
HAL Id: hal-01778476
https://hal.science/hal-01778476

Submitted on 25 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Path Logics for Querying Graphs: Combining
Expressiveness and Efficiency

Diego Figueira, Leonid Libkin

To cite this version:
Diego Figueira, Leonid Libkin. Path Logics for Querying Graphs: Combining Expressiveness and
Efficiency. Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), Jul 2015, Kyoto,
Japan. �10.1109/LICS.2015.39�. �hal-01778476�

https://hal.science/hal-01778476
https://hal.archives-ouvertes.fr

Path Logics for Querying Graphs:
Combining Expressiveness and Efficiency

Diego Figueira
CNRS, LaBRI

Bordeaux, France
diego.figueira@labri.fr

Leonid Libkin
School of Informatics

University of Edinburgh
Edinburgh, UK

libkin@inf.ed.ac.uk

Abstract—We study logics expressing properties of paths in
graphs that are tailored to querying graph databases: a data
model for new applications such as social networks, the Se-
mantic Web, biological data, crime detection, and others. The
basic construct of such logics, a regular path query, checks
for paths whose labels belong to a regular language. These
logics fail to capture two commonly needed features: counting
properties, and the ability to compare paths. It is known that
regular path-comparison relations (e.g., prefix or equality) can
be added without significant complexity overhead; however,
adding common relations often demanded by applications (e.g.,
subword, subsequence, suffix) results in either undecidability or
astronomical complexity.

We propose, as a way around this problem, to use automata
with counting functionalities, namely Parikh automata. They
express many counting properties directly, and they approximate
many relations of interest. We prove that with Parikh automata
defining both languages and relations used in queries, we retain
the low complexity of the standard path logics for graphs.
In particular, this gives us efficient approximations to queries
with prohibitively high complexity. We extend the best known
decidability results by showing that even more expressive classes
of relations are possible in query languages (sometimes with
restriction on the shape of formulae). We also show that Parikh
automata admit two convenient representations by analogs of
regular expressions, making them usable in real-life querying.

I. INTRODUCTION

Our main object of interest is logics for querying edge-
labeled graphs. Of course such logics exist in abundance,
and they come in many flavors, depending on the intended
applications. Many such applications arise in verification, and
logics are designed to specify temporal properties observed
along paths in graphs. We are interested in logics that arise
in the study of semistructured data, i.e., data that does not
conform to the standard relational model [1]. These classes
of logics have many commonalities [34], [37], but they are
still sufficiently distinct due to the nature of applications and
specific computational requirements posed by them.

The main need for the development and study of the logics
we are looking at comes from graph databases [39]. They have
emerged as a new trend in data management technology fairly
recently, and have attracted much attention due to numerous
applications in many active areas where the underlying data is
naturally modeled as a graph; these include social networks,
Semantic Web and RDF, biological networks, crime detection,
etc. Multiple prototypes and commercial systems exist, includ-

ing NEO4J, INFINITEGRAPH, ALLEGROGRAPH, ORIENTDB;
see also [3], [5], [43] for recent surveys of the area.

Among the proposals for logical languages for querying
graph data, the ones that use regular path queries, or RPQs
have become most commonly accepted (although other inter-
esting proposals exist as well, for instance those based on
adapting spatial calculi for semistructured data [15], [20]).
RPQs, proposed initially in [18], check the existence of a path
whose label belongs to a regular language. Formally, such a
query is of the form

x
L−→ y

where L is a regular language. When applied to a graph G,
it returns pairs of nodes x and y such that there is an L-
labeled path between them. Such queries play the role of
atomic formulae in other formalisms. Most commonly, they
are closed under conjunction and existential quantification,
resulting in conjunctive regular path queries (CRPQs) [14],
[24] by analogy with the usual conjunctive queries, i.e., the
∃,∧-fragment of first-order predicate logic. One commonly
writes them as rules: for instance,

q(x) :– x
a+−−→ y, x

b+−→ y

looks for nodes x from which both an a-labeled path and a
b-labeled path to the same node y exist.

CRPQs are well understood, and have many nice properties:
for instance, they can be efficiently evaluated, matching the
combined complexity of relational conjunctive queries [17].
However, for many applications their power is insufficient [5],
[22], [43]. The main shortcomings of CRPQs stem from the
fact that
• they cannot compare paths; and
• they are limited to regular properties of paths.
For instance, already over a decade ago, the RDF com-

munity proposed a query language in which paths can be
compared for specific semantic associations [4]. Applications
in biology and crime detection often require checking the
similarity of paths, e.g., based on their edit distance, or
relations such as subword or subsequence. We refer to [3],
[5], [22], [43] for multiple concrete examples of properties of
paths that need to be checkable by logical query languages.

Thus, finding ways to increase the power of graph query
languages has been a major theme in graph data research over

the past several years. When it comes to comparing paths, the
key idea is to name paths and quantify over them [6], [27].
Once we have the ability to refer to paths, we can use them
in formulas by testing relationships between them. To give a
concrete example, consider a formula

q(x, y) :– x
π1:a+−−−−→ z, z

π2:b+−−−→ y, |π1| = |π2|. (1)

It says that there is an a-labeled path π1 from x to some node
z, from which there is a b-labeled path π2 to y such that the
lengths of π1 and π2 are the same. In other words, x and y
are connected by a path labeled anbn for some n ≥ 1. The
above formula comes from a class of extended CRPQs [6],
which continue to enjoy many nice computational properties.
Their data complexity is in NLOGSPACE (the best possible,
as they express NLOGSPACE-complete reachability), and their
combined complexity is PSPACE-complete, matching that of
first-order logic (and thus of traditional relational databases).

Relations on paths used in extended CRPQs are regular
(or synchronized) relations. The best way to visualize such a
relation (say, binary) is to think of an automaton over a pair of
words with two synchronously moving heads, first looking at
the initial letters of the words, then at their second letters, and
so on; when one word ends, only the remaining head continues.
Examples of such relations are equal length, equality, prefix,
or having edit distance bounded by a fixed constant [40].

However, many real-life relations of interest are not regular.
Relations such as subword, subsequence, suffix which are very
often required to express semantic associations between paths
in RDF, or in biological and crime detection applications are
not regular but rational [16], [40]: they are given by automata
whose heads move asynchronously.

So it seems natural to add them to RPQ-based logical for-
malisms. This carries a huge price though: the query evaluation
problem becomes undecidable with adding subword or suffix,
and of astronomical complexity when subsequence is added
[7]. To lower the complexity, severe restrictions are required:
only one relation among paths can be used in the query, and
the query itself must be restricted syntactically [7], [8]; this
effectively rules out such query languages.

Problem: adding relations needed in real-life querying tasks
to existing logical formalisms leads to prohibitively high
complexity. But at the same time one cannot give up and
dismiss such queries since they do often arise in practice.

Our approach: we look for suitable approximate solutions. To
make it work, we need a sufficiently expressive and at the same
time efficient logical framework in which finding approximate
answers to queries involving complex nonregular properties is
feasible.

To understand what such a framework might be, we appeal
to an example. Consider a graph database used in a crime
detection application, and assume that a query requires the
comparison of two paths. One of them, π, is known to indicate
criminal activity, the other, π′, is suspect, and we want to see
if π′ occurs as a subsequence of π. This is computationally

too expensive [7], but instead we can attempt to check whether
#a(π′) ≤ #a(π) for every label a, where #a(π) is the number
of occurrences of a in π. This does not give the exact answer to
the query of course, but it selects paths that need to be further
analyzed – and, as we shall see, this can be answered with low
complexity. If we are interested in a subword relation, we can
select a portion of path π so that the numbers of occurrences
of all symbols in that portion will be the same as in π′.

This approach could be used with many properties that need
to be tested by graph database queries, and not only counting
occurrences of letters. For instance, suppose that a word wi
indicates a position of interest on a path πi, and we want
to check if letters that follow each occurrence of w1 in π1,
and each occurrence of w2 in π2, form the same word. This
similarly can be approximated by counting the numbers of
occurrences of each label a after wi in πi, and comparing
these numbers.

Thus, the general idea is to replace precise properties of
words by their counting approximations. This approach has
been used successfully in verification [19], [21], [26], [28],
[31], and it seems natural to extend it to querying paths in
graph databases.

Note that we go beyond simple Parikh images (i.e., counting
letter occurrences). To capture properties of words formed by
specific positions, we may need to express languages like

Lba=ca =

{
w

∣∣∣∣ the number of as that follow a b
= the number of as that follow a c

}
What makes it possible for us to provide efficient query eval-
uation mechanism is the existence of an automata model for
these properties: Parikh automata [30]. The intuition behind
them is as follows. Assume that we have a fixed number
k of counters. Each automaton transition, in addition to the
usual NFA transition, carries a k-vector of integers; in a run,
when such transition applies, these numbers are added to the
counters. At the end, one checks a linear arithmetic constraint
to determine acceptance. To accept the language Lba=ca, we
have counters r1 and r2; then r1 is incremented in the state
reached after reading ba, and r2 in the state reached after
reading ca. Acceptance is given by r1 = r2.

We demonstrate that these automata are very suitable for
asking complex graph queries, due to three reasons:
• They can express counting approximations for many

relevant properties that are otherwise too expensive to use
directly in queries;

• they lead to good complexity of query evaluation; and
• there are natural ways of expressing languages given by

such automata, making them usable in real-life queries.

Contributions We prove some results about Parikh automata
that are necessary for understanding how to use them in
graph querying, and demonstrate a few query languages based
on Parikh automata that are both expressive and have good
query evaluation complexity; these languages go significantly
beyond previously known decidable languages in terms of their
expressiveness. In more detail, we do the following.

• We pinpoint the exact complexity of some decidable
problems related to Parikh automata, as these are needed
to establish the complexity of query evaluation.

