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Thin linearly viscoelastic Kelvin-Voigt plates

Plaques minces viscoélastiques linéaires de Kelvin-Voigt

Christian Licht ®>-*

4 Laboratoire de mécanique et génie civil, UMR 5508 CNRS - UMII, université Montpellier-2, c.c. 048, place Eugéne-Bataillon, 34095
Montpellier cedex 5, France

b pepartment of Mathematics, Mahidol University, Rama VI road, Bangkok 10400, Thailand

ABSTRACT

A mathematical model for thin viscoelastic Kelvin-Voigt plates is derived through an
asymptotic analysis when the thickness goes to zero. The model involves Kirchhoff-Love
kinematics, but the mechanical behavior is no longer of Kelvin-Voigt type: an additional
term of delayed memory appears like in homogenization.
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RESUME

On propose un modéle mathématique pour les plaques minces viscoélastiques linéaires de
Kelvin-Voigt par une étude asymptotique lorsque I'épaisseur tend vers zéro. Le modéle
met en jeu une cinématique de Kirchhoff-Love, mais le comportement n’est plus de
type Kelvin-Voigt: comme en homogénéisation, un terme additionnel de mémoire longue
apparait.
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1. Setting the problem

The reference configuration of the thin linearly viscoelastic Kelvin-Voigt plate is the closure in R> of the set £2¢ =
 x (—¢, &) whose outward unit normal is n®. Here ¢ is a small positive number and @ a bounded domain of R? with a
Lipschitz boundary dw. The lateral part of the plate dw x (—¢, &) is denoted I3, while I'{ = w x {&¢} refers to the upper
or lower face, respectively. The plate is clamped on a portion I'j :=yp x (—¢,¢) of its lateral face, with yp of positive
length, and subjected to body forces and surface forces on I'y := d2°\I'5 of density f* and g°, respectively. The equations
determining the quasi-static evolution, during the time interval [0, T], of the plate in an initial state uf read as:
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divo® 4+ f*=0in£2° x (0,T),0°n®* =gfon Iy x (0,T),u®* =00n I'§ x (0, T)
€ =afe(u®) +be(uf)in £2° x (0, T) (1)
u®(.,0) =uf in £2°
where u®, 0%, e(u®),a® and b® denote the displacement, the stress tensor, the linearized strain tensor, the elasticity and vis-
cosity tensor field, respectively, while the upper dot stands for the time derivative. Under suitable and realistic assumptions
on the data, (1) can be formulated in terms of an ordinary differential equation governed by a bounded, selfadjoint and
negative operator, which yields existence and uniqueness for u®.
To derive a simplified and accurate model, the true question is to study the behavior of u® when &, regarded as a

parameter, tends to zero. As in the linearly elastic case [1], it is convenient to proceed to a change of coordinates and
unknowns. One comes down to a fixed open set 2 = w x (—1, 1) through the mapping 7¢:

x=(X,x3) € 2 méx= (X, ex3) € 2° (2)

where §= (&1, &) if £ = (&1, &, £3) € R3. We also drop the index & for the images by (m¢)~! of the geometric sets defined
previously. The following assumptions on the loading are the “time-dependent” version of the classical assumptions leading
to a limit kinematics of Kirchhoff-Love:

3(f, g) € CO([0, T1; L2(§2)3 x L%(I'y)3) such that

Feaex, ) =ef (), fEext) =€2f3(x,t), ¥(x,t) € 2 x [0, T]
gE(mex ) =gk, 1), gi(ex, ) =€3g3(x, 1), Y(x,t) € ([N NT%) x [0, T]
BE(x, 1) = €8x, 1), g5(mex,t) =e2g3(x, 1), V(x,t) € (I'y N [Ng) x [0, T]

