometries. They appear as real
forms of a complex path geometry. Indeed, one can define a complex path geometry on
complex manifolds of dimension three whose zero curvature model is the homogeneous flag
space SL(3,C)/B (where B is the Borel subgroup of upper triangular matrices). The group
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SL(3,C) acts on this space transitively and the real geometries associated to it correspond
to the two closed orbits of the two non-compact real forms SL(3,R) and SU(2, 1).

2.1 The flag space

The model cases of a flag structure arise when we consider certain real three dimensional
submanifolds of the space F of complete flags (that is, lines and planes containing them) in
C3. The group SL(3,C) acts on the space of flags with isotropy B, the Borel group of upper
triangular matrices. We can describe therefore the space of flags as the homogeneous space
F = SL(3,C)/B. The space of flags is equipped with two projections. One projects the line
of a flag into P(C3) on one hand and, on the other, the plane into P(C3∗) viewed as a kernel
of a linear form.

F

""||

P(C3) P(C3∗)

The two projections correspond to the projections into P(C3) = SL(3,C)/P1 and P(C3∗) =
SL(3,C)/P2 where P1 and P2 are two different parabolic subgroups which fix, respectively,
the line and the plane of the flag fixed by the Borel subgroup..

The projections define a complex contact distribution on the tangent space of F generated
by the tangent spaces to each of the fibers. One can embed F into P(C3) × P(C3∗) as the
set of pairs (z, l) ∈ P(C3)× P(C3∗) satisfying the incidence relation l(z) = 0.

Another description of the contact distribution can be given using explicitly the Lie alge-
bra structure of SL(3,C). Indeed, the Lie algebra of SL(3,C) decomposes in the following
direct sum of vector subspaces:

sl(3,C) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2.

That is the graded decomposition of sl(3,C) where b = g0 ⊕ g1 ⊕ g2 corresponds to upper
triangular matrices. The tangent space of SL(3,C)/B at [B] is identified to

sl(3,C)/b = g−2 ⊕ g−1.

Moreover the choice of the reference flag whose isotropy is B defines a decomposition of
g−1 = t1 ⊕ t2 , with g−2 = [t1, t2], corresponding to the two parabolic subgroups with Lie
algebras p1 = t1 ⊕ g0 ⊕ g1 ⊕ g2 and p2 = t2 ⊕ g0 ⊕ g1 ⊕ g2.

One propagates the decomposition of the tangent space at [B] to the whole flag space by
the action of SL(3,C) to obtain the two field of complex lines T1 and T2.

2.2 Real submanifolds in flag space

In this section we assume M is a three dimensional real manifold. Let ϕ : M → SL(3,C)/B
be an embedding and ϕ∗ : TM → TSL(3,C)/B be its differential. One can extend this
map to ϕ∗ : TMC → TSL(3,C)/B by ϕ∗(iv) = Jϕ∗(v) where J is the complex structure on
the tangent space of the complex manifold SL(3,C)/B (which is just multiplication by i in
matrix coordinates).
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Definition 2.2 An embedding ϕ : M → SL(3,C)/B is totally real if, for every p ∈M ,

ϕ∗ : TpM
C → TpSL(3,C)/B

is an isomorphism.

One can define then the spaces T 1, T 2 ⊂ TMC which correspond to T1 and T2 on the
flag space SL(3,C)/B. This defines a flag structure on any real 3-manifold M with a totally
real embedding into SL(3,C)/B.

There are two fundamental examples. They are both described as the unique closed orbit
in the flag space by the action of a non-compact real form of SL(3,C).

2.2.1 Spherical CR geometry and SU(2, 1)

Spherical CR geometry is modeled on the sphere S3 equipped with a natural PU(2, 1) action.
Consider the group U(2, 1) preserving the Hermitian form 〈z, w〉 = w∗Jz defined on C3 by
the matrix

J =

 0 0 1
0 1 0
1 0 0


and the following cones in C3:

V0 =
{
z ∈ C3 − {0} : 〈z, z〉 = 0

}
,

V− =
{
z ∈ C3 : 〈z, z〉 < 0

}
.

Let π : C3 \ {0} → P(C3) be the canonical projection. Then H2
C = π(V−) is the complex

hyperbolic space and its boundary is

S3 = π(V0) = {[x, y, z] ∈ CP2 | xz̄ + |y|2 + zx̄ = 0 }.

The group of biholomorphic transformations of H2
C is then PU(2, 1), the projectivization of

U(2, 1). Observe that this group also acts on S3.
An element x ∈ S3 gives rise to a flag in F where the line corresponds to the unique

complex line tangent to S3 at x. More explicitly, we let

ϕCR : S3 → F

x 7→ (x, 〈 . , x 〉)

2.2.2 Real path geometry and SL(3,R)

Flat path geometry is the geometry of real flags in R3. That is the geometry of the space
of all couples [p, l] where p ∈ RP 2 and l is a real projective line containing p. The space of
flags is identified to the quotient

SL(3,R)/BR

where BR is the Borel group of all real upper triangular matrices. The inclusion

ϕR : SL(3,R)/BR → SL(3,C)/B

is clearly a totally real embedding.
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2.2.3 Homogeneous immersions of SU(2)

There exists two families:

1. Let x0 = [1, 0, 0] ∈ P(C3) and define for a fixed l ∈ P(C3∗) such that l(x0) = 0 the
embedding. Define the family of embeddings:

ϕl : SU(2) → F

g 7→ (gx0, g
∗l)

where g ∈ SU(2) ⊂ SU(2, 1). Each choice of l ∈ P(C3∗) defines a closed orbit in the
space of flags by the action of SU(2) and therefore this family has P(C2) as parameter
space. It can be seen as a deformation of the spherical CR structure on the sphere
to a family of SU(2) invariant flag structures. The CR embedding is obtained when
l = 〈 . , x0 〉.

2. The other family arises from a deformation of the real flag space. Let

ϕl : SO(3) → F

g 7→ (gx0, g
∗l)

where g ∈ SO(3) ⊂ SL(3,R).

Again, each choice of l ∈ P(C3∗) defines a closed orbit in the space of flags by the action of
SO(3) and therefore this family has P(C2) as parameter space. But there exists an isotropy.
Namely, the orbit of x0 is P(R3) and has isotropy O(2). The deformation space in this case
is the quotient O(2) \ P(C2) which is a segment. The structures on SU(2) are obtained
considering the twofold cover of SO(3).

3 The C∗-bundle of contact forms and an adapted coframe

bundle

We start the construction of a canonical C∗-bundle over a real three manifold equipped with
a flag structure.

We consider the forms θ on TC such that ker θ = T 1 ⊕ T 2. Define E to be the C∗-
bundle of all such forms. This bundle is trivial if and only if there exists a globally defined
non-vanishing form θ.

On E we define the tautological form ω. That is ωθ = π∗(θ) where π : E → M is the
natural projection.