• We show that paths definable by Parikh automata can be
added to CRPQs without an increase in complexity.

• We develop a theory of Parikh-definable relations, rather
than languages, coming up with natural analogs of regular
and rational relations over words. We do this by using
a notion of synchronizations recently proposed in [23]
as it lets one define classes of relations without relying
on modes of acceptance, as is usually done in formal
language theory. We also provide two natural analogs of
regularity, allowing us to incorporate more relations into
queries, and show that some problematic relations like
subword and subsequence can naturally be approximated
by regular Parikh relations.

• We look at extending CRPQs with Parikh-definable lan-
guages, and with relations on paths definable by two
types of regular Parikh relations. Our main result is
that for these extensions, data complexity is tractable,
and combined complexity is in PSPACE, matching, for
instance, first-order logic over relations. The resulting
languages subsume and significantly extend all those
for which acceptable complexity bounds have previously
been known.

• We show that arbitrary Parikh-definable relations on
words can also be used in queries, under appropriate
syntactic restrictions.

• Finally, we look at usable representations of languages
defined by Parikh automata. In practical languages, au-
tomata are usually represented by regular expressions;
thus, to be able to use Parikh automata in real-life query
languages, we need an analog of regular expressions for
them. We present in fact two such analogs, one based on
the idea of marking positions in a regular expression, and
the other on choosing regular expressions that apply to
prefixes of a word.

Organization Basic notations are given in Section II. In
Section III we give necessary information about Parikh au-
tomata. Section IV studies evaluation of CRPQs with Parikh
automata. In Section V we investigate relations based on
Parikh automata, and in Section VI we study query evaluation
with such relations. In Section VII we provide two types
of regular expressions for Parikh automata. Due to space
limitations, complete proofs are in the appendix.

II. PRELIMINARIES

Basic notations Let N+ = {1, 2, . . . } and N = N+ ∪ {0}.
We write k to denote the set {1, . . . , k}. We use letters A, B
to denote finite alphabets. The set of finite words over A is
denoted by A∗. For a word w = a1 · · · an ∈ A∗, the letter ai
in the ith position is denoted by w[i], the subword ai · · · aj by
w[i, j], and the length n of the word by |w|. Given w ∈ A∗ and
a letter a ∈ A, we define #a(w) as the number of occurrences
of a in w.

For two words u = a1 · · · an ∈ A∗ and v = b1 · · · bn ∈ B∗,
we write u⊗ v for the word (a1, b1) · · · (an, bn) ∈ (A × B)∗.
This definition can be extended to words of different length:
in that case, the shorter word (say, u) is padded with |v| −
|u| letters ⊥ that do not occur in A,B to a word u′ (of the
same length as v) and then we take u⊗ v to be u′⊗ v. This
definition straightforwardly extends to tuples of words, i.e., to
w1⊗w2⊗ · · · ⊗wk.

Parikh images, semilinear sets, and Presburger arithmetic
For a finite, ordered, alphabet A = {a1, . . . , ak}, the Parikh
image of a word w ∈ A∗, written Π(w), is the vector of
Nk whose ith component contains #ai(w), the number of
occurrences of ai in w. The Parikh image of a language L
is Π(L) = {Π(w) | w ∈ L}.

A linear set is a subset of Nk that can be described as

{v̄0 + α1v̄1 + · · ·+ αnv̄n | α1, . . . , αn ∈ N} (2)

for some n ∈ N and v̄0, . . . , v̄n ∈ Nk. A semilinear set is
a finite union of linear sets. Henceforward we assume that
linear sets are represented by the offset v̄0 and the generators
v̄1, . . . , v̄n, where numbers are represented in binary; and
that semilinear sets are represented as a collection of linear
set representations. Presburger arithmetic refers to first-order
logic over 〈N,≤, 0, 1,+, f2〉, where f2 : N → N is the
doubling function: f2(x) = 2x. Of course f2 is definable with
+, but we include it here to generate Presburger formulae of
smaller size (see below). It is well-known that semilinear sets
correspond precisely to Presburger arithmetic (or its existential
fragment) [25] and to Parikh images of context free (or regular)
languages [38]. Moreover, using the doubling function to
represent each n ∈ N as a term of Presburger arithmetic of
size O(log n), we have the following.

Lemma II.1. For any given semilinear set, an equivalent
existential Presburger formula can be produced in linear time.

Graph databases, RPQs and CRPQs The standard abstrac-
tion of graph databases [3], [5], [39] is finite A-labeled graphs
G = 〈V,E〉, where V is a finite set of nodes, or vertices,
and E ⊆ V × A × V is a set of labeled edges. A path
p from v0 to vm in G is a sequence of edges (v0, a1, v1),
(v1, a2, v2), · · · , (vm−1, am, vm) from E, for some m ≥ 0.
The label of p, denoted by λ(p), is the word a1 · · · am ∈ A∗.

The main building blocks for graph queries are regular
path queries, or RPQs [18]; they are expressions of the form
x

L→ y, where L is a regular language over A. Given an A-
labeled graph G = 〈V,E〉, the answer to an RPQ above is
the set of pairs of nodes (v, v′) such that there is a path p
from v to v′ with λ(p) ∈ L. Conjunctive RPQs, or CRPQs
[13], [17] are the closure of RPQs under conjunction and
existential quantification. We present them in a rule-based
notation; formally, a CRPQ is an expression of the form

ϕ(z̄) :– x1
L1−−→ y1, · · · , xm

Lm−−→ ym, (3)

where xi, yis are variables, and z̄ is a tuple of variables among
those (as usual, variables that appear in the body of the rule but

not in the head are assumed to be existentially quantified; that
is, we can view CRPQ (3) as ϕ(z̄) = ∃z̄′

∧m
i=1(xi

Li−→ yi),
where z̄′ refers to the tuple of variables used in the body but
not in the head).

The semantics naturally extends the semantics of RPQs:
ϕ(ā) is true in G iff there is a tuple b̄ of nodes so that ā, b̄
witness every RPQ in the body: if ui, vi from ā, b̄ interpret xi
and yi, then there is a path pi between ui and vi whose label
λ(pi) is in Li.

Relations on words Regular relations on words are simply
defined by the acceptance of the word w1⊗ · · · ⊗wk by an
NFA. That is, to determine if a tuple (w1, . . . , wk) ∈ (A∗)k is
in the relation, one runs an NFA over the word w1⊗ · · · ⊗wk
over the alphabet (A ∪ {⊥})k. Such an automaton first looks
at the first symbols of all words, then at their second symbols,
etc.; when a word ends, it is padded with the extra symbol ⊥.
We denote the class of such relations REG.

Examples of regular relations are prefix, equality, equal
length, and bounded edit distance. There are, however, many
other important relations that are non-regular. These are suffix:
w �suff u iff u = v · w for some v; subword: w �subw u iff
u = v · w · v′ for some v, v′, and subsequence: w �subseq u
if some letters can be deleted from u in a way that results
in w. These three relations are not regular but rational: they
can be defined by asynchronous automata with k heads (for
k-ary relations), or alternatively by regular expressions over
(A ∪ {ε})k, see [40].

III. PARIKH AUTOMATA

For presentational purposes, we give a slight syntactic varia-
tion of the usual definition of Parikh automata from [29], [30].
This easier to grasp definition follows the intuition explained in
[30] and is in the spirit of models such as [2]. It is readily seen
to be equivalent to the original definition, which we present
as well, and which in fact is often better suited for proofs.

Definition III.1. A Parikh Automaton, or PA, of dimension k,
is a tuple PA = (Q,A, δ, q0, F,C), where Q is a finite set of
states, A is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q
is the set of final states, C is a semilinear set in Nk (called a
constraint set), and the transition relation δ is a finite subset
of Q× A× Nk ×Q.

A run ρ of PA on a word w = a1 · · · am ∈ A∗ is a map
from {0, . . . ,m} to Q× Nk such that
• ρ(0) = (q0, 0̄);
• if ρ(i) = (q, r̄) and ρ(i+ 1) = (q′, r̄′) then there exists a

transition (q, ai+1, v̄, q
′) ∈ δ such that r̄′ = r̄ + v̄.

A run is accepting if ρ(m) ∈ F ×C. A word is accepted if
it has an accepting run. The set of accepted words is denoted
by L(PA).

In other words, the run starts in q0 and has all zeros in
k counters r̄. If it is in state q and reads a, and there is a
transition (q, a, v̄, q′), it can enter q′ and add v̄ to the counters,
componentwise. For acceptance, the automaton must be in an
accepting state, and have the tuple of counters in the set C.

Note that one can easily model the condition q ∈ F by an extra
counter, only accepting by the configuration of counters. We
also call the set of all tuples from Nk that appear in transitions
of PA its auxiliary set.

Languages accepted by PAs are closed under union, inter-
section, homomorphisms, inverse homomorphisms and con-
catenation (though not complementation and iteration). A
deterministic version of PAs is known to be strictly weaker
than arbitrary PAs [30]. PAs are also known to be equivalent
to reversal-bounded multicounter machines [28] in the sense
that they describe the same class of languages [30], [11].

Original definition We now present the definition of k-
dimensional Parikh automata from [30], [29]. Such automata
are pairs PA = (A′,C) where A′ = (Q,A×D, δ, q0, F) is an
NFA over A×D, and D is a finite subset of Nk, which we call
auxiliary set. A word w = a1 . . . an is accepted by (A′,C)
if there is a word v = v̄1 . . . v̄n over D such that w⊗ v is
accepted by A′ and

∑
i≤n v̄i ∈ C.

Note that we simply incorporated the tuples of numbers over
the finite set D ⊂ Nk into transitions, and the summation
into the definition of a run. The translations between the two
versions preserve all complexity bounds. When we use this
definition, we shall write ⊕v for

∑
i≤n v̄i when v = v̄1 · · · v̄n

(with ⊕v = 0̄ when v is the empty word).

