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GEVREY PROPERTIES AND SUMMABILITY OF FORMAL

POWER SERIES SOLUTIONS OF SOME INHOMOGENEOUS

LINEAR CAUCHY-GOURSAT PROBLEMS

PASCAL REMY

Abstract. In this article, we investigate the Gevrey and summability proper-
ties of the formal power series solutions of some inhomogeneous linear Cauchy-

Goursat problems with analytic coefficients in a neighborhood of p0, 0q P C2.

In particular, we give necessary and sufficient conditions under which these
solutions are convergent or are k-summable, for a convenient positive rational

number k, in a given direction.
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1. Setting the problem

For several years, various works have been done on the divergent solutions of
some classes of linear (see [1, 3–6, 8, 11, 17, 18, 27–34, 36, 42–45] etc.), nonlinear (see
[12–14,19,20,23,24,38] etc.) or singular (see [9,10,21,22,37] etc.) partial differential
equations or integro-differential equations in two variables or more, allowing thus
to formulate many results on Gevrey properties, summability or multisummability.

In this paper, we are interested in the formal power series solutions of linear
Cauchy-Goursat problems of the form

(1.1)

$

&

%

LU “ rqpt, xq, L :“ Bκt B
p
x ´

ÿ

iPK

ÿ

qPQi

tvi,qapi,qqpt, xqBκ´it Bqx

Upt, xq ´ wpt, xq “ Optκxpq,

where

‚ the partial differential operator L satisfies conditions:
pC1q: κ ě 1 is a positive integer and p ě 0 is a nonnegative integer,
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pC2q: K is a subset of t0, ..., κu which contains at least one positive ele-
ment and which does not contain 0 if p “ 0,

pC3q: Q0 is a non-empty subset of t0, ..., p´ 1u if 0 P K,
pC4q: Qi is a non-empty finite subset of N (= the set of nonnegative

integers) for all i P K, i ‰ 0,
pC5q: vi,q ě 0 is a nonnegative integer and the coefficients api,qqpt, xq

are holomorphic in the two variables t and x in a polydisc Dρ1 ˆDρ2

centered at the origin p0, 0q P C2 (Dρj denotes the disc with center 0
and radius ρj ą 0) for all i P K and q P Qi,

pC6q: a
pi,qqp0, xq ı 0 for all i P K and q P Qi.

‚ the inhomogeneity rqpt, xq P OpDρ2qrrtss
1 is a formal series in t with coeffi-

cients in OpDρ2q which may be smooth, or not,
‚ the Cauchy-Goursat data wpt, xq is holomorphic in Dρ1 ˆDρ2 .

Under more or less restrictive conditions on valuations vi,q, coefficients api,qqpt, xq,
degrees Qi, inhomogeneity rqpt, xq and initial data wpt, xq, problem (1.1) was already
investigated by many authors (see [1, 3–6, 8, 11, 17, 18, 32–34, 36, 42–45] etc.). Here,
we consider the very general problem of the form (1.1), where no generic assumption
is made.

For both practical and notational conveniences, we now change the unknown
function U to u by

Upt, xq “ wpt, xq ` B´κt B´px upt, xq.

Then, problem (1.1) is equivalent to the following integro-differential equation

(1.2) Du “ rfpt, xq, D :“ 1´
ÿ

iPK

ÿ

qPQi

tvi,qapi,qqpt, xqB´it B
q´p
x

where the inhomogeneity rfpt, xq P OpDρ2qrrtss is defined by

rfpt, xq :“ rqpt, xq ´ Lwpt, xq.

Notation B´1
t u stands for the anti-derivative

ż t

0

ups, xqds of u with respect to t

which vanishes at t “ 0. Recall that the Cauchy formula for repeated integration

implies B´`t u “

ż t

0

ups, xq
pt´ sq`´1

p`´ 1q!
ds for all ` ě 1; hence, in particular, B´`t

ˆ

tj

j!

˙

“

tj``

pj ` `q!
for all ` ě 1 and j ě 0. It is the same for B´`x with ` ě 1.

Notation 1.1. For any series rupt, xq P OpDρ2qrrtss, we denote in the sequel

rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
“

ÿ

ně0

ru˚,nptq
xn

n!
.

The organization of the paper is as follows. In Section 2, we prove that the linear
integro-differential equation (1.2) admits a unique formal series solution rupt, xq
in OpDρ2qrrtss (Theorem 2.1) and we give a characterization of its coefficients in
OpDρ2q. In Section 3, we introduce the Newton polygon NtpDq of the operator D at
t “ 0 and we give some properties of this. In Section 4, we show that rupt, xq and the

inhomogeneity rfpt, xq are together either convergent or 1{k-Gevrey, where k denotes
the smallest positive slope of NtpDq (Theorem 4.4). Then, in the latter case, and

1We denote rq with a tilde to emphasize the possible divergence of the series rq.
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under four additional conditions on D, we investigate the summability of rupt, xq. In
particular, we prove in Section 4 (Theorem 5.4) a necessary and sufficient condition
under which rupt, xq is k-summable in a given direction argptq “ θ, generalizing thus
the results already obtained by the author in [42,43].

2. Formal series solutions

In this section, we shall be concerned with the formal series solutions in OpDρ2qrrtss
of the linear integro-differential equation (1.2).

Let us first observe that the operatorD is a linear operator acting inside OpDρ2qrrtss.
Indeed, pOpDρ2qrrtss, Bt, Bxq is a C-differential algebra stable under anti-derivations

B
´1
t and B´1

x and the coefficients api,qqpt, xq belong to OpDρ1 ˆDρ2q Ă OpDρ2qrrtss
for all i and q. More precisely, we have the following.

Theorem 2.1. D is a linear automorphism of OpDρ2qrrtss.

Proof. Let rfpt, xq P OpDρ2qrrtss. Then, a series rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
is solution of

Dru “ rfpt, xq if and only if its coefficients uj,˚pxq satisfy, for all j ě 0, the identities

(2.1) uj,˚pxq “ fj,˚pxq`

ÿ

iPK

ÿ

qPQi

j´vi,q´i
ÿ

m“0

j!

pj ´ vi,q ´mq!

a
pi,qq
m,˚ pxq

m!
Bq´px uj´vi,q´i´m,˚pxq

where, as usual, the third sum is 0 as soon as j ă vi,q ` i. Observe that the index
j ´ vi,q ´ i ´ m is ă j when pi, vi,q,mq ‰ p0, 0, 0q and is j otherwise. Thereby,
some terms Bq´px uj,˚pxq may occur in the right-hand side of (2.1) and this, only for
the q P Q0 satisfying v0,q “ 0. In particular, when terms Bq´px uj,˚pxq occur, we
necessarily have q´ p P t´p, ...,´1u. Then, Lemma 2.2 below proves that equation

Dru “ rfpt, xq admits a unique solution rupt, xq P OpDρ2qrrtss. Hence, the bijectivity
of D, which completes the proof. �

Lemma 2.2. The linear integro-differential equation

(2.2) y ` α1pxqB
´1
x y ` α2pxqB

´2
x y ` ...` αppxqB

´p
x y “ gpxq,

whose coefficients αqpxq and inhomogeneity gpxq are holomorphic in Dρ2 , posseses
exactly one solution ypxq. Moreover, this solution is holomorphic in Dρ2 .

Proof. Let z “ B´px y. Then, ypxq is a solution of equation (2.2) if and only if zpxq
is a solution of the Cauchy problem

"

Bpxz ` α1pxqB
p´1
x z ` α2pxqB

p´2
x z ` ...` αppxqz “ gpxq,

zp0q “ Bxzp0q “ ... “ Bp´1
x zp0q “ 0.

The result follows then from the Cauchy-Kovalevskäıa theorem for the ordinary
differential equations. �

As a direct consequence of Theorem 2.1, we deduce in particular that equation
(1.2) is uniquely solvable in OpDρ2qrrtss.

Corollary 2.3. The linear integro-differential equation (1.2) admits a unique for-
mal series solution rupt, xq P OpDρ2qrrtss. Moreover, its coefficients uj,˚pxq P
OpDρ2q are recursively determined for all j ě 0 by identities (2.1).
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Observe that the formal solution rupt, xq is divergent in general. In Section 4,
we shall investigate its Gevrey properties. We propose in particular to prove a
necessary and sufficient condition under which it is s-Gevrey with a convenient
nonnegative rational number s.

Before stating our main result (see Theorem 4.4), let us first introduce the t-
Newton polygon of the operator D.

3. Newton polygon

As definition of the t-Newton polygon of the operator D (or Newton polygon
of D with respect to t), we choose the definition of M. Miyake [32] (see also A.
Yonemura [45] or S. Ouchi [36]) which is an analogue to the one given by J.-P.
Ramis [41] for the linear ordinary differential operators. Recall that H. Tahara and
H. Yamazawa use in [44] a slightly different one.

For any pa, bq P R2, we denote by Cpa, bq the domain

Cpa, bq “ tpx, yq P R2;x ď a and y ě bu.

Then, the t-Newton polygon of D is defined as follows.

Definition 3.1. One calls t-Newton polygon of D the convex hull NtpDq of the
union of the sets Cp0, 0q and Cpq ´ p´ i, vi,q ` iq for i P K and q P Qi:

NtpDq “ CH

»

—

–

Cp0, 0q Y
ď

iPK
qPQi

Cpq ´ p´ i, vi,q ` iq

fi

ffi

fl

,

where CHr¨s denotes the convex hull of the elements in r¨s.

The following lemma specifies the geometric structure of NtpDq.

Lemma 3.2. Let S :“ tpi, qq ; i P K, q P Qi and q ´ p´ i ą 0u be.

(1) Suppose S “ H. Then, NtpDq “ Cp0, 0q. In particular, NtpDq has no side
with a positive slope.

(2) Suppose S ‰ H. Then, NtpDq has (at least) one side with a positive slope.
Moreover, its smallest positive slope k is given by

k “ min
pi,qqPS

ˆ

vi,q ` i

q ´ p´ i

˙

.

Proof. Point 1 is straightforward from the fact that condition S “ H implies Cpq´
p ´ i, vi,q ` iq Ă Cp0, 0q for all i and q. As for point 2, it suffices to remark, on
one hand, that Cpq ´ p ´ i, vi,q ` iq Ă Cp0, 0q for all pi, qq R S and, on the other
hand, that the segment with two end points p0, 0q and pq ´ p ´ i, vi,q ` iq has, for
all pi, qq P S, a positive slope equal to pvi,q ` iq{pq ´ p ´ iq (the positivity stems
from the fact that q ´ p ă 0 for all q P Q0; hence, pi, qq P S implies i ě 1 and then
vi,q ` i ą 0). �

Notation 3.3. When S ‰ H, we choose, and fix once and for all, one of the pairs
pi, qq P S such that the side of slope k of NtpDq is the segment with end points
p0, 0q and pq ´ p ´ i, vi,q ` iq (see Figure 1 below). In the sequel, we denote this
pair by pi˚, q˚q.
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slo
pe k

q˚ ´ p´ i˚

vi˚,q˚ ` i
˚

Figure 1. Definition of the pair pi˚, q˚q.

Remark 3.4. Of course, we have k “
vi˚,q˚ ` i

˚

q˚ ´ p´ i˚
. Moreover, according to the

proof of Lemma 3.2, we have besides q˚ ´ p ą i˚ ě 1.

Let us now turn to the Gevrey properties of rupt, xq.

4. Gevrey order

The aim of this section is to investigate the Gevrey properties of the unique
formal series rupt, xq of equation (1.2) (see Corollary 2.3). In particular, we propose
to give necessary and sufficient conditions under which it is s-Gevrey for some s ě 0.

Before stating our main result (see Theorem 4.4 below), let us first recall for
the convenience of the reader some definitions and properties about the s-Gevrey
formal series.

4.1. s-Gevrey formal series. All along the article, we consider t as the variable
and x as a parameter. Thereby, to define the notion of Gevrey classes of formal
power series in OpDρ2qrrtss, one extends the classical notion of Gevrey classes of
elements in Crrtss to families parametrized by x in requiring similar conditions, the
estimates being however uniform with respect to x. Doing that, any formal power
series of OpDρ2qrrtss can be seen as a formal power series in t with coefficients in
a convenient Banach space defined as the space of functions that are holomorphic
on a disc Dρ (0 ă ρ ď ρ2) and continuous up to its boundary, equipped with the
usual supremum norm. For a general study of series with coefficients in a Banach
space, we refer for instance to [2].

Definition 4.1 (s-Gevrey formal series). Let s ě 0 be.

A formal series rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
P OpDρ2qrrtss is said to be Gevrey of order s

(in short, s-Gevrey) if there exist three positive constants 0 ă r2 ă ρ2, C ą 0 and
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K ą 0 such that the inequalities

sup
|x|ďr2

|uj,˚pxq| ď CKjΓp1` ps` 1qjq

hold for all j ě 0.