Fixing a form θ we next define forms θ1 and θ2 on TC satisfying

θ1(T 1) 6= 0 and θ2(T 2) 6= 0.

ker θ1 = T 2 and ker θ2 = T 1.
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Fixing one choice, all others are given by θ′i = aiθi + viθ.
We consider the tautological forms defined by the forms above over the line bundle E.

That is, for each θ ∈ E we let ωiθ = π∗(θi). At each point θ ∈ E we have the family of forms
defined over TEθ

ω′ = ω

ω′1 = a1ω1 + v1ω

ω′2 = a2ω2 + v2ω

We may, moreover, suppose that

dθ = θ1 ∧ θ2 modulo θ

and therefore

dω = ω1 ∧ ω2 modulo ω.

This imposes that a1a2 = 1.
Those forms vanish on vertical vectors, that is, vectors in the kernel of the map TE →

TM . In order to define non-horizontal 1-forms we let θ be a section of E over M and
introduce the coordinate λ ∈ C∗ in E. By abuse of notation, let θ denote the tautological
form on the section θ. Therefore the tautological form ω over E is

ωλ = λθ.

Differentiating this formula we obtain

dω = ω ∧ ϕ+ ω1 ∧ ω2 (1)

where ϕ = −dλ
λ

modulo ω, ω1, ω2.
Observe that dλ

λ
is a form intrinsically defined on E up to horizontal forms (the minus

sign is just a matter of conventions).
For a different choice of forms satisfying the equation we write 1 as

dω = ω′ ∧ ϕ′ + ω′1 ∧ ω′2 = ω ∧ ϕ′ + (a1ω1 + v1ω) ∧ (a2ω2 + v2ω)
= ω ∧ (ϕ′ − a1v2ω1 + a2v1ω2) + ω1 ∧ ω2

it follows ϕ′ = ϕ+ a1v2ω1 − a2v1ω2 + sω, with s ∈ C.
We obtain in this way a coframe bundle over E:

ω′ = ω

ω′1 = a1ω1 + v1ω

ω′2 = a2ω2 + v2ω

ϕ′ = ϕ+ a1v2ω1 − a2v1ω2 + sω

v1, v2, s ∈ C and a1, a2 ∈ C∗ such that a1a2 = 1.
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Definition 3.1 We denote by Y the coframe bundle Y → E given by the set of 1-forms
ω, ω1, ω2, ϕ. Two coframes are related by

(ω′, ω′1, ω′2, ϕ′) = (ω, ω1, ω2, ϕ)


1 v1 v2 s
0 a1 0 a1v2

0 0 a2 −a2v1
0 0 0 1


where and s, v1, v2 ∈ C and a1, a2 ∈ C∗ satisfy a1a2 = 1.

The bundle Y can also be fibered over the manifold M . In order to describe the bundle
Y as a principal fiber bundle over M observe that choosing a local section θ of E and forms
θ1 and θ2 on M such that dθ = θ1 ∧ θ2 one can write a trivialization of the fiber

ω = λθ

ω1 = a1θ1 + v1λθ

ω2 = a2θ2 + v2λθ

ϕ = −dλ
λ

+ a1v2θ1 − a2v1θ2 + sθ,

where v1, v2, s ∈ C and a1, a2 ∈ C∗ such that a1a2 = λ. Here the coframe ω, ω1, ω2, ϕ is seen
as composed of tautological forms.

The group H acting on the right of this bundle is

H =




λ v1λ v2λ s
0 a1 0 a1v2

0 0 a2 −a2v1
0 0 0 1

 where s, v1, v2 ∈ C and a1, a2 ∈ C∗ satisfy a1a2 = λ

 .

Consider the homomorphism from the Borel group B ⊂ SL(3,C) of upper triangular
matrices into H

j : B → H

given by

 a c e
0 1

ab
d

0 0 b

 −→


a
b
−2a2d c

b
4e
b
− 2acd

0 a2b 0 abc
0 0 1

ab2
2d
b

0 0 0 1


One verifies that the homomorphism is surjective and its kernel is isomorphic to Z/3Z
formed by diagonal matrices, so that H is isomorphic to the Borel group of projected upper
triangular matrices in PSL(3,C).

Proposition 3.2 The bundle Y →M is a principal bundle with structure group B/C∗ where
B is the Borel group of upper triangular matrices.
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4 Construction of connection forms on the bundle Y

The goal of this section is to obtain canonical forms defined on the coframe bundle Y → E.
They will give rise to a connection on Y as explained in the next section. The connection
will be a form on Y with values in sl(3,C) and will not be a Cartan connection as it is
usually defined but a slight generalization of it.

A local section of the complexified coframe bundle over M may be given by three forms

θ, θ1, θ2

satisfying dθ = θ1∧ θ2, with ker θ1 = T 1 and ker θ2 = T 2. They give coordinates on the com-
plexified cotangent bundle over E and, furthermore, we may describe next the tautological
forms defined over that bundle in the previous section.

At the point λθ ∈ E, the coframes of Y are parametrized as follows:

ω = λθ

ωi = aiθi + viλθ

with a1a2 = λ and

dω = ω1 ∧ ω2 + ω ∧ ϕ

where ϕ = −dλ
λ

mod ω1, ω2, ω.
We consider now these forms as tautological forms on the bundle T ∗Y . Differentiating

ω1, ω2 we obtain

dω1 = da1 ∧ θ1 + dv1 ∧ λθ + a1dθ1 + v1d λθ

dω2 = da2 ∧ θ2 + dv2 ∧ λθ + a1dθ2 + v2d λθ.

Observing now that
dλ

λ
=
da1

a1
+
da2

a2

we can write (modulo ω1, ω2, ω)

dω1 ≡ dλ

2λ
∧ ω1 +

1

2

(
da1

a1
− da2

a2

)
∧ ω1 + dv1 ∧ ω

dω2 ≡ dλ

2λ
∧ ω2 − 1

2

(
da1

a1
− da2

a2

)
∧ ω2 + dv2 ∧ ω

Now, distributing the missing terms in ω1, ω2, ω in the last two terms of dω1 and dω2 and
anti-symmetrizing we obtain the following:

Lemma 4.1 There exists linearly independent forms ω1
1, ϕ

1, ϕ2 defined on T ∗Y such that

dω1 =
1

2
ω1 ∧ ϕ+ ω1 ∧ ω1

1 + ω ∧ ϕ1 and dω2 =
1

2
ω2 ∧ ϕ− ω2 ∧ ω1

1 + ω ∧ ϕ2 (2)
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Let ω′11, ϕ
′1 and ϕ′2 be other forms satisfying equations 2. Taking the difference we obtain

for i = 1, 2
0 = ω1 ∧ (ω1

1 − ω′11 ) + ω ∧ (ϕ1 − ϕ′1)

and
0 = −ω2 ∧ (ω1

1 − ω′11 ) + ω ∧ (ϕ2 − ϕ′2)

Therefore
ω1
1 − ω′11 = aω

ϕ1 − ϕ′1 = aω1 + b1ω

ϕ2 − ϕ′2 = −aω2 + b2ω

.