An alternative characterization. We now provide two closely
related views of Parikh automata that will help us better visual-
ize their power and later define analogs of regular expressions
for them. Let A = (Q,A, δ, q0, F) with δ ⊆ Q × A × Q be
a usual NFA. We can view a run ρ of A on a word w as a
|w|+ 1-tuple of states, i.e., a map from {0, 1, . . . , |w|} to Q.

Proposition III.1. For a language L ⊆ A∗ the following are
equivalent:

1) L is accepted by a Parikh automaton;
2) there is an NFA A over A with the set of states Q and a

semilinear set C ⊆ N|Q| such that

L = {w | ∃ accepting run ρ of A on w with Π(ρ) ∈ C};

3) there is an alphabet B, an NFA A′ over A × B and a
semilinear set C ⊆ N|A|·|B| such that

L = {w | ∃v ∈ B∗ : w⊗ v ∈ L(A′) and Π(w⊗ v) ∈ C}.

A. Complexity of Parikh automata

It is known that language nonemptiness (is L(PA) 6= ∅?)
and membership (is w ∈ L(PA)?) are decidable for Parikh
automata [30], [29]. Here we pinpoint their exact complexity,
as it will be needed later.

Proposition III.2. Both the nonemptiness and membership
problem for Parikh automata are NP-complete. They can be
solved in polynomial time if the dimension is fixed and all
numbers are represented in unary.

Proof sketch. We explain the proof for nonemptiness. Consider
PA = (A,C) of dimension k so that L(A) ⊆ (A × D)∗

with D = {d̄1, . . . , d̄n}. We first build an existential Pres-
burger formula ϕC(y1, . . . , yk) describing C in linear time,
by Lemma II.1. We then produce an existential Presburger
formula ϕΠ

A(x1, . . . , xk) for Π({v | u⊗ v ∈ L(A)}) ⊆ Nn in
linear time. This is possible by a combination of [42] and a
small fix to their (slightly underconstructed) formula given in
[26]. From ϕΠ

A one can obtain, in polynomial time, a formula
ϕA describing {⊕v | u⊗ v ∈ L(A)} ⊆ Nk. Finally, we check
for satisfiability of ϕA ∧ ϕC in NP [41]. For NP-hardness,
one can reduce from the Subset Sum Problem: given integers
n1, . . . , nk, whether there is a non-empty subset of them whose
sum is 0.

For the unary representation of (A,C), one can construct
in polynomial time an automaton B over an alphabet of size
k such that Π(L(B)) = C, and an automaton A′ from A so
that Π(L(A′)) is {⊕v | w⊗ v ∈ L(A)}. To test emptiness, we
just test if Π(L(A′)) ∩ Π(L(B)) = ∅, using the fact that the
problem of whether the Parikh images of two given regular
languages are disjoint is in PTIME, when the alphabet is fixed
[32], [36].

Another problem whose precise complexity we need is the
problem of nonemptiness of intersection of languages. For
regular languages, it is a classical PSPACE-complete problem
[33].

The language intersection problem for PAs is defined as
follows: its input is a set PA1, . . . ,PAm of Parikh automata,
and the question is whether

m⋂
i=1

L(PAi) 6= ∅.

Solving this will be essential for understanding combined
complexity of several classes of graph queries. We now show
that going from NFAs to PAs, we keep the upper bound on
the complexity of the problem.

Proposition III.3. The language intersection problem for
Parikh automata is PSPACE-complete.

Proof sketch. Let PAi = (Ai,Ci) for i ∈ m, so that each Ai
has an alphabet A × Di with Di ⊆ Nni , under the definition
of [30]. We define a NFA A over SN ⊆ NN for N =

∑
i ni,

and S = max{||v||∞|v ∈
⋃
iDi}, so that ⊕L(A) = {⊕v |

v ∈ L(A)} has nonempty intersection with
∏m
i=1 Ci iff the

instance has the positive answer. This automaton A has the
alphabet D of size n = |D1|+ · · ·+ |Dm| that consists of all
vectors

(0, . . . , 0︸ ︷︷ ︸∑
j<i nj

, x̄i, 0, . . . , 0︸ ︷︷ ︸∑
j>i nj

)

for i ∈ m and x̄i ∈ Di. The automaton A simulates the
execution of A1, . . . ,Am in parallel by iterating the following:
• it guesses an alphabet letter (ai, x̄i) ∈ A × Di for each
Ai so that a1 = · · · = am,

• it stores the states q1, . . . , qm to which transitions lead for
each automaton, as well as the vectors x̄1, . . . , x̄m, and

• it reads x̄1, . . . , x̄m one at a time using m transitions.

The idea is that, by reading one x̄i at a time, we are summing
(instead of multiplying) the auxiliary sets of A1, . . . ,Am.

By [36, Theorem 7.3.1], the Parikh image Π(L(A)) ⊆ Nn
can be described by a finite union of linear sets of the form

{v̄0 +

n′∑
i=1

αiv̄i | α1, · · · , αn′ ∈ N} (4)

so that n′ ≤ n, and maxi ||v̄i||∞ is bounded by (n|Q|)O(n),
where Q is the statespace of A. From this representation
one can easily obtain a semilinear set for ⊕L(A) ⊆ NN
whose every linear set is of the form (4) so that n′ ≤ n and
maxi ||v̄i||∞ is bounded by (n|Q|)O(n); hence these numbers
are at most exponential in

∑
i |Ai|.

Therefore, due to Lemma II.1 and the use of binary repre-
sentation of numbers, ⊕L(A) can be given as a disjunction∨
i ϕi of existential Presburger formulas, each of which has

size linear in n+N and logarithmic in |Q|.
The existential Presburger formula ϕC for

∏m
i=1 Ci can be

built in linear time due to Lemma II.1. Hence, we have that
ϕ =

∨
i ϕi∧ϕC represents ⊕L(A)∩C, and that each ϕi∧ϕC

is of size polynomial in {(Ai,Ci)}i∈m. By [41, Theorem 6
(A)], if an existential Presburger formula such as θ = ϕi ∧
ϕC is satisfiable, there is a satisfying assignment so that each
variable is assigned a number that is at most exponential in
|θ|. Thus, ϕ is satisfiable iff there exists a word v ∈ D∗ so
that ⊕v ∈ ⊕L(A) ∩C and ||⊕v||∞ is at most exponential
in {(Ai,Ci)}i∈m. By building A on-the-fly we can guess and
verify the existence of such v using only polynomial space. By
Savitch’s theorem, we can then test, in PSPACE, whether ϕ is
satisfiable, which is equivalent to A being nonempty, which
in turn is equivalent to

⋂
i L(Ai,Ci) 6= ∅. Thus, the statement

follows.

Our final result is on the intersection of the language
of a fixed PA with a regular language. This is needed for
determining data complexity of several query languages.

Proposition III.4. For a fixed Parikh automaton PA, the
problem of checking, for an input NFA A, whether L(PA) ∩
L(A) 6= ∅ can be solved in NLOGSPACE.

Proof sketch. Let (A1,C1) be a fixed PA and A an input
NFA. Let A′ be an NFA such that L(A′) = {v | ∃u ∈ L(A) :
u⊗ v ∈ L(A1)}. Notice that A′ is linear in A. It suffices
to check whether ⊕L(A′) ∩ C1 6= ∅. By the previous proof,
⊕L(A′) ∩ C1 is given by an existential Presburger formula
ϕ =

∨
i ϕi ∧ ϕC1

so that each ϕi ∧ ϕC1
is logarithmic in the

number of states of A′ (and thus of A).
By [41], a satisfiable disjunct ϕi ∧ ϕC1

has a satisfying
assignment with numbers exponential in ϕi (since ϕC1

is
fixed). Thus, if ⊕v ∈ ⊕L(A′) ∩ C1, there is one where all
numbers in ⊕v are at most polynomial in A. This can be
checked in NLOGSPACE guessing one position of v at a time
and keeping a counter of logarithmic number of bits, ensuring
that the sum of the guessed word is of size at most polynomial
in A.

IV. QUERY EVALUATION WITH PARIKH AUTOMATA

Recall that CRPQs (3) are defined as formulae of the form
ϕ(z̄) :– x1

L1−−→ y1, · · · , xm
Lm−−→ ym, where each xi

Li−→ yi
is an RPQ, and variables used in the body but not in the head
are existentially quantified. We assume that regular languages
Lis are represented by NFAs.

If the Lis are given by Parikh automata, we refer instead
to RPQ(PA) and CRPQ(PA) queries. For instance, Lanbn =
{anbn | n > 0} is a PA-definable language, and hence
x

Lanbn−−−−→ y is an RPQ(PA) query selecting pairs of nodes
that have a path between with the label from Lanbn . Using
previous formalisms, one needed relations on paths to do this,
see (1). CRPQs combine several RPQs: for instance,

ϕ(x) :– x
Lanbn−−−−→ y, x

Lanbn−−−−→ z, y
a+−−→ z

finds nodes x from which we can reach, by a path of the form
anbn, two nodes that are connected by an a-labeled path.

Given a class Q of queries over graphs, recall that data com-
plexity and combined complexity of Q refer to the following
problems:
• for combined complexity, the input is a query ϕ(x̄) from
Q, a graph G, and a tuple ū of nodes such that |ū| = |x̄|;
the question is whether ϕ(ū) is true in G;

• for data complexity, the query ϕ(x̄) is fixed, i.e., only G
and ū are the parameters.

For ordinary RPQs and CRPQs, data complexity is in
NLOGSPACE. In fact it is already NLOGSPACE-complete
for the very simple RPQ x

A∗−−→ y as this is simply the
NLOGSPACE-complete reachability problem. For RPQs based
on NFAs, combined complexity is in PTIME, and for CRPQs
it is NP-complete. Again the latter is the best possible, since
combined complexity of relational conjunctive queries is NP-
complete.