In other words, Definition 4.1 means that rupt, xq is s-Gevrey in t, uniformly in
x on a neighborhood of x “ 0.

We denote by OpDρ2qrrtsss the set of all the formal series in OpDρ2qrrtss which
are s-Gevrey. Observe that the set Ctt, xu of germs of analytic functions at the
origin p0, 0q P C2 coincides with the union

Ť

ρą0 OpDρqrrtss0; in particular, any

element of OpDρ2qrrtss0 is convergent and Ctt, xu X OpDρ2qrrtss “ OpDρ2qrrtss0.
Observe also that the sets OpDρ2qrrtsss are filtered as follows:

OpDρ2qrrtss0 Ă OpDρ2qrrtsss Ă OpDρ2qrrtsss1 Ă OpDρ2qrrtss

for all s and s1 satisfying 0 ă s ă s1 ă `8.

Following Proposition 4.2 specifies the algebraic structure of the OpDρ2qrrtsss’s.

Proposition 4.2. Let s ě 0 be. Then, pOpDρ2qrrtsss, Bt, Bxq is a C-differential

algebra stable under the anti-derivations B´1
t and B´1

x .

Proof. See for instance [42, Prop. 1] or [2, p. 64]. �

4.2. Main result. Let us first begin by observing that Proposition 4.2 implies the
following.

Lemma 4.3. DpOpDρ2qrrtsssq Ă OpDρ2qrrtsss for all s ě 0.

Theorem 4.4 below specifies this statement by showing more especially that the
operator D is actually a linear automorphism of OpDρ2qrrtsss for some s ě 0.

Theorem 4.4. Let S :“ tpi, qq ; i P K, q P Qi and q ´ p ´ i ą 0u and s be the
rational number defined by

s :“

$

&

%

0 if S “ H
1

k
“
q˚ ´ p´ i˚

vi˚,q˚ ` i˚
if S ‰ H

Then, D is a linear automorphism of OpDρ2qrrtsss.

In particular, Theorem 4.4 gives us the Gevrey properties of rupt, xq in view in this
section. More precisely, it provides, in the case S “ H, necessary and sufficient
condition under which rupt, xq is convergent and, in the opposite case S ‰ H,
necessary and sufficient condition under which rupt, xq is s-Gevrey with s as above.

Corollary 4.5. Let S :“ tpi, qq ; i P K, q P Qi and q ´ p´ i ą 0u be.

(1) Assume S “ H. Then, rupt, xq is convergent if and only if the inhomogeneity
rfpt, xq is convergent.

(2) Assume S ‰ H and set s “
q˚ ´ p´ i˚

vi˚,q˚ ` i˚
. Then, rupt, xq is s-Gevrey if and

only if the inhomogeneity rfpt, xq is s-Gevrey.

As a consequence of Corollary 4.5, we deduce in particular a result similar to
the Maillet-Ramis theorem for the ordinary linear differential equations [39,41] (see
also [16, Thm. 4.2.7]).



GEVREY PROPERTIES AND SUMMABILITY OF CAUCHY-GOURSAT PROBLEMS 7

Corollary 4.6. Assume that the inhomogeneity rfpt, xq is convergent. Then, rupt, xq
is either convergent or s-Gevrey, where k “ 1{s is the smallest positive slope of the
Newton polygon NtpDq of D with respect to t.

4.3. Proof of Theorem 4.4. According to Theorem 2.1 and Lemma 4.3, the
operator D is an injective linear operator acting inside OpDρ2qrrtsss. To prove the
surjectivity of D, we shall use below an approach based on Nagumo norms [7, 35]
and majorant series; approach which is similar to the ones developed by W. Balser
and M. Loday-Richaud in [4] and by the author in [42,43] for some classes of linear
integro-differential equations.

4.3.1. Nagumo norms. For the convenience of the reader, we recall in this section
the definition of the Nagumo norms and some of their properties which are needed
in the sequel.

Definition 4.7 (Nagumo norms). Let f P OpDρq, n ě 0 and 0 ă r ă ρ be. Let
drpxq “ r´ |x| denote the Euclidian distance of x P Dr to the boundary of the disc
Dr. Then, the Nagumo norm }f}n,r of f is defined by

}f}n,r :“ sup
|x|ăr

|fpxqdrpxq
n| .

Following Proposition 4.8 gives us some properties of the Nagumo norms.

Proposition 4.8 (Properties of Nagumo norms). Let f, g P OpDρq, n, n
1 ě 0 and

0 ă r ă ρ be. Then,

(1) }¨}n,r is a norm on OpDρq.

(2) For all x P Dr, |fpxq| ď }f}n,r drpxq
´n.

(3) }f}0,r “ sup
|x|ăr

|fpxq| is the usual sup-norm on Dr.

(4) }fg}n`n1,r ď }f}n,r }g}n1,r.

(5) }Bf}n`1,r ď epn` 1q }f}n,r.

(6)
›

›B´1f
›

›

n,r
ď r }f}n,r.

Proof. Properties 1–4 are straightforward and are left to the reader.
To prove Property 5, we proceed as follows. Let x P Dr and 0 ă R ă drpxq be.

Using the Cauchy integral formula, we have

|Bfpxq| “
1

2π

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|x1´x|“R

fpx1q

px1 ´ xq2
dx1

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

R
max

|x1´x|“R
|fpx1q|

and then

|Bfpxq| ď }f}n,r
1

R
max

|x1´x|“R
drpx

1q´n “ }f}n,r
1

R
pdrpxq ´Rq

´n

by applying Property 2. Let us now assume n ą 0 and let us choose

R “
drpxq

n` 1
.

Then, using the inequality

ˆ

1´
1

n` 1

˙´n

“

ˆ

1`
1

n

˙n

ă e, we get

|Bfpxq| ď }f}n,r drpxq
´n´1pn` 1q

ˆ

1´
1

n` 1

˙´n

ď pn` 1qe }f}n,r drpxq
´n´1;
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hence, the result:

}Bf}n`1,r “ sup
|x|ăr

ˇ

ˇBfpxqdrpxq
n`1

ˇ

ˇ ď pn` 1qe }f}n,r .

For n “ 0, we set

R “
drpxq

c
with an arbitrary constant c ą 1; hence, the inequality

|Bfpxq| ď c }f}0,r drpxq
´1

and then

}Bf}1,r “ sup
|x|ăr

|Bfpxqdrpxq| ď c }f}0,r .

The result follows by choosing c “ e.
We are left to prove Property 6. Let x P Dr be. Using Property 2, we obtain

(4.1)
ˇ

ˇB´1fpxq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ż x

0

fptqdt

ˇ

ˇ

ˇ

ˇ

ď }f}n,r

ż |x|

0

du

pr ´ uqn

for all n ě 0 and, consequently, the following discussion.

‚ Case n “ 0. Due to inequality (4.1) above, we straightaway have

ˇ

ˇB´1fpxq
ˇ

ˇ ď }f}0,r

ż |x|

0

du “ |x| }f}0,r ď r }f}0,r

and then
›

›B´1f
›

›

0,r
“ sup
|x|ăr

ˇ

ˇB´1fpxq
ˇ

ˇ ď r }f}0,r .

‚ Case n “ 1. Using inequalities (4.1) and lnptq ď t for all t ą 0, we have

ˇ

ˇB´1fpxq
ˇ

ˇ ď }f}1,r

ż |x|

0

du

r ´ u
“ }f}1,r ln

ˆ

r

drpxq

˙

ď
r

drpxq
}f}1,r .

Hence, the result:
›

›B´1f
›

›

1,r
“ sup
|x|ăr

ˇ

ˇB´1fpxqdrpxq
ˇ

ˇ ď r }f}1,r .

‚ Case n ě 2. Since
ż |x|

0

du

pr ´ uqn
“

1

pn´ 1qdrpxqn´1
´

1

rpn´ 1q
ď

1

drpxqn´1
,

inequality (4.1) implies
ˇ

ˇB´1fpxqdrpxq
n
ˇ

ˇ ď }f}n,r drpxq ď r }f}n,r .

Hence, the result again:
›

›B´1f
›

›

n,r
“ sup
|x|ăr

ˇ

ˇB´1fpxqdrpxq
n
ˇ

ˇ ď r }f}n,r .

This achieves the proof of Proposition 4.8. �

Remark 4.9. Inequalities 4–6 are the most important properties. Observe that
the same index r occurs on their both sides, allowing thus to get estimates for the
product fg in terms of f and g, for the derivative Bf in terms of f and for the
anti-derivative B´1f in terms of f without having to shrink the disc Dr.

Let us now turn to the proof of Theorem 4.4.

4.3.2. Proof of Theorem 4.4.
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Ÿ First step: a fundamental technical lemma.
Before starting the calculations, let us first begin with the following technical

lemma which will play a central role in our proof.

Lemma 4.10. Assume S ‰ H. Then, the inequalities

(4.2) ps` 1qpvi,q ` iq ě q ´ p` vi,q

hold for all i P K and q P Qi.

Proof. Inequalities (4.2) are clear when i “ vi,q “ 0 (indeed, q ´ p ă 0 for all
q P Q0). When pi, vi,qq ‰ p0, 0q, we have vi,q ` i ě 1 and the inequality

(4.3) s “
1

k
ě
q ´ p´ i

vi,q ` i

which stems, on one hand, from the definition of k when pi, qq P S and, on the other
hand, from the fact that q´ p´ i ď 0 when pi, qq R S. Lemma 4.10 follows then by
adding “`1” to both sides of (4.3). �

Remark 4.11. In fact, inequalities (4.2) still hold when S “ H. Indeed, we have
s “ 0 and q ´ p ď i for all i P K and q P Qi. Nevertheless, we shall only use
subsequently these inequalities in the case where S ‰ H. Hence, the statement of
Lemma 4.10 as it is written.

We are now able to prove Theorem 4.4.

Ÿ Second step: preliminaries.
As we said at the beginning of Section 4.3, we are left to prove the surjectivity

of the linear integro-differential operator D. To do that, let us fix

rfpt, xq “
ÿ

jě0

fj,˚pxq
tj

j!
P OpDρ2qrrtsss

and let us write the solution rupt, xq P OpDρ2qrrtss of equation (1.2) in the same
form:

rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
.

By assumption, the coefficients fj,˚pxq satisfy the following two conditions

‚ fj,˚pxq P OpDρ2q for all j ě 0,
‚ there exist three positive constants 0 ă r2 ă ρ2, C ą 0 and K ą 0 such

that |fj,˚pxq| ď CKjΓp1` ps` 1qjq for all j ě 0 and |x| ď r2.

We shall now prove that the coefficients uj,˚pxq satisfy similar conditions. The
calculations below are analogous to those detailed in [4,42,43], but are much more
complicated because of the terms B´it B

q´p
x with q ´ p P Z.
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Ÿ Third step: some inequalities.
From identities (2.1), we obtain the relations

uj,˚pxq

Γp1` ps` 1qjq
“

fj,˚pxq

Γp1` ps` 1qjq
`

ÿ

iPK

ÿ

qPQi

j´vi,q´i
ÿ

m“0

j!

pj ´ vi,q ´mq!

a
pi,qq
m,˚ pxq

m!

Bq´px uj´vi,q´i´m,˚pxq

Γp1` ps` 1qjq

for all j ě 0 (as before, we use the classical convention that the third sum is 0 if
j ă vi,q ` i).

Notation 4.12. In the sequel, we denote by σ the positive integer2 defined by

(4.4) σ :“

"

v ` κ if S “ H
ps` 1qpvi˚,q˚ ` i

˚q if S ‰ H

where v is the nonnegative integer v :“ maxtvi,q ; i P K and q P Qiu.

Let us now apply the Nagumo norm of indices pσj, r2q. From Property 4 of
Proposition 4.8, we first obtain

}uj,˚pxq}σj,r2
Γp1` ps` 1qjq

ď
}fj,˚pxq}σj,r2

Γp1` ps` 1qjq
`

ÿ

iPK

ÿ

qPQi

j´vi,q´i
ÿ

m“0

Aj,i,q,mpxq

with

Aj,i,q,mpxq :“
j!

pj ´ vi,q ´mq!

›

›

›
a
pi,qq
m,˚ pxq

›

›

›

σpvi,q`i`mq´δq,r2

m!
ˆ

›

›Bq´px uj´vi,q´i´m,˚pxq
›

›

σpj´vi,q´i´mq`δq,r2

Γp1` ps` 1qjq
,

where δq is the nonnegative integer defined by

δq :“

"

0 if q ´ p ď 0,
q ´ p if q ´ p ą 0.

