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Abstract. The effective behavior of a solid made from a periodic distribution of inclusions in a matrix is investigated. Inclusions
and matrix are linearly elastic or viscoelastic of Kelvin–Voigt type (and possibly rigid for the inclusions) while the link between
them can be pure adhesion or viscous friction with bilateral contact or involve a very thin viscoelastic layer. As long as one
constituent is viscoelastic, the effective behavior is no longer of Kelvin–Voigt type but with memory.
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1. Introduction

The effective behavior of a periodically heterogeneous body made of Kelvin–Voigt type viscoelastic
materials was long ago investigated by homogenization theory in [4]. It was proven that this effective
behavior is no longer of Kelvin–Voigt type but rather with fading memory. Here we extend this result
to the case of composites with a periodic structure made of two or three phases, with each phase being
either viscoelastic of Kelvin–Voigt type or purely elastic, but at least one is viscoelastic. The three-phase
case corresponds to a periodic distribution of inclusions in a matrix linked to the matrix through a thin
soft layer, or the so called interphase, whereas in the two-phase case, inclusions and matrix are perfectly
bonded or a condition involving bilateral contact with friction of Kelvin–Voigt type may occur. The
mechanical motivation underlying this study concerns the evident technological difficulty of achieving
perfect bonding of inclusions in a matrix when manufacturing composite materials [9].

More precisely, the geometry of the composite can be described as follows. Let Y := (0, 1)3 the unit
cell of R3, I a simply connected open set, with a Lipschitz-continuous boundary S, whose closure I
is included in Y , and M := Y \ I . If h is a small real number (less than dist(S, ∂Y )), let Ih = {y ∈
I; dist(y,S) > h}, Bh = {y ∈ Y ; dist(y,S) < h} and Mh = Y \ (Bh ∪ Ih). Let Ω denote the domain,
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with a Lipschitz-continuous boundary ∂Ω, occupied by the heterogeneous body under consideration. If
ε is a small number (the scaling parameter of the periodic structure), let Jε := {j ∈ Z

3; ε(j+Y ) ⊂ Ω},

Iε :=
⋃
j∈Jε

ε(j + I), Sε :=
⋃
j∈Jε

ε(j + S), Mε := Ω \ Iε,

Ih,ε :=
⋃
j∈Jε

ε(j + Ih), Bh,ε :=
⋃
j∈Jε

ε(j +Bh), Mh,ε := Ω \ (Ih,ε ∪Bh,ε).

So in the case of two phases, Iε is the region occupied by the periodic distribution of inclusions, which
does not intersect ∂Ω, and Mε is the region occupied by the matrix. While in the three-phase case, Mh,ε,
Bh,ε, Ih,ε correspond to the regions occupied by the matrix, the interphase and inclusions, respectively.

To describe the constitutive equations of the body, we introduce AM , BM in L∞(M ; Lin(S3)) and AI ,
BI in L∞(I; Lin(S3)), where Lin(S3) denotes the space of symmetric linear mappings from S

3 to S
3,

the space of 3 × 3 symmetric matrices, with the usual inner product and norm denoted by · and | | (as
in R

3). We assume that there exists κ > 0 such that{
AM (y)ξ · ξ,BM (y)ξ · ξ � κ|ξ|2

S3 a.e. y in M , ∀ξ ∈ S
3,

AI (y)ξ · ξ,BI (y)ξ · ξ � κ|ξ|2
S3 a.e. y in I , ∀ξ ∈ S

3
(1.1)

and extend these mappings into R
3 by Y -periodicity. We will consider eight examples of composites

indexed by J . The first six examples correspond to two phases occupying Mε and Iε. In the first four ex-
amples, the constituents are assumed to be perfectly bonded along Sε, whereas, in the last two examples,
there are conditions of bilateral contact with Kelvin–Voigt type tangential friction

σT = μ∗
e[u]T + μ∗

v[u̇]T , [u]N = 0.

Here μ∗
e, μ∗

v are strictly positive real numbers and [u] denotes the jump of displacement (the relative
displacement) along Sε, defined as the difference of the trace of the displacement u in Iε with the one in
Mε and n, σn being the inward normal to ∂Iε and the common stress vector along Sε, respectively; one
has

[u]N = [u] · n, [u]T = [u] − [u]Nn, σN = σn · n, σT = σn− σNn,

while the upper dot ˙ stands for time derivative. In case J = 1, the matrix and inclusions are assumed
to be viscoelastic of Kelvin–Voigt type, with the elasticity and viscosity tensor equal to AM (x/ε),
BM (x/ε) for all x in Mε, and AI (x/ε), BI (x/ε) for all x in Iε; this is the case treated in [4]. Case J = 2
corresponds to a viscoelastic matrix, with elasticity and viscosity tensors AM (x/ε) and BM (x/ε), sur-
rounding linearly elastic inclusions of elasticity tensor AI (x/ε). Case J = 3 is the “complement” of the
previous one: viscoelastic inclusions with tensors AI (x/ε), BI (x/ε) are periodically distributed in an
elastic matrix with elasticity tensor AM (x/ε). Case J = 4 deals with rigid inclusions in a viscoelastic
matrix with tensors AM (x/ε), BM (x/ε). Case J = 5 corresponds to viscoelastic matrix and inclu-
sions as when J = 1, whereas J = 6 corresponds to a purely linearly elastic matrix and inclusions
with elasticity tensors AM (x/ε) and AI (x/ε), respectively. This last case with μ∗

e = 0 was treated by
the asymptotic expansion method in [5]. Finally, we add two other examples involving three perfectly
bonded phases occupying Mh,ε, Bh,ε and Ih,ε. The interphase is assumed to be isotropically viscoelastic



of Kelvin–Voigt type

σ = λe tr e(u)Id + 2μee(u) + λv tr e(u̇)Id + 2μve(u̇), (1.2)

where λe, μe, λv, μv are strictly positive numbers and σ, e(u), e(u̇) denote stress, strain and strain rate
tensors, and Id stands for the identity matrix of S3. When J = 7, matrix and inclusions are assumed to be
viscoelastic with tensors AM (x/ε), BM (x/ε), AI (x/ε), BI (x/ε), while if J = 8, matrix and inclusions
are purely linearly elastic with elasticity tensors AM (x/ε) and AI (x/ε), respectively.