Lemma 4.2 There exists a 1-form ψ such that

dϕ = ω1 ∧ ϕ2 − ω2 ∧ ϕ1 + ω ∧ ψ (3)

Proof. Differentiating equation

dω = ω1 ∧ ω2 + ω ∧ ϕ

and using equations 2 we obtain

ω ∧
(
dϕ+ ω2 ∧ ϕ1 − ω1 ∧ ϕ2

)
= 0

which implies that there exists a form ψ as claimed. 2

If other forms ψ′, ϕ′1 and ϕ′2 satisfy 3 then

0 = ω1 ∧ (ϕ2 − ϕ′2)− ω2 ∧ (ϕ1 − ϕ′1) + ω ∧ (ψ − ψ′)

and, therefore, using ϕ1 − ϕ′1 = aω1 + b1ω and ϕ2 − ϕ′2 = −aω2 + b2ω we obtain

ψ − ψ′ = b2ω1 − b1ω2 + cω.

Our next goal is to fix ω1
1. For that sake we differentiate equations 2. Equation ddω1 = 0

gives

ω1 ∧
(
−dω1

1 +
3

2
ω2 ∧ ϕ1

)
+ ω ∧

(
−dϕ1 + ϕ1 ∧ ω1

1 +
1

2
ω1 ∧ ψ − 1

2
ϕ1 ∧ ϕ

)
= 0.

Analogously, equation ddω2 = 0 gives

ω2 ∧
(
dω1

1 −
3

2
ω1 ∧ ϕ2

)
+ ω ∧

(
−dϕ2 − ϕ2 ∧ ω1

1 +
1

2
ω2 ∧ ψ − 1

2
ϕ2 ∧ ϕ

)
= 0.

Defining

Ω1
1 = dω1

1 −
3

2
ω2 ∧ ϕ1 − 3

2
ω1 ∧ ϕ2
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Φ1 = dϕ1 − ϕ1 ∧ ω1
1 −

1

2
ω1 ∧ ψ − 1

2
ϕ ∧ ϕ1

Φ2 = dϕ2 + ϕ2 ∧ ω1
1 −

1

2
ω2 ∧ ψ − 1

2
ϕ ∧ ϕ2

So the equations can be written

ω1 ∧ Ω1
1 + ω ∧ Φ1 = 0

ω2 ∧ Ω1
1 − ω ∧ Φ2 = 0

The first equation implies that Ω1
1 = ω ∧ λ11 + ω1 ∧ µ, where λ11 and µ are 1-forms so that µ

has no terms in ω. From the second equation we obtain that µ = S1ω
1 +S2ω

2. Substituting
in the second we see that S1 = 0. We write therefore

Ω1
1 = ω ∧ λ11 + S2ω

1 ∧ ω2.

Lemma 4.3 There exists a unique form ω1
1 such that Ω1

1 = ω ∧ λ11 (that is S2 = 0).

Proof. Computing the difference

Ω1
1 − Ω′11 = d(ω1

1 − ω′11 )− 3

2
ω2 ∧ (ϕ1 − ϕ′1)− 3

2
ω1 ∧ (ϕ2 − ϕ′2)

and obtain
Ω1

1 − Ω′11 = 4aω1 ∧ ω2 mod ω.

One can fix therefore a so that Ω1
1 satisfies the assertion of the lemma. 2

4.0.1

As ω1
1 is fixed we still have the following ambiguities:

ϕ1 − ϕ′1 = b1ω

ϕ2 − ϕ′2 = b2ω

ψ − ψ′ = b2ω1 − b1ω2 + cω.

Lemma 4.4 There exists unique forms ϕ1 and ϕ2 such that Ω1
1 does not contain terms ωi∧ω,

i = 1, 2.

Proof. From the definition of Ω1
1 = dω1

1 − 3
2
ω2 ∧ ϕ1 − 3

2
ω1 ∧ ϕ2 we obtain that

Ω1
1 − Ω′11 = −3

2
b1ω2 ∧ ω − 3

2
b2ω1 ∧ ω.

So we can choose b1 and b2 as claimed. 2

Observe that we fixed the 1-forms ω1
1, ϕ

1 and ϕ2 so that

dω1
1 −

3

2
ω2 ∧ ϕ1 − 3

2
ω1 ∧ ϕ2 = ω ∧ λ11 (4)

with λ11 ≡ 0 mod ϕ, ϕ1, ϕ2, ψ.
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4.0.2

It remains to fix ψ.

Lemma 4.5 There exists a unique 1-form ψ such that Φ1 does not contain a term ω1 ∧ ω.

Proof. We compute using the definition Φ1 − Φ′1 = −1
2
ω1 ∧ (ψ − ψ′) = −1

2
cω1 ∧ ω and we

can choose a unique c ∈ C which proves the lemma. 2

4.1 Curvature forms

Curvature forms appear as differentials of connection forms and were used implicitly in the
previous paragraphs to fix the connection forms.

In this section we obtain properties of the curvature forms which will be used in the
following sections. Substituting Ω1

1 = ω ∧ λ11 in equation ω1 ∧ Ω1
1 + ω ∧ Φ1 = 0 we obtain

that ω ∧ (−ω1 ∧ λ11 + Φ1) = 0 and therefore Φ1 = ω1 ∧ λ11 + ω ∧ ν1 for a 1-form ν1. Observe
that ν1 ≡ 0 mod ω2, ϕ, ϕ1, ϕ2, ψ in view of the last lemma. Analogously, one may write
Φ2 = −ω2 ∧ λ11 + ω ∧ ν2.

4.1.1

Equation d(dϕ) = 0 obtained differentiating 3 can be simplified to

0 = ω ∧
(
−dψ + ϕ ∧ ψ + 2ϕ1 ∧ ϕ2 − ω1 ∧ ν2 + ω2 ∧ ν1

)
.

It follows that there exists a 1-form ν such that

dψ − 2ϕ1 ∧ ϕ2 − ϕ ∧ ψ + ω1 ∧ ν2 − ω2 ∧ ν1 = ν ∧ ω. (5)

4.1.2

Equation d(dω1
1) = 0 obtained differentiating 4 can be simplified to

0 = ω1 ∧ ω2 ∧ 4λ11 + ω ∧
(
−dλ11 +

3

2
ω1 ∧ ν2 +

3

2
ω2 ∧ ν1 + ϕ ∧ λ11

)
which implies, as λ11 does not contain terms in ω that λ11 = 0 and ω∧ (ω1∧ν2 +ω2∧ν1) = 0.
As ν1 does not have a term in ω1 it follows from the last equation that ν2 does not have a
term in ω2 and we conclude that ν1 = Q1ω2 and ν2 = Q2ω1 where we introduce functions
Q1 and Q2.