Then, Properties 5-6 of Proposition 4.8 imply the inequality

}uj,˚pxq}σj,r2
Γp1` ps` 1qjq

ď
}fj,˚pxq}σj,r2

Γp1` ps` 1qjq
`

ÿ

iPK

ÿ

qPQi

j´vi,q´i
ÿ

m“0

Bj,i,q,mpxq

with

Bj,i,q,mpxq :“ βj,i,q,m

›

›

›
a
pi,qq
m,˚ pxq

›

›

›

σpvi,q`i`mq´δq,r2

m!
ˆ

›

›uj´vi,q´i´m,˚pxq
›

›

σpj´vi,q´i´mq,r2
,

2See Remark 3.4.
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where βj,i,q,m is the nonnegative integer defined by

βj,i,q,m :“

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

j!rp´q2

pj ´ vi,q ´mq!Γp1` ps` 1qjq
if q ´ p ď 0,

j!

˜

q´p´1
ź

`“0

pσpj ´ vi,q ´ i´mq ` q ´ p´ `q

¸

eq´p

pj ´ vi,q ´mq!Γp1` ps` 1qjq
if q ´ p ą 0.

Remark 4.13. Norms
›

›

›
a
pi,qq
m,˚ pxq

›

›

›

σpvi,q`i`mq,r2
and

›

›uj´vi,q´i´m,˚pxq
›

›

σpj´vi,q´i´mq,r2

are both clearly well-defined. Norms
›

›

›
a
pi,qq
m,˚ pxq

›

›

›

σpvi,q`i`mq´pq´pq,r2
are well-defined

too when q ´ p ą 0. Indeed, in the case S “ H, conditions κ ě 1, i ě 0, vi,q ě 0
and q ´ p ď i imply

σpvi,q ` i`mq ´ pq ´ pq ě σi´ pq ´ pq ě κi´ pq ´ pq ě κi´ i “ ipκ´ 1q ě 0

and, in the opposite case S ‰ H, Lemma 4.10 and conditions i˚ ě 1 (see Remark
3.4) and vi,q ě 0 imply

σpvi,q ` i`mq ´ pq ´ pq ě σpvi,q ` iq ´ pq ´ pq

“ ps` 1qpvi˚,q˚ ` i
˚qpvi,q ` iq ´ pq ´ pq

ě pq ´ p` vi,qqpvi˚,q˚ ` i
˚q ´ pq ´ pq

“ pq ´ pqpvi˚,q˚ ` i
˚ ´ 1q ` vi,qpvi˚,q˚ ` i

˚q

ě 0

Following proposition allows us to bound the βj,i,q,m’s.

Proposition 4.14. Let i P K, q P Qi, j ě vi,q ` i and m P t0, ..., j ´ vi,q ´ iu be.
Then,

j!

pj ´ vi,q ´mq!Γp1` ps` 1qjq
ď

1

Γp1` ps` 1qpj ´ vi,q ´ i´mqq
.

Moreover, if q ´ p ą 0, we have

j!

˜

q´p´1
ź

`“0

pσpj ´ vi,q ´ i´mq ` q ´ p´ `q

¸

pj ´ vi,q ´mq!Γp1` ps` 1qjq
ď

pv ` κqq´p

Γp1` ps` 1qpj ´ vi,q ´ i´mqq
.

Proof. The first inequality stems from Lemma 4.16 (inequality (4.5)) and Lemma
4.17 and the second one from Lemma 4.16 (inequality (4.6)) and Lemma 4.18. �

Remark 4.15. Observe that the second inequality of Proposition 4.14 may occur
only when i ě 1. Indeed, we have q ă p for all q P Q0 (see Condition pC3q).

Lemma 4.16. Let i P K, q P Qi, j ě vi,q ` i and m P t0, ..., j ´ vi,q ´ iu be. Then,

(4.5)
j!

pj ´ vi,q ´mq!

1

Γp1` ps` 1qjq
ď

1

Γp1` ps` 1qpj ´ vi,q ´mqq
.

Moreover, if i ě 1, we also have

(4.6)
j!

pj ´ vi,q ´mq!

1

Γp1` ps` 1qjq
ď

1

Γp1` ps` 1qpj ´mq ´ vi,qq
.
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Proof. Lemma 4.16 is clear when vi,q `m “ 0. Let us now suppose vi,q `m ě 1.

‹ Proof of inequality (4.5). For pi,mq ‰ p0, j ´ v0,qq, let us write the two factors
of the left-hand side of inequality (4.5) as follows:

j!

pj ´ vi,q ´mq!
“

vi,q`m´1
ź

`“0

pj ´ `q,

Γp1` ps` 1qjq “ Γp1` ps` 1qj ´ vi,q ´mq

vi,q`m´1
ź

`“0

pps` 1qj ´ `q.

Then,

j!

pj ´ vi,q ´mq!

1

Γp1` ps` 1qjq
“

vi,q`m´1
ź

`“0

j ´ `

ps` 1qj ´ `

Γp1` ps` 1qj ´ vi,q ´mq

ď
1

Γp1` ps` 1qj ´ vi,q ´mq
.

Observe that these relations make sense since the following inequalities

ps` 1qj ´ ` ě 1` ps` 1qj ´ vi,q ´m ě 1` sj ` i ě 1

hold for all ` P t0, ..., vi,q `m´ 1u. Inequality (4.5) follows then from the increase
of the Gamma function on r2,`8r. Indeed, we have the inequalities

1` ps` 1qj ´ vi,q ´m ě 1` ps` 1qpj ´ vi,q ´mq ě 1` ps` 1qi ě 2

for i ě 1 and the inequalities

1` ps` 1qj ´ v0,q ´m ě 1` ps` 1qpj ´ v0,q ´mq ě 2` s ě 2

for i “ 0 and m P t0, ..., j ´ v0,q ´ 1u.
We are left to prove inequality (4.5) for pi,mq “ p0, j´v0,qq, that is the inequality

j!

Γp1` ps` 1qjq
“

Γp1` jq

Γp1` ps` 1qjq
ď 1.

This latter is clear for j “ 0 and stems from the inequalities 1`ps`1qj ě 1`j ě 2
and from the increase of the Gamma function on r2,`8r for j ě 1.

‹ Proof of inequality (4.6). Let i ě 1 be. From calculations above, we have

j!

pj ´ vi,q ´mq!

1

Γp1` ps` 1qjq
ď

1

Γp1` ps` 1qj ´ vi,q ´mq
.

Then, inequality (4.6) stems as previously from the increase of the Gamma function
on r2,`8r applied to the inequalities

1` ps` 1qj ´ vi,q ´m ě 1` ps` 1qpj ´mq ´ vi,q ě 1` ps` 1qi` svi,q ě 2.

This ends the proof of Lemma 4.16. �

Lemma 4.17. Let i P K, q P Qi, j ě vi,q ` i and m P t0, ..., j ´ vi,q ´ iu be. Then,

1

Γp1` ps` 1qpj ´ vi,q ´mqq
ď

1

Γp1` ps` 1qpj ´ vi,q ´ i´mqq
.
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Proof. For m ď j ´ vi,q ´ i´ 1, we have

1` ps` 1qpj ´ vi,q ´mq ě 1` ps` 1qpj ´ vi,q ´ i´mq ě 2` s ě 2

and Lemma 4.17 follows from the increase of the Gamma function on r2,`8r. For
m “ j ´ vi,q ´ i, we must prove the inequality

1

Γp1` ps` 1qiq
ď 1.

This latter is clear for i “ 0 and stems again from the increase of the Gamma
function on r2,`8r for i ě 1. Indeed, we have the inequalities 1`ps`1qi ě 2`s ě 2;
hence, Γp1` ps` 1qiq ě Γp2q “ 1. This achieves the proof. �

Lemma 4.18. Let i P K, i ‰ 0 3, q P Qi, j ě vi,q ` i and m P t0, ..., j ´ vi,q ´ iu
be. Assume q ´ p ą 0. Then,

q´p´1
ź

`“0

pσpj ´ vi,q ´ i´mq ` q ´ p´ `q

Γp1` ps` 1qpj ´mq ´ vi,qq
ď

pv ` κqq´p

Γp1` ps` 1qpj ´ vi,q ´ i´mqq
.

Proof. ‹ Let us first assume S “ H (hence, σ “ v ` κ and s “ 0). From the
relations 0 ă q ´ p ď i ď κ ď v ` κ and from the identities

q´p´1
ź

`“0

pσpj ´ vi,q ´ i´mq ` q ´ p´ `q “

pv ` κqq´p
q´p´1
ź

`“0

ˆ

j ´ vi,q ´ i´m`
q ´ p´ `

v ` κ

˙

and

Γp1` ps` 1qpj ´mq ´ vi,qq “ Γp1` j ´m´ vi,qq

“ Γp1` j ´ vi,q ´ i´mq
i´1
ź

`“0

pj ´ vi,q ´m´ `q

we deduce the inequality

q´p´1
ź

`“0

pσpj ´ vi,q ´ i´mq ` q ´ p´ `q

Γp1` ps` 1qpj ´mq ´ vi,qq
ď

pv ` κqq´p

Γp1` j ´ vi,q ´ i´mq

ˆ

q´p´1
ź

`“0

j ´ vi,q ´ i´m`
q ´ p´ `

v ` κ
j ´ vi,q ´m´ `

i´1
ź

`“q´p

pj ´ vi,q ´m´ `q

with the convention that the product
i´1
ź

`“q´p

pj ´ vi,q ´m ´ `q is 1 when q ´ p “ i.

Observe that j ´ vi,q ´m ´ ` ě 1 for all `. Indeed, we have m ď j ´ vi,q ´ i and

3See Remark 4.15.
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` ď i´ 1. In particular, we obtain

i´1
ź

`“q´p

pj ´ vi,q ´m´ `q ě 1.

On the other hand, inequalities 0 ď ` ď q ´ p´ 1 ď i´ 1 and q ´ p ď v ` κ imply
ˆ

j ´ vi,q ´ i´m`
q ´ p´ `

v ` κ

˙

´ pj ´ vi,q ´m´ `q “ ´i`
q ´ p´ `

v ` κ
` `

ď ´i`
q ´ p

v ` κ
` i´ 1

ď 0.

Thereby, the following inequality

q´p´1
ź

`“0

j ´ vi,q ´ i´m`
q ´ p´ `

v ` κ
j ´ vi,q ´m´ `

ď 1

holds; hence,

q´p´1
ź

`“0

pσpj ´ vi,q ´ i´mq ` q ´ p´ `q

Γp1` ps` 1qpj ´mq ´ vi,qq
ď

pv ` κqq´p

Γp1` j ´ vi,q ´ i´mq

“
pv ` κqq´p

Γp1` ps` 1qpj ´ vi,q ´ i´mqq
,

which proves Lemma 4.18 for S “ H.

‹ Let us now assume S ‰ H. Thanks to the relation s`1 “
σ

vi˚,q˚ ` i˚
ě

σ

v ` κ
,

we have the following inequality:

(4.7)
q´p´1
ź

`“0

pσpj ´ vi,q ´ i´mq ` q ´ p´ `q ď

pv ` κqq´p
q´p´1
ź

`“0

ˆ

ps` 1qpj ´ vi,q ´ i´mq `
q ´ p´ `

v ` κ

˙

.

Let us now write Γp1` ps` 1qpj ´mq ´ vi,qq in the form

(4.8) Γp1` ps` 1qpj ´mq ´ vi,qq “ Γp1` ps` 1qpj ´mq ´ vi,q ´ pq ´ pqq

ˆ

q´p´1
ź

`“0

pps` 1qpj ´mq ´ vi,q ´ `q.

Observe that the term Γp1` ps` 1qpj´mq ´ vi,q ´ pq´ pqq is already well-defined.
Indeed, condition m ď j ´ vi,q ´ i and Lemma 4.10 imply

1` ps` 1qpj ´mq ´ vi,q ´ pq ´ pq ě 1` ps` 1qpvi,q ` iq ´ pq ´ p` vi,qq ě 1.
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From relations (4.7) and (4.8), we obtain

q´p´1
ź

`“0

pσpj ´ vi,q ´ i´mq ` q ´ p´ `q

Γp1` ps` 1qpj ´mq ´ vi,qq
ď

pv ` κqq´p

Γp1` ps` 1qpj ´mq ´ vi,q ´ pq ´ pqq

ˆ

q´p´1
ź

`“0

ps` 1qpj ´ vi,q ´ i´mq `
q ´ p´ `

v ` κ
ps` 1qpj ´mq ´ vi,q ´ `

where the product on the right-hand side is ď 1. Indeed, Lemma 4.10 and the
conditions ` ă q ´ p and v ` κ ě 1 imply relations
ˆ

ps` 1qpj ´ vi,q ´ i´mq `
q ´ p´ `

v ` κ

˙

´ pps` 1qpj ´mq ´ vi,q ´ `q

“ ´ps` 1qpvi,q ` iq `
q ´ p´ `

v ` κ
` vi,q ` `

ď ´pq ´ p` vi,qq `
q ´ p´ `

v ` κ
` vi,q ` `

“ pq ´ p´ `q

ˆ

1

v ` κ
´ 1

˙

ď 0

Let us now assume m ă j ´ vi,q ´ i. Then, Lemma 4.18 follows from inequalities

1` ps` 1qpj ´mq ´ vi,q ´ pq ´ pq “ 1` ps` 1qpj ´mq ´ pq ´ p` vi,qq

ě 1` ps` 1qpj ´mq ´ ps` 1qpvi,q ` iq

“ 1` ps` 1qpj ´ vi,q ´ i´mq

ě 2` s

ě 2

and from the increase of the Gamma function on r2,`8r. Observe that the first
inequality stems from Lemma 4.10 and that the second inequality stems from the
condition m ă j ´ vi,q ´ i. In particular, this latter inequality shows that the
calculations above do not allow to prove Lemma 4.18 when m “ j ´ vi,q ´ i, since
it fails in this case.