(Hyp):

where t denotes the time. Similarly, the following assumptions on the elasticity and viscosity tensors are in order:

af(wéx) = a(x), be(mwfx)=>b(x)witha, b e L®(£2,Lin(5%)), and

Hy):
(H2) I >0:ax)e-e>«kle|%,, b(x)e-e>kle|?;, Vee S3, ae.xe £,

$3° $3°

where Lin(53) denotes the space of linear mappings from $3 into S3, S3 being the space of 3 x 3 symmetric matrices. It
will be convenient to write S3 =$ @ St with § —{eeS ei3=0,1<i<3}, St:={eeS%eus=01<a,B<2}, and to

denote the projection of e on S and S+ by é and el, respectively. .
Then one associates a scaled displacement u(e) = S(e)u?, defined on £2 x [0, T], with the true physical displacement u?,
defined on £2¢ x [0, T], by:

E(, ) =e(u@) 0,  us(x.t)=(ue);x 0, V()= (% t) € 2° x [0,T] (3)
Thus (1) is formally equivalent to
u(e) e C1([0, TI; H);  u(e)(.,0) = ug(e) := S(e)uf

fQ a(x)e(e,u(e))(x,t)-e(e, v)(x)dx + fQ b(x)e(e,u(e))(x,t) -e(e, v)(x)dx (4)
=[fo fx,0)- v(x)dx—i—fFN gx,t)-v(x)ds, VY(v,t)e H x[0,T]

where H is the subspace of H!(£2)? whose elements vanish on I'p equipped with the inner product:
(0. v)e = [ e, u) ) -efe. v) (1) dx (5)
Q
with
e(e. Viap=eap(v).  e(€. Vg3 =6 ex3(v), 1<, B<2,  ex(Ev)=¢clen(v) (6)

Obviously, the linear operator A, defined by:

(Au,v), = —/a(x)e(s, u)x)-e(e,v)(x)dx, VveH (7)
Q
is bounded, selfadjoint and negative, while F(¢)(t) in H defined for all t in [0, T] by:

(F(s)(t) v /f(x t)- v(x)dx+/g(x t)-v(x)ds, VveH (8)
I'n

belongs to C°([0, T]; H). Hence (4) is equivalent to:



du(g)—A F in H
a u(e) + F(e) in 9)

u(e)(0) = up(e)

which, classically, has a unique solution in c([0, T1; H).

2. A convergence result

Let (F(¢), f, &) be a CO([0, 00); H x L2(£2)3 x L2(I'y)3) extension of (F(e), f, g) with compact support in [0, T + 1), then
u(e), solution to (9), can be viewed as the restriction to [0, T] of the solution ii(¢) to:
di(e)
de
u(e)(0) =ug(e)

which does exist by the same arguments. As in [2], one will obtain a convergence result by studying the asymptotic behavior
of the Laplace transform of ii(¢). If for any Banach space X, £z denotes the Laplace transform:

= Aii(e)+ F(¢e) inH (10)

o0

Lz(p) := / exp(—pt) f () dt (11)
0

of any function of L°°(0, +00; X), one has:

Lu(g) e H;
{ f_Q((a)—l- pbe(e, Lii(e)) - e(e, v) dx = [, be(e, ug(e)) - e(e, v)dx + [, Lf-vdx+ Jr C&-vds, VveH (12)
Similarly to [2], one makes the fundamental assumption of admissibility for the initial state:
) { A(fo, g0) € L2(£2)3 x L2(I'y)3) such that
Joae(e, ug(e)) -e(e, vydx= [, fo-vdx+ er go-vds, VYveH
Hence (12) can be rewritten:
0(e) :=pLii(e) —ug(e) € H; fQ (a/p +Dbe(e,0(g)) -e(e, v)dx
{ :fQL]-vdx—i—erﬁg-vds—l/p(f_Qfo-vdx+fFNgo-vds), YveH (13)

so that the study of the asymptotic behavior of ii(¢) reduces to two problems of asymptotic behavior of linearly elastic thin
plates with elasticity tensors a and c(p) :=a/p +b. It is well known (for instance see [1] in the homogeneous isotropic case
or [3] in the heterogeneous anisotropic case) that ug(e), 6(¢) converge strongly in H'(§2)3 toward iig, , which solve:

g € Vi1 (2); [ ake(ig) -e(vydx= [, fo- vdx+ [, go-vds, Vve Vi (2)

0 eVk(2);  [oc(p)Xted)-e(v)dx (14)
= [oLF vdx+ [ L& vds—1/p([, fo-vdx+ [, go-vds), Vve Vi (2)

where

ViL(2) = (u € H}, (2)% et = 0)

ati=ann —ani@r) T apa e i=c(P)an — c(P)aL(e(p) L) T e(p) L (15)
(@e) =apné+an et (@)t =a é+aet, Vees?