We have obtained the following equations:

Ω1
1 := dω1

1 −
3

2
ω2 ∧ ϕ1 − 3

2
ω1 ∧ ϕ2 = 0, (6)

Φ1 := dϕ1 − ϕ1 ∧ ω1
1 −

1

2
ω1 ∧ ψ − 1

2
ϕ ∧ ϕ1 = Q1ω ∧ ω2, (7)

Φ2 := dϕ2 + ϕ2 ∧ ω1
1 −

1

2
ω2 ∧ ψ − 1

2
ϕ ∧ ϕ2 = Q2ω ∧ ω1. (8)
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4.1.3

Equation d(dϕ1) = 0 obtained differentiating Φ1 above is simplified to

0 =
1

2
ω ∧ ω1 ∧ ν − ω ∧ ω2 ∧

(
dQ1 + 2Q1ω1

1 − 2Q1ϕ
)
.

It implies that

ν = U1ω
1 + U2ω

2

and

dQ1 + 2Q1ω1
1 − 2Q1ϕ = S1ω − 1

2
U2ω

1 + T 1ω2,

where we introduced functions U1, U2, S
1 and T 1.

We obtain, substituting the expression for ν in equation 5, the following expression

Ψ := dψ − 2ϕ1 ∧ ϕ2 − ϕ ∧ ψ + ω1 ∧ ν2 − ω2 ∧ ν1 = (U1ω
1 + U2ω

2) ∧ ω. (9)

Therefore, as ν1 = Q1ω1 and ν2 = Q2ω2 we have

Ψ := dψ − 2ϕ1 ∧ ϕ2 − ϕ ∧ ψ = (U1ω
1 + U2ω

2) ∧ ω. (10)

4.1.4

Anagously, equation d(dϕ2) = 0 obtained differentiating Φ2 above is simplified to

0 = ω ∧ ω1 ∧
(
dQ2 − 2Q2ω1

1 − 2Q2ϕ+
1

2
U1ω

2

)
.

It implies that

dQ2 − 2Q2ω1
1 − 2Q2ϕ = S2ω − 1

2
U1ω

2 + T 2ω1,

where we introduced new functions S2 and T 2.

4.1.5

Finally, equation d(dψ) obtained from 5 simplifies to

0 = ω ∧ ω1

(
dU1 −

5

2
U1ϕ− U1ω

1
1 + 2Q2ϕ1

)
+ ω ∧ ω2

(
dU2 −

5

2
U2ϕ+ U2ω

1
1 − 2Q1ϕ2

)
which implies that

dU1 −
5

2
U1ϕ− U1ω

1
1 + 2Q2ϕ1 = Aω +Bω1 + Cω2

and

dU2 −
5

2
U2ϕ+ U2ω

1
1 − 2Q1ϕ2 = Dω + Cω1 + Eω2.
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4.2 The CR case

In order to make the construction of the bundle Y compatible with the CR bundle con-
structed in [C, CM] one verifies first that ω2 = iω̄1. We have indeed

dω = ω ∧ ϕ+ iω1 ∧ ω̄1.

The form ω can be taken to be real so ϕ is also real.
From equations 2 one has

ω1
1 + ω̄1

1 = 0 ϕ2 = iϕ̄1.

From equation 6 we obtain

dω1
1 −

3

2
iω̄1 ∧ ϕ1 − 3

2
ω1 ∧ ϕ̄1 = 0,

From equations 7,8

dϕ1 − ϕ1 ∧ ω1
1 −

1

2
ω1 ∧ ψ − 1

2
ϕ ∧ ϕ1 = Q1ω ∧ ω2,

dϕ2 + ϕ2 ∧ ω1
1 −

1

2
ω2 ∧ ψ − 1

2
ϕ ∧ ϕ2 = Q2ω ∧ ω1,

we have ψ = ψ̄ and Q1 = Q̄2. From equation 10 we obtain

dψ − 2ϕ1 ∧ ϕ̄1 − ϕ ∧ ψ − (U1ω
1 + U2ω̄

1) ∧ ω = 0.

From that equation we observe that U1 = −iŪ2 (in the CR literature U1 is denoted R1).

5 The Cartan connection

We consider the bundle Y → M as a principal bundle with structure group H ⊂ SL(3,C),
the Borel group of triangular matrices. Observe that, although M is a real manifold, each
fiber is a complex space of dimension five which can be identified to the Borel subgroup H.
The real dimension of Y is 13 which is dimR SL(3,C)−3. This dimension difference does not
allow us to obtain a genuine Cartan connection but a slight generalization of the definition
will be sufficient for our purposes.

Recall that X∗(y) = d
dt t=0

yetX where etX is the one parameter group generated by X.

Definition 5.1 A Cartan connection on Y is a 1-form π : TY → sl(3,C) satisfying:
0. πp : TpY → sl(3,C) is injective.
1. If X ∈ h and X∗ ∈ TY is the vertical vector field canonically associated to X then
π(X∗) = X.
2. If h ∈ H then (Rh)

∗π = Adh−1π

Note that contrary to the usual definition of Cartan connection we don’t impose that
πp : TpY → sl(3,C) be an isomorphism as the dimensions are different.

14



We can represent the structure equations 1, 2, 3, 4 and 5 as a matrix equation whose
entries are differential forms. The forms are disposed in the Lie algebra sl(3,C) as

π =

 −1
2
ϕ− 1

3
ω1
1 ϕ2 −1

4
ψ

ω1 2
3
ω1
1

1
2
ϕ1

2ω 2ω2 1
2
ϕ− 1

3
ω1
1


It is a simple verification to show that

dπ + π ∧ π = Π (11)

where

Π =

 0 −Φ2 −1
4
Ψ

0 0 1
2
Φ1

0 0 0


with Φ1 = Q1ω ∧ ω2, Φ2 = Q2ω ∧ ω1 and Ψ = (U1ω

1 + U2ω
2) ∧ ω.

Theorem 5.2 The form π is a Cartan connection on Y →M .

Proof. The action by H can be replaced by the action of the Borel group of upper
triangular matrices as described in a previous section. The action on the right by an element
h ∈ H on a coframe y ∈ Y is denoted by Rh(y). As y ∈ Y is a coframe of E, one may
consider tautological lifts ytaut on Y defined by the elements of the coframe y. The action
on Y lifts to an action on its tautological lifts as follows:

Rh
∗(ytaut) = Rh(y)taut.

We compute Adh−1π for an element

h =

 a c e
0 1

ab
d

0 0 b


and verify that the tautological forms ω, ω1, ω2, ϕ on Y (which appear as certain components
of the connection) change according to the right action above.

It remains to show that the other components change similarly. Now given ω, ω1, ω2, ϕ
tautological forms on Y we defined unique forms ω1

1, ϕ
1, ϕ2, ψ such that the curvatures Φ1,Φ2

and Ψ had special properties.
We have

Adh−1(dπ − π ∧ π) = dAdh−1π − Adh−1π ∧ Adh−1π.