To get around this problem, we shall proceed as follows. Let us first recall we
must prove the inequality

q´p´1
ź

`“0

pq ´ p´ `q

Γp1` ps` 1qpvi,q ` iq ´ vi,qq
ď
pv ` κqq´p

Γp1q
“ pv ` κqq´p.

From Lemma 4.10 and the condition q ´ p ą 0, we obtain

1` ps` 1qpvi,q ` iq ´ vi,q ě 1` q ´ p ě 2;

hence, applying the increase of the Gamma function on r2,`8r, the relation

Γp1` ps` 1qpvi,q ` iq ´ vi,qq ě Γp1` q ´ pq “
q´p´1
ź

`“0

pq ´ p´ `q
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and, consequently, the following inequality

q´p´1
ź

`“0

pq ´ p´ `q

Γp1` ps` 1qpvi,q ` iq ´ vi,qq
ď 1.

This achieves the proof since v ` κ ě 1. �

Let us now apply Proposition 4.14. We get

βj,i,q,m :“

$

’

’

’

’

&

’

’

’

’

%

rp´q2

Γp1` ps` 1qpj ´ vi,q ´ i´mqq
if q ´ p ď 0,

pepv ` κqqq´p

Γp1` ps` 1qpj ´ vi,q ´ i´mqq
if q ´ p ą 0.

Then, the following inequalities

(4.9)
}uj,˚pxq}σj,r2

Γp1` ps` 1qjq
ď gj`

ÿ

iPK

ÿ

qPQi

j´vi,q´i
ÿ

m“0

γi,q,m

›

›uj´vi,q´i´m,˚pxq
›

›

σpj´vi,q´i´mq,r2

Γp1` ps` 1qpj ´ vi,q ´ i´mqq

hold for all j ě 0 with

gj :“
}fj,˚pxq}σj,r2

Γp1` ps` 1qjq

and

γi,q,m :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

rp´q2

›

›

›
a
pi,qq
m,˚ pxq

›

›

›

σpvi,q`i`mq,r2

m!
if q ´ p ď 0,

pepv ` κqqq´p

›

›

›
a
pi,qq
m,˚ pxq

›

›

›

σpvi,q`i`mq´pq´pq,r2

m!
if q ´ p ą 0.

We now shall bound the Nagumo norms }uj,˚pxq}σj,r2 . To do that, we shall proceed

as in [4, 42,43] by using a technique of majorant series.

Remark 4.19. Like in relation (2.1), some terms
}uj,˚pxq}σj,r2

Γp1` ps` 1qjq
may occur in the

right-hand side of inequalities (4.9). More precisely such terms exist only for the q P
Q0 such that v0,q “ 0 and are obtained when pi, vi,q,mq “ p0, 0, 0q. Consequently,
we suppose in the sequel that the positive number r2 Ps0, ρ2r has been chosen so
that

ÿ

qPQ0
v0,q“0

γ0,q,0 “
ÿ

qPQ0
v0,q“0

rp´q2

›

›

›
a
p0,qq
0,˚ pxq

›

›

›

0,r2
ă 1.

Observe that such a choice is already possible since p ´ q ą 0 for all q P Q0 (see
Condition pC3q).
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Ÿ Fourth step: majorant series.
Let us consider the nonnegative numerical sequence pwjq defined for all j ě 0 by

the recurrence relations

wj “ gj `
ÿ

iPK

ÿ

qPQi

j´vi,q´i
ÿ

m“0

γi,q,mwj´vi,q´i´m

where, as previously, the third sum is 0 when j ă vi,q ` i. Observe that the fact
that wj ě 0 for all j stems from the choice of r2 (see Remark 4.19). Observe also
we have

0 ď
}uj,˚pxq}σj,r2

Γp1` ps` 1qjq
ď wj

for all j ě 0 by construction (proceed by induction on j). Let us now bound the
wj ’s. To this end, we proceed as follows.

By assumption on the fj,˚’s (see the beginning of section 4.3.2), we have

0 ď gj ď
CKjΓp1` ps` 1qjq

Γp1` ps` 1qjq
rσj2 “ CpKrσ2 q

j

for all j ě 0 and the series gpXq :“
ÿ

jě0

gjX
j is thereby convergent.

On the other hand, all the terms api,qqpt, xq belong to OpDρ2qttu. Then, there

exist two positive constants C 1,K 1 ą 0 such that |a
pi,qq
m,˚ pxq| ď C 1K 1mm! for all

i P t0, ..., κu, q P Qi, m ě 0 and x P Dr2 . Hence,

0 ď γi,q,m ď

$

&

%

C 11pK
1rσ2 q

m if q ´ p ď 0,

C 12pK
1rσ2 q

m if q ´ p ą 0,

with C 11 “ C 1r
σpvi,q`iq´pq´pq
2 “

C 12
pepv ` κqqq´p

and, thereby, the series Ai,qpXq :“
ÿ

mě0

γi,q,mX
m are convergent for all i P t0, ..., κu and q P Qi.

Consequently, since the series wpXq :“
ÿ

jě0

wjX
j satisfies the identity

˜

1´
ÿ

iPK

ÿ

qPQi

Xvi,q`iAi,qpXq

¸

wpXq “ gpXq,

it is convergent too. Indeed, since the constant term

1´
ÿ

qPQ0
v0,q“0

A0,qp0q “ 1´
ÿ

qPQ0
v0,q“0

γ0,q,0

is not null by construction (see Remark 4.19), the series 1´
ÿ

iPK

ÿ

qPQi

Xvi,q`iAi,qpXq

is invertible in CtXu. Therefore, there exist two positive constants C2,K2 ą 0
such that wj ď C2K2j for all j ě 0. Hence, the following inequalities

}uj,˚pxq}σj,r2 ď C2K2jΓp1` ps` 1qjq

hold for all j ě 0.
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Ÿ Fifth step: conclusion.
We are left to prove similar estimates on the sup-norm of the uj,˚pxq’s. To this

end, we proceed by shrinking the domain Dr2 . Let 0 ă r12 ă r2 be. Then, for all
j ě 0 and |x| ď r12, we have

|uj,˚pxq| “

ˇ

ˇ

ˇ

ˇ

uj,˚pxqdr2pxq
σj 1

dr2pxq
σj

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇuj,˚pxqdr2pxq
σj
ˇ

ˇ

pr2 ´ r12q
σj

ď
}uj,˚pxq}σj,r2
pr2 ´ r12q

σj

and, consequently,

sup
|x|ďr12

|uj,˚pxq| ď C2
ˆ

K2

pr2 ´ r12q
σ

˙j

Γp1` ps` 1qjq.

This achieves the proof of Theorem 4.4.

5. Summability

In previous Section 4, we have shown that the formal series solution rupt, xq and

the inhomogeneity rfpt, xq of equation (1.2) are together s-Gevrey for a convenient
s ě 0 (see Theorem 4.4). In particular, when S “ H, that is when the Newton
polygon NtpDq of the operator D has no side of positive slope, this has allowed
us to display a necessary and sufficient condition under which rupt, xq is convergent
(see Corollary 4.5).

In the present section, we are interested in the opposite case S ‰ H, that is
in the case where NtpDq has at least one side of positive slope. As previously, we
denote by k its smallest positive slope and we set s “ 1{k. For all i P K, we also
denote by pi the maximum of the q P Qi. Moreover, we assume from now on that
equation (1.2) satisfies the four following additional conditions:

pA1q: p “ 0; hence, K is a non-empty subset of t1, ..., κu,
pA2q: vi,pi “ 0 for all i P K,
pA3q: pi˚ ą pi for all i ‰ i˚,

pA4q: a
pi˚,pi˚ qp0, 0q ‰ 0.

Observe that Assumptions pA1q ´ pA2q imply q˚ “ pi˚ and, consequently,

(5.1) k “
i˚

pi˚ ´ i˚
and s “

pi˚

i˚
´ 1.

Indeed, the domains Cpq ´ i, vi,q ` iq are included in Cppi ´ i, iq for all i P K and
q P Qi (see Definition 3.1 for the definition of NtpDq and page 4 for the definition
of the domain Cpa, bq).

Observe also that Assumption pA3q tells us that k is the unique positive slope
of the Newton polygon NtpDq.

The aim of this section is to answer to the following question:

“Under Assumptions pA1q ´ pA4q, how to characterize
the k-summability of rupt, xq?”

A response to this question has already been done by the author in [43] when
i˚ “ κ the maximum of the i P K. In the present paper, we consider a much more
general situation, where the smallest slope k ą 0 of NtpDq is given by some i˚ ď κ
and, in particular, i˚ ă κ. As we shall see in the sequel, our approach is similar to
the one developed in [43], but the calculations are much more complicated because
of i˚ is not necessarily the maximum of the i P K.
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Before stating our main result (see Theorem 5.4), let us first begin with some
recalls about the k-summability of formal series in OpDρ2qrrtss.

5.1. k-summability. Still considering t as the variable and x as a parameter,
one extends, in the similar way as the s-Gevrey formal series (see Definition 4.4),
the classical notion of k-summability of formal series in Crrtss to the notion of
k-summability of formal series in OpDρ2qrrtss in requiring similar conditions, the
estimates being however uniform with respect to x. Among the many equivalent
definitions of the k-summability in a given direction argptq “ θ at t “ 0, we choose
here a generalization of Ramis’ definition which states that a formal series rgptq P
Crrtss is k-summable in the direction θ if there exists a holomorphic function g
which is s-Gevrey asymptotic to rg in an open sector Σθ,ąπs bisected by θ and with
opening larger than πs [40, Def. 3.1]. To express the s-Gevrey asymptotic, there
also exist various equivalent ways. We choose here the one which sets conditions
on the successive derivatives of g (see [25, p. 171] or [40, Thm. 2.4] for instance)4.

Definition 5.1 (k-summability). A formal series rupt, xq P OpDρ2qrrtss is said to
be k-summable in the direction argptq “ θ if there exist a sector Σθ,ąπs, a radius
0 ă r2 ă ρ2 and a function upt, xq called k-sum of rupt, xq in the direction θ such
that

(1) u is defined and holomorphic on Σθ,ąπs ˆDr2`ε for some ε ą 0;

(2) for any |x| ď r2, the map t ÞÑ upt, xq has rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
as Taylor

series at 0 on Σθ,ąπs;
(3) for any proper5 subsector Σ Ť Σθ,ąπs, there exist two positive constants

C ą 0 and K ą 0 such that, for all ` ě 0 and all t P Σ,

sup
|x|ďr2

ˇ

ˇB`tupt, xq
ˇ

ˇ ď CK`Γp1` ps` 1q`q.

We denote by OpDρ2qttuk;θ the subset of OpDρ2qrrtss made of all the k-summable
formal series in the direction argptq “ θ. Obviously, OpDρ2qttuk;θ is included in
OpDρ2qrrtsss.

Observe that, for any fixed x, the k-summability of rupt, xq coincides with the
classical k-summability. Consequently, Watson’s lemma implies the unicity of its
k-sum, if any exists.

Observe also that the k-sum of a k-summable formal series rupt, xq P OpDρ2qttuk;θ

may be analytic with respect to x on a disc smaller than the common disc Dρ2 of
analyticity of the coefficients uj,˚pxq of rupt, xq.

Proposition 5.2 ([43, Prop. 2]). pOpDρ2qttuk;θ, Bt, Bxq is a C-differential algebra

stable under anti-derivations B´1
t and B´1

x .