Thus the problem of determining the quasi-static evolution during an interval of time [0,T ] of the
body in a given initial state, clamped along Γ0 ⊂ ∂Ω, with strictly positive two-dimensional Hausdorff
measure H2(Γ0), and subjected to body forces in Ω and surface forces on Γ1 = ∂Ω \ Γ 0 of densities f ,
g, involves a set s of data which reduces to only ε in the first four examples, is (ε,μ∗

e,μ∗
v) when J = 5, 6,

and is (ε, s′), s′ = (h,λe,μe,λv,μv) in the last two examples. In the next section, we show that, under
suitable data assumptions, the problem can be formulated as:⎧⎨

⎩
Find us in C1

(
[0,T ];Hs

)
such that

as
(
us(t),ϕ

)
+ bs

(
u̇s(t),ϕ

)
= L(t)(ϕ) ∀(ϕ, t) ∈ Hs × [0,T ],

us(0) = uos,
(Ps)

where Hs is a Hilbert space of possible states with finite total strain energy equipped with the inner prod-
uct as(·, ·); bs is a continuous bilinear form on Hs and L(t) is a continuous linear form representing the
work of the loading (f , g) at time t. The existence and uniqueness of a field of displacement us solution
to (Ps) is easily obtained by transforming (Ps) in an evolution equation in Hs and using the theory of
semi-groups of linear operators. In Section 3, to determine the effective behavior of the composites we
consider the geometrical and mechanical data s as parameters taking values in a countable set and study
the asymptotic behavior of us when ε goes to 0, μ∗

e and μ∗
v go to infinity, s′ goes to zero according to:

• ∃
(
μ̄∗
e, μ̄∗

v

)
∈ (0,+∞)2 such that lim

(
μ∗
eε,μ∗

vε
)
=

(
μ̄∗
e, μ̄∗

v

)
,

• ∃(λ̄e, μ̄e, λ̄v, μ̄v) ∈ (0,+∞)4 such that (1.3)

lim(λe/2h,μe/2h,λv/2h,μv/2h) = (λ̄e, μ̄e, λ̄v, μ̄v), lim ε2/μe = lim ε2/h = 0.

Note that s′ and ε go quite independently to zero under the sole condition lim ε2/μe = lim ε2/h = 0
which means that the Lamé coefficient μe and the thickness of the interphase are not too small. In the
following, we will say that s goes to s̄ according to (1.3).

By using the Laplace transform and a suitable assumption on the initial state, it can be shown that in
all examples the effective constitutive equation is of the type

σ = Aeffe(u) +Beffe(u̇) +
∫ t

0
K(t− τ )e(u̇)(τ ) dτ , (1.4)

where Aeff and Beff are the standard homogenized tensors corresponding to the heterogeneous elastic
and viscous behaviors, while the kernel K is a perfectly identified element of Lin(S3). In some cases
Beff may vanish.

The principle of this study is that of [4] but due to the character, say, singular of the cases J �= 1 (purely
elastic behavior in some regions and/or soft thin interphase, or viscoelastic friction on the interfaces)



which are relevant in practice, there are some technical difficulties that must be overcome (Hs may
be strongly s-dependent, bs may have a kernel and consequently (Ps) involves an unbounded evolution
operator and convergences do occur in weak-∗ topologies).

2. A result of existence and uniqueness for (Ps)

We define the space Hs as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 � J � 3 Hs := H1
Γ0

(
Ω;R3

)
:=

{
u ∈ H1

(
Ω;R3

)
;u = 0 on Γ0

}
,

J = 4 Hs :=
{
u ∈ H1

Γ0

(
Ω;R3

)
; e(u) = 0 in Iε

}
,

with e being the symmetrized gradient in the sense of distributions,
J = 5, 6 Hs :=

{
u ∈ H1

Γ0

(
Ω \ Sε;R3

)
; [u]N = 0 on Sε

}
,

J = 7, 8 Hs := H1
Γ0

(
Ω;R3

)
,

(2.1)

it is equipped with the inner product, equivalent to the classical one, associated with the bilinear form as
defined by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J � 4 as(u, v) :=
∫
Mε

AM (x/ε)e(u) · e(v) dx+
∫
Iε
AI (x/ε)e(u) · e(v) dx,

J = 5, 6 as(u, v) :=
∫
Mε

AM (x/ε)e(u) · e(v) dx+
∫
Sε

μ∗
e[u]T · [v]T dH2

+
∫
Iε
AI (x/ε)e(u) · e(v) dx,

where we still denote the symmetrized gradient in the
sense of distribution in Ω \ Sε by e,

J = 7, 8 as(u, v) :=
∫
Mh,ε

AM (x/ε)e(u) · e(v) dx

+
∫
Bh,ε

(
λe tr e(u) tr e(v) + 2μee(u) · e(v)

)
dx

+
∫
Ih,ε

AI (x/ε)e(u) · e(v) dx,

where tr denotes the trace operator on S
3.

(2.2)

Let bs be the continuous bilinear form on Hs deduced from the irreversible part of the behavior of the
body⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J = 1 bs(u, v) :=
∫
Mε

BM (x/ε)e(u) · e(v) dx+
∫
Iε
BI (x/ε)e(u) · e(v) dx,

J = 2, 4 bs(u, v) :=
∫
Mε

BM (x/ε)e(u) · e(v) dx,

J = 3 bs(u, v) :=
∫
Iε
BI (x/ε)e(u) · e(v) dx,

J = 5 bs(u, v) :=
∫
Mε

BM (x/ε)e(u) · e(v) dx+
∫
Sε

μ∗
v[u]T · [v]T dH2

+
∫
Iε
BI (x/ε)e(u) · e(v) dx,

J = 6 bs(u, v) :=
∫
Sε

μ∗
v[u]T · [v]T dH2,

J = 7 bs(u, v) :=
∫
Mh,ε

BM (x/ε)e(u) · e(v) dx

+
∫
Bh,ε

(
λv tr e(u) tr e(v) + 2μve(u) · e(v)

)
dx

+
∫
Ih,ε

BI (x/ε)e(u) · e(v) dx,

J = 8 bs(u, v) :=
∫
Bh,ε

(
λv tr e(u) tr e(v) + 2μve(u) · e(v)

)
dx.