Writing

π̃ = Adh−1π,

we obtain Adh−1Π = Π̃, where Π̃ = dπ̃ − π̃ ∧ π̃. A computation shows that
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ω̃ =
a

b
ω

ω̃1 = a2b ω1 − 2da2 ω

ω̃2 =
1

ab2
ω2 +

c

b
ω

ϕ̃ = ϕ+ abc ω1 + 2
d

b
ω2 + (

4e

b
− 2dac)ω (12)

ω̃1
1 = ω1

1 +
3

2
abc ω1 − 3

d

b
ω2 − 3dac ω

ϕ̃1 = b2aϕ1 + 2dab ω1
1 − badϕ+ 2bae ω1 − 4d2aω2 − 4dae ω

ϕ̃2 =
1

ba2
ϕ2 +

c

a
ω1
1 +

1

2
ca ϕ+ bc2 ω1 + (

2e

a2b2
− 2cd

ab
)ω2 + (

2ce

ab
− 2dc2)ω

ψ̃ =
b

a
ψ + (

4e

a
− 2bc)ϕ+ 4bce ω1 + (

8de

ab
− 8cd2)ω2 + 2cb2 ϕ1 + 4

d

a
ϕ2 + 4dbc ω1

1 + (
8e2

ab
− 8dce)ω

therefore it suffices to verify that the new curvature forms Φ′1,Φ′2 and Ψ′ obtained from
Adh−1Π verify the same properties. Indeed

Adh−1Π = Π̃ =

 0 1
a2b

Π12
b
a
Π13 + d

a
Π12 − cb2Π23

0 0 ab2Π23

0 0 0


and we see that the new curvatures satisfy the same properties. 2

In particular, one obtains that

Φ̃1 = 2Π̃23 = 2ab2Π23Π23 = ab2Φ1

and therefore
Q̃1ω̃ ∧ ω̃2 = ab2Q1ω ∧ ω2.

But Q̃1ω̃ ∧ ω̃2 = Q̃1 a
b
ω ∧ 1

ab2
ω2 and then

Q̃1 = ab5Q1.

Analogously, from

Φ̃2 = −Π̃12 = − 1

a2b
Π12Π23 =

1

a2b
Φ2

we obtain that

Q̃2 =
1

a5b
Q2.

These transformation properties imply that we can define two tensors on Y which are in-
variant under H and will give rise to two functions on M . Indeed

Q1 ω2 ∧ ω ⊗ ω ⊗ e1
and

Q2 ω1 ∧ ω ⊗ ω ⊗ e2,
where e1 and e2 are duals to ω1 and ω2 in the dual frame of the coframe bundle of Y are
easily seen to be H-invariant.
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5.1 Null curvature models

A local characterization of null curvature path geometries is given in the following theorem.
Recall definition 2.2 of a totally real embedding ϕ : M → SL(3,C)/B and its associated flag
structure which correspond to ϕ∗(T

1) = T1 and ϕ∗(T
2) = T2 on the flag space SL(3,C)/B.

Theorem 5.3 A totally real embedding ϕ : N → SL(3,C)/B with induced flag structure
on TMC given by T 1 and T 2 as above is a contact path structure with adapted connection
having null curvature. Conversely a contact path structure whose adapted connection has
zero curvature is locally equivalent to a totally real embedding with induced path structure
defined by T 1 and T 2 as above.

Observe that null curvature does not define a unique flag structure on a real manifold
but instead decides whether is can be embedded as a totally real submanifold in flag space.

Proof. The fact that N , equipped with the two sub-bundles T 1 and T 2 is a contact
path structure with adapted connection having null curvature follows from the fact that the
adapted principal bundle Y associated to N is identified to the restriction to N of the bundle
SL(3,C)→ SL(3,C)/H. The adapted connection on Y is then the Maurer-Cartan form of
SL(3,C) restricted to this bundle and therefore has zero curvature.

Suppose now that M has a contact path structure defined by sub-bundles T 1 and T 2 in
TN⊗C. Let π : TY → sl(3,C) be an adapted connection. Suppose that dπ+π∧π = Π = 0
and let ω̃ be the Maurer-Cartan form of the group SL(3,C). By Cartan’s theorem (see
theorem 1.6.10 in [IL]) every y ∈ Y is contained in an open neighborhood U ⊂ Y where an
immersion f : U → SL(3,C) is defined satisfying π = f ∗(ω̃). Moreover, any other immersion
f̃ satisfying the same equation is related by a translation by an element a ∈ SL(3,C) in the
group, that is, f̃ = af .

If X ∈ h then X = π(X∗) = f ∗(ω̃)(X∗) = ω̃(f∗X
∗). Therefore f∗X

∗ is tangent to
the fibers of SL(3,C) → SL(3,C)/H. We conclude that f : U → SL(3,C) projects to
an immersion f̄ : V → SL(3,C)/H where V ⊂ M . The subspaces f̄∗(T

1) and f̄∗(T
2) are

precisely the subspaces T1 and T2 restricted to f̄(V ).

2

The following theorem shows the rigidity of the real models in flag space. It remains
the possibility that general CR structures or path structures might be deformed in higher
dimensional flag spaces.

Theorem 5.4 • Any local embedding of a CR structure into the flag space SL(3,C)/B
coincides locally with ϕCR : S3 → SL(3,C)/B up to a translation. In particular, only
spherical CR structures can be embedded.

• Any local embedding of a path structure into the flag space SL(3,C)/B coincides locally
with ϕR : F = SL(3,R)/BR → SL(3,C)/B up to a translation. In particular, only flat
path geometries can be embedded.
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Proof. By the previous theorem the only CR structures which can be embedded are
the spherical ones. On the other hand, null curvature CR structures are known ([C]) to be
locally equivalent to S3 equipped to its standard structure. By the theorem again, the null
curvature structures admit embeddings which differ at most by a translation. The proof in
the case of path geometry is similar. 2

6 A global invariant

The second Chern class of the bundle Y with connection form π is given by

c2(Y, π) =
1

8π2
tr (Π ∧ Π).

In the case of the connection form π we obtain 0 −Φ2 −1
4
Ψ

0 0 1
2
Φ1

0 0 0

 ∧
 0 −Φ2 −1

4
Ψ

0 0 1
2
Φ1

0 0 0

 =

 0 0 −1
2
Φ1 ∧ Φ2

0 0 0
0 0 0

 .

As Φ1 = Q1ω ∧ ω2 and Φ2 = Q2ω ∧ ω1 we have Π ∧ Π = 0 and

c2(Y, π) = 0.

We include the proof of the next lemma although it is standard.

Lemma 6.1 The form

TC2(π) =
1

8π2

(
tr (π ∧ Π) +

1

3
tr (π ∧ π ∧ π)

)
=

1

24π2
tr (π ∧ π ∧ π)

is closed.

