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Do vector plane waves form complete basis of solutions to Maxwell's equations? Introduction to Generalized Plane Wave Solutions

As the title says, this article questions the well established belief that the vector plane waves form a complete basis of solutions to Maxwell's equations. Vector solutions to Maxwell's equations are presented here, which have planar wave-fronts and transverse electric and magnetic fields but spatially varying polarization. They form a one-parameter family specified by integer n, and are

termed as generalized vector plane waves. The known vector plane wave solution with spatially uniform polarization, referred to as conventional vector plane waves in this article, is a subset of this family obtained for n = 0. In contradiction to the established belief, it is shown that these generalized vector plane waves with spatially varying polarization (for n = 0) cannot be expressed as superposition of conventional vector plane waves. The family of solutions also includes the interesting cases of radially and azimuthally polarized plane waves for n = 1.

I. INTRODUCTION

Vector Plane waves with polarization of uniform magnitude and direction are the simplest known solution to Maxwell's equations. Owing to mathematical complexity of full vector Maxwell's equations however, most problems in classical optics are treated with scalar wave equation. In Fourier optics, scalar plane waves are natural mode of propagation in free space, and any scalar electromagnetic field solution can be represented as superposition of plane waves, if the Fourier Transform of the solution exists. Analogously, it has been generally assumed in the scientific community that the vector plane waves form a complete basis for all solutions to vector Maxwell's equations. In this letter, a new class of vector solutions to Maxwell's equations is presented, which cannot be expressed as superposition of vector plane waves. The derivation is done without making any approximations and in vacuum region free of charge and current. These solutions form a one-parameter family specified by integer n, and termed as generalized vector plane waves since they possess planar wave-front but has spatially varying polarization, including radial and azimuthal polarization distributions. To avoid confusion, the known vector plane wave solution with spatially uniform polarization shall be referred as conventional vector plane waves whereas the new solution being presented in this paper shall be referred as generalized vector plane waves. Interestingly, the conventional vector plane wave solution itself is a special case of the family of generalized plane wave solutions, which is obtained for n = 0.

II. THEORY

The form of Maxwell equations in free space can be written as follows:

∇ • E = ρ 0 (1) ∇ • B = 0 (2) ∇ × E = -∂B ∂t (3) 
∇ × B = µ 0 0 ∂E ∂t + J (4) 
In a region free of charge and current, ρ = J = 0.
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The Maxwell's equations then reduce to wave equations in E under the Lorentz gauge condition [START_REF] Phillips Feynman | Mainly electromagnetism and matter[END_REF] ,

1 c 2 ∂ 2 E ∂t 2 -∇ 2 E = 0 (5) 
where c = 1 √ µ 0 0 is the speed of light in vacuum.

Assuming time-harmonic form of the solution, we can write,

E(r, θ, z, t) = Ẽ(r, θ, z)e -iωt (6) 
,

where ω is the frequency of the wave, and (r, θ, z) represent the cylindrical coordinate system. Substituting the above time harmonic electric field into (5), we obtain the Helmholtz equation in Ẽ

∇ 2 Ẽ + k 2 Ẽ = 0 (7) 
where k = ω c is the wavenumber. As we would only focus on the time-independent part of the field, the tilde from Ẽ will be dropped in subsequent analysis. E shall be understood as time-independent part of the electric field.

To seek non-diffracting generalized plane wave solutions (cite paper), we assume an ansatz of the time-independent electric field E(r, θ, z) with zero longitudinal component and the transverse components dependent only on (r, θ).

E(r, θ, z) = (E 1 (r, θ)e 1 + E 2 (r, θ)e 2 ) exp[ikz] (8) 
We have expressed the electric field ansatz in the Cartesian vector basis (e 1 , e 2 , e 3 ) but we will solve the Maxwell's equations in cylindrical coordinates (r, θ, z).

In cylindrical coordinates, the Laplacian operator, ∇ 2 is given by,

∇ 2 E = ∂ 2 E ∂r 2 + 1 r ∂E ∂r + 1 r 2 ∂ 2 E ∂θ 2 + ∂ 2 E ∂z 2 = ∂ 2 E ∂r 2 + 1 r ∂E ∂r + 1 r 2 ∂ 2 E ∂θ 2 -k 2 E ⇒ ∇ 2 E + k 2 E = ∂ 2 E ∂r 2 + 1 r ∂E ∂r + 1 r 2 ∂ 2 E ∂θ 2 (9)
The right hand side of the above equation can be looked as transverse part of the Laplacian operator, ∇ 2 t , while the left hand side is zero using equation ( 7). Thus, we get

∇ 2 t E = 0 or, ∇ 2 t E i = 0 ( 10 
)
where i = 1, 2 correspond to the x and y components of electric field respectively. Each vector component of electric field E i satisfies Laplacian equation in polar coordinates(r, θ), whose solution is known to be of the following form [2]

E i (r, θ) = r n (a in cos(nθ) + b in sin(nθ)) (11) 
where n can be any integer and a in , b in are constants to be determined from divergence free condition and boundary conditions.