In general, when it comes to good complexity of query eval-
uation, the following is usually assumed. First, data complexity
must always be tractable. Solving intractable problems on large
volumes of data is simply out of the question. Combined
complexity can be single exponential, reflecting the fact that in
practical query evaluation algorithms, the size of the query is
usually in the exponent. In fact relational database languages
are based on first-order logic, for which data complexity is very
low (AC0) and combined complexity is PSPACE-complete;
when one goes to the ∃,∧-fragment (conjunctive queries), it
drops to NP.

We now show that adding Parikh conditions to RPQs costs
us very little: the bounds for data complexity, and for com-
bined complexity of CRPQs do not change at all. Combined
complexity for RPQs changes, but it still is bounded by the
good complexity of evaluating CRPQs. More precisely, we
have the following.

Theorem IV.1. The following complexity bounds hold for
RPQs and CRPQs based on Parikh automata:

(I) Data complexity of both RPQ(PA) and CRPQ(PA) is
in NLOGSPACE.

(II) Combined complexity of both RPQ(PA) and CRPQ(PA)
is NP-complete.

Proof idea. For RPQs, as usual, we take the product of
the automaton with the graph viewed as an NFA, where the
endnodes of the RPQ serve as the initial and the final state. The
bounds then follow from Proposition III.2 for combined and
from Proposition III.4 for data complexity. Hardness follows
from the hardness of PA nonemptiness: we simply take a fixed
graph in which every path from A∗ is realized. For CRPQs,
an extra guessing step for witnesses of existential quantifiers is
involved, which does not affect the complexity (since its size
depends only on the query). 2

V. SYNCHRONIZED PARIKH RELATIONS

Query (1) from the introduction used a binary relation on
paths. In fact, much of the motivation for this work stems from
the need to use relations, in particular, relations that lead to
computationally infeasible queries. Our goal now is twofold:
• first, we study relations rather than languages defined by

PAs, and
• second, we see how to use these relations in queries.

We now concentrate on the first item; the second one is studied
in the next section.

How can we define relations given by PAs? For NFAs,
one typically operates not with one, but with three relational
analogs of regular languages. In terms of increasing power,
these are recognizable, regular, and rational relations [16], [40].
They correspond to three different ways of defining regularity
of languages: by recognizability by a finite monoid, by ac-
ceptance by an NFA, and by regular (or rational) expressions.
However, already in the binary case, these result in different
classes of relations.

So what can we do with if the notion of NFA is replaced
by Parikh automata? We do not yet have commonly accepted
regular expressions for Parikh automata that can be lifted to
relations, and the algebraic theory of PAs is in its infancy
[12]. Instead, we use a recently proposed approach to defining
relations over words that does not depend on the underlying
properties of automata but rather on how these relations are
synchronized [23].

To explain this idea, consider two words, w1 = abacb and
w2 = bcaac in A∗. A possible synchronization is:

1
a

2
b

1
b

1
a

1
c

2
c

2
a

1
b

2
a

2
c

It is a shuffle of these two words, where each position is
marked with 1 or with 2, indicating which word they come
from. Formally, this is a word in (2×A)∗ (recall that k stands
for {1, . . . , k}). If we read the gray-shaded positions marked
with 1, we see the word w1; if we read positions marked with
2, we see w2.

Now we can run an automaton (e.g., an NFA) over such
a synchronization to determine if the pair (w1, w2) is in the
relation, and it is the shape of the word of 1s and 2s that
determines what types of relations we get. If such words come

from the language 1∗2∗, we get recognizable relations. If they
come from (12)∗(1∗|2∗) (i.e., alternate between 1s and 2s until
one of the words is finished), we get regular relations. And if
there is no restriction on the word over {1, 2}, we get rational
relations [23].

Thus, to define relations based on Parikh automata, we shall
use the same notion of synchronization, but will run Parikh
automata over them; words over positions 1 and 2, rather than
ad hoc notions, will determine types of relations we get. Now
we present this idea formally.

A. Synchronizations and regularity for Parikh relations

A synchronization of a tuple (w1, . . . , wk) of words in A∗
is a word over k×A so that the projection on A of positions
labeled i is exactly wi, for i = 1, . . . , k. Every word w in
(k × A)∗ is a synchronization of a uniquely determined k-
tuple (w1, . . . , wk), where wi is the sequence of A-letters
corresponding to the symbol i in the first position of k × A.
We denote such tuple (w1, w2, . . . , wk) by [[w]]k and extend it
to languages S ⊆ (k× A)∗ by [[S]]k = {[[w]]k | w ∈ S}.

For L ⊆ k∗, we say that a word u⊗ v ∈ (k × A)∗ is L-
controlled if u ∈ L; a language is L-controlled if all its words
are. We now look at relations given by Parikh automata over
L-controlled synchronizations for a regular language L ⊆ k∗:

RELPA(L) =

{
[[S]]k

∣∣∣∣ S is defined by a Parikh automaton
over k× A and is L-controlled

}
.

For a set L of regular languages we define RELPA(L) =⋃
{RELPA(L) | L ∈ L}.
Let All = {k∗ | k ∈ N+}. Then RELPA(All) contains all

the relations that can be defined in our framework; these are
analogs of rational relations, which are similarly defined when
the automata are NFAs rather than PAs [23]. These include all
regular relations on words as well as subsequence, subword,
suffix, concatenation (e.g., {(u, v, w) | w = uv}) and even
relations that can add counting constraints, e.g., {(u, v, w) |
w = uv and |u| = 2|v|}, using the power of PAs.

For NFA-based relations, the notion of regularity (in
the binary case) is given by the synchronizing language
(12)∗(1∗|2∗), and regular length-preserving k-ary relations are
given by (12 · · · k)∗ [23]. To extend this for relations based
on Parikh automata, we go beyond the standard description
of regular relations: those, for instance, include prefix but not
suffix. We present a way of synchronizing relations that lets
us use the suffix relation, among others, in graph queries, in
a way that avoids undecidability issues of [7].

Let π = (p1, . . . , pk) be a permutation of k, and let wπ,i
stand for the word whose letters are pi, . . . , pk appearing in
the increasing order (for instance, wπ,1 = 12 · · · k). Define

−→
Lπ = w∗π,1 · w∗π,2 · · · w∗π,k−1 · w∗π,k

and
←−
Lπ = w∗π,k · w∗π,k−1 · · · w∗π,2 · w∗π,1

Let −→
Lk =

⋃
π

−→
Lπ and

←−
Lk =

⋃
π

←−
Lπ

where π ranges over permutations of k. For example,
−→
L2 =

(12)∗(1∗|2∗) and
←−
L2 = (1∗|2∗)(12)∗, for k = 3 we have

−→
L3 = (123)∗

(
(12)∗(1∗|2∗) | (13)∗(1∗|3∗) | (23)∗(2∗|3∗)

)
←−
L3 =

(
(1∗|2∗)(12)∗ | (1∗|3∗)(13)∗ | (2∗|3∗)(23)∗

)
(123)∗.

We define
−−→
REGkPA = RELPA(

−→
Lk) and

←−−
REGkPA = RELPA(

←−
Lk)

and finally
−−→
REGPA =

⋃
k>0

−−→
REGkPA and

←−−
REGPA =

⋃
k>0

←−−
REGkPA.

Relations in these classes express many properties of interest
and, in a way to be described shortly, approximate every
rational relation. We first list some examples of relations in
these classes.
• Every relation in REG is also in

−−→
REGPA.

• Every length-preserving regular relation (i.e., a regular
relation R such that (w1, . . . , wk) ∈ R implies |w1| =
· · · = |wk|) given by an NFA (or even a PA) is in both−−→
REGkPA and

←−−
REGkPA. In fact, this is true even if we impose

the criterion that −d ≤ |wi| − |wj | ≤ d for all i, j ≤
k, for some fixed d ∈ N. For instance, the equal-length
and fixed-edit-distance relations are in both

−−→
REG2

PA and←−−
REG2

PA.
• Testing for Parikh image of a k-ary relation belonging to

a semilinear set is regular. That is, for a semilinear set
C of dimension (|A|+ 1)k, the relation {(w1, . . . , wk) |
Π(w1⊗ · · · ⊗wk) ∈ C} is in both

−−→
REGkPA and

←−−
REGkPA.

• The prefix relation is in
−−→
REG2

PA but not in
←−−
REG2

PA.

• The suffix relation �suff is in
←−−
REG2

PA but not in
−−→
REG2

PA.
• The subword relation �subw and the subsequence relation
�subseq belong to neither

−−→
REG2

PA nor
←−−
REG2

PA.
To show that they approximate arbitrary rational relations,

we define shufflek(w) ⊆ A∗ as the set of shufflings of w ∈ A∗
preserving the number of subwords of length ≤ k, that is, the
set of all words w′ ∈ A∗ such that #v(w) = #v(w

′) for
each v ∈ A∗ with |v| ≤ k. Here #v(w) counts the number of
occurrences of v as a subword of w. For example, shuffle1(w)
is the set of all words w′ with Π(w) = Π(w′), and in general
w′ ∈ shufflek(w) implies Π(w) = Π(w′).

For a relation R ⊆ (A∗)m, we define

shufflek(R) =

{
(w′1, . . . , w

′
m)

∣∣∣∣ (w1, . . . , wm) ∈ R and
w′i ∈ shufflek(wi), i ∈m

}
That is, we approximate a relation by only insisting on preserv-
ing the numbers of occurrences of words of fixed length, for
instance replacing subsequence by checking whether Π(w) ≤
Π(w′) in the simplest case of k = 1.

It turns out that every such approximation falls into both
classes of analogs of regular relations.