With respect to t, the k-sum upt, xq of a k-summable series rupt, xq P OpDρ2qttuk;θ

is analytic on an open sector for which there is no control on the angular opening
except that it must be larger than πs (hence, it contains a closed sector Σθ,πs
bisected by θ and with opening πs) and no control on the radius except that it

4In Appendix A page 31, we present various results of the general theory of the Gevrey as-

ymptotic expansions in the framework of the formal power series in OpDρ2 qrrtss.
5A subsector Σ of a sector Σ1 is said to be a proper subsector and one denotes Σ Ť Σ1 if its

closure in C is contained in Σ1 Y t0u.
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must be positive. Thereby, the k-sum upt, xq is well-defined as a section of the
sheaf of analytic functions in pt, xq on a germ of closed sector of opening πs (that
is, a closed interval Iθ,πs of length πs on the circle S1 of directions issuing from 0;
see [26, 1.1] or [15, I.2]) times t0u (in the plane C of the variable x). We denote by
OIθ,πsˆt0u

the space of such sections.

Corollary 5.3. The operator of k-summation

Sk;θ : OpDρ2qttuk;θ ÝÑ OIθ,πsˆt0u

rupt, xq ÞÝÑ upt, xq

is a homomorphism of C-differential algebras for the derivations Bt and Bx. More-
over, it commutes with the anti-derivations B´1

t and B´1
x .

Let us now turn to the study of our formal series solution rupt, xq.

5.2. Main result.

5.2.1. A preliminary remark. Before stating the main result of this section, let us
first begin with a preliminary remark on the series rupt, xq. According to Notation

1.1, let us write the coefficients api,qqpt, xq on the form api,qqpt, xq “
ÿ

ně0

a
pi,qq
˚,n ptq

xn

n!

with a
pi,qq
˚,n ptq P OpDρ1q for all i P K, q P Qi and n ě 0. Then, an identification of

the powers in x in the equation

D

˜

ÿ

ně0

ru˚,nptq
xn

n!

¸

“
ÿ

ně0

rf˚,nptq
xn

n!

provides for all n ě 0 the recurrence relations

a
pi˚,pi˚ q
˚,0 ptqB´i

˚

t ru˚,n`pi˚ ptq “ ru˚,nptq ´ rf˚,nptq

´

n
ÿ

m“1

ˆ

n

m

˙

a
pi˚,pi˚ q
˚,m ptqB´i

˚

t ru˚,n´m`pi˚ ptq

´
ÿ

iPK

ÿ

qPQi

n
ÿ

m“0

ˆ

n

m

˙

tvi,qa
pi,qq
˚,m ptqB

´i
t ru˚,n´m`qptq

where the Qi’s are defined by Qi˚ “ Qi˚ztpi˚u and Qi “ Qi if i ‰ i˚. In particular,
these relations tell us that each ru˚,`ptq (hence, rupt, xq too) is uniquely determined

from rfpt, xq and from the ru˚,nptq with n “ 0, ..., pi˚ ´ 1. Indeed, Assumption pA3q

implies q ă pi˚ for all i P K and q P Qi, and Assumption pA4q implies that the

quotient 1{a
pi˚,pi˚ q
˚,0 ptq is well-defined in Crrtss.

5.2.2. Main result. We are now able to state the main result in view in this section.

Theorem 5.4. Let a direction argptq “ θ issuing from 0 be given. Then,

(1) The formal series rupt, xq P OpDρ2qrrtss is k-summable in the direction θ if

and only if the inhomogeneity rfpt, xq and the pi˚ coefficients ru˚,nptq P Crrtss
with n P t0, ..., pi˚ ´ 1u are k-summable in the direction θ.

(2) Moreover, the k-sum upt, xq in the direction θ, if any exists, satisfies equa-

tion (1.2) in which rfpt, xq is replaced by its k-sum fpt, xq in the direction
θ.
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Remark 5.5. The necessary condition of Point 1 is straigthforward from Propo-

sition 5.2. Indeed, we have ru˚,nptq “ B
n
xrupt, xq|x“0 and rf “ Dru. Moreover, Point

2 stems obvious from Corollary 5.3. Thereby, we are left to prove the sufficient
condition of Point 1.

Remark 5.6. Theorem 5.4 generalizes the results of summability already proved
by W. Balser and M. Loday-Richaud in [4] and by the author in [42,43].

5.3. Proof of Theorem 5.4. As we said in Remark 5.5 just above, it remains
to prove the sufficient condition of Point 1. Consequently, we fix from now on

a direction θ and we suppose that the inhomogeneity rfpt, xq and the coefficients
ru˚,nptq for n P t0, ..., pi˚´1u are all k-summable in this direction.

Ÿ First step: the associated equation.
Let us first begin by introducing the functions bpi,qqpt, xq defined, for all i P K

and q P Qi, by

bpi,qqpt, xq “

$

’

’

&

’

’

%

1

api
˚,pi˚ qpt, xq

if pi, qq “ pi˚, pi˚q,

tvi,qapi,qqpt, xq

api
˚,pi˚ qpt, xq

if pi, qq ‰ pi˚, pi˚q.

Thanks to Assumption pA4q, all these functions are holomorphic on a common
domain Dρ11

ˆDρ12
of p0, 0q P C2 for two suitable radiuses ρ11, ρ

1
2 ą 0.

Let us now write rupt, xq on the form

rupt, xq “

pi˚´1
ÿ

n“0

ru˚,nptq
xn

n!
` B

´pi˚
x rvpt, xq

with rvpt, xq P OpDρ2qrrtss and let us set rw :“ B´i
˚

t rv. Then, equation (1.2) becomes

(5.2) ∆ rw “ rgpt, xq,

where ∆ is the linear integro-differential operator

∆ :“ 1´ bpi
˚,pi˚ qpt, xqB

´pi˚
x Bi

˚

t `
ÿ

iPK

ÿ

qPQi

bpi,qqpt, xqB
q´pi˚
x B

i˚´i
t

and where the inhomogeneity rgpt, xq is defined by

rgpt, xq :“ bpi
˚,pi˚ qpt, xq

˜

pi˚´1
ÿ

n“0

ru˚,nptq
xn

n!
´ rfpt, xq

¸

´
ÿ

iPK

ÿ

qPQi

pi˚´1´q
ÿ

n“0

bpi,qqpt, xqru˚,n`qptq
xn

n!
.

Indeed, we have Bi
˚
´i

t B
´i˚

t “ B
´i
t for all i P K. The sets Qi are the sets introduced

in the preliminary remark of Section 5.2: Qi˚ “ Qi˚ztpi˚u and Qi “ Qi if i ‰ i˚.
According to our assumption (see the beginning of Section 5.3) and Proposition

5.2, the inhomogeneity rgpt, xq of equation (5.2) is k-summable in the direction
θ. Thereby, to prove our result, it suffices to prove that the formal power series
rwpt, xq P OpDρ2qrrtss is also k-summable in the direction θ. To do that, we shall
proceed similarly as in [4, 42,43] by using a standard fixed point procedure.
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Ÿ Second step: the fixed point procedure.

Let us set rwpt, xq “
ÿ

mě0

rwmpt, xq and let us consider the solution of equation

(5.2), where the rwmpt, xq’s belong to OpDρqrrtss for a suitable common ρ ą 0 and
are recursively determined, for all m ě 0, by the relations

(5.3)

$

&

%

rw0 “ rg,

rwm`1 “ bpi
˚,pi˚ qpt, xqB

´pi˚
x Bi

˚

t rwm ´
ÿ

iPK

ÿ

qPQi

bpi,qqpt, xqB
q´pi˚
x B

i˚´i
t rwm.

Observe that, for all m ě 0, the formal series rwmpt, xq are of order Opxmq in x
and, consequently, the series rwpt, xq itself makes sense as a formal series in t and
x. Indeed, the definition of the Qi’s and Assumption pA3q imply q´ pi˚ ă 0 for all
i P K and q P Qi.

Let us now denote by w0pt, xq the k-sum of rw0 “ rg in the direction θ and, for
all m ě 0, let wmpt, xq be determined as the solution of system (5.3) in which
all the rwm are replaced by wm. By construction, all the wmpt, xq are defined and
holomorphic on a common domain Σθ,ąπs ˆ Dρ22

, where the radius ρ21 of Σθ,ąπs
and the radius ρ22 of Dρ22

can always be chosen so that 0 ă ρ21 ă minp1, ρ11q and

0 ă ρ22 ă minp1, ρ2, ρ
1
2q.

To end the proof, it remains to prove that the series
ÿ

mě0

wmpt, xq is convergent

and that its sum wpt, xq is the k-sum of rwpt, xq in the direction θ.

Ÿ Third step: some estimations on wmpt, xq.
According to Definition 5.1, the k-summability of rw0 “ rg implies that there

exists a radius 0 ă r2 ă ρ22 with the following property: for any proper subsector
Σ Ť Σθ,ąπs, there exist two positive constants C ą 0 and K ą 0 such that, for all
` ě 0 and all pt, xq P ΣˆDr2 , the function w0 satisfies the conditions

(5.4)
ˇ

ˇB`tw0pt, xq
ˇ

ˇ ď CK`Γp1` ps` 1q`q.

Let us now fix a proper subsector Σ Ť Σθ,ąπs. Let r1 denote the radius of
Σ and let us choose for the constant K of the previous property a constant ě

max

ˆ

1,
1

ρ21 ´ r1

˙

. Observe that such a choice is already possible since conditions

(5.4) still hold for any constant K 1 ě K. Observe also that the quotient 1{pρ21´ r1q

makes sense since the definition of a proper subsector (see Footnote 5) implies
0 ă r1 ă ρ21.

Proposition 5.7. Let us denote by

‚ I :“
Y κ

i˚

]

, where t¨u denotes the lower integer part of ¨,

‚ B :“ max
iPK
qPQi

˜

max
pt,xqPDρ21

ˆDρ22

ˇ

ˇ

ˇ
bpi,qqpt, xq

ˇ

ˇ

ˇ

¸

the maximum of the functions
ˇ

ˇbpi,qqpt, xq
ˇ

ˇ

on Dρ21
ˆDρ22

, where Dρ denotes the closed disc with center 0 and radius
ρ ą 0,

‚ B1 :“ pκ` 1qpIi˚ ` 1qB.
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Let pPmpxqq be the sequence of polynomials in R`rxs recursively determined by
$

’

’

&

’

’

%

P0pxq “ 1,

Pm`1pxq “

¨

˝B
´pi˚
x `

ÿ

iPK1

ÿ

qPQ1i

pmpi˚q!

pmpi˚ ` piq!
B´qx

˛

‚Pmpxq for m ě 0,

with K1 :“ ti P K ; pi ě 1u and Q1i :“ tmaxppi˚ ´ pi, 1q, ..., pi˚ ´ 1u. Then, the
following inequalities

(5.5)
ˇ

ˇB`twmpt, xq
ˇ

ˇ ď CB1mKi˚m``Γp1` ps` 1qpi˚m` `qqPmp|x|q

hold for all m, ` ě 0 and all pt, xq P ΣˆDr2 .

Remark 5.8. Since 1 ď i˚ ď κ, we have 1 ď I ď κ and Ii˚ ě 1. More precisely,
and thanks to the definition of the lower interger part, we have Ii˚ ą κ´ i˚.

Remark 5.9. The constant B is well-defined since the functions bpi,qqpt, xq are all
holomorphic on Dρ11

ˆDρ12
and the radiuses ρ2j satisfy 0 ă ρ2j ă ρ1j for j “ 1, 2.

Remark 5.10. The set K1 already contains i˚ and, therefore, is never empty. We
have indeed the inequalities pi˚ ą i˚ ě 1.

Proof. The proof proceeds by recursion on m ě 0.
The case m “ 0 is straightforward from inequality (5.4). Let us now suppose

that inequalities (5.5) hold for a certain m ě 0.
From identities (5.3) and the Leibniz formula, we first derive the inequalities

ˇ

ˇB`twm`1pt, xq
ˇ

ˇ ď
ÿ̀

j“0

ˆ

`

j

˙

ˇ

ˇ

ˇ
B
`´j
t bpi

˚,pi˚ qpt, xq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
B
´pi˚
x B

i˚`j
t wmpt, xq

ˇ

ˇ

ˇ

`
ÿ

iPK

ÿ

qPQi

ÿ̀

j“0

ˆ

`

j

˙

ˇ

ˇ

ˇ
B
`´j
t bpi,qqpt, xq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
B
q´pi˚
x B

i˚´i`j
t wmpt, xq

ˇ

ˇ

ˇ

for all ` ě 0 and pt, xq P Σ ˆDr2 . On the other hand, for all i P K, q P Qi, k ě 0
and pt, xq P ΣˆDr2 , the Cauchy integral formula allows us to write the derivative
Bkt b

pi,qqpt, xq on the form

Bkt b
pi,qqpt, xq “

k!

p2iπq2

ż

|t1´t|“ρ21´r1

|x1´x|“ρ22´r2

bpi,qqpt1, x1q

pt1 ´ tqk`1px1 ´ xq
dt1dx1

(we have indeed 0 ă r1 ă ρ21 and 0 ă r2 ă ρ22), which yields the estimates

ˇ

ˇ

ˇ
Bkt b

pi,qqpt, xq
ˇ

ˇ

ˇ
ď k!B

ˆ

1

ρ21 ´ r1

˙k

ď k!BKk.