Proof. Observe first that differentiating the curvature form we obtain dΠ = Π ∧ π − π ∧ Π.
Next we compute

d tr (Π ∧ π) = tr (dΠ ∧ π + Π ∧ d π) = tr ((Π ∧ π − π ∧ Π) ∧ π + Π ∧ (Π− π ∧ π))

= −tr (π ∧ Π ∧ π) = 0

because
tr (Π ∧ π) = −Φ2 ∧ ω1 + Φ1 ∧ ω2 = 0.

Note that tr (α ∧ β) = (−1)kltr (β ∧ α) if α and β are two matrices of forms of degree k and
l respectively. Therefore, computing

1

3
d tr (π ∧ π ∧ π) = tr (d π ∧ π ∧ π) = tr ((Π− π ∧ π) ∧ π ∧ π)

= −tr (π ∧ π ∧ π ∧ π) = 0.

2

Remark that 0 = c2(Y, π) = d TC2(π).
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Definition 6.1 Suppose that the fiber bundle Y → M is trivial and let s : M → Y be a
section, we define then

µ =

∫
M

s∗TC2(π) =
1

24π2

∫
M

s∗tr (π ∧ π ∧ π).

In principle that integral depends on the section but the following proposition shows that
the integrand

s∗TC2(π)

defines an element in the cohomology which does not depend on the section.

Proposition 6.2 Suppose s and s̃ are two sections. Then

s̃∗TC2(π)− s∗TC2(π) = − 1

8π2
d s∗tr (h−1π ∧ d h).

Proof. Fix the section s. Than there exists a map h : M → H such that s̃ = Rh ◦ s. We
have then

s̃∗TC2(π) =
1

24π2
s∗tr (R∗hπ ∧R∗hπ ∧R∗hπ).

From the formula
Rh
∗π = h−1d h+ Adh−1π,

we obtain
tr (R∗hπ ∧R∗hπ ∧R∗hπ) =

tr
(
h−1d h ∧ h−1d h ∧ h−1d h+ 3h−1d h ∧ h−1π ∧ d h+ 3h−1π ∧ π ∧ d h+ π ∧ π ∧ π

)
= tr

(
−h−1d h ∧ d h−1 ∧ d h− 3d h−1 ∧ π ∧ d h+ 3h−1π ∧ π ∧ d h+ π ∧ π ∧ π

)
.

Lemma 6.2 tr (h−1d h ∧ d h−1 ∧ d h) = 0.

Proof. Observe that d h−1 ∧ d h is upper triangular with null diagonal. Moreover h−1d h
is upper triangular and therefore the Lie algebra valued form also has zero diagonal.

2

Lemma 6.3 d tr (h−1π ∧ d h) = tr (d h−1 ∧ π ∧ d h− h−1π ∧ π ∧ d h).

Proof. Compute dtr (h−1π ∧ d h) = tr (d h−1 ∧ π ∧ d h+ h−1dπ ∧ d h)

= tr
(
d h−1 ∧ π ∧ d h+ h−1(Π− π ∧ π) ∧ d h

)
= tr

(
d h−1 ∧ π ∧ d h− h−1π ∧ π ∧ d h

)
because tr (h−1Π ∧ d h) = 0 as in the previous lemma.

2

The proposition follows from the two lemmas.

2
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6.1 First variation

We obtain in this section a first variation formula for the invariant µ when the flag structure
is deformed through a smooth path. Let µ(t) be the invariant defined as a function of the
a parameter describing the deformation of the structure on a closed manifold M and define
δµ = d

dt
µ(0).

Proposition 6.3 δµ = − 1
4π2

∫
M
s∗tr (π̇ ∧ Π).

Proof. Differentiating µ(t) = 1
24π2

∫
M
s∗tr (πt ∧ πt ∧ πt) we have

δµ =
1

8π2

∫
M

s∗tr (π ∧ π ∧ π̇).

Using the formula Π̇ = dπ̇ + π̇ ∧ π + π ∧ π̇ we write

tr (π ∧ Π̇) = tr (π ∧ dπ̇ + 2π ∧ π ∧ π̇)

and therefore

tr (π ∧ π ∧ π̇) =
1

2
tr (π ∧ Π̇− π ∧ dπ̇) =

1

2
tr (−π̇ ∧ Π− dπ ∧ π̇).

Where, in the last equality, we used that on a closed manifold
∫
M

tr (π∧dπ̇) =
∫
M

tr (dπ∧ π̇)

and that, differentiating tr (π ∧ Π) = 0, we have tr (π̇ ∧ Π + π ∧ dΠ̇) = 0.
Substituting Π− π ∧ π = dπ we obtain

tr (π ∧ π ∧ π̇) =
1

2
tr (−2π̇ ∧ Π− π ∧ π ∧ π̇)

and therefore

δµ =
1

8π2

∫
M

s∗tr (π ∧ π ∧ π̇) = − 1

4π2

∫
M

s∗tr (π̇ ∧ Π).

2

Observe that an explicit computation gives

tr (π̇ ∧ Π) = −ω̇1 ∧ Φ2 + ω̇2 ∧ Φ1 − 1

2
ω̇ ∧Ψ.

7 Pseudo flag geometry

In this section we fix a contact form and obtain a reduction of the structure group of a path
geometry. We will obtain the relations between the invariants of the reduced structure to
the original one. This is similar to the reduction of a CR structure to a pseudo hermitian
structure.

We consider a form θ on TC such that ker θ = T 1 ⊕ T 2 is non-integrable. Define forms
Z1 and Z2 on TC satifying

Z1(T 1) 6= 0 and Z2(T 2) 6= 0,
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ker θ1 ⊃ T 2 and ker θ2 ⊃ T 1

and such that dθ = Z1 ∧ Z2.
Fixing one choice, all others are given by θ1 = aZ1 and θ2 = 1

a
Z2, with a ∈ C∗. We

consider now the C∗ coframe bundle X defined by the forms θ1, θ2, θ. We have

dθ = θ1 ∧ θ2. (13)

Proposition 7.1 There exist unique forms θ11, τ 1 and τ 2 on X such that

dθ1 = θ1 ∧ θ11 + θ ∧ τ 1 (14)

dθ2 = −θ2 ∧ θ11 + θ ∧ τ 2 (15)

with θ11 = −da
a

mod θ1, θ2, θ and τ 1 ∧ θ2 = τ 2 ∧ θ1 = 0.

Proof. Define functions zi12, z
i
j0 by

dZi = zi12Z
1 ∧ Z2 + zi10Z

1 ∧ θ + zi20Z
2 ∧ θ.