(2.3)



If the loading (f , g) is assumed to be in C0([0,T ];L2(Ω;R3) × L2(Γ1;R3)), the quasistatic evolution of
the body in initial state uos in Hs may be formulated as:⎧⎨

⎩
Find us in C1

(
[0,T ];Hs

)
such that

as
(
us(t), v

)
+ bs

(
u̇s(t), v

)
= L(t)(v) ∀(v, t) ∈ Hs × [0,T ],

us(0) = uos,

(Ps)

where

L(t)(v) :=
∫
Ω
f (x, t) · v(x) dx+

∫
Γ1

g(x, t) · v(x) dH2 ∀(v, t) ∈ Hs × [0,T ]. (2.4)

To solve (Ps), we make the additional assumption

(f , g) ∈ C1,α
(
[0,T ];L2

(
Ω;R3

)
× L2

(
Γ1;R3

))
, α ∈ (0, 1], (2.5)

and seek us in the form

us = ues + urs, (2.6)

where ues satisfies

∃!ues(t) ∈ C1,α
(
[0,T ];Hs

)
; as

(
ues(t), v

)
= L(t)v ∀(v, t) ∈ Hs × [0,T ]. (2.7)

Let {
ker bs :=

{
u ∈ Hs; bs(u, v) = 0 ∀v ∈ Hs

}
,

Vs := ker b⊥s :=
{
u ∈ Hs; as(u, v) = 0 ∀v ∈ ker bs

}
,

(2.8)

then the remaining part urs will therefore be involved in an evolution equation in Vs governed by the
following operator:{

D(As) =
{
u ∈ Vs;∃!w(u) ∈ Vs s.t. bs

(
w(u), v

)
+ as(u, v) = 0 ∀v ∈ Vs

}
,

Asu = w(u).
(2.9)

Proposition 2.1. As is an m-dissipative operator.

Proof.

(i) As is dissipative because, for all u in D(As), we have

as(Asu,u) = as
(
w(u),u

)
= −bs

(
w(u),w(u)

)
� 0.

(ii) I −As is onto.
Let F be in Vs, if u−Asu = F , we should have

u ∈ Vs; bs(u− F , v) + as(u, v) = 0 ∀v ∈ Vs,

which has a unique solution ū by the Lax–Milgram lemma. Hence, ū ∈ D(As) and ū−Asū = F .



(iii) As is self-adjoint: as As is m-dissipative, it suffices to prove that As is symmetric, which is true
because for all u, v in D(As) one has

as(Asu, v) = as
(
w(u), v

)
= −bs

(
w(u),w(v)

)
= as

(
u,w(v)

)
= as(u,Asv). �

Lastly, it is straight forward to check that (Ps) is equivalent to

⎧⎨
⎩

durs
dt

= Asu
r
s −

d(ues)
⊥

dt
,

urs(0) = uos − ues(0) := uros ,
(2.10)

where ues
⊥ denotes the projection of ues on Vs, which classically has a unique solution if uros ∈

ues(0) +D(As). Hence the following result is established.

Theorem 2.1. If (f , g) ∈ C1,α([0,T ];L2(Ω;R3) × L2(Γ1;R3)) for some α in (0, 1], then (Ps) has
a unique solution of class C1([0,T ];Hs) when uos ∈ ues(0) + D(As), of class C0([0,T ];Hs) ∩
C1((0,T ];Hs) when uos ∈ ues(0) + Vs.

Remark 2.1. If the kernel of bs is not reduced to {0}, the operator As is unbounded. In the other cases
(J ∈ {1, 4, 5, 7}), by equipping Hs with bs as inner product (like in [4] for J = 1), one may formulate
(Ps) in terms of an ordinary differential equation, and the conclusions of Theorem 2.1 are reached just
with the milder assumption (f , g) ∈ C0([0,T ];L2(Ω;R3) × L2(Γ1;R3)).

3. Effective behavior of the body

As previously stated, the strategy is the one of [4]. By using the Laplace transform and a suitable
assumption on the initial state, the problem reduces to two problems of homogenization in elasticity. In
the non-standard cases (J � 7), we solve them by a variational convergence method (see [2,3]), and the
obtained “homogenized coefficients” expressions permit us to determine the effective behavior of the
heterogeneous viscoelastic body. We proceed in five steps, and, as usual, C and C ′ will denote various
constants.

First step (Extension of us into [0,+∞)). Let (f̃ , g̃) be a C1,α([0,+∞);L2(Ω;R3) × L2(Γ1;R3)) ex-
tension of (f , g) with compact support in [0,T + 1), then the solution us to (Ps) can be viewed as the
restriction to [0,T ] of the unique solution ũs to

⎧⎨
⎩ as(ũs, v) + bs( ˙̃us, v) =

∫
Ω
f̃ · v dx+

∫
Γ1

g̃ · v dH2 ∀(v, t) ∈ Hs × [0,+∞),

ũs(0) = uos ∈ ues(0) + Vs,
(3.1)

which definitely exists in L∞(0,+∞;Hs) ∩ C1([0,+∞);Hs) when J ∈ {1, 4, 5, 7} (see Remark 2.1)
and in L∞(0,+∞;Hs) ∩ C0([0,+∞);Hs) ∩ C1((0,+∞);Hs) when J ∈ {2, 3, 6, 8}. The inequality

as(u,u) � κ
∣∣e(u)

∣∣2
L2(Ω;S3)

∀u ∈ Hs,J ∈ {1, 2, 3, 4}, (3.2)



due to (1.1), does not hold when J ∈ {5, 6, 7, 8}, but one has

as(u,u) � C
(
|u|2L2(Ω;R3) + |u|2BD(Ω)

)
∀u ∈ Hs,J ∈ {5, 6, 7, 8}, (3.3)

where we recall that

BD(Ω) :=
{
u ∈ L1

(
Ω;R3

)
; e(u) ∈ Mb

(
Ω;S3

)}
,

Mb

(
Ω;S3

)
:=

{
bounded S

3-valued measures on Ω
}

,

LD(Ω) :=
{
u ∈ L1

(
Ω;R3

)
; e(u) ∈ L1

(
Ω;S3

)}
.