Proposition V.1. If R is an arbitrary m-ary rational relation,
and k ≥ 1, then shufflek(R) is in both

−−→
REGmPA and

←−−
REGmPA.

There is a simple relationship between classes
−−→
REGPA

and
←−−
REGPA. For a tuple w̄ = (w1, · · · , wk), let w̄r =

(wr1, · · · , wrk), where wr is the reverse of w, and let Rr =
{w̄r | w̄ ∈ R}. Then it is immediate from the definitions that
R ∈

←−−
REGPA iff Rr ∈

−−→
REGPA. Since (Rr)r = R, this implies

that R ∈
−−→
REGPA iff Rr ∈

←−−
REGPA.

We need one closure property of these analogs of regular
relations (that in particular gives us other examples of relations
in these classes).

Proposition V.2. For every k > 0, classes
−−→
REGkPA and

←−−
REGkPA

are closed under intersection. In fact, for any two PA-definable−→
Lk- or

←−
Lk-controlled languages S1, S2 ⊆ (k× A)∗ we have

[[S1 ∩ S2]]k = [[S1]]k ∩ [[S2]]k.

We show in fact a slightly more general closure result that
works for every class RELPA(L) where L is Parikh-injective,
i.e., the function Π : L→ Nk is injective. Languages

−→
Lk and

←−
Lk are easily seen to be such.

VI. PARIKH RELATIONS IN QUERIES

We now look at queries in which relations on paths can
be used, i.e., queries similar to (1). If one uses NFAs to
define such relations, then those synchronized by languages
from

−→
Lk (i.e., relations from the class REG) can be added

to CRPQs with a small complexity cost [6]. Our motivation
comes from the inability to extend good complexity results to
relations that are often needed in applications, e.g., subword
and subsequence [7], [8]. But such relations admit good
approximations given by Parikh automata.

Indeed, as already discussed in the introduction, an approx-
imation of the subsequence relation is

Rsubseq = {(u, v) | ∀a ∈ A : #a(u) ≤ #a(v)}.

This relation is easily seen to be shuffle1(�subseq), and thus it
is in

−−→
REG2

PA (and in
←−−
REG2

PA as well), i.e., an analog of regular
relations given by Parikh automata. For the subword relation,
one can get an even more precise approximation than doing
shuffling. Consider

Rsubword = {(u, v) | ∃i, j∀a ∈ A : #a(u) = #a(v[i, j])}.

This again is a relation from RELPA(
−→
L2): one synchronously

runs a PA over u⊗ v, guesses the positions i and j in v and
increments counters only between those positions.

Thus, important rational relations that cannot be directly
used in queries due to the complexity considerations, can be
approximated by regular relations based on Parikh automata.
We will show that those can be evaluated with good data and
combined complexity.

A. CRPQs with relations

Let R be a class of relations on words. We assume that
R has relations of every arity k ≥ 1 (in particular, languages
as relations of arity 1); this could be a class of regular, or
rational relations, or a class of the form RELPA(L), e.g.,

−−→
REGPA

or
←−−
REGPA. The class CRPQrel(R) of queries extends CRPQs

with relations from R. Formally, such a query is of the form

ϕ(z̄) :– x1
π1:L1−−−→ y1, · · · , xl

πl:Ll−−−→ yl, R1(χ̄1), · · · , Rm(χ̄m),

where

• π1, · · · , πl are the path variables of ϕ; they are pairwise
distinct;

• each Li is a language (unary relation) from R;
• z̄ is a tuple of variables among xi, yis;
• each χ̄j is a tuple of variables among the πis of the same

arity as Rj .

An example is the query (1) from the introduction that uses a
single ‘equal-length’ regular relation.

The semantics is a natural extension of the semantics of
CRPQs. Given a graph G and a tuple ā of its nodes of the
same arity as z̄, the formula ϕ(ā) is true if there exists a tuple
b̄ of nodes interpreting the variables used in the body but not
in the head so that:

• for each i ≤ l, there exists a path pi between the
interpretations ui, vi of xi, yi such that its label λ(pi)
is in Li;

• for each χ̄j = (πj1 , . . . , πjs), the tuple of labels of the
paths (λ(pj1), . . . , λ(pjs)) is in Rj .

The set of all tuples ā such that ϕ(ā) holds in G is denoted
by ϕ(G).

The class of CRPQs extended with regular relations, called
ECRPQs in [6], is CRPQrel(REG) in this notation. The
extension with all rational relations was considered in both
[6] and [7], and, due to its undecidability, less expressive
languages CRPQrel(REG+ �suff), CRPQrel(REG+ �subw),
and CRPQrel(REG+ �subseq) have been studied, i.e., those
with arbitrary regular relations and just one particular rational
relation. Those turned out to have horrendous complexity as
well, so [8] restricted them even further, replacing regular
relations with regular languages and keeping just one rational
relation (we indicate this by omitting REG in the list of
relations, e.g., CRPQrel(�subseq), but of course paths can still
be checked for membership in a regular language).

The table below provides a summary of known complexity
results from [6], [7], [8]. When a particular complexity class
is mentioned, the problem is complete for it. Non-PR stands
for non-primitive-recursive.

language data combined
complexity complexity

CRPQrel(REG) NLOGSPACE PSPACE

CRPQrel(RAT) undecidable undecidable
CRPQrel(REG+�suff) undecidable undecidable
CRPQrel(REG+�subw) undecidable undecidable
CRPQrel(REG+�subseq) nonelementary non-PR
CRPQrel(�suff) NLOGSPACE PSPACE

CRPQrel(�subw) PSPACE PSPACE

CRPQrel(�subseq) PSPACE NEXPTIME

Thus, from the complexity point of view, only two lan-
guages, CRPQrel(REG) and CRPQrel(�suff), can be viewed
as potentially usable. However, they both put severe restrictions
on the use of relations in queries: the former completely rules
out rational but non-regular relations, and the latter only allows
one particular relation, at the expense of excluding all other
relations, even regular ones.

We shall now see how to generalize and extend these
positive results.

B. Regularity and query evaluation
To achieve our goal and significantly extend the

only positive complexity results, we deal with languages
CRPQrel(

−−→
REGPA) and CRPQrel(

←−−
REGPA). That is, we

• extend regular languages to languages defined by PAs;
and

• use relations from
−−→
REGPA and

←−−
REGPA in queries.

These languages are significant extensions of previously
known decidable languages of path-based queries on graphs
(we shall give some examples of their power shortly). As our
main result we show that despite adding much to the expres-
siveness, these extensions do not cost us computationally.

Theorem VI.1. For queries in CRPQrel(
−−→
REGPA) and

CRPQrel(
←−−
REGPA), data complexity is in NLOGSPACE, and

combined complexity is in PSPACE.

Of course we also have NLOGSPACE- and PSPACE-
completeness, as hardness was already known for small frag-
ments of these languages [6], [8], so this result is indeed the
best possible.

We now give examples of the power of these languages,
before providing a sketch of the proof of the theorem.

Queries in CRPQrel(
−−→
REGPA). This language is a natural

extension of CRPQrel(REG) to Parikh automata: instead of
relations given by synchronized NFAs, we now can use rela-
tions given by synchronized Parikh automata. In particular, in
this language we can use counting approximations Rsubseq of
�subseq and Rsubword of �subw, even though the relations them-
selves cannot be added to CRPQrel(REG) due to complexity
considerations. In terms of the results of such approximations,
we have the following observation, due to the monotonicity of
CRPQs.

Lemma VI.2. Given two queries

ϕ(z̄) :– x1
π1:L1−−−→ y1, · · · , xl

πl:Ll−−−→ yl, R1(χ̄1), · · · , Rm(χ̄m),

ϕ′(z̄) :– x1
π1:L1−−−→ y1, · · · , xl

πl:Ll−−−→ yl, R
′
1(χ̄1), · · · , R′m(χ̄m),

such that Rj ⊆ R′j for all j = 1, . . . ,m, we have ϕ(G) ⊆
ϕ′(G) for every graph G.

Hence, replacing relations with their counting approxima-
tions results in overapproximation of query results, which
was exactly our intention. We now give a couple of exam-
ples motivated by a common application of graph databases,
namely social networks and in particular crime detection [22].
Consider a simple version of a query that attempts to detect
criminal activity:

ϕ(x, y) :– x π:L−−→ z, x
π′:L′−−−→ y, π �subseq π

′

Here L describes known criminal activity in a network of
people, and L′ gives paths to be analyzed. We want to find
ys that are connected to x in a way resembling known illicit
activity involving x. Due to the nature of those activities in
the network, not all of them may be known yet, hence we are
looking for subsequences of known activities as an indication
that the connection of x and y is suspect and needs to be
investigated further. This query ϕ is too complex to evaluate,
due to the presence of �subseq, but its replacement

ϕ′(x, y) :– x π:L−−→ z, x
π′:L′−−−→ y, Rsubseq(π, π′)

from the class CRPQrel(
−−→
REG2

PA) will be much more efficient,
and will overapproximate the answer to ϕ, i.e., no objects of
interest will be lost.

As another example, consider comparing paths for similar-
ity; these queries are common in both social networks [22] and
Semantic Web applications [4]. Some measures, e.g., fixed edit
distance, are regular, but some are not. Consider the following
one: two words u and v are k-similar if u ∈ shufflek(v), i.e.,
each word w of length ≤ k occurs the same number of times in
u and in v. The picture below has an example of two 2-similar
paths starting at the same node z and realizing the same local
patterns up to length 2 over the alphabet {a, b}:

a
b b a b

a b a b b

x

y

z

Note that k-similarity is not a regular relation, nor can it be
described by Parikh images if k ≥ 2, but this is a relation
in
−−→
REGPA. Hence, we can look, for instance, for nodes z

from which k-similar paths to two distinct nodes exist by a
CRPQrel(

−−→
REGPA) query ϕ(z) :– z π−→ x, z

π′−→ y, π ∼k π′, π 6=
π′, where ∼k is the k-similarity relation. It achieves the same
complexity as CRPQrel(REG) queries, even though it uses
relations that go beyond what has so far been possible to use
with reasonable complexity.