Hence, according to the fact that 0 ă r1 ă 1 and K ě 1, the following inequalities:
for all ` ě 0 and pt, xq P ΣˆDr2 ,

ˇ

ˇB`twm`1pt, xq
ˇ

ˇ ď CBB1mKi˚pm`1q``
ÿ

iPKYt0u

˜

Si,`,m
ÿ

qPQi

pB
q´pi˚
x Pmqp|x|q

¸

,

where we set Q0 :“ tp0 “ 0u and where Si,`,m is the sum defined by:
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‚ Case i P t0, ..., i˚u:

Si,`,m :“
ÿ̀

j“0

`!

j!
Γp1` ps` 1qpi˚m` i˚ ´ i` jqq.

‚ Case i P ti˚ ` 1, ..., κu:

Si,`,m :“

Ji,i˚,`
ÿ

j“0

`!

j!
Γp1` ps` 1qi˚mq `

ÿ̀

j“Ji,i˚,``1

`!

j!
Γp1` ps` 1qpi˚m` i˚ ´ i` jqq,

with Ji,i˚,` “ minpi´ i˚ ´ 1, `q. Of course, the second sum is zero as soon
as Ji,i˚,` “ `, that is ` ď i´ i˚ ´ 1.

Applying then Lemma 5.11 below, we get

ˇ

ˇB`twm`1pt, xq
ˇ

ˇ ď CpIi˚ ` 1qBB1mKi˚pm`1q``Γp1` ps` 1qpi˚pm` 1q ` `qq

ˆ
ÿ

iPKYt0u

ÿ

qPQi

pmpi˚q!

pmpi˚ ` piq!
pB
q´pi˚
x Pmqp|x|q

and inequalities (5.5) follow by observing that the double-sum of the right-hand
side satisfies

ÿ

iPKYt0u

ÿ

qPQi

pmpi˚q!

pmpi˚ ` piq!
pB
q´pi˚
x Pmqp|x|q ď pκ` 1qpB

´pi˚
x Pmqp|x|q

`
ÿ

iPK1

ÿ

qPQ1i

pmpi˚q!

pmpi˚ ` piq!
pB´qx Pmqp|x|q;

hence,

ÿ

iPKYt0u

ÿ

qPQi

pmpi˚q!

pmpi˚ ` piq!
pB
q´pi˚
x Pmqp|x|q ď pκ` 1qPm`1p|x|q.

Indeed, K Ă t1, ..., κu, the coefficients of the polynomial Pm are positive and the
quotients pmpi˚q!{pmpi˚ ` piq! are ď 1 for all i P K. This ends the proof of
Proposition 5.7. �

Lemma 5.11. Let i P K Y t0u, ` ě 0 and m ě 0 be. Then,

(5.6) Si,`,m ď pIi
˚ ` 1q

pmpi˚q!

pmpi˚ ` piq!
Γp1` ps` 1qpi˚pm` 1q ` `qq.

This technical lemma will be proved later in Section 5.4. For the moment, let us
end the proof of Theorem 5.4.

The following proposition, already proved in [43], allows to bound the Pmp|x|q’s.

Proposition 5.12 ([43, Prop. 5]). Let m ě 0 be. Then,

Pmp|x|q ď

`

κpi˚2pi˚ p1` pi˚q
pi˚´1

˘m

pmpi˚q!
|x|

m

for all x P Dr2 .
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Let us set B2 :“ B1Ki˚κpi˚2pi˚ p1` pi˚q
pi˚´1. Then, Propositions 5.7 and 5.12

imply, for all ` ě 0 and pt, xq P ΣˆDr2 , the inequalities

ˇ

ˇB`twmpt, xq
ˇ

ˇ ď CK`Γp1` ps` 1qpi˚m` `qq
pB2 |x|qm

pmpi˚q!
;

hence, the inequalities

(5.7)
ˇ

ˇB`twmpt, xq
ˇ

ˇ ď Cp2pi˚Kq`Γp1` ps` 1q`qp2pi˚B2 |x|qm.

Indeed, the conditions ps` 1qi˚ “ pi˚ and s` 1 ď pi˚ (see relations (5.1)) imply

Γp1` ps` 1qpi˚m` `qq “ Γp1` ps` 1q``mpi˚q

“ Γp1` ps` 1q`q

mpi˚
ź

j“1

pps` 1q`` jq

ď Γp1` ps` 1q`q

mpi˚
ź

j“1

p`pi˚ ` jq

“ Γp1` ps` 1q`q
p`pi˚ `mpi˚q!

p`pi˚q!

and, consequently,

Γp1` ps` 1qpi˚m` `qq

pmpi˚q!
ď Γp1` ps` 1q`q

ˆ

`pi˚ `mpi˚

mpi˚

˙

ď 2`pi˚`mpi˚Γp1` ps` 1q`q.

We are now able to complete the proof of Theorem 5.4.

Ÿ Fourth step: conclusion.
Let us choose for Σ a sector containing a proper subsector Σ1 bisected by the

direction θ and opening larger than πs (such a choice is already possible by definition
of a proper subsector, see Footnote 5).

Let us also choose r, ε ą 0 so that 0 ă r ă r ` ε ă minpr2, 2
´pi˚ {B2q and let us

set C 1 :“ C
ÿ

mě0

p2pi˚B2rqm P R` and K 1 :“ 2pi˚K.

Thanks to inequalities (5.7), the series
ÿ

mě0

B`twmpt, xq are normally convergent

on ΣˆDr`ε for all ` ě 0 and satisfy the inequalities
ÿ

mě0

ˇ

ˇB`twmpt, xq
ˇ

ˇ ď C 1K 1`Γp1` ps` 1q`q

for all pt, xq P ΣˆDr`ε. In particular, the sum wpt, xq of the series
ÿ

mě0

wmpt, xq is

well-defined, holomorphic on ΣˆDr`ε and satisfies the inequalities
ˇ

ˇB`twpt, xq
ˇ

ˇ ď C 1K 1`Γp1` ps` 1q`q

for all ` ě 0 and pt, xq P ΣˆDr`ε. Hence, Conditions 1 and 3 of Definition 5.1.
To prove the second condition of Definition 5.1, we proceed as follows. The

removable singularities theorem implies the existence of lim
tÑ0
tPΣ1

B`twpt, xq for all x P Dr

and, thereby, the existence of the Taylor series of w at 0 on Σ1 for all x P Dr (see
for instance [25, Cor. 1.1.3.3]; see also [16, Prop. 1.1.11]). On the other hand,
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considering recurrence relations (5.3) with wm and the k-sum gpt, xq instead of rwm
and rgpt, xq, it is clear that wpt, xq satisfies equation (5.2) with right-hand side gpt, xq
in place of rgpt, xq and, consequently, so does its Taylor series. Then, since equation
(5.2) has a unique formal series solution rwpt, xq (proceed similarly as Theorem 2.1
by exchanging the roles of x and t), we then conclude that the Taylor expansion of
wpt, xq is rwpt, xq. Hence, Condition 2 of Definition 5.1.

This achieves the proof of the k-summability of rwpt, xq and, thereby, the sufficient
condition of point 1 of Theorem 5.4.

5.4. Proof of Lemma 5.11. We are left to prove the technical Lemma 5.11.
Before starting the calculations, let us first recall a classical result on the Gamma
function which will be us useful in the sequel.

Lemma 5.13. Let a and b be two nonnegative numbers satisfying b ě maxp2, 1`aq.
Then, Γp1` aq ď Γpbq.

Proof. Lemma 5.13 stems from the increase of the Gamma function on r2,`8r
and from the fact that Γpcq ď 1 “ Γp2q for all c P r1, 2s. Indeed, we have the
inequalities 2 ď 1 ` a ď b for all a ě 1 and the inequalities 1 ď 1 ` a ď 2 ď b for
all a P r0, 1s. �

Let us also recall that, according to our assumptions pA1q and pA2q, Lemma 4.10
implies the following inequalities

(5.8) ps` 1qi ě pi for all i P K.
Observe that these latter still hold when i “ 0 since p0 “ 0.

As we shall see below, inequalities (5.8) will play a crucial role in our proof.

Let us now prove Lemma 5.11.

Ÿ First case. When i P t0, ..., i˚u, inequalities (5.6) are a consequence of the three
following lemmas.

Lemma 5.14. Let ` ě 0, j P t0, ..., `u and m ě 0 be. Then,

`!

j!
Γp1` ps` 1qpi˚m` i˚ ´ i` jqq ď Γp1` ps` 1qpi˚m` i˚ ´ i` jq ` `´ jq.

Proof. Lemma 5.14 is clear when j “ ` and stems obvious from the inequality

`!

j!
“

`´j
ź

n“1

pj ` nq ď
`´j
ź

n“1

pps` 1qpi˚m` i˚ ´ i` jq ` nq

and from the relation

Γp1` ps` 1qpi˚m` i˚ ´ i` jq ` `´ jq “

Γp1` ps` 1qpi˚m` i˚ ´ i` jqq
`´j
ź

n“1

pps` 1qpi˚m` i˚ ´ i` jq ` nq

when j ă `. �

Lemma 5.15. Let ` ě 0 and m ě 0 be. Then,

(5.9)
ÿ̀

j“0

Γp1` ps` 1qpi˚m` i˚ ´ i` jq ` `´ jq

Γp1` ps` 1qpi˚m` i˚ ´ i` `qq
ď Ii˚ ` 1.
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Proof. ‹ Let us first suppose ` ď Ii˚. Inequality (5.9) is clear when p`,m, iq “
p0, 0, i˚q. Otherwise, we have

1` ps` 1qpi˚m` i˚ ´ i` jq ` `´ j
looooooooooooooooooooomooooooooooooooooooooon

ě0

“ 1` ps` 1qpi˚m` i˚ ´ iq ` `` sj

ď 1` ps` 1qpi˚m` i˚ ´ i` `q
loooooooooooooooooomoooooooooooooooooon

ě2

for all j P t0, ..., `u, and inequality (5.9) stems from Lemma 5.13:

ÿ̀

j“0

Γp1` ps` 1qpi˚m` i˚ ´ i` jq ` `´ jq

Γp1` ps` 1qpi˚m` i˚ ´ i` `qq
ď

ÿ̀

j“0

1 “ `` 1 ď Ii˚ ` 1.

‹ Let us now suppose ` ą Ii˚ and let us write the sum of (5.9) on the form

(5.10)
ÿ̀

j“0

p...q “
`´Ii˚
ÿ

j“0

p...q `
ÿ̀

j“`´Ii˚`1

p...q.

By similarly to the previous case, we get

ÿ̀

j“`´Ii˚`1

p...q ď
ÿ̀

j“`´Ii˚`1

1 “ Ii˚

On the other hand, we have the inequalities

2 ď 1` Ii˚

ď 1` ps` 1qpi˚m` i˚ ´ i` jq ` `´ j

ď 1` ps` 1qpi˚m` i˚ ´ i` `q ´ sIi˚

ď 1` ps` 1qpi˚m` i˚ ´ i` `q ´ 1

for all j P t0, ..., ` ´ Ii˚u. Indeed, the relation ps ` 1qi˚ “ pi˚ (see (5.1)) and the
definition of i˚ (see Remark 3.4) imply

sIi˚ “ Ipps` 1qi˚ ´ i˚q “ Ippi˚ ´ i
˚q ě I ě 1.

Consequently, by applying Lemma 5.13, the first sum of the right-hand side of
(5.10) is bounded as follows:

`´Ii˚
ÿ

j“0

p...q ď p`´ Ii˚ ` 1q
Γp1` ps` 1qpi˚m` i˚ ´ i` `q ´ sIi˚q

Γp1` ps` 1qpi˚m` i˚ ´ i` `qq

“
`´ Ii˚ ` 1

ps` 1qpi˚m` i˚ ´ i` `q
ˆ

Γp1` ps` 1qpi˚m` i˚ ´ i` `q ´ sIi˚q

Γp1` ps` 1qpi˚m` i˚ ´ i` `q ´ 1q

ď
`´ Ii˚ ` 1

ps` 1qpi˚m` i˚ ´ i` `q
.

Inequality (5.9) follows then by observing that

`´ Ii˚ ` 1

ps` 1qpi˚m` i˚ ´ i` `q
ď

1

s` 1
ď 1

for all ` ą Ii˚. This ends the proof of Lemma 5.15. �
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Lemma 5.16. Let ` ě 0 and m ě 0 be. Then,

Γp1` ps` 1qpi˚m` i˚ ´ i` `qq ď
pmpi˚q!

pmpi˚ ` piq!
Γp1` ps` 1qpi˚pm` 1q ` `qq.