Indeed, if J ∈ {7, 8}, one has

as(u,u) � κ
∣∣e(u)

∣∣2
L2(Mh,ε∪Ih,ε;S3)

+ μe

∣∣e(u)
∣∣2
L2(Bh,ε;S3)

�
(
κ/|Ω|

)∣∣e(u)
∣∣2
L1(Mh,ε∪Ih,ε;S3)

+ (Cμe/h)
∣∣e(u)

∣∣2
L1(Bh,ε;S3)

� C
∣∣e(u)

∣∣2
L1(Ω;S3)

� C|u|2LD(Ω) = C|u|2BD(Ω)

because u vanishes on Γ0, see [12]. To complete the proof of (3.3), we first recall that, using a vari-
ant of [11], p. 183, involving rigid displacements, any u in H1

Γ0
(Mho,ε;R3) has an extension ũ into

H1
Γ0

(Ω;R3) such that |e(ũ)|L2(Ω;S3) � C|e(u)|L2(Mho ,ε;R3), where ho is a fixed positive number less than
dist(S, ∂Y ). Thus the Korn inequality in H1

Γ0
(Ω;R3) yields

|ũ|2L2(Ω;R3) � C
∣∣e(ũ)

∣∣2
L2(Ω;S3)

� C ′∣∣e(u)
∣∣2
L2(Mho ,ε;S3)

�
(
C ′/κ

)
as(u,u). (3.4)

Next the periodic structure of Mho,ε and the Korn inequality in H1
Γ0

(Ω \Mho,ε) give

|u− ũ|2L2(Ω;R3) = |u− ũ|2L2(Ω\Mho ,ε;R3) � Cε2
∣∣e(u− ũ)

∣∣2
L2(Ω\Mho ,ε;S3)

� Cε2
(∣∣e(ũ)

∣∣2
L2(Ω;S3)

+
∣∣e(u)

∣∣2
L2(Mh,ε;S3)

+
∣∣e(u)

∣∣2
L2(Bh,ε;S3)

+
∣∣e(u)

∣∣2
L2(Ih,ε;S3)

)
� Cε2

(
1 +

1
μe

)
as(u,u). (3.5)

Then (3.4) implies

|u|2L2(Ω;R3) � C

(
1 + ε2 +

ε2

μe

)
as(u,u) (3.6)

which, with assumption (1.3), achieves the proof of (3.3).

Remark 3.1. The weaker assumption limε2/μe < +∞ is enough to get (3.3). But, as we shall see
in the proof of Proposition 3.1, it is crucial to know that a sequence (us) such that as(us,us) � C



is strongly relatively compact in L2(Ω;R3) and that any limit point belongs to H1
Γ0

(Ω;R3). Actually,
(3.4) implies that (ũs) is weakly relatively compact in H1

Γ0
(Ω;R3) and, by Rellich Theorem, strongly

relatively compact in L2(Ω;R3), then (3.5) with assumption (1.3) yield the strong relative compactness
in L2(Ω;R3) of (us) and that any limit point belongs to H1

Γ0
(Ω;R3).

In the case J ∈ {5, 6} the same argument with ho = 0 (see [5]) gives

|u|2L2(Ω;R3) � Cas(u,u) ∀u ∈ Hs.

To conclude, it should be noted, that for all τ in C0
0 (Ω;S3) ∩ C1(Ω;S3) we have

−
∫
Ω
u · div τ dx=−

∫
Mε

u · div τ dx−
∫
Iε

u · div τ dx

=

∫
Mε

e(u) · τ dx+

∫
Iε

e(u) · τ dx−
∫
Sε

τn[u] dH2

� C|τ |C0(Ω;S3)as(u,u)1/2,

where C0
0 (Ω;S3) := {τ ∈ C0(Ω;S3); τ = 0 on ∂Ω}. Thus, (3.1)–(3.3) imply

⎧⎪⎪⎨
⎪⎪⎩

when J ∈ {1, 4} ũs is bounded in W 1,∞(
0,+∞;H1

Γ0

(
Ω;R3

))
,

when J ∈ {2, 3} ũs is bounded in L∞(
0,+∞;H1

Γ0

(
Ω;R3

))
,

when J ∈ {5, 7} ũs is bounded in W 1,∞(
0,+∞;BD(Ω) ∩ L2

(
Ω;S3

))
,

when J ∈ {6, 8} ũs is bounded in L∞(
0,+∞;BD(Ω) ∩ L2

(
Ω;S3

))
.

(3.7)

Second step (Laplace transform of (Ps)). So, if for any Banach space X , Lz denotes the Laplace trans-
form

Lz(p) :=
∫ +∞

0
exp(−pt)z(t) dt ∀p ∈ (0,+∞) (3.8)

of any function of L∞(0,+∞;X), one has for all p ∈ (0,+∞)

⎧⎨
⎩

Lus(p) ∈ Hs;

(as + pbs)
(
Lus(p), v

)
= bs

(
uos, v

)
+

∫
Ω
Lf̃ · v dx+

∫
Γ1

Lg̃ · v dH2 ∀v ∈ Hs.
(3.9)

Similar to [4], one makes the fundamental assumption of admissibility for the initial state

⎧⎨
⎩

∃
(
fo, go

)
∈ L2

(
Ω;R3

)
× L2

(
Γ1;R3

)
such that

as
(
uos, v

)
=

∫
Ω
fo · v dx+

∫
Γ1

go · v dH2 ∀v ∈ Hs.
(3.10)



Hence (3.9) can be written⎧⎪⎪⎨
⎪⎪⎩

θs := pLus(p) − uos ∈ Hs;
(as/p+ bs)(θs, v)

=

∫
Ω
Lf̃ · v dx+

∫
Γ1

Lg̃ · v dH2 −
1
p

(∫
Ω
fo · v dx+

∫
Γ1

go · v dH2

)
∀v ∈ Hs,

so that the study of the asymptotic behavior of us reduces to two problems of homogenization in lin-
earized elasticity involving the bilinear forms as and cs(p) := as/p+ bs, respectively.