Divergence free condition

∇ • E = 0 (12) ⇒ E 1,r + E 2,θ r cos θ + E 2,r - E 1,θ r sin θ = 0 (13)
Substituting E 1 (r, θ) and E 2 (r, θ) from equation (11) and simplifying using trigonometric identities, we get,

nr n-1 ((a 1n + b 2n ) cos(n -1)θ + (b 1n -a 2n ) sin(n -1)θ) = 0 (14)
Since equation ( 14) must hold true for all values of r and θ, the coefficients of each term are equated to zero.

a 1n = -b 2n b 1n = a 2n (15) 
Substituting these coefficients from the above relations back into equation (11), we get,

E 1n = r n (a 1n cos(nθ) + a 2n sin(nθ)) E 2n = r n (-a 1n sin(nθ) + a 2n cos(nθ)) ( 16 
)
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E n (r, θ, z) = r n R(-nθ) • A exp(ikz) (17) 
where A = (a 1n , a 2n , 0) is a constant vector. This completes the derivation of generalized plane waves. On substituting n = 0 , we recover the "conventional" plane wave solution.

E 0 (r, θ, z) = A exp(ikz) (18) 
The vector A thus, defines the polarization of the conventional vector plane wave E 0 .

Analogously, vector A is defined to be the polarization of the generalized plane wave solution for all n as well. Note that throughout our analysis, the constants a 1n , a 2n can be complex numbers, as such the notions of linearly, circularly or elliptically polarization extend to the generalized plane waves as well.

Unlike conventional vector plane waves, the generalized plane waves can exist only in certain domains depending on the sign of the charge n owing to the amplitude's dependence on r n . When n > 0, the amplitude blows up as r → ∞ and hence E n (x) for any n > 0 cannot exist in an unbounded domain. Figure [START_REF] Phillips Feynman | Mainly electromagnetism and matter[END_REF] shows the electric field given by the solution (17) with A = (1, 0, 0) and n = 1. The electric field vector rotates in the opposite sense with respect to θ, which is the case for all n > 0 and hence we term these solutions as counter -rotating generalized plane waves.
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given by A = (1, 0, 0), which has radial polarization distribution. Since the electric field vector rotates in the same sense as the azimuthal angle θ when n < 0, these solutions are termed as co -rotating generalized plane waves. For the same n = -1 but A = (0, 1, 0) , azimuthally polarized electric field is produced as seen in figure [START_REF] Sarkar | General vector basis function solution of maxwells equations[END_REF]. In both figures (2) and

(3), a small region near the axis r = 0 (not visible in figures) has been excluded to keep the amplitude finite. 

III. ORTHOGONALITY RELATIONS

To see that the generalized plane waves cannot be expressed as superposition of conventional plane waves, we define "inner product" of two solutions E 1 and E 2 over a region Ω

denoted by < E 1 | E 2 > Copyright c 2018 Saurav Aryan. ALL RIGHTS RESERVED < E 1 | E 2 >= Ω E 1 (x) • E * 2 (x) dx (19)
The definition is similar to that in [START_REF] Sarkar | General vector basis function solution of maxwells equations[END_REF], except that the integration is performed over the region Ω, where the field solution is valid instead of the whole region R 3 . Lets work with Ω to be a hollow cylinder 0 < a i < r < a 0 , since the generalized plane waves of any charge n can exist in bounded region not containing the axis r = 0. Then, the inner product between a generalized plane wave of charge n, E n (x) and an arbitrary conventional plane wave

F(x) = m exp(ik • x) traveling in the direction k = (k 1 , k 2 , k 3 ), | k |= k with polarization n
perpendicular to k, can be calculated as

< E n | F >= Ω dx E n (x) • F * (x) = ∞ 0 dz 2π 0 dθ ao a i rdr exp(ikz) r n R(nθ)A • m exp(-ik • x) = ∞ 0 dz exp [i(k -k 3 )z] 2π 0 dθ ao a i dr exp [ir(k 1 cos θ + k 2 sin θ)] r n-1 R(nθ)A • m (20) 
The above integral vanishes for all choices of direction of propagation k of conventional plane wave F. We treat the cases, when k is along z-axis, in any other direction separately.