Proof. Thanks to the relations (5.8), we have the inequalities

1` ps` 1qpi˚pm` 1q ` `q
loooooooooooooooomoooooooooooooooon

ě2

“ 1` ps` 1qpi˚m` i˚ ´ i` `q ` ps` 1qi

ě 1` ps` 1qpi˚m` i˚ ´ i` `q ` pi
looooooooooooooooooomooooooooooooooooooon

ě0

.

Hence, the inequalities

Γp1` ps` 1qpi˚pm` 1q ` `qq ě Γp1` ps` 1qpi˚m` i˚ ´ i` `q ` piq

by applying Lemma 5.13. Lemma 5.16 is then proved when pi “ 0 and follows from
the identity

Γp1` ps` 1qpi˚m` i˚ ´ i` `q ` piq “

Γp1` ps` 1qpi˚m` i˚ ´ i` `qq
pi
ź

n“1

pps` 1qpi˚m` i˚ ´ i` `q ` nq

and from the relations
pi
ź

n“1

pps` 1qpi˚m` i˚ ´ i` `q ` nq ě
pi
ź

n“1

pps` 1qi˚m` nq (since i˚ ´ i ě 0)

“

pi
ź

n“1

pmpi˚ ` nq (since ps` 1qi˚ “ pi˚)

“
pmpi˚ ` piq!

pmpi˚q!

when pi ě 1. �

Ÿ Second case. When i P ti˚ ` 1, ..., κu6, Lemma 5.11 is proved in a similar way as
the previous case. However, the calculations are much more complicated because
of the term Ji,i˚,` “ minpi´ i˚ ´ 1, `q and of the fact that i˚ ´ i is negative.

Lemma 5.17. Let ` ě 0, j P t0, ..., `u and m ě 0 be. Then,

(5.11)
`!

j!
Γp1` ps` 1qi˚mq ď Γp1` ps` 1qpi˚m` jq ` `´ jq.

Moreover, if i´ i˚ ď j ď `, then

(5.12)
`!

j!
Γp1` ps` 1qpi˚m` i˚ ´ i` jqq ď

Γp1` ps` 1qpi˚m` i˚ ´ i` jq ` `´ j ` i´ i˚q.

Proof. Lemma 5.17 is proved in a similar way as Lemma 5.14 by respectively using
the relation

Γp1` ps` 1qi˚mq ď Γp1` ps` 1qpi˚m` jqq

6Of course, this case occurs if and only if i˚ ă κ.
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for inequality (5.11) and the relations

`!

j!
“

`´j
ź

n“1

pj ` nq “
`´j
ź

n“1

pi˚ ´ i` j
loooomoooon

ě0

` n` i´ i˚
loomoon

ą0

q

“

`´j`i´i˚
ź

n“1`i´i˚

pi˚ ´ i` j ` nq

ď

`´j`i´i˚
ź

n“1

pi˚ ´ i` j ` nq

ď

`´j`i´i˚
ź

n“1

pps` 1qpi˚m` i˚ ´ i` jq ` nq

for inequality (5.12). Observe that the two conditions j ě i ´ i˚ and i ´ i˚ ą 0
play a key role in these various calculations. �

Lemma 5.18. Let ` ě 0 and m ě 0 be. Then,

(5.13)

Ji,i˚,`
ÿ

j“0

Γp1` ps` 1qpi˚m` jq ` `´ jq

Γp1` ps` 1qpi˚m` `qq
ď i´ i˚.

Moreover, if ` ě i´ i˚ (hence, Ji,i˚,` “ i´ i˚ ´ 1), then

(5.14)
ÿ̀

j“i´i˚

Γp1` ps` 1qpi˚m` i˚ ´ i` jq ` `´ j ` i´ i˚q

Γp1` ps` 1qpi˚m` `qq
ď Ii˚ ` i˚ ´ i` 1.

Proof. ‹ Inequality (5.13) is clear when m “ ` “ 0 (we have indeed Ji,i˚,` “ 0;
hence, j “ 0 too) and stems from the relations

1` ps` 1qpi˚m` jq ` `´ j
looooooooooooooomooooooooooooooon

ě0

“ 1` ps` 1qi˚m` `` sj ď 1` ps` 1qpi˚m` `q
loooooooooooomoooooooooooon

ě2

and Lemma 5.13 otherwise. Indeed, we have in this case

Ji,i˚,`
ÿ

j“0

Γp1` ps` 1qpi˚m` jq ` `´ jq

Γp1` ps` 1qpi˚m` `qq
ď

Ji,i˚,`
ÿ

j“0

1 “ Ji,i˚,` ` 1 ď i´ i˚.

‹ Let us now prove inequality (5.14) and let us suppose for the moment that ` P
ti´ i˚, ..., Ii˚u7. Then, the condition ` ě i´ i˚ ą 0 implies

1` ps` 1qpi˚m` i˚ ´ i` jq ` `´ j ` i´ i˚
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

ě0

“ 1` ps` 1qi˚m` `` spi˚ ´ i` j
loooomoooon

ďjď`

q

ď 1` ps` 1qpi˚m` `q
loooooooooooomoooooooooooon

ě2

7This set makes sense since, thanks to Remark 9, we have Ii˚ ą κ´ i˚ ě i´ i˚.
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for all j P ti´ i˚, ..., `u and inequality (5.14) follows from Lemma 5.13:

ÿ̀

j“i´i˚

Γp1` ps` 1qpi˚m` i˚ ´ i` jq ` `´ j ` i´ i˚q

Γp1` ps` 1qpi˚m` `qq
ď

ÿ̀

j“i´i˚

1

“ `` i˚ ´ i` 1

ď Ii˚ ` i˚ ´ i` 1.

When ` ą Ii˚, we proceed similarly as in Lemma 5.15 by writing the sum of (5.14)
on the form

ÿ̀

j“i´i˚

p...q “
`´Ii˚`i´i˚

ÿ

j“i´i˚

p...q `
ÿ̀

j“`´Ii˚`i´i˚`1

p...q

and by observing that the two sums of the right-hand side can be respectively
bounded as follows:

`´Ii˚`i´i˚
ÿ

j“i´i˚

p...q ď 1 and
ÿ̀

j“`´Ii˚`i´i˚`1

p...q ď Ii˚ ` i˚ ´ i.

The first inequality is proved as in Lemma 5.15 by using Lemma 5.13 and the
relations

2 ď 1` Ii˚

ď 1` ps` 1qpi˚m` i˚ ´ i` jq ` `´ j ` i´ i˚

“ 1` ps` 1qi˚m` `` spi˚ ´ i` jq

ď 1` ps` 1qpi˚m` `q ´ sIi˚

ď 1` ps` 1qpi˚m` `q ´ 1

for all j P ti ´ i˚, ..., ` ´ Ii˚ ` i ´ i˚u. As for the second inequality, it stems from
Lemma 5.13 and the relation

1` ps` 1qpi˚m` i˚ ´ i` jq ` `´ j ` i´ i˚ ď 1` ps` 1qpi˚m` `q

proved just above. This ends the proof of Lemma 5.18. �

Let us now apply Lemmas 5.17 and 5.18:

‚ Case ` ď i´ i˚ ´ 1. Then,

Si,`,m ď pi´ i
˚qΓp1` ps` 1qpi˚m` `qq ď pIi˚ ` 1qΓp1` ps` 1qpi˚m` `qq.

Indeed, the second sum of Si,`,m is zero (we have Ji,i˚,` “ `) and Remark
9 implies Ii˚ ą κ´ i˚ ě i´ i˚.

‚ Case ` ě i´ i˚. Then,

Si,`,m ď pi´ i
˚ ` Ii˚ ´ i` i˚ ` 1qΓp1` ps` 1qpi˚m` `qq

“ pIi˚ ` 1qΓp1` ps` 1qpi˚m` `qq.

Thereby, to end the proof of Lemma 5.11, we are left to prove the following.

Lemma 5.19. Let ` ě 0 and m ě 0 be. Then,

Γp1` ps` 1qpi˚m` `qq ď
pmpi˚q!

pmpi˚ ` piq!
Γp1` ps` 1qpi˚pm` 1q ` `qq.
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Proof. Using the relation ps ` 1qi˚ “ pi˚ (see (5.1)) and the fact that pi˚ is the
maximum of the pi (see Assumption pA3q), we successively have

1` ps` 1qpi˚pm` 1q ` `q
loooooooooooooooomoooooooooooooooon

ě2

“ 1` ps` 1qpi˚m` `q ` pi˚

ě 1` ps` 1qpi˚m` `q ` pi
loooooooooooomoooooooooooon

ě0

and the inequalities

Γp1` ps` 1qpi˚pm` 1q ` `qq ě Γp1` ps` 1qpi˚m` `q ` piq

by applying Lemma 5.13. Then, we conclude as in Lemma 5.16. �

Appendix A. Gevrey asymptotic

In this appendix, we present various results of the general theory of the Gevrey
asymptotic expansions in the framework of the formal power series in OpDρ2qrrtss.

A.1. s-Gevrey asymptotic. Still considering t as the variable and x as a param-
eter, one extends, in the similar way as the s-Gevrey formal series (see Definition
4.1), the classical notion of Gevrey asymptotic to a formal series in Crrtss to the
one of Gevrey asymptotic to a formal series in OpDρ2qrrtss in requiring similar
conditions, the estimates being however uniform with respect to x.

Definition A.1 (s-Gevrey asymptotic). Let s ě 0 and Σ be an open sector with
vertex 0 P C. A function upt, xq holomorphic on a domain ΣˆDρ for some ρ ą 0 is
said to be Gevrey asymptotic of order s (in short, s-Gevrey asymptotic) to a formal

series
ÿ

jě0

uj,˚pxq
tj

j!
P OpDρ2qrrtss on Σ if there exists 0 ă r2 ă minpρ, ρ2q such

that, for any proper subsector Σ1 Ť Σ, there exist two positive constants C ą 0
and K ą 0 such that, for all J ě 1 and all t P Σ1:

(A.1) sup
|x|ďr2

ˇ

ˇ

ˇ

ˇ

ˇ

upt, xq ´
J´1
ÿ

j“0

uj,˚pxq
tj

j!

ˇ

ˇ

ˇ

ˇ

ˇ

ď CKJΓp1` sJq |t|
J
.

A series which is the s-Gevrey asymptotic expansion of a function is said to be an
s-Gevrey asymptotic series on Σ.

Remark A.2. If any exists, the s-Gevrey asymptotic series is unique.

Proposition A.3. Let s ě 0 be. Then, a s-Gevrey asymptotic series on a sector
Σ is a s-Gevrey series.

Proof. Let rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
P OpDρ2qrrtss be a s-Gevrey asymptotic series

of a function upt, xq on Σ. We want to prove that there exist positive constants
0 ă r22 ă ρ2, C2 ą 0 and K2 ą 0 such that, for all J ě 0,

(A.2) sup
|x|ďr22

|uJ,˚pxq| ď C2K2JΓp1` ps` 1qJq.
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Let r2 ą 0 be as in Definition A.1 and let us choose Σ1 Ť Σ a proper subsector of
Σ. For any J ě 1, we derive from condition (A.1) applied twice to the relation

uJ,˚pxq
tJ

J !
“

˜

upt, xq ´
J´1
ÿ

j“0

uj,˚pxq
tj

j!

¸

´

˜

upt, xq ´
J
ÿ

j“0

uj,˚pxq
tj

j!

¸

the following inequality

sup
|x|ďr2

|uJ,˚pxq| ď CKJΓp1` sJqJ !` CKJ`1Γp1` spJ ` 1qqJ !R,

where R ą 0 denotes the radius of Σ1. Applying then the relation between the
Gamma and the Beta functions to Γp1` sJqJ ! “ Γp1` sJqΓp1` Jq, we get

Γp1` sJqJ ! “ Γp2` ps` 1qJq

ż 1

0

tsJp1´ tqJdt ď Γp2` ps` 1qJq;

hence, the inequalities

Γp1` sJqJ ! ď p1` ps` 1qJqΓp1` ps` 1qJq ď e
`

es`1
˘J

Γp1` ps` 1qJq.

In the same way, and using besides the increase of the Gamma function on r2,`8r,
we have

Γp1` spJ ` 1qqJ ! ď Γp2` ps` 1qJ ` sq ď Γp2` ps` 1qJ ` Sq,

where S is an integer ě s; hence,

Γp1` spJ ` 1qqJ ! ď Γp1` ps` 1qJq
S`1
ź

`“1

pps` 1qJ ` `q ď ABJΓp1` ps` 1qJq

with convenient constants A,B ą 0 independent of J . Consequently, there exist
C 1,K 1 ą 0 such that the following inequalities

sup
|x|ďr2

|uJ,˚pxq| ď C 1K 1JΓp1` ps` 1qJq

hold for all J ě 1. Condition (A.2) follows then by choosing

r22 “ r2, C2 “ max

˜

C 1, sup
|x|ďr2

|u0,˚pxq|

¸

and K2 “ K 1.