Third step (Convergence of θs and uos). Cases J � 3 are classical (see [10]), while cases 4 � J � 6
were treated in [5]. The other cases seem new and the proof of the homogenization result is given in
Section 4. We now need to introduce some tools. If⎧⎨

⎩
H1

per

(
Y ;R3

)
:=

{
u ∈ H1

(
Y ;R3

)
;u takes the same values on the opposite sides of ∂Y

}
,

H1
per

(
Y \ S;R3

)
:=

{
u ∈ H1

(
Y \ S;R3

)
;u takes the same values on the opposite sides of ∂Y

}
,

(3.11)

on the space

HY =
{
u ∈ H1

per

(
Y \ S,R3

)
; [u]N = 0 on S

}
, when J ∈ {5, 6}, (3.12)

are defined continuous bilinear forms aY , bY whose expressions are derived from those of as, bs by
replacing Mε, Iε, Sε and x/ε by M , I , S and y the current point of the unit cell Y which describes the
εY -periodic structure of the body. For instance, aY (ϕ,ψ) reads as

aY (ϕ,ψ) :=
∫
M

AM (y)e(ϕ) · e(ψ) dy +
∫
S
μ∗[ϕ]T · [ψ]T dH2 +

∫
I
AI (y)e(ϕ) · e(ψ) dy.

For J ∈ {7, 8}, we have

HY = H1
per

(
Y \ S;R3

)
, (3.13)

and the bilinear form aY is defined by

aY (ϕ,ψ) =
∫
M

AM (y)e(ϕ) · e(ψ) dy

+

∫
S

(
λ̄e[ϕ]N [ψ]N + 2μ̄e

(
[ϕ] ⊗S n

)
·
(
[ψ] ⊗S n

))
dH2

+

∫
I
AI (y)e(ϕ) · e(ψ) dy ∀ϕ,ψ ∈ HY ,

while the continuous bilinear form bY on HY is defined by

bY (ϕ,ψ) =
∫
M

BM (y)e(ϕ) · e(ψ) dy



+

∫
S

(
λ̄v[ϕ]N [ψ]N + 2μ̄v

(
[ϕ] ⊗S n

)
·
(
[ψ] ⊗S n

))
dH2

+

∫
I
BI (y)e(ϕ) · e(ψ) dy ∀ϕ,ψ ∈ HY

when J = 7, whilst when J = 8 only the surface term appears, where ξ ⊗S ζ is the symmetrized tensor
product of ξ and ζ in R

3.
Let

cY (p) :=
1
p
aY + bY , (3.14)

as aY is coercive on HY /R
3, we deduce that for all E in S

3 the problems

min

{
1
2
aY (E·+ v,E·+ v), v ∈ HY

}
, (P a

E)

min

{
1
2
cY (p)(E·+ v,E·+ v), v ∈ HY

}
, (P c(p)

E )

where E· denotes the function y ∈ Y \ S �→ Ey ∈ R
3, have unique solutions denoted by vaE , vc(p)

E ,
respectively, and satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aY
(
vaE ,ϕ

)
= −aY (E·,ϕ) ∀ϕ ∈ HY ,

cY (p)
(
vc(p)
E ,ϕ

)
= −cY (p)(E·,ϕ) ∀ϕ ∈ HY ,∫

Y
vaE(y) dy =

∫
Y
vc(p)
E (y) dy = 0.

(3.15)

Let Aeff and Ceff(p) be the elements of Lin(S3) defined by

{
AeffE · E := aY

(
E·+ vaE ,E·+ vaE

)
∀E ∈ S

3,

Ceff(p)E · E := cY (p)
(
E·+ vc(p)

E ,E·+ vc(p)
E

)
∀E ∈ S

3,
(3.16)

which classically satisfy:

∃κ̄M ;
∣∣AeffE

∣∣ � κ̄M |E|,
∣∣Ceff(p)E

∣∣ � κ̄M |E| ∀E ∈ S
3

(3.17)
∃κ̄m; AeffE · E � κ̄m|E|2, Ceff(p)E · E � κ̄m|E|2 ∀E ∈ S

3.

Then the following convergence result, which has its own interest (homogenization and bonding in
linearized elasticity) and whose proof is given Section 4 by a method of variational convergence, holds.



Proposition 3.1. For all p in (0,+∞), when s goes to s̄ according to (1.3), (uos, θs) converges weakly in
H1(Ω;R3) when J � 4, weak-∗ in BD(Ω) and strongly in L2(Ω;R3) when J � 5, toward the unique
solution (ūo, θ̄) to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ūo, θ̄

)
∈ H1

Γ0

(
Ω;R3

)
;∫

Ω
Aeffe

(
ūo
)
· e(v) dx =

∫
Ω
fo · v dx+

∫
Γ1

go · v dH2,∫
Ω
Ceff(p)e(θ̄) · e(v) dx

=

∫
Ω
Lf̃ · ṽ dx+

∫
Γ1

Lg̃ · v dH2 −
1
p

(∫
Ω
fo · v dx+

∫
Γ1

go · v dH2

)
∀v ∈ H1

Γ0

(
Ω;R3

)
.

(3.18)

Fourth step (A fundamental identity). In order to more thoroughly identify the asymptotic behavior
of us, we establish a fundamental identity satisfied by Ceff(p) in terms of the effective tensor of elasticity
Aeff and the “effective tensor of viscosity” Beff defined as follows. Let

ker bY :=
{
ϕ ∈ HY ; bY (ϕ,ψ) = 0 ∀ψ ∈ HY

}
,

(3.19)
VY := ker b⊥Y :=

{
ϕ ∈ HY ; aY (ϕ,ψ) = 0 ∀ψ ∈ ker bY

}
.