The integral with respect to z can be viewed as half times the Fourier transform of constant function, which is a delta function,

∞ 0 dz exp [i(k -k 3 )z] = 1 2 δ(k -k 3 ) (21) 
The above vanishes for all choices of k if it is not along z-axis since k 3 = k . When k is along z-axis, k 1 = k 2 = 0, and the integral with respect to r and θ is given by

2π 0 dθ ao a i dr 1 r n-1 R(nθ)A • m = ao a i 1 r n-1 dr 2π 0 R(nθ)A • m dθ = 0 (22)
which vanishes since the integration with respect to θ of dot product of a constant vector m with R(nθ)A rotating linearly with θ is zero. More generally, any two generalized vector plane waves with different charge n traveling along the same direction, here z-axis are orthogonal, which can be proved in a similar manner as in equation ( 22). However, it is not trivial to check the orthogonality of any two generalized plane waves with different charge traveling in different direction. The expression for generalized plane wave with k not along z-axis can be written in a different cylindrical coordinate system (r , θ , z ) where z is chosen along k and r and θ are chosen appropriately so that the field solution can be given by the same expression as in (17) but with (r, θ, z) replaced by (r , θ , z ). While computing it's inner product with a field traveling along z-axis, (r , θ , z ) would need to be expressed as function of (r, θ, z). The integrand of the inner product however, can no longer be written separately in z variable as in equation ( 20), which makes it difficult to check the orthogonality.

In the above analysis, the integration with respect to r remains a finite non-zero value since it is a definite integral. However, if the domain is unbounded or contains the the axis r = 0, the integration with respect to r may no longer be finite depending on n. In particular, if the domain Ω is chosen to be the whole space R 3 , then the integration with respect to θ would still be zero, but the integration with respect to r would not be finite.

Computation of the integration of inner product (20) becomes more involved and one has to be careful in applying the above arguments to prove that the inner product still vanishes.

Further difficulty arises if the domain Ω does not possess circular symmetry and the inner product may not vanish in such cases. The restriction on n to be integer, would be relaxed in the absence of circular symmetry and additional boundary conditions would be required instead to determine possible values of n. The generalized plane waves can still exist in noncircular symmetric domain provided that the conditions for finite amplitude as discussed above are met.

IV. CONCLUSIONS

In summary, it is proved that the generalized vector plane waves cannot be expressed as superposition of conventional vector plane waves. The former constitutes a larger set of solutions to full vector Maxwell's equations, of which the later is a subset. The belief that

Copyright c 2018 Saurav Aryan. ALL RIGHTS RESERVED conventional plane wave solutions form a complete basis of solutions to vector Maxwell's equations is not true. Any other vector solutions basis, such as one presented in [START_REF] Sarkar | General vector basis function solution of maxwells equations[END_REF], shown to be complete based on this belief is not a complete basis either. It remains to be seen whether the basis formed by the generalized plane waves is complete, and also whether they are mutually orthogonal for different k and n. Further, the vector theories of diffraction which are based on the superposition of conventional plane waves could possibly be improved by including generalized vector plane waves.

How these generalized plane waves can be experimentally realized is another interesting open question. In subsequent papers, some of my theoretical attempts at designing experiment to realize simpler types of generalized plane waves will be presented. Recently, optical beams of spatially varying polarization of different kinds have gained attention and been experimentally realized. The vector solutions presented here along with other known vector solutions to Maxwell's equation [START_REF] Sarkar | General vector basis function solution of maxwells equations[END_REF][START_REF] Ww Hansen | A new type of expansion in radiation problems[END_REF][START_REF] Bouchal | Non-diffractive vector bessel beams[END_REF] should be instrumental in the development of better theoretical understanding of experimental research in vector optics.

FIG. 1 .

 1 FIG. 1. Counter-rotating generalized plane wave solution given by equation (17) with A = (1, 0, 0) and n = 1. The amplitude of the field vectors is represented by the arrow length as well as the background color (color scale in plot legend)
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 23 FIG. 2. Co-rotating generalized polarized plane wave with n = -1 and A = (1, 0, 0) has radial polarization distribution. The background color represents the magnitude of field vectors, while the arrows are of constant length indicating the direction of field.
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