Queries in CRPQrel(
←−−
REGPA). No decidable language that

allows the use of �suff and other relations has been known
yet: decidability was only shown for CRPQrel(�suff), i.e., ex-
tension of CRPQs with suffix and nothing else. The language
CRPQrel(

←−−
REGPA) can use suffix with other regular relations,

definable by NFAs and PAs, as long as they are synchronized
by
←−
Lk. For instance, we can use suffix, equal-length, bounded

edit-distance, and properties of Parikh images in a query, all
at the same time, without incurring any complexity penalty.

Proof sketch of Theorem VI.1. Suppose we have a formula of
CRPQrel(

−−→
REGPA) (the case for

←−−
REGPA being analogous) of the

form

ϕ(z̄) :– x1
π1−→ y1, . . . , xl

πl−→ yl, R1(χ̄1), . . . , Rm(χ̄m),

where without loss of generality we assume that languages
witnessing all the πis are A∗ (since any regular condition
λ(πi) ∈ Li can be checked in the second part of the query by
Li(πi)).

We first show the combined complexity case. Let G =
〈V,E〉 be a labeled graph over the alphabet A. Let v̄ be a tuple
of vertices of the arity |z̄|. We want to check if v̄ ∈ ϕ(G).
We first guess a valuation ν : {xi, yi}i≤l → V so that
ν(z̄[i]) = v̄[i] for every i ≤ l.

Let kj be the arity of the relation Rj , and let t = k1 + · · ·+
km. Next, we produce the following relations over (A∗)t:
• the relation R× containing all tuples (w̄1, . . . , w̄m) so that
w̄i ∈ Ri for all i ∈m,

• for every π that appears both in position i of Rj and i′

of Rj′ a relation R./i,j,i′,j′ of tuples

(w1,1, . . . , w1,k1 , . . . , wm,1, . . . , wm,km) (5)

so that wj,i = wj′,i′ ,
• for every RPQ x

π−→ y used in ϕ so that π appears in
position i of Rj a relation SG,νi,j of tuples like (5) so that
wj,i is accepted in the automaton represented by G having
ν(x), ν(y) as initial and final states respectively.

Note that the intersection of all these relations is nonempty iff
v̄ ∈ ϕ(G).

It is easy to see that all the aforementioned relations are
−→
L t-

controlled since each Rj is
−→
Lkj

-controlled. Further, it is easy
to see that for every one of these relations one can build a PA
synchronizing it in polynomial time, given PAs synchronizing
the Rj’s of ϕ. By Proposition V.2, the intersection of all
these relations is empty iff the intersection of all the PA
synchronizing them is. We can test the emptiness of the latter
intersection in PSPACE due to Proposition III.3. Even though
we performed an initial polynomial guessing, by Savitch’s
Theorem the procedure remains PSPACE.

Let us now analyze the case where the query ϕ is fixed.
Note that the relations SG,νi,j s can be synchronized using NFAs
instead of PAs. (In other words, we do not need to make use
of the semilinear constraint set.) Let then A2 be the NFA
synchronizing

⋂
SG,νi,j . Since the number of relations SG,νi,j s

is bounded by a function on ϕ, we have that A2 can be built
so that it is polynomial in the NFA synchronizing the SG,νi,j s,
which in turn are polynomial in G and v̄. Furthermore, its
transitions can be produced on-the-fly using logarithmic space.
Let (A1,C1) be the PA synchronizing the remaining relations
R× ∩

⋂
R./i,j,i′,j′ . Since these depend only on the query, this

is a fixed PA. Using Proposition III.4, it follows that we can
check whether L(A2)∩L(A1,C1) is empty in NLOGSPACE,
and thus check whether (v̄, ρ̄) ∈ ϕ(G).

C. Syntactic restrictions

We now look at query answering in the language that
imposes no restrictions on the type of relations that can be
used, i.e., it uses arbitrary relations from RELPA(All). Recall
that these are relations in which no restrictions whatsoever
are imposed on allowed synchronizations. These include suf-
fix, subword, subsequence, and many properties definable by
Parikh automata, e.g., pairs (u, v) so that v = wu (u is a suffix
of v), and #a(u) = #a(w) for every a ∈ A.

Of course we know that in general query evaluation in
CRPQrel(RELPA(All)) is undecidable; for that, we do not
even need Parikh automata [7]. To recover decidability, or,
better yet, achieve good complexity, it is important to impose
syntactic restrictions on the language. We now do it in the way
that generalizes all previously known decidable restrictions for
graph queries with relations on paths.

Consider again a query

ϕ(z̄) :– x1
π1:L1−−−→ y1, · · · , xm

πm:Lm−−−−→ ym, R1(χ̄1), · · · , Rl(χ̄l),

Let R(χ̄) be an atom used in this query, where
χ̄ = (πi1 , . . . , πin). Define GR(χ̄) as an undirected
graph whose vertices are πi1 , . . . , πin , and edges are
{πi1 , πi2}, {πi2 , πi3}, · · · {πin−1

, πin}. If n = 1, there are no
edges. We let Gϕ be the undirected multi-graph consisting in
the union of all the GRj(χ̄j)s.

We say that ϕ:
• is strongly-acyclic if Gϕ is acyclic (note that if there is

more than one edge between two vertices, Gϕ is not
acyclic; the “strongly-” prefix is to distinguish it from
other notions of acyclicity [6]);

• has join-size n if the size of each connected component
of Gϕ is at most n;

• has dimension n if every relation Ri is given by a PA of
dimension at most n.

Theorem VI.3. (I) For strongly acyclic queries in
CRPQ(RELPA(All)), data complexity is in NLOGSPACE
and combined complexity is in PSPACE;

(II) if the query is in addition of a fixed join-size n, the
combined complexity is in NP;

(III) if the query is furthermore of fixed dimension m, and all
numbers in the definitions of PAs are given in unary, the
combined complexity is in PTIME.

The proof follows the construction of the proof of Theorem
VI.1, using Proposition III.2 for the last two items, and a

lemma below on the complexity of join evaluations. If we
have relations R1 ⊆ (A∗)k1 and R2 ⊆ (A∗)k2 , and numbers
i1 ≤ k1 and i2 ≤ k2, the join R1 ./i1,i2 R2 ⊆ (A∗)k1+k2

consists of the tuples (ū1, ū2) such that ū1 ∈ R1, ū2 ∈ R2,
and ū1[i1] = ū2[i2].

Lemma VI.4. Given two Parikh automata PA1 and PA2 with
constraint sets C1 and C2 that synchronize R1 ⊆ (A∗)k1 and
R2 ⊆ (A∗)k2 , respectively, one can build in polynomial time
a Parikh automaton PA synchronizing R1 ./i1,i2 R2 such that
its constraint set is C1 ×C2 and the size of the auxiliary set
of PA is linear in those of PA1 and PA2.

These result go beyond what is known even for regular
relations; for instance, part (I) of Theorem VI.3 extends a result
about acyclic queries for recognizable relations and one given
binary rational relation from [7].

VII. REGULAR EXPRESSIONS FOR PARIKH AUTOMATA

So far we defined queries in languages CRPQrel(R) by pre-
senting languages and relations with automata, but it is highly
unlikely that a user of a graph query language will be doing
the same. In practice such a user is likely to use a declarative
formalism, probably some type of regular expressions. For
NFAs, we know very well what regular expressions are; in
fact they found their way into UNIX commands (grep etc.)
and programming languages such as PERL, PYTHON, AWK.

If we want to make Parikh automata and relations based on
them usable, we need to provide an easy way to specify lan-
guages definable by them. We do this now, by presenting two
candidate descriptions of languages given by Parikh automata.
One of them is based on the idea of marking positions in a
regular expression, and it captures the power of PAs. The other
works well for some cases when marked expressions become
too complicated; it is based on choosing expressions matching
initial segments of words.

A. Expressions with marking

To explain the idea of these expressions, consider first the
language Lanbn . It can also be defined as the language given
by a∗b∗ with the additional constraint that #a(w) = #b(w).
We can thus use an expression (a∗b∗, a = b) to define it: the
first component is a usual regular expression, and the second
is a constraint on the numbers of occurrences. For instance,
(a∗b∗c∗, a + 2b > c) defines words w ∈ L(a∗b∗c∗) with
#a(w) + 2 ·#b(w) > #c(w).

Such expressions are sufficient to define languages given by
NFAs together with a semilinear constraint on Parikh images,
but as we saw, Parikh automata go further than that. Consider,
for instance, the language L0 = {bancan | n ≥ 0}. Simply
counting as does not help us any more. What we can do instead
is use a technique similar to the one that defines unambiguous
regular languages [10]: namely, we mark positions in the
regular expression. We use the expression ba∗1ca

∗
2, with a1 and

a2 referring to different occurrences of the same symbol a, but
now we can refer to their individual counts. To define L0, we
shall now use (ba∗1ca

∗
2, a1 = a2): it still defines words from

ba∗ca∗ but now with a semilinear constraint that the number
of a1s (i.e., as after the b) is the same as the number of a2s
(i.e., as after the c).

A marked expression therefore is an expression in which
each symbol is marked with a natural number (we can view
unmarked symbols b, c above as marked with 0); that is, an
expression over the alphabet A×D, where D is a finite subset
of N. For a word w from (A × D)∗, its A-projection πA(w)
simply drops the second component of each letter.

Now a marked Parikh expression over A is a pair (e,C),
where e is a regular expression over A×D for a finite D ⊂ N,
and C is a semilinear set in N|A|·|D|. It defines the language

L(e,C) = {πA(w) | w ∈ L(e) and Π(w) ∈ C}.