Actually, the closed affine manifold

CY :=
{
ϕ ∈ HY ; bY (ϕ,ψ) = −bY (E·,ψ) ∀ψ ∈ HY

}
(3.20)

is not empty. This is obvious when J ∈ {1, 4, 5, 7} due to the coercivity of bY on HY . When J = 3,
any H1-extension of −E· into M which is Y -periodic belongs to CY . When J = 2, bY is coercive
on H1

per(M ;R3) = {ψ ∈ H1(M ;R3);ψ takes the same values on opposite sides of ∂Y }, then any H1-
extension into I of a solution ϕE to

{
ϕE ∈ H1

per

(
M ;R3

)
;

bY (ϕE ,ψ) = −bY (E·,ψ) ∀ψ ∈ H1
per

(
M ;R3

) (3.21)

belongs to CY . Lastly, when J ∈ {6, 8}, as 0 = −bY (E·,ϕ) ∀ϕ ∈ HY , we deduce that CY =
H1

per(Y ;R3).
Then we may define vbE by

vbE ∈ CY ; aY
(
vbE , vbE − ψ

)
= −aY

(
E·, vbE − ψ

)
∀ψ ∈ CY (3.22)

which does exist and is unique up to an element of R3 by the Stampacchia theorem and also satisfies

aY
(
vbE ,ϕ

)
= −aY (E·,ϕ) ∀ϕ ∈ ker bY .

Thus vbE − vaE belongs to VY because

∀ϕ ∈ ker bY , aY
(
vbE − vaE ,ϕ

)
= −aY (E·,ϕ) + aY (E·,ϕ) = 0.



Hence we define Beff in Lin(S3) by

BeffE · E = bY
(
E·+ vbE ,E·+ vbE

)
∀E ∈ S

3; (3.23)

note that Beff vanishes when J ∈ {3, 6, 8}, that is to say when the viscoelastic phase occupies a noncon-
nected region.

Then, proceeding as for As, it is straight forward to check that the operator AY defined by

D(AY ) =
{
ϕ ∈ VY ;∃!w(ϕ) ∈ VY ; bY

(
w(ϕ),ψ

)
+ aY (ϕ,ψ) = 0 ∀ψ ∈ VY

}
,

(3.24)
AY (ϕ) = w(ϕ)

is m-dissipative, so that the evolution equation{ dzE
dt

= AY zE ,

zE(0) = vbE − vaE

(3.25)

has a unique generalized solution in C0([0,+∞);VY )∩C∞((0,+∞);VY )∩L∞(0,+∞;VY ) which, for
all p in (0,+∞), does have a Laplace transform satisfying

aY (LzE ,ϕ) + bY
(
pLzE + vaE − vbE ,ϕ

)
= 0 ∀ϕ ∈ HY ,

because LzE belongs to VY . As vbE belongs to CY and cY (p) is coercive on HY /R, (3.15) implies that
up to an element of R3

vc(p)
E = pzE + vaE . (3.26)

Let K(t) ∈ Lin(S3) be defined by

K(t)E · E = aY (zE ,E·) + bY (żE ,E·) ∀E ∈ S
3, (3.27)

then (3.25), (3.26) yield

Ceff(p) = LK(p) +Beff +
1
p
Aeff ∀p ∈ (0,+∞). (3.28)

Last step (Asymptotic behavior of us). The fact that Ceff(p) differs from Aeff/p + Beff implies that
the effective behavior of the media is no longer of Kelvin–Voigt type. More precisely, Proposition 3.1
and (3.25) infer that for all p in (0,+∞) Lũs(p) converges weakly in H1(Ω;R3) when J � 4, weak-∗
in BD(Ω) and strongly in L2(Ω;R3) when J � 5, toward the unique solution ǔ(p) to⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ǔ(p) ∈ H1
Γ0

(
Ω;R3

)
;∫

Ω
Aeffe

(
ǔ(p)

)
· e(v) dx+

∫
Ω

[
Beff + LK(p)

]
e
(
pǔ(p) − ū0

)
· e(v) dx

=

∫
Ω
Lf̃ · v dx+

∫
Γ1

Lg̃ · v dH2 ∀v ∈ H1
Γ0

(
Ω;R3

)
.

(3.29)

And as the Laplace transform is one-to-one, (3.7) yields the convergence results.



Theorem 3.1. If the initial state of the body and the loading satisfy (3.10) and

{
(f , g) ∈ C0

(
[0,T ];L2

(
Ω;R3

)
× L2

(
Γ1;R3

))
when J ∈ {1, 4, 5, 7},

(f , g) ∈ C1,α
(
[0,T ];L2

(
Ω;R3

)
× L2

(
Γ1;R3

))
when J ∈ {2, 3, 6, 8} for α in (0, 1),

respectively, then, when s goes to s̄, the solution us of (Ps) converges weak-∗ in W 1,∞(0,T ;H1
Γ0

(Ω;R3))
if J ∈ {1, 4}, in L∞(0,T ;H1

Γ0
(Ω;R3)) if J ∈ {2, 3}, in W 1,∞(0,T ;BD(Ω) ∩L2(Ω;R3)) if J ∈ {5, 7},

in L∞(0,T ;BD(Ω) ∩ L2(Ω;R3)) if J ∈ {6, 8} toward the unique solution ū to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ū ∈ C1
(
(0,T ];H1

Γ0

(
Ω;R3

))
; ū(0) = uo,∫

Ω

(
Aeffe(ū) +Beffe( ˙̄u) +

∫ t

0
K(t− τ )e( ˙̄u)(τ ) dτ

)
· e(v) dx

=

∫
Ω
f · v dx+

∫
Γ1

g · v dH2 ∀(v, t) ∈ H1
Γ0

(
Ω;R3

)
× (0,T ].

(3.30)

Hence, as in the case J = 1 studied in [4], the effective behavior of the body is no longer of Kelvin–
Voigt type but rather of viscoelastic type with memory. When J ∈ {1, 4, 5, 7}, ker bY = {0} so that AY

is bounded and consequently K decreases exponentially fast with time, hence the effective behavior is
viscoelastic with fading memory. When J ∈ {3, 6, 8} Beff vanishes.