Then

dθ1 =
da

a
∧ θ1 + adZ1 =

da

a
∧ θ1 + a

(
z112Z

1 ∧ Z2 + z110Z
1 ∧ θ + z120Z

2 ∧ θ
)
.

which can be written as
dθ1 = θ1 ∧ θ11 + θ ∧ τ 1 (16)

where θ11 = −da
a

+z112Z
2−z212Z1 (where we added a term in Z1 in order to have a compatibility

with the formula for dθ2 bellow) and τ 1 = −z110θ1 − z120a2θ2.
Anagously, from

dθ2 = −da
a
∧ θ2 +

1

a
dZ2 = −da

a
∧ θ2 +

1

a

(
z212Z

1 ∧ Z2 + z210Z
1 ∧ θ + z220Z

2 ∧ θ
)

we obtain
dθ2 = −θ2 ∧ θ11 + θ ∧ τ 2 (17)

where θ11 = −da
a

+ z112Z
2 − z212Z1 and τ 2 = −z210a−2θ1 − z220θ2.

Observe also that, differentiating equation 13 and using 16 and 17, we obtain θ ∧ (τ 1 ∧
θ2 − τ 2 ∧ θ1) = 0 which implies that, writing τ i = τ i1θ

1 + τ i2θ
2,

τ 11 + τ 22 = 0.

Now, if θ′11 , τ ′1 and τ ′2 are other forms satisfying the equations, then from the above equations
we obtain

θ11 − θ′11 = Aθ and τ 11 − τ ′11 = A.

Choosing an appropriate A we can therefore fix τ 11 = 0 and the forms θ11, τ
1 and τ 2 are

uniquely determined as claimed. 2
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Differentiating equations 16 and 17 we obtain

θ1 ∧ dθ11 + θ ∧ (dτ 1 − τ 1 ∧ θ11) = 0

−θ2 ∧ dθ11 + θ ∧ (dτ 2 + τ 2 ∧ θ11) = 0

and therefore

dθ11 = Rθ1 ∧ θ2 +W 1θ1 ∧ θ +W 2θ2 ∧ θ (18)

dτ 1 − τ 1 ∧ θ11 = −W 2θ1 ∧ θ2 + S1
1θ ∧ θ1 + S1

2θ ∧ θ2 (19)

dτ 2 + τ 2 ∧ θ11 = −W 1θ1 ∧ θ2 + S2
1θ ∧ θ1 + S2

2θ ∧ θ2 (20)

Moreover, differentiating equation τ 1 ∧ θ2 = 0 and τ 2 ∧ θ1 = 0 we obtain

S1
1 = S2

2 = τ 12 τ
2
1 .

7.1 Curvature identities

Differentiating equation 18 one gets

dR ∧ θ1 ∧ θ2 + (dW 1 −W 1θ11) ∧ θ1 ∧ θ(dW 2 +W 2θ11) ∧ θ2 ∧ θ = 0.

Writing

dR = R0θ +R1θ
1 +R2θ

2,

dW 1 −W 1θ11 = W 1
0 θ +W 1

1 θ
1 +W 1

2 θ
2

and

dW 2 +W 2θ11 = W 2
0 θ +W 2

1 θ
1 +W 2

2 θ
2

Then

R0 = W 1
2 −W 2

1 .

Differentiating equation 20 and writing dR0 = R00θ +R01θ
1 +R02θ

2 , one gets

dR1 −R1θ
1
1 +R2τ

2
1 θ −

1

2
R0θ

2 = R01θ +R11θ
1 +R12θ

2

and

dR2 +R2θ
1
1 +R1τ

1
2 θ +

1

2
R0θ

1 = R02θ +R12θ
1 +R22θ

2

We also obtain differentiating 19 and 20

dτ 12 + 2τ 12 θ
1
1 = −W 2θ1 + S1

2θ mod θ2

and

dτ 21 − 2τ 21 θ
1
1 = W 1θ2 + S2

1θ mod θ1.
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7.2 Embedding X → Y

Recall that X is the coframe bundle of forms (θ, θ1, θ2) over M . We chose a section of this
bundle. The forms over M will also be denoted by (θ, θ1, θ2). The goal now is to obtain an
immersion X → Y . Let s : M → Y such that s∗ω = θ and write

s∗ϕ = A1θ
1 + A2θ

2 + A0θ.

for functions Ai on M . To choose a section we will impose that s∗ϕ = 0. For that sake we
start with a particular section and move it using the action of the structure group H.

Consider

h =

 a c e
0 1

ab
f

0 0 b


which gives

h−1d h =

 a−1d a a−1d c+ c(d b
ab

+ d a
a2

) a−1(d e)− bc(d f) + (cf − e
ab

)d b

0 −d (ab)
ab

ab(d f)− af(d b)
0 0 d b

b

 . (21)

We will use the formula
Rh
∗π = h−1d h+ Adh−1π.

If h : M → H is given by  1 c e
0 1 f
0 0 1


then, using formula 21 and formula 12 for Adh−1π in the expression of Rh

∗π we obtain

ϕ̃ = ϕ+ cω1 + 2fω2 + (4e− 2cf)ω.

Observe that a = b is imposed by the condition s∗ω = θ. Starting with any section defining
functions A1, A2 and A3 we obtain a new section by acting by a section of h : M → H given
by c = −A1, f = −A2/2, e = (A1A2 − A0)/4. In that case we have

s∗ϕ̃ = 0.

The maps from E to the fiber group of Y → E, such that s∗Rh
∗ϕ̃ = 0 are fixed, because

Rh
∗ϕ̃ = ϕ̃+ c ω1 + 2f ω2 + (4e− 2cf)ω, so c = f = e = 0.
After fixing c, f, e, we allow maps h : M → H acting by Rh on Y → M by elements of

the form

h =

 a 0 0
0 1

a2
0

0 0 a


so that the form θ be preserved. This gives the embedding of X into Y .

We may suppose that s∗ϕ = 0 and then obtain the following equations by pulling back
to M the structure equations on Y :

dθ = θ1 ∧ θ2 (22)
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dθ1 = θ1 ∧ ω1
1 + θ ∧ ϕ1 (23)

dθ2 = −θ2 ∧ ω1
1 + θ ∧ ϕ2 (24)

θ1 ∧ ϕ2 − θ2 ∧ ϕ1 + θ ∧ ψ = 0 (25)

dω1
1 −

3

2
θ1 ∧ ϕ2 − 3

2
θ2 ∧ ϕ1 = 0 (26)

dϕ1 − ϕ1 ∧ ω1
1 −

1

2
θ1 ∧ ψ = Q1θ ∧ θ2 (27)

dϕ2 + ϕ2 ∧ ω1
1 −

1

2
θ2 ∧ ψ = Q2θ ∧ θ1 (28)

dψ − 2ϕ1 ∧ ϕ2 = U1θ
1 ∧ θ + U2θ

2 ∧ θ (29)

In the formulae above we write the pull back of any form α defined on Y using the same
notation α. It follows from equations 23 and 24, comparing with proposition 7.1 that

ω1
1 = θ11 + cθ

and therefore
dθ1 = θ1 ∧ θ11 + θ ∧ (ϕ1 − cθ1) (30)

dθ2 = −θ2 ∧ θ11 + θ ∧ (ϕ2 + cθ2) (31)

which implies
ϕ1 = cθ1 + E1θ + τ 1,

ϕ2 = −cθ2 + E2θ + τ 2,

Substituting the formulae above in equation 25, and using again proposition 7.1 we obtain

θ ∧ (ψ − E2θ1 + E1θ2) = 0

and therefore
ψ = E2θ1 − E1θ2 +Gθ.