From Proposition III.1, part 3, we obtain:

Corollary VII.1. The classes of languages defined by Parikh
automata and by marked Parikh expressions are the same.

While in the examples above these expressions are very
simple and intuitive, sometimes they can grow to be a bit
hard to parse, even for simple languages. Coming back to the
language Lba=ca (the number of as that occurring after a b
and after a c is the same), the expression to describe it is(

(ba1|ε)
(
(A−{b, c})∗(b(A−{a})|c(A−{a})|ε)

)∗
(ca2|ε)

)∗
together with the constraint a1 = a2. (The sublanguage in the
middle, under the inner Kleene star, denotes the set of words
in which neither ba not ca occurs.) We now propose alternative
expressions that, while slightly weaker in terms of their power,
work better for languages like Lba=ca.

B. Expressions with choice

For languages like Lba=ca, it is better to use expressions
with choice. We define such a language with the expression
{(A∗ba,

(
0
1

)
), (A∗ca,

(
1
0

)
)}, together with constraint x1 = x2.

This works as follows. The use of pairs of numbers next to
expressions indicates the use of two counters, say x1 and x2.
Suppose we are given a word w = a1 · · · an. When a prefix of
it matches the first expression, A∗ba, we add 0 and 1 to the
counters, and when it matches the second expression, A∗ca,
we add 1 and 0 to the counters. So having x1 = x2 after
reading the whole word is equivalent to having equal numbers
of as following a b and a c.

Now we define these expressions formally. A Parikh expres-
sion with choice is an expression of the form (E,C), where
E = {(e1, v̄1), . . . , (em, v̄m)}, each ei is a regular expression
over A, each v̄i is in Nk, and C is a semilinear set in Nk.

To define the language (over A) given by E, let e0 define the
complement of all the ejs (i.e., its language is the complement
of
⋃
i L(ei)) and let v0 = 0̄. Then a word w = a1 · · · an is in

L(E,C) iff for every position i ≤ n, there is ji ∈ [0,m] such
that:
• a1 · · · ai ∈ L(eji), and
•
∑
i≤n v̄ji ∈ C.

Proposition VII.2. Languages given by Parikh expressions
with choice are definable by Parikh automata.

PAs resulting from translating Parikh expressions with
choice have an additional property: whenever (q, a, v̄, q′) and
(q, a, ū, q′′) are transitions, then q′ = q′′. But despite being
slightly weaker, this class of expressions covers many exam-
ples of interest, and appears to be intuitive enough to be used
in query languages. Expressions with marking also are quite
intuitive for many languages, and they do capture PAs.

VIII. CONCLUSIONS

We showed that with the use of Parikh automata we avoided
the curse of rational relations in graph database queries, at
the expense of approximations, of course. Such approximate
solutions can be found effectively, matching bounds for best
graph queries and traditional query languages for relational
databases, in terms of combined complexity. The formalism of
PAs, in addition, directly expresses many properties of interest
in graph querying, and PAs come with at least two alternative
ways of specifying languages that can be used in querying,
similar to the way usual regular expressions are used.

Several questions remain. Among technical questions, there
is one regarding the use of path variables in queries, as was
done in [6] for CRPQrel(REG). One needs to find effective
PA representations of sets of paths returned by a query, and
understand their complexity. We also would like to show that
expressions with choice are provably weaker than expressions
with marking (the notion of determinism that is known to be
weaker for PAs is actually more restrictive than the automata
such expressions translate into).

Regarding directions for future work, we would like to look
at obtaining underapproximations, as opposed to overapproxi-
mations, of query answers (say, for queries involving subword,
subsequence, and similar relations). Is there a model sharing
good computational properties with PAs that can be used for
that purpose? Another has to do with extending the formalism
beyond navigational properties, i.e., to querying the topology
of the graph (say, connections in a social network) and data
stored in it (e.g., data about people in the social network).
Extensions of RPQs that handle data have been proposed [35];
they treat paths as data words and use automata formalisms
for those [9]. One possible approach is then to enhance such
automata with features of PAs.

Acknowledgment We would like to thank Anthony Widjaja
Lin and Eryk Kopczyński for helpful discussions. Diego
Figueira is partially supported by ANR StochMC, Project
Blanc ANR-13-BS02-0011-01.

REFERENCES

[1] S. Abiteboul, P. Buneman, D. Suciu. Data on the Web: From Relations
to Semistructured Data and XML. Morgan Kauffman, 1999.

[2] R. Alur, L. D’Antoni, J. Deshmukh, M. Raghothaman, and Y. Yuan.
Regular functions and cost register automata. In LICS’13.

[3] R. Angles, C. Gutiérrez. Survey of graph database models. ACM Comput.
Surv. 40(1): (2008).

[4] K. Anyanwu, A. P. Sheth. ρ-Queries: enabling querying for semantic
associations on the semantic web. In WWW’03.

[5] P. Barceló. Querying graph databases. In PODS’13, 175-188.
[6] P. Barceló, L. Libkin, A. W. Lin, P. Wood. Expressive languages for path

queries over graph-structured data. ACM Trans. Database Syst. 37(4):
31 (2012).

[7] P. Barceló, D. Figueira, L. Libkin. Graph logics with rational relations.
Logical Methods in Computer Science 9(3) (2013).

[8] P. Barceló, P. Muñoz. Graph logics with rational relations: the role of
word combinatorics. In CSL-LICS 2014.

[9] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin. Two-
variable logic on data words. ACM TOCL 12(4): 27 (2011).

[10] A. Brüggemann-Klein, D. Wood. One-unambiguous regular languages.
Information and Computation 140 (1998), 229-253.

[11] M. Cadilhac, A. Finkel, and P. McKenzie. Affine Parikh automata.
RAIRO Theoretical Informatics and Applications, 46(4): 511–545, 2012.

[12] M. Cadilhac, A. Krebs, P. McKenzie. The algebraic theory of Parikh
automata. In CAI 2013, pages 60–73.

[13] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. View-based
query processing and constraint satisfaction. In LICS’00, pages 361-371.

[14] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Rewriting
of regular expressions and regular path queries. JCSS, 64(3):443–465,
2002.

[15] L. Cardelli, P. Gardner, G. Ghelli. A spatial logic for querying graphs.
In ICALP’02, pages 597-610.

[16] C. Choffrut. Relations over words and logic: a chronology. Bulletin of
the EATCS 89 (2006), 159–163.

[17] M. P. Consens, A. O. Mendelzon. GraphLog: a visual formalism for real
life recursion. In PODS’90, pages 404–416.

[18] I. Cruz, A. Mendelzon, P. Wood. A graphical query language supporting
recursion. In SIGMOD’87, pages 323-330.

[19] Z. Dang, O. H. Ibarra, T. Bultan, R. Kemmerer, J. Su. Binary reachability
analysis of discrete pushdown timed automata. In CAV’00, pages 69-84.

[20] A. Dawar, P. Gardner, G. Ghelli. Expressiveness and complexity of graph
logic. Inf.& Comput. 205 (2007), 263-310.

[21] J. Esparza, P. Ganty. Complexity of pattern-based verification for
multithreaded programs. In POPL 2011, pages 499-510.

[22] W. Fan. Graph pattern matching revised for social network analysis. In
ICDT 2012, pages 8–21.

[23] D. Figueira and L. Libkin. Synchronizing relations on words. In STACS
2014, pages 93–104.

[24] D. Florescu, A. Levy, D. Suciu. Query containment for conjunctive
queries with regular expressions. In PODS’98.

[25] S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas, and
languages. Pacific Journal of Mathematics, 16(2): 285–296, 1966.

[26] M. Hague, A. W. Lin. Synchronisation- and reversal-bounded analysis
of multithreaded programs with counters. In CAV 2012, pages 260-276.

[27] J. Hellings, B. Kuijpers, J. Van den Bussche, X. Zhang. Walk logic as a
framework for path query languages on graph databases. In ICDT 2013,
pages 117-128.

[28] O. H. Ibarra. Reversal-bounded multicounter machines and their decision
problems. Journal of the ACM, 25(1): 116–133, 1978.

[29] W. Karianto. Parikh automata with pushdown stack. Master’s thesis,
RWTH Aachen, 2004.

[30] F. Klaedtke and H. Rueß. Monadic second-order logics with cardinalities.
In ICALP 2003, pages 681–696.

[31] B. König, J. Esparza. Verification of graph transformation systems with
context-free specifications. ICGT 2010, pages 107-122.

[32] E. Kopczyński and A. W. Lin. Parikh images of grammars: Complexity
and applications. In LICS 2010, pages 80–89.

[33] D. Kozen. Lower bounds for natural proof systems. In FOCS 1977,
pages 254–266.

[34] L. Libkin. Logics for unranked trees: an overview. LMCS 2(3): (2006).
[35] L. Libkin, D. Vrgoč. Regular path queries on graphs with data. In

ICDT’12, pages 74–85.
[36] A. W. Lin. Model Checking Infinite-State Systems: Generic and Specific

Approaches. PhD thesis, U. Edinburgh, 2010.
[37] M. Marx. Conditional XPath. ACM TODS 30(4): 929–959 (2005).
[38] R. Parikh. On context-free languages. J. ACM, 13(4): 570–581, 1966.
[39] I. Robinson, J. Webber, E. Eifrem. Graph Databases. O’Reilly, 2013.
[40] J. Sakarovitch. Elements of Automata Theory. CUP, 2009.
[41] B. Scarpellini. Complexity of subcases of Presburger arithmetic. Trans.

AMS, 284(1): 203–218, 1984.
[42] K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of

equational Horn clauses. In CADE 2005, pages 337–352.
[43] P. Wood. Query languages for graph databases. Sigmod Record,

41(1):50–60, 2012.