The case of bilateral contact with purely linear viscous friction (J = 6 with μ∗
e = 0) considered in

[5] by the asymptotic expansion method can be rigorously handled by our method through the standard
change of unknown us �→ vs, vs(t) = exp(−t)us(t) ∀t ∈ [0,T ].

Finally to keep the analysis of reasonable length, we did not consider “pathological cases” like
(λ̄e, μ̄e, λ̄v, μ̄v) ∈ {0,+∞}4 when J ∈ {7, 8}. Based on the discussion of [6] and [8] about the na-
ture of the mechanical constraint equivalent to a soft viscoelastic layer, the effective behavior will be of
viscoelastic type with memory except when J = 8, and μ̄v = λ̄v = 0 or μ̄e = +∞, or μ̄v = +∞,
where it should be elastic.

4. Proof of Proposition 3.1

It suffices to only consider the convergence of uos and case J = 7. Clearly uos is the only minimizer of
the functional

v ∈ H1
Γ0

(
Ω;R3

)
�→ Fs(v) :=

1
2
as(v, v) −

∫
Ω
fo · v dx−

∫
Γ1

go · v dH2. (4.1)

One proceeds in four steps:

First step (A compactness property).

Lemma 4.1. Let (vs) be a sequence in H1
Γ0

(Ω;R3) such that Fs(vs) � C, then there exists v in
H1

Γ0
(Ω;R3) and a nonrelabeled subsequence such that vs weak∗ converges in BD(Ω) and strongly

in L2(Ω;R3) toward some v in H1
Γ0

(Ω;R3).



Proof. The very definition of the extension ṽs of vs, (3.4) and (3.6) (see Section 3, First step) imply

1
2
as(vs, vs) � C +

∣∣fo
∣∣
L2(Ω;R3)

|vs|L2(Ω;R3) +

∫
Γ1

go · ṽs dH2

� C
(
1 +

∣∣fo
∣∣
L2(Ω;R3)

+ |go|L2(Γ1;R3)

)
as(vs, vs)1/2.

Thus as(vs, vs) is bounded and the sought after result stems from Remark 3.1. �

Second step (More about (P a
E)). If vaE still denotes the extension into R

3 by Y -periodicity of the solu-
tion vaE to (P a

E), let σa
E be the Y -periodic field such that

σa
E(y) =

{
AM (y)

(
E + e

(
vaE

)
(y)

)
a.e. y ∈ M ,

AI (y)
(
E + e

(
vaE

)
(y)

)
a.e. y ∈ I .

(4.2)

It is easy to check that σa
E satisfies divσa

E = 0 in the sense of distribution in R
3 and that σa

E(·/ε) weakly
converges in L2(Ω;S3) toward

∫
Y σa

E(y) dy. For almost y in Y , let the strictly convex quadratic form
Ws′ be defined on S

3 by

Ws′(y, e) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2
AM (y)e · e if y ∈ Mh,

λe

2
(tr e)2 + μe|e|2 if y ∈ Bh,

1
2
AI (y)e · e if y ∈ Ih.

Then the problem

Min

{∫
Y
Ws′

(
y,E + e(ϕ)(y)

)
dy;ϕ ∈ H1

per

(
Y ;R3

)}
(P a,s′

E )

has a unique solution va,s′

E satisfying
∫
Y va,s′

E (y) dy = 0 and whose extension into R
3 by Y -periodicity

is still denoted by va,s′

E . Let σa,s′

E defined by

σa,s′

E (y) = DWs′
(
y,E + e

(
va,s′

E

)
(y)

)
a.e. y ∈ R

3, (4.3)

which clearly satisfies divσa,s′

E = 0 in the sense of distributions in R
3. Actually, (P a,s′

E ) is a kind of
approximation of (P a

E) in the sense that, by arguing as in [1,7], one has

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
s′→0

∣∣va,s′

E − vaE
∣∣
L2(Y ;R3)

= 0,

lim
s′→0

∫
Y
Ws′

(
E + e

(
va,s′

E

)
(y)

)
dy =

1
2
aY

(
E·+ vaE ,E·+ vaE

)
=

1
2
AeffE · E,

lim
s′→0

∣∣σa,s′

E − σa
E

∣∣
L2(Y ;R3)

= 0

(4.4)



and consequently

lim
s→s′

∫
Ω

∣∣σa,s′

E (x/ε) − σa
E(x/ε)

∣∣2 dx = 0. (4.5)

Now we add some ingredients of the mathematical theory of bonded joints ([1,7]) to the classical proof
by [2] for homogenization in elasticity.

Third step (Upper bound for Fs(vs)).

Lemma 4.2. For all v in H1
Γ0

(Ω;R3) there exists a sequence (vs) in H1
Γ0

(Ω;R3) such that vs weak-∗
converges in BD(Ω) and strongly in L2(Ω;R3) toward v and

F eff(v) :=
1
2

∫
Ω
Aeffe(v) · e(v) dx−

∫
Ω
fo · v dx−

∫
Γ1

go · v dH2

= lim
s→s̄

Fs(vs). (4.6)

Proof. First we assume that v is affine: v(x) = Ex+ d, E ∈ S
3, d ∈ R

3. Let wE,s such that

wE,s(x) = εva,s′

E (x/ε) a.e. x ∈ Ω, (4.7)

then the field vs := v + wE,s belongs to H1(Ω;R3), converges weak-∗ in BD(Ω) and strongly in
L2(Ω;R3) toward v by due account of (4.4) and the definition of va,s′

E . Moreover, as

1
2
as(vs, vs) = |Ω|

∫
Y
Ws′

(
E + e

(
va,s′

E

)
(y)

)
dy + o(ε),

(4.4) gives lims→s̄
1
2as(vs, vs) = 1

2

∫
Ω Aeffe(v) · e(v) dx. Next we take v as a continuous piecewise-affine

function v(x) = Eix+di on Ωi, i belonging to a finite set I of indices, where {Ωi}i∈I forms a partition
by polyhedral sets. As in the first step, we define vs by vis = v+wEi,s on each Ωi, but by due account of
possible discontinuities on the interface

∑jk between Ωj and Ωk we need to introduce φδ in W 1,∞(Ω),
0 � φδ � 1, φδ = 1 on

∑jk
δ := {x ∈ Ω; dist(x,

∑jk
i ) < δ}, δ > 0, φδ = 0 on Ω \

∑jk
2δ and

vδs = φδv + (1 − φδ)vis on Ωi. Hence we can repeat the end of the proof by [2], pp. 47–48, because
vis converges strongly toward v in L2(Ω;R3) and AI , AM , λe, μe are bounded.