Substituting the expressions of ω1
1, ϕ

1 and ϕ2 in equation 26 and using equation 18 we obtain

(R + 4c) θ1 ∧ θ2 + (W 1 − 3

2
E2) θ1 ∧ θ + (W 2 − 3

2
E1) θ2 ∧ θ + dc ∧ θ = 0.

This implies

c = −R
4

writing, as before, dR = R0θ+R1θ
1 +R2θ

2 and substituting in the above expression we get

(W 1 − 3

2
E2 − 1

4
R1) θ

1 ∧ θ + (W 2 − 3

2
E1 − 1

4
R2) θ

2 ∧ θ = 0

which implies

E2 =
2

3
(W 1 − 1

4
R1)

24



and

E1 =
2

3
(W 2 − 1

4
R2).

We now write equation 27, substituting the expressions for ϕ1 and ω1
1 obtained above:

0 = dτ 1 − 1

4
(R0θ +R2θ

2) ∧ θ1 − 1

4
R(θ1 ∧ θ11 + θ ∧ τ 1) + dE1 ∧ θ + E1θ1 ∧ θ2

−(τ 1 − 1

4
θ1 + E1θ) ∧ (θ11 −

1

4
Rθ)− 1

2
θ1 ∧ (E2θ1 − E1θ2 +Gθ)−Q1θ ∧ θ2

Using curvature identities in order to simplify the above expression we obtain after a com-
putation

0 = θ∧ θ1(S1
1 −

1

3
R0 +

1

16
R2 +

1

2
G− 2

3
W 2

1 +
1

6
R21) + θ∧ θ2(S12−

1

2
Rτ 12 −Q1− 2

3
W 2

2 +
1

6
R22)

Therefore

S1
1 −

1

3
R0 +

1

16
R2 +

1

2
G− 2

3
W 2

1 +
1

6
R21 = 0

and

S1
2 −

1

2
Rτ 12 −Q1 − 2

3
W 2

2 +
1

6
R22 = 0.

Analogously, from equation 28, we obtain the identities

S2
2 +

1

3
R0 +

1

16
R2 +

1

2
G− 2

3
W 1

2 +
1

6
R12 = 0

and

S2
1 +

1

2
Rτ 21 −Q2 − 2

3
W 1

1 +
1

6
R11 = 0.

7.2.1 The global invariant

A simple computation gives the formula

tr (π∧π∧π) =
3

2
(ω∧ϕ+ω1∧ω2)∧ψ+3ω∧ϕ1∧ϕ2+3ω1∧(

1

2
ϕ+ω1

1)∧ϕ2−3ω2∧(
1

2
ϕ−ω1

1)∧ϕ1.

Therefore using the embedding of the previous section we obtain by a computation:

Proposition 7.2 For a section s : M → Y factoring through an embedding of X into Y
such as s∗ϕ = 0 we have

s∗TC2(π) =
1

8π2

(
θ ∧ θ1 ∧ θ2(1

2
G+

1

16
R2 − τ 12 τ 21 ) + θ11 ∧ (E2θ ∧ θ1 + E1θ ∧ θ2 − R

2
θ1 ∧ θ2)

)
.
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8 Homogeneous flag structures on SU(2)

Let α, β, γ be a basis of left invariant 1-forms defined on SU(2) with

dα = −β ∧ γ, dβ = −γ ∧ α, dγ = −α ∧ β

We define a pseudo flag structure choosing a map from SU(2) to SL(2,C):

θ = γ, Z1 = r1β + r2α, Z2 = s1β + s2α,

with r1s2 − r2s1 = 1. Then
dθ = Z1 ∧ Z2.

In the case the map SU(2) → SL(2,C) is constant, from β = s2Z
1 − r2Z

2 and α =
−s1Z1 + r1Z

2, we obtain

dZ1 = r1dβ + r2dα = θ ∧
(
xZ1 + yZ2

)
and analogously,

dZ2 = θ ∧
(
zZ1 − xZ2

)
,

where
x = r1s1 + r2s2, y = −(r21 + r22), z = s21 + s22.

Observe that x2 + yz = −1. Then for a pseudo flag structure with coframes obtained from
the tautological forms θ1 = aZ1, θ2 = a−1Z2

dθ1 = θ1 ∧ (−da
a
− xθ) + θ ∧ (ya2θ2)

dθ2 = −θ2 ∧ (−da
a
− xθ) + θ ∧ (za−2θ1)

From Proposition 7.1 we have

θ11 = −da
a
− xθ,

τ 1 = ya2θ2, τ 2 = za−2θ1.

and therefore
dθ11 = −xθ1 ∧ θ2

so that R = −x,W 1 = W 2 = 0. In order to compute the curvature invariants from the
pseudo flag structure we use the embedding in section 7.2. We compute first

dτ 1 = ya2θ2 ∧ θ11 + yzθ ∧ θ1 − 2a2xyθ ∧ θ2

and
dτ 2 = −za−2θ1 ∧ θ11 + 2xza−2θ ∧ θ1 + yzθ ∧ θ2.

Now, as dτ 1 − τ 1 ∧ θ11 = −W 2θ1 ∧ θ2 + S1
1θ ∧ θ1 + S1

2θ ∧ θ2 and dτ 2 + τ 2 ∧ θ11 = −W 1θ1 ∧
θ2 + S2

1θ ∧ θ1 + S2
2θ ∧ θ2 (cf. 19,20) we obtain

S1
1 = yz, S1

2 = −2a2xy, S2
1 = 2xza−2, S2

2 = yz.
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From the embedding equations we have

Q1 = S1
2 −

1

2
Rτ 12 −

2

3
W 2

2 +
1

6
R22 = −3

2
xya2

and, analogously

Q2 = S2
1 +

1

2
Rτ 21 −

2

3
W 1

1 +
1

6
R11 =

3

2
xza−2.

We conclude that Q1 = Q2 = 0 if and only if x = 0 or y = z = 0.

8.0.1 The global invariant

We compute, using 7.2, the global invariant for the family of structures defined on SU(2)
We have R = −x, τ 12 = a2y, τ 21 = a−2z, E1 = E2 = 0 and G = −2yz − 1

8
x2. Therefore for a

section s : SU(2)→ Y as above we obtain

s∗TC2(π) = − 1

8π2
γ ∧ β ∧ α(2yz +

1

2
x2).
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