(c(p)e) = c(P)an +c(p)aret. (c(p)e)t =c(p)iré+c(p)iiet, VeeS?

The key point concerning the asymptotic behavior of u(e) is that (a/p + b)XL does differ from aX’/p + bXL, indeed:

et =dt/p + 0" + LK (p) (16)
where for all e in S3 one has:
Ke:=a,, wé +b, Wt
weeStia  we+b  we=0,we0) = @wh)t — @t (17)
Wt = (ar ) asne, @byt = (by)'hiAé

The capital relation (16) is a trivial consequence of the identity:

pLw® + ()" = (uP) (= (c(p) 1) c(p) 1n8) (18)



which stems from the very definitions of we¢, (u%)+ and (u?)L. Hence, for all p in (0, +-00), Lii(¢)(p) converges strongly in
H'(£2)? toward the unique solution to:

(p) € Vk1(£2); [ @ te(p)) + (0"t + LK (p)e(pli(p) — uo)) - e(v) dx

- 19
=f9£f«vdx+er£§-vds, Vv e Vi (£2) (19)

As Laplace transform is one to one and ii(¢) is bounded in C'([0, +00); H'(£2)3), one has:
Theorem 2.1. Under assumptions (H1)-(Hs), when ¢ tends to 0O, the family u(g)¢-o of the unique solution to (4) converges weak star
in W10, T; H1(£2)3) to the unique solution i to:

uecl(o, T1; Vi ($2)); u(.,0) =1 ‘
JotaKeqa(e)) +bXre(u(t)) + [y K(t — t)e(ti(r)) dr} - e(v) dx (20)
=[o fx,t)- v(x)dx—i—fFN gix,t)-v(x)ds, V(v,t)e Vg(£2) x[0,T]

Thus u is solution to an integro-differential equation where, from its very definition, the kernel K has the same symme-
tries as a and b, decreases exponentially fast with time, and vanishes if:
(@r) tasa=b1)7bia or api(ai) ! =bar(bry)! (21)

which is the case if a is proportional to b. When assumption (H3) is missing, an additional term taking into account the
asymptotic behavior of the initial state appears in the expression of the scaled stress.

3. Concluding remarks

By proceeding to a descaling, ¢ = S(¢)~! (i), of the limit field i, one has that the true physical field of displacement u®
is asymptotically equivalent to a Kirchhoff-Love field u¢, element of:

Vi (@°) = {u e H}e (2°) e =0} (22)
which satisfies:
u® € C1([0, T]; Vk1(29)); u°(., 0) = u§ := S(e) ™" (o)
Soe Kt &, x3/8)e@®) (x, 1) + KL (R, X3 /8)e (i) (x, 1)

+ [ K@ x3/e,t — De(li ) (x, T) dT} - e(v) () dx
= [oe fE(X, 1) - v(x)dx+frﬁ gE(x,t)-v(x)ds, Y(v,t)e Vi (2%) x [0, T]

(23)

This asymptotic model, which involves a simpler kinematics than the genuine one, is no longer of Kelvin-Voigt type, but
with fading memory. This phenomenon is comparable to that observed in homogenization by [4] and [2]; it is due to the
fact that the limit processes required to derive the models are not additive with respect to the operators. As in the linearly
elastic case, if the elasticity and viscosity tensors are even functions of the transverse coordinate x3, a decoupling between
membrane displacement and flexural displacement appears. Eventually, this study can be regarded as a justification of some
intuitive model of thin viscoelastic plates (see [5] for instance); a formal derivation by the asymptotic expansion method
can be found in [6,7].
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