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Thin linearly viscoelastic Kelvin-Voigt plates

Setting the problem

The reference configuration of the thin linearly viscoelastic Kelvin-Voigt plate is the closure in R 3 of the set Ω ε = ω × (-ε, ε) whose outward unit normal is n ε . Here ε is a small positive number and ω a bounded domain of R 2 with a Lipschitz boundary ∂ω. The lateral part of the plate ∂ω × (-ε, ε) is denoted Γ ε lat , while Γ ε ± = ω × {±ε} refers to the upper or lower face, respectively. The plate is clamped on a portion Γ ε D := γ D × (-ε, ε) of its lateral face, with γ D of positive length, and subjected to body forces and surface forces on Γ ε N := ∂Ω ε \Γ ε D of density f ε and g ε , respectively. The equations determining the quasi-static evolution, during the time interval [0, T ], of the plate in an initial state u ε 0 read as:

⎧ ⎨ ⎩ div σ ε + f ε = 0 in Ω ε × (0, T ), σ ε n ε = g ε on Γ ε N × (0, T ), u ε = 0 on Γ ε D × (0, T ) σ ε = a ε e(u ε ) + b ε e( uε ) in Ω ε × (0, T ) u ε (., 0) = u ε 0 in Ω ε (1)
where u ε , σ ε , e(u ε ), a ε and b ε denote the displacement, the stress tensor, the linearized strain tensor, the elasticity and viscosity tensor field, respectively, while the upper dot stands for the time derivative. Under suitable and realistic assumptions on the data, (1) can be formulated in terms of an ordinary differential equation governed by a bounded, selfadjoint and negative operator, which yields existence and uniqueness for u ε .

To derive a simplified and accurate model, the true question is to study the behavior of u ε when ε, regarded as a parameter, tends to zero. As in the linearly elastic case [1], it is convenient to proceed to a change of coordinates and unknowns. One comes down to a fixed open set Ω = ω × (-1, 1) through the mapping π ε :

x = ( x, x 3 ) ∈ Ω → π ε x = ( x, εx 3 ) ∈ Ω ε (2) where ξ = (ξ 1 , ξ 2 ) if ξ = (ξ 1 , ξ 2 , ξ 3 ) ∈ R 3 .
We also drop the index ε for the images by (π ε ) -1 of the geometric sets defined previously. The following assumptions on the loading are the "time-dependent" version of the classical assumptions leading to a limit kinematics of Kirchhoff-Love:

(H 1 ):

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ∃( f , g) ∈ C 0 ([0, T ]; L 2 (Ω) 3 × L 2 (Γ N ) 3 ) such that f ε (π ε x, t) = ε f (x, t), f ε 3 (π ε x, t) = ε 2 f 3 (x, t), ∀(x, t) ∈ Ω × [0, T ] g ε (π ε x, t) = ε 2 g(x, t), g ε 3 (π ε x, t) = ε 3 g 3 (x, t), ∀(x, t) ∈ (Γ N ∩ Γ ± ) × [0, T ] g ε (π ε x, t) = ε g(x, t), g ε 3 (π ε x, t) = ε 2 g 3 (x, t), ∀(x, t) ∈ (Γ N ∩ Γ lat ) × [0, T ]
where t denotes the time. Similarly, the following assumptions on the elasticity and viscosity tensors are in order:

(H 2 ): a ε (π ε x) = a(x), b ε (π ε x) = b(x) with a, b ∈ L ∞ (Ω, Lin(S 3
)), and

∃κ > 0 : a(x)e • e κ|e| 2 S 3 , b(x)e • e κ|e| 2 S 3 , ∀e ∈ S 3 , a.e. x ∈ Ω,
where Lin(S 3 ) denotes the space of linear mappings from S 3 into S 3 , S 3 being the space of 3 × 3 symmetric matrices. It will be convenient to write

S 3 = Ŝ ⊕ S ⊥ with Ŝ := {e ∈ S 3 ; e i3 = 0, 1 i 3}, S ⊥ := {e ∈ S 3 ; e αβ = 0, 1 α, β 2},

and to

denote the projection of e on Ŝ and S ⊥ by ê and e ⊥ , respectively. Then one associates a scaled displacement u(ε) = S(ε)u ε , defined on Ω × [0, T ], with the true physical displacement u ε , defined on Ω ε × [0, T ], by:

u ε x ε , t = ε u(ε) (x, t), u ε 3 x ε , t = u(ε) 3 (x, t), ∀ x ε , t = π ε x, t ∈ Ω ε × [0, T ] (3) Thus (1) is formally equivalent to ⎧ ⎪ ⎨ ⎪ ⎩ u(ε) ∈ C 1 ([0, T ]; H); u(ε)(., 0) = u 0 (ε) := S(ε)u ε 0 Ω a(x)e(ε, u(ε))(x, t) • e(ε, v)(x) dx + Ω b(x)e(ε, u(ε))(x, t) • e(ε, v)(x) dx = Ω f (x, t) • v(x) dx + Γ N g(x, t) • v(x) ds, ∀(v, t) ∈ H × [0, T ] (4) 
where H is the subspace of H 1 (Ω) 3 whose elements vanish on Γ D equipped with the inner product:

(u, v) ε = Ω b(x)e(ε, u)(x) • e(ε, v)(x) dx (5) with e(ε, v) αβ = e αβ (v), e(ε, v) α3 = ε -1 e α3 (v), 1 α, β 2, e 33 (ε, v) = ε -2 e 33 (v) (6)
Obviously, the linear operator A, defined by:

(Au, v) ε = - Ω a(x)e(ε, u)(x) • e(ε, v)(x) dx, ∀v ∈ H (7)
is bounded, selfadjoint and negative, while F (ε)(t) in H defined for all t in [0, T ] by:

F (ε)(t), v ε = Ω f (x, t) • v(x) dx + Γ N g(x, t) • v(x) ds, ∀v ∈ H (8) belongs to C 0 ([0, T ]; H). Hence (4) is equivalent to: du(ε) dt = Au(ε) + F (ε) in H u(ε)(0) = u 0 (ε) (9)
which, classically, has a unique solution in C 1 ([0, T ]; H). 3 ) extension of (F (ε), f , g) with compact support in [0, T + 1), then u(ε), solution to (9), can be viewed as the restriction to [0, T ] of the solution ũ(ε) to:

A convergence result

Let ( F (ε), f , g) be a C 0 ([0, ∞); H × L 2 (Ω) 3 × L 2 (Γ N )
⎧ ⎨ ⎩ d ũ(ε) dt = A ũ(ε) + F (ε) in H ũ(ε)(0) = u 0 (ε) (10)
which does exist by the same arguments. As in [START_REF] Francfort | Homogenization and mechanical dissipation in thermoviscoelasticity[END_REF], one will obtain a convergence result by studying the asymptotic behavior of the Laplace transform of ũ(ε). If for any Banach space X , Lz denotes the Laplace transform:

Lz(p) := ∞ 0 exp(-pt) f (t) dt (11)
of any function of L ∞ (0, +∞; X), one has:

L ũ(ε) ∈ H; Ω (a + pb)e(ε, L ũ(ε)) • e(ε, v) dx = Ω be(ε, u 0 (ε)) • e(ε, v) dx + Ω L f • v dx + Γ N L g • v ds, ∀v ∈ H (12)
Similarly to [START_REF] Francfort | Homogenization and mechanical dissipation in thermoviscoelasticity[END_REF], one makes the fundamental assumption of admissibility for the initial state: 12) can be rewritten:

(H 3 ): ∃( f 0 , g 0 ) ∈ L 2 (Ω) 3 × L 2 (Γ N ) 3 ) such that Ω ae(ε, u 0 (ε)) • e(ε, v) dx = Ω f 0 • v dx + Γ N g 0 • v ds, ∀v ∈ H Hence (
θ(ε) := pL ũ(ε) -u 0 (ε) ∈ H; Ω (a/p + b)e(ε, θ(ε)) • e(ε, v) dx = Ω L f • v dx + Γ N L g • v ds -1/p( Ω f 0 • v dx + Γ N g 0 • v ds), ∀v ∈ H (13)
so that the study of the asymptotic behavior of ũ(ε) reduces to two problems of asymptotic behavior of linearly elastic thin plates with elasticity tensors a and c(p) := a/p + b. It is well known (for instance see [1] in the homogeneous isotropic case or [START_REF] Iosifescu | Nonlinear boundary conditions in Kirchhoff-Love plate theory[END_REF] in the heterogeneous anisotropic case) that u 0 (ε), θ(ε) converge strongly in H 1 (Ω) 3 toward ū0 , θ , which solve:

⎧ ⎪ ⎨ ⎪ ⎩ ū0 ∈ V K L (Ω); Ω a K L e( ū0 ) • e(v) dx = Ω f 0 • vdx + Γ N g 0 • v ds, ∀v ∈ V K L (Ω) θ ∈ V K L (Ω); Ω c(p) K L e( θ) • e(v) dx = Ω L f • v dx + Γ N L g • v ds -1/p( Ω f 0 • v dx + Γ N g 0 • v ds), ∀v ∈ V K L (Ω) ( 14 
)
where

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ V K L (Ω) := {u ∈ H 1 Γ D (Ω) 3 ; e(u) ⊥ = 0} a K L := a ∧∧ -a ∧⊥ (a ⊥⊥ ) -1 a ⊥∧ , c(p) K L := c(p) ∧∧ -c(p) ∧⊥ (c(p) ⊥⊥ ) -1 c(p) ⊥∧ (ae) = a ∧∧ ê + a ∧⊥ e ⊥ , (ae) ⊥ = a ⊥∧ ê + a ⊥⊥ e ⊥ , ∀e ∈ S 3 (c(p)e) = c(p) ∧∧ ê + c(p) ∧⊥ e ⊥ , (c(p)e) ⊥ = c(p) ⊥∧ ê + c(p) ⊥⊥ e ⊥ , ∀e ∈ S 3 (15)
The key point concerning the asymptotic behavior of u(ε) is that (a/p + b) K L does differ from a K L /p + b K L , indeed:

c(p) K L = a K L /p + b K L + LK (p) (16)
where for all e in S 3 one has:

⎧ ⎨ ⎩ K e := a ∧⊥ w e + b ∧⊥ ẇe w e ∈ S ⊥ ; a ⊥⊥ w e + b ⊥⊥ ẇe = 0, w e (0) = (u b ) ⊥ -(u a ) ⊥ (u a ) ⊥ := (a ⊥⊥ ) -1 a ⊥∧ ê, (u b ) ⊥ := (b ⊥⊥ ) -1 b ⊥∧ ê (17) 
The capital relation ( 16) is a trivial consequence of the identity:

pLw e + u a ⊥ = u c(p) ⊥ := c(p) ⊥⊥ -1 c(p) ⊥∧ ê (18) 
which stems from the very definitions of w e , (u a ) ⊥ and (u b ) ⊥ . Hence, for all p in (0, +∞), L ũ(ε)(p) converges strongly in H 1 (Ω) 3 toward the unique solution to:

ǔ(p) ∈ V K L (Ω); Ω (a K L e( ǔ(p)) + (b K L + LK (p))e(p ǔ(p) -u 0 )) • e(v) dx = Ω L f • v dx + Γ N L g • v ds, ∀v ∈ V K L (Ω) (19)
As Laplace transform is one to one and ũ(ε) is bounded in C 1 ([0, +∞); H 1 (Ω) 3 ), one has:

Theorem 2.1. Under assumptions (H 1 )-(H 3 ), when ε tends to 0, the family u(ε) ε>0 of the unique solution to (4) converges weak star in W 1,∞ (0, T ; H 1 (Ω) 3 ) to the unique solution ū to:

⎧ ⎪ ⎨ ⎪ ⎩ ū ∈ C 1 ([0, T ]; V K L (Ω)); ū(., 0) = ū0 Ω {a K L e( ū(t)) + b K L e( u(t)) + t 0 K (t -τ )e( u(τ )) dτ } • e(v) dx = Ω f (x, t) • v(x) dx + Γ N g(x, t) • v(x) ds, ∀(v, t) ∈ V K L (Ω) × [0, T ] (20) 
Thus ū is solution to an integro-differential equation where, from its very definition, the kernel K has the same symmetries as a and b, decreases exponentially fast with time, and vanishes if:

(a ⊥⊥ ) -1 a ⊥∧ = (b ⊥⊥ ) -1 b ⊥∧ or a ∧⊥ (a ⊥⊥ ) -1 = b ∧⊥ (b ⊥⊥ ) -1 (21) 
which is the case if a is proportional to b. When assumption (H 3 ) is missing, an additional term taking into account the asymptotic behavior of the initial state appears in the expression of the scaled stress.

Concluding remarks

By proceeding to a descaling, ūε = S(ε) -1 ( ū), of the limit field ū, one has that the true physical field of displacement u ε is asymptotically equivalent to a Kirchhoff-Love field ūε , element of:

V K L Ω ε := u ∈ H 1 Γ ε D Ω ε 3 ; e(u) ⊥ = 0 (22) which satisfies: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ūε ∈ C 1 ([0, T ]; V K L (Ω ε )); ūε (., 0) = ūε 0 := S(ε) -1 ( ū0 ) Ω ε {a K L (x, x 3 /ε)e( ūε )(x, t) + b K L (x, x 3 /ε)e( uε )(x, t) + t 0 K (x, x 3 /ε, t -τ )e( uε )(x, τ ) dτ } • e(v)(x) dx = Ω ε f ε (x, t) • v(x) dx + Γ ε N g ε (x, t) • v(x) ds, ∀(v, t) ∈ V K L (Ω ε ) × [0, T ] (23) 
This asymptotic model, which involves a simpler kinematics than the genuine one, is no longer of Kelvin-Voigt type, but with fading memory. This phenomenon is comparable to that observed in homogenization by [START_REF] Sanchez-Palencia | Non Homogeneous Media and Vibration Theory[END_REF] and [START_REF] Francfort | Homogenization and mechanical dissipation in thermoviscoelasticity[END_REF]; it is due to the fact that the limit processes required to derive the models are not additive with respect to the operators. As in the linearly elastic case, if the elasticity and viscosity tensors are even functions of the transverse coordinate x 3 , a decoupling between membrane displacement and flexural displacement appears. Eventually, this study can be regarded as a justification of some intuitive model of thin viscoelastic plates (see [START_REF] Lagnese | Modeling, Analysis and Controlability of Thin Plates[END_REF] for instance); a formal derivation by the asymptotic expansion method can be found in [START_REF] Lofti | Derivation of plate models from three-dimensional viscoelasticity[END_REF][START_REF] Lofti | Derivation of plate models from three-dimensional viscoelasticity[END_REF].