This ends the proof. �

Following Proposition A.4 gives us a characterization of the s-Gevrey asymptotic
in terms of conditions on the successive derivatives BJt u of the function u with
respect to t.

Proposition A.4. Let s ě 0 and Σ be an open sector with vertex 0 P C. Then,
a function upt, xq holomorphic on a domain Σ ˆ Dρ for some ρ ą 0 is s-Gevrey

asymptotic to a formal series rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
P OpDρ2qrrtss on Σ if and only

if there exists 0 ă r2 ă minpρ, ρ2q such that

(1) for any |x| ď r2, the map t ÞÑ upt, xq has rupt, xq as Taylor series at 0 on
Σ,
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(2) for any proper subsector Σ1 Ť Σ, there exist two positive cConstants C ą 0
and K ą 0 such that, for all J ě 0 and all t P Σ1,

sup
|x|ďr2

ˇ

ˇBJt upt, xq
ˇ

ˇ ď CKJΓp1` ps` 1qJq.

Proof. Ÿ Necessary condition. Let us suppose that upt, xq is s-Gevrey asymptotic
to rupt, xq on Σ and let us prove Conditions 1 and 2 of Proposition A.4.

Due to Definition A.1, Condition 1 is straightforward. To prove Ccondition 2,
we consider 0 ă r2 ă minpρ, ρ2q as in Definition A.1 and a proper subsector Σ1 Ť Σ
and we choose a radius 0 ă r12 ă r2, a sector Σ2 such that Σ1 Ť Σ2 Ť Σ and a
positive constant δ ą 0 small enough so that, for all t P Σ1, the closed disc centered
at t with radius |t| δ be contained in Σ2. Then, the Cauchy integral formula implies

BJt upt, xq “
J !

p2iπq2

ż

|t1´t|“|t|δ

|x1´x|“r2´r12

upt1, x1q

pt1 ´ tqJ`1px1 ´ xq
dt1dx1

“
J !

p2iπq2

ż

|t1´t|“|t|δ

|x1´x|“r2´r12

˜

upt1, x1q ´
J´1
ÿ

j“0

uj,˚pxq
tj

j!

¸

dt1dx1

pt1 ´ tqJ`1px1 ´ xq

for all J ě 0, all t P Σ1 and all |x| ď r12. Indeed, the sum is 0 when J “ 0 and the
J-th derivative of a polynomial of degree J ´ 1 is 0 too when J ě 1. Hence,

ˇ

ˇBJt upt, xq
ˇ

ˇ ď
J !

p2πq2
sup

|t1´t|“|t|δ

|x1´x|“r2´r12

ˇ

ˇupt1, x1q
ˇ

ˇ

p2πq2

p|t| δq
J

ď CKJΓp1` sJqJ !
|t|
J
p1` δqJ

|t|
J
δJ

ď C 1K 1JΓp1` ps` 1qJq

with C 1 “ eC and K 1 “ es`1K

ˆ

1`
1

δ

˙

. Indeed, we have previously saw in the

proof of Proposition A.3 that Γp1` sJqJ ! ď e1`ps`1qJΓp1` ps` 1qJq. This proves
Condition 2 and, consequently, the necessary condition.

Ÿ Sufficient condition. Let us now suppose that Conditions 1 and 2 are satis-
fied and let us prove condition (A.1) of Definition A.1. To do that, let us consider
a proper subsector Σ1 Ť Σ.

For any fixed |x| ď r2, the map t ÞÑ upt, xq admits the Taylor expansion with
integral remainder

(A.3) upt, xq ´
J´1
ÿ

j“0

Bju

Btj
pt0, xq

pt´ t0q
j

j!
“

ż t

t0

pt´ t1qJ´1

pJ ´ 1q!

BJu

BtJ
pt1, xqdt1

for all J ě 1, all t P Σ1 and all t0 P Σ1. Due to Condition 1, lim
t0Ñ0
t0PΣ

1

Bju

Btj
pt0, xq exists

for all j ě 0 and is equal to uj,˚pxq. Therefore, the limits of the left-hand and of
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the right-hand sides of (A.3) both exist when t0 Ñ 0 and we have

upt, xq ´
J´1
ÿ

j“0

uj,˚pxq
tj

j!
“

ż t

0

pt´ t1qJ´1

pJ ´ 1q!

BJu

BtJ
pt1, xqdt1

for all J ě 1, all t P Σ1 and all |x| ď r2. Hence, applying Condition 2:

sup
|x|ďr2

ˇ

ˇ

ˇ

ˇ

ˇ

upt, xq ´
J´1
ÿ

j“0

uj,˚pxq
tj

j!

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
t1PΣ1

|x|ďr2

ˇ

ˇ

ˇ

ˇ

BJu

BtJ
pt1, xq

ˇ

ˇ

ˇ

ˇ

|t|
J

J !
ď CKJ Γp1` ps` 1qJq

J !
|t|
J

for all J ě 1 and all t P Σ1. Condition (A.3) follows then from the inequality

Γp1` ps` 1qJq

J !
ď 2pS`1qJΓp1` sJq , S P N, S ě s

which stems from the relations

Γp1` ps` 1qJq “ Γp1` sjq
J
ź

j“1

psJ ` jq ď Γp1` sJq
J
ź

j“1

pSJ ` jq

and
J
ź

j“1

pSJ ` jq

J !
“

ˆ

pS ` 1qJ
J

˙

ď

pS`1qJ
ÿ

k“0

ˆ

pS ` 1qJ
k

˙

“ 2pS`1qJ .

This proves the sufficient condition; hence, Proposition A.4. �

In the sequel, we denote by

‚ AspΣ, Dρ2q the set of all the functions which are s-Gevrey asymptotic on
Σ to a formal series of OpDρ2qrrtss;

‚ Ts;Σ,Dρ2 : AspΣ, Dρ2q ÝÑ OpDρ2qrrtsss the map which assigns to each

upt, xq P AspΣ, Dρ2q its s-Gevrey asymptotic series.

Observe that Ts;Σ,Dρ2 is well-defined due to Remark A.2 and Proposition A.4. Fol-

lowing Proposition A.5 specifies the algebraic properties of AspΣ, Dρ2q and Ts;Σ,Dρ2 .

Proposition A.5. Let s ě 0 and Σ be an open sector with vertex 0 P C.

(1) pAspΣ, Dρ2q, Bt, Bxqis a C-differential algebra stable under the anti-derivations

B
´1
t and B´1

x .
(2) The map Ts;Σ,Dρ2 : AspΣ, Dρ2q ÝÑ OpDρ2qrrtsss is a homomorphism of C-

differential algebras for the derivations Bt and Bx. Moreover, it commutes
with the anti-derivations B´1

t and B´1
x .

Proof. The proof is the same that the one given in [43, Prop. 2]. �

A.2. The s-Gevrey Borel-Ritt Theorem.

Theorem A.6. Supposons that Σ has opening ď πs. Then, the map Ts;Σ,Dρ2 is
onto.

Proof. It is sufficient to consider a sector Σ with opening πs. Moreover, by means
of a rotation, we can besides assume that Σ is bisected by the direction θ “ 0. We
denote by R its radius.
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‹ Let rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
P OpDρ2qrrtsss a s-Gevrey formal series. By assump-

tion, the coefficients uj,˚pxq satisfy the following two conditions:

‚ uj,˚pxq P OpDρ2q for all j ě 0,
‚ there exist 0 ă r2 ă ρ2, C ą 0 and K ą 0 such that |uj,˚pxq| ď CKjΓp1`
ps` 1qjq for all j ě 0 and |x| ď r2.

Therefore, the series pupτ, xq “
ÿ

jě0

uj,˚pxqτ
j

Γp1` sjqj!
converges for all pτ, xq P Dρ ˆDr2 ,

where ρ is the radius of convergence of
ÿ

jě0

Γp1` ps` 1qjq

Γp1` sjqj!
pKτqj .

‹ Let us now fix b P Dρ, b ą 0, and let us consider the holomorphic function
upt, xq P OpΣˆDr2q defined by

upt, xq “ t´k
ż bk

0

pupξs, xqe´ξ{t
k

dξ, where s “
1

k
and ξ “ τk.

We shall prove below that upt, xq is s-Gevrey asymptotic to rupt, xq on Σ.

‹ Let 0 ă r12 ă r2. For any 0 ă δ ă
π

2
and 0 ă R1 ă R, we denote by Σδ the proper

subsector of Σ defined by

Σδ “

"

t P C; |argptq| ă
π

2k
´
δ

k
and 0 ă |t| ă R1

*

.

Let J ě 1 and pt, xq P Σδ ˆDr12
be. From the relation

tj “ t´k
ż `8

0

ξsj

Γp1` sjq
e´ξ{t

k

dξ, j ě 0

(see [2, pp. 78-79] for instance), we first have

upt, xq ´
J´1
ÿ

j“0

uj,˚pxq
tj

j!
“ t´k

ż bk

0

˜

ÿ

jě0

uj,˚pxq

Γp1` sjqj!
ξsje´ξ{t

k

¸

dξ

´

J´1
ÿ

j“0

uj,˚pxq

j!
t´k

ż `8

0

ξsj

Γp1` sjq
e´ξ{t

k

dξ.

Since

t P Σδ ñ | argptq| ă
π

2
ñ <ptq ą 0 ñ

ˇ

ˇ

ˇ
ξsje´ξ{t

k
ˇ

ˇ

ˇ
“ |ξ|sje

´ξ
<ptkq
|t|2k ď bj

for all ξ P r0, bks, the series
ÿ

jě0

uj,˚pxq

Γp1` sjqj!
ξsje´ξ{t

k

converges normally on r0, bks.

Therefore, we can permute the sum and the integral. Hence,

upt, xq ´
J´1
ÿ

j“0

uj,˚pxq
tj

j!
“

ÿ

jěJ

uj,˚pxq

Γp1` sjqj!
t´k

ż bk

0

ξsje´ξ{t
k

dξ

´

J´1
ÿ

j“0

uj,˚pxq

Γp1` sjqj!
t´k

ż `8

bk
ξsje´ξ{t

k

dξ.
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Let us now observe that the inequalities pξ{bkqsj ď pξ{bkqJs hold both when ξ ď bk

and j ě J and when ξ ě bk and j ă J . This brings then us to the following
ˇ

ˇ

ˇ

ˇ

ˇ

upt, xq ´
J´1
ÿ

j“0

uj,˚pxq
tj

j!

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

jěJ

bj´J |uj,˚pxq|

Γp1` sjqj!
|t|´k

ż bk

0

ξsJe´ξ<p1{t
k
qdξ

`

J´1
ÿ

j“0

bj´J |uj,˚pxq|

Γp1` sjqj!
|t|´k

ż `8

bk
ξsje´ξ<p1{t

k
qdξ

ď
ÿ

jě0

bj´J |uj,˚pxq|

Γp1` sjqj!
|t|´k

ż `8

0

ξsje´ξ<p1{t
k
qdξ

ď
ÿ

jě0

bj´J |uj,˚pxq|

Γp1` sjqj!
|t|´k

ż `8

0

ξsje´ξ sinpδq{|t|kqdξ.

Observe that the last inequality stems from the fact that t P Σδ implies

<
ˆ

1

tk

˙

“
cos

`

argptkq
˘

|t|k
ě

cos
´π

2
´ δ

¯

|t|k
“

sinpδq

|t|k
.

Setting then u “
ξ sinpδq

|t|k
, we obtain

ˇ

ˇ

ˇ

ˇ

ˇ

upt, xq ´
J´1
ÿ

j“0

uj,˚pxq
tj

j!

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

jě0

bj´J |uj,˚pxq| |t|
J

Γp1` sjqj!psinpδqqsJ`1

ż `8

0

usJe´udu

“
ÿ

jě0

bj´J |uj,˚pxq|

Γp1` sjqj!psinpδqqsJ`1
Γp1` sJq|t|J ,

where, according to the choice of b (see the beginning of the proof), we have

ÿ

jě0

bj |uj,˚pxq|

Γp1` sjqj!
ď C

ÿ

jě0

Γp1` ps` 1qjq

Γp1` sjqj!
pKbqj ă `8.

Consequently, we finally get
ˇ

ˇ

ˇ

ˇ

ˇ

upt, xq ´
J´1
ÿ

j“0

uj,˚pxq
tj

j!

ˇ

ˇ

ˇ

ˇ

ˇ

ď C 1K 1JΓp1` sJq|t|J ,

with C 1 “
C

sinpδq

ÿ

jě0

Γp1` ps` 1qjq

Γp1` sjqj!
pKbqj and K 1 “

1

bpsinpδqqs
. The constants C 1

and K 1 depend on Σδ and on the choice of b, but are independant of t and x. This
achieves the proof. �
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