Eventually the proof of the convergence of 1
2as(vs, vs) toward 1

2

∫
Ω Aeffe(v) · e(v) dx is completed by

diagonalization and density arguments.
To tackle loading term go into account, it suffices to introduce wE,s only on

⋃
j∈Jε ε(j + Y ),

while the convergence of the term involving fo stems from the strong convergence of vs toward v in
L2(Ω;R3). �

Fourth step (Lower bound for Fs(vs)).

Lemma 4.3. For all v in H1
Γ0

(Ω;R3) and all sequences (vs) in H1
Γ0

(Ω;R3) which weak-∗ converges in
BD(Ω) and strongly in L2(Ω;R3) toward v, we have

F eff(v) � lim
s→s̄

infFs(vs).



Proof. Once more we proceed by introducing a continuous piecewise-affine function w = Ei·+ di as
approximation in H1 of v on Ωi. For each Ωi, let φi ∈ D(Ωi) such that 0 � φi � 1.

By using functions wEi,s defined like (4.7), the subdifferential inequality yields

1
2
as(vs, vs) �

∑
i∈I

[∫
Ωi

φi(x)Ws′
(
x/ε,Ei + e(wEi,s)(x)

)
dx

+

∫
Ωi

φi(x)DWs′
(
x/ε,Ei + e(wEi,s)(x)

)
· e(vs − w − wEi,s) dx

]
.

A slight and obvious modification of the argument used at the beginning of the proof of Lemma 4.2
gives

lim
s→s̄

∫
Ωi

φi(x)Ws′
(
x/ε,Ei + e(wEi,s)

)
(x) dx =

1
2

∫
Ωi

φi(x)Aeffe(w) · e(w) dx.

Taking into account (4.3), divσa,s′

Ei = 0 and (4.5), one has

lim
s→s̄

∫
Ωi

φi(x)DWs′
(
x/ε,Ei + e(wEi,s)

)
· e(vs − w − wEi,s) dx

= lim
s→s̄

∫
Ωi

φi(x)σa,s′

Ei (x/ε) · e(vs − w − wEi,s) dx

= lim
s→s̄

(∫
Ωi

σa,s′

Ei (x/ε) · e
(
φi(vs − w − wEi,s)

)
dx

−
∫
Ωi

σa,s′

Ei (x/ε) · ∇φi ⊗S (vs − w − wEi,s) dx

)

= − lim
s→s̄

∫
Ωi

σa,s′

Ei (x/ε) · ∇φi ⊗S (vs − w − wEi,s) dx

= − lim
s→s̄

∫
Ωi

σa
Ei(x/ε) · ∇φi ⊗S (vs − w − wEi,s) dx

= −
∫
Ωi

(∫
Y
σa
Ei(y) dy

)
· ∇φi ⊗S (v − w) dx

because of the strong convergence in L2(Ω;R3) of vs − w − wEi,s toward v − w. Hence

lim
s→s̄

inf
1
2
as(vs, vs) � 1

2

∑
i∈I

∫
Ωi

φiAeffe(w) · e(w) dx+
∑
i∈I

∫
Ωi

φiAeffe(w) · e(v − w) dx.

As in [2], by letting φi converge increasingly to 1 on Ωi for the first term, and by using (3.17) and the
density of piecewise-affine functions in H1(Ω;R3) for the second term, we conclude that

lim
s→s̄

inf
1
2
as(vs, vs) � 1

2

∫
Ω
Aeffe(v) · e(v) dx.



Lastly, the arguments used in the proof of Lemma 4.1 (Remark 3.1) yield

lim
s→s̄

∫
Ω
fo · vs dx+

∫
Γ1

go · vs dH2 = lim
s→s̄

∫
Ω
fo · vs dx+

∫
Γ1

go · ṽs dH2

=

∫
Ω
fo · v dx+

∫
Γ1

go · v dH2.

Thus Proposition 3.1 stems classically (see [2,3]) from a combination of Lemmas 4.1–4.3. �

References

[1] A. Ait-Moussa, A modelling of elastic bonded joints, Modélisation et étude des singularités de contraintes d’un joint collé
très mince, PhD thesis, Université Montpellier II, France, 1989.

[2] H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman Advanced
Publishing Program, 1984.

[3] H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Application to PDEs and
Optimization, MPS–SIAM Book Series on Optimization, 2005.

[4] G. Francfort and P. Suquet, Homogenization and mechanical dissipation in thermoviscoelasticity, Arch. Rational Mech.
Anal. 96(3) (1986), 265–293.

[5] F. Lénée, Contribution à l’ étude des matériaux composites et de leur endommagement, Thèse doctorat d’ état, Université
Paris VI, 1984.

[6] C. Licht, A. Léger, S. Orankitjaroen and A.O. Khaoua, Dynamics of elastic bodies connected by a thin soft viscoelastic
layer, J. Math. Pures Appl. 99(6) (2013), 685–703.

[7] C. Licht and G. Michaille, A modelling of elastic bonded joints, Advances in Mathematical Sciences and Applications 7
(1997), 711–740.

[8] C. Licht and S. Orankitjaroen, Dynamics of elastic bodies connected by a thin soft inelastic layer, C. R. Mecanique 341(3)
(2013), 323–332.

[9] P.K. Mallick, Fiber-Reinforced Composites: Materials, Manufacturing, and Design, 3rd edn, CRC Press, Taylor & Francis
Group, 2007.

[10] E. Sanchez-Palencia, Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics, Vol. 127, Springer, 2009.
[11] L. Tartar, The General Theory of Homogenization, A Personalized Introduction, Lecture Notes of the Unione Mathematica

Italiana, Vol. 7, Springer, 2009.
[12] R. Temam, Mathematical Problem in Plasticity, Gauthier-Villars, 1985.