APPENDIX

NOTATION

For all our proofs we adopt the following presentation of Parikh automata given by Karianto [29], which,
as stated in Proposition III.1, is equivalent to the definition given before. A Parikh Finite Automaton (PA)
of dimension k ≥ 1 over an alphabet A is a system (A,C) where A = (Q,A × D, δ, q0, F) is a finite
automaton over A × D, for some finite, nonempty set D ⊆ Nk (called the auxiliary set), and C ⊆ Nk is a
semi-linear set (called the constraint set). The language recognized by (A,C) is defined as

L(A,C)
def
= {w | w⊗ v ∈ L(A),⊕v ∈ C}.

PROOF OF LEMMA II.1

Proof: Note that for q ∈ N, we have that 2q · x can be simply represented as

fq2 (x) = f2(· · · f2︸ ︷︷ ︸
q

(x))

and thus for every m ∈ N we have that m · x can be represented with a term

tm(x) = fq12 (x) + · · ·+ fqr2 (x)

of Presburger arithmetic of size O(log(m)), where m =
∑
i 2qi . Further, this term can be built in linear

time in the binary representation of m. From this observation, it follows that for any linear set represented
in binary

{v̄0 + α1v̄1 + · · ·+ αnv̄n | α1, . . . , αn ∈ N} ⊆ Nk

one can build an equivalent Presburger formula ϕ(x1, . . . , xk) in linear time:

∃α1, . . . , αn .
∧
i∈k

(
xi = tv0[i](1) +

∑
j∈n

tvj [i](αj)
)
.

Hence, by a disjunction of such formulae, one can also compute, in linear time, Presburger arithmetic
representations of semilinear sets.

PROOF OF PROPOSITION III.1

Proof: 1) ⇒ 2) Consider a PA of dimension k given as a pair (A,C) with A = (Q,A × D, δ, q0, F),
where D,C ⊆ Nk. We show how to build an automaton A′ over A with statespace Q′ and a constraint set
C′ verifying 2). We define the set of states as Q′ = Q× ({0̄} ∪ D), with an initial state (q0, 0̄) and set of
final states F × ({0̄} ∪ D). The idea is that we internalize the second components of the letters read by A
into the states of A′, so that whenever A reads (a, x̄) reaching a state q, we have that A′ reads a reaching
a state (q, x̄). Thus, the set of transitions of A′ consists of all ((q, x̄), a, (q′, x̄′)) so that (q, (a, x̄′), q′) ∈ δ.
Let us fix an order Q′ = {p1 < · · · < pm} for the m = |Q′| states of A′. We write p̄i ∈ D to denote the
vector contained in the second component of the state pi. We define C′ ⊆ Nm as

C′ = {v̄ | v̄ · (p̄1, . . . , p̄m)t ∈ C},

where (p̄1, . . . , p̄m)t is the transpose of (p̄1, . . . , p̄m). The fact that C′ is semilinear can be readily seen
when working with Presburger arithmetic formulae. That is, if we have a formula ϕ(x1, . . . , xk) describing
C we have that the formula

ϕ′(y1, . . . , ym) = ∃x1, . . . , xk .
∧
i∈k

(
xi =

∑
j∈m

p̄j [i] · yj
)
∧ ϕ(x1, . . . , xk)

describes C′.
Now we show w ∈ L(A,C) iff there is an accepting run ρ of A′ on w so that Π(ρ) ∈ C′. From left

to right, if w ∈ L(A,C) then there is a word v ∈ D∗ so that w⊗ v ∈ L(A) with an accepting run ρ,

so that ⊕v ∈ C. By construction of A′, we have that ρ⊗ v is an accepting run of A′ on w and that
Π(ρ⊗ v) · (p̄1, . . . , p̄m)t = ⊕v ∈ C. Hence, Π(ρ⊗ v) ∈ C′ for the accepting run ρ⊗ v of A′ on w. For
the right-to-left direction, suppose we have an accepting run ρ⊗ v of A′ on w so that Π(ρ⊗ v) ∈ C′. This
means that Π(ρ⊗ v) · (p̄1, . . . , p̄m)t ∈ C. Since Π(ρ⊗ v) · (p̄1, . . . , p̄m)t = ⊕v, and ρ is an accepting run
of A on w⊗ v by construction of A′, it follows that w⊗ v ∈ L(A) and ⊕v ∈ C.

2) ⇒ 3) Given a NFA A with statespace Q and a semilinear set C ⊆ Nk, where k = |Q|. Consider
the alphabet B = Q and the NFA A′ so that L(A′) = {w⊗ ρ | ρ is an accepting run of A on w}. Let us
assume the lexicographic order on A × B. We build C′ by replacing every offset or generator v̄ ∈ Nk of
C with (v̄, . . . , v̄︸ ︷︷ ︸

|A|

) ∈ N|A|·k. It then follows that there is a word w ∈ L(A) with an accepting run ρ so that

Π(ρ) ∈ C if, and only if, w⊗ ρ ∈ L(A) and Π(w⊗ ρ) ∈ C′.

3) ⇒ 1) Suppose we have a NFA A over A × B and a semilinear set C ⊆ N|A|·|B|. Let D =
{v1, . . . , v̄|A|·|B|}, where v̄i ∈ N|A|·|B| is the vector containing a 1 in its i-th component, and zeros in
every other component. Let ai be the i-th letter in the ordering of A× B. Given a word w ∈ (A× B)∗ let
w† ∈ D∗ be the result of replacing every ai in w with v̄i, for every i. Note that Π(w†) = ⊕(w†) = Π(w).

Consider a NFA A′ over A×D so that L(A′) = {w⊗ v | ∃u.w⊗u ∈ L(A), v = (w⊗u)†}. We show that
a word w is in the language of (A′,C) iff there is some u ∈ B∗ so that w⊗u ∈ L(A) and Π(w⊗u) ∈ C.

From left to right, if w is in the language of the PA (A′,C) then there is some v ∈ D∗ so that w⊗ v ∈
L(A′) and ⊕v ∈ C. Let u ∈ B∗ so that (w⊗u)† = v; we then have that w⊗u ∈ L(A). Further,
since ⊕v = Π(w⊗u), we have Π(w⊗u) ∈ C. From right to left, assume there is some u ∈ B∗ so that
w⊗u ∈ L(A) and Π(w⊗u) ∈ C. Since Π(w⊗u) = ⊕(w⊗u)† ∈ C and since w⊗ (w⊗u)† ∈ L(A′), it
follows that w is in L(A′,C).

PROOF OF PROPOSTION III.2

Proof: We focus first on the emptiness problem. Let (A,C) be a PA of dimension k so that L(A) ⊆ A×D
with D = {d̄1, . . . , d̄n}. We first build an existential Presburger formula ϕC(y1, . . . , yk) describing C in
polynomial time (Lemma Theorem II.1). We then produce an existential Presburger formula ϕΠ

A(x1, . . . , xk)
for Π({v | u⊗ v ∈ L(A)}) ⊆ Nn in linear time [42, Theorem 4]. From ϕΠ

A one can obtain, in polynomial
time, a formula ϕA describing {⊕v | u⊗ v ∈ L(A)} ⊆ Nk, by defining

ϕA(y1, . . . , yk) = ∃x1, . . . , xn.ϕ
Π
A ∧ (y1, . . . , yk) = x1 · d̄1 + · · ·+ xn · d̄n.

Finally, we check for satisfiability of ϕA ∧ ϕC in NP [41, Corollary 1].
Now let (A,C) be a PA so that C and the working alphabet are represented in unary. Note that from C

one can produce in polynomial time an automaton B over an alphabet of size k, say B = {b1, . . . , bk}, so
that the Parikh image of L(B) is C. Similarly, one can produce in polynomial time an automaton A′ from
A so that the Parikh image of L(A′) is {⊕v | w⊗ v ∈ L(A)}.1 Note that both polynomial translations make
use of the fact that numbers are represented in unary. In [32] (also in [36]) it is shown that the problem of
whether the Parikh image of two given regular languages is disjoint is in PTIME, assuming the alphabet is
fixed. Thus, we can check whether

Π(L(A′)) ∩Π(L(B)) = ∅

or, equivalently, whether
{⊕v | w⊗ v ∈ L(A)} ∩C = ∅

(and thus whether (A,C) is empty) in polynomial time.
Let us now consider the emptiness problem. Given a word w ∈ A∗ and a PA (A,C) we produce A′ so

that L(A′) = L(A) ∩ {w⊗ v | v ∈ D∗} in polynomial time, and we then check (A′,C) for emptiness as
before.

Finally, for NP-hardness, one can easily reduce from the Subset Sum Problem: the problem of, given k
integers n1, . . . , nk, whether there is a non-empty subset of them whose sum is 0. For any such instance

1Indeed, it suffices to introduce a simple modification on the transition relation of A, so that for each letter (a, (β1, . . . , βk)) read
by A, we have that A′ reads β1 times b1, followed by β2 times b2, etc.

we can produce a PA (A,C) of dimension 2 so that a · · · a︸ ︷︷ ︸
k

∈ L(A,C) iff the instance has a positive

answer. For this, we take C = {(n, n) | n ∈ N} and we build A in the following way. We use k + 1
states q0, . . . , qk so that the initial and final states are q0 and qk respectively. We use an auxiliary set
D = {(ni, 0) | ni > 0} ∪ {(0,−ni) | ni < 0} ∪ {(0, 0)} and a singleton alphabet A = {a} (we assume,
without any loss of generality, that no ni is zero). For every i ∈ k we have a transition (qi−1, (a, (0, 0)), qi);
a transition (qi−1, (a, (ni, 0)), qi) if ni > 0; and a transition (qi−1, (a, (0,−ni)), qi) if ni < 0. Note that the
automaton basically chooses either to use ni (by reading the auxiliary element (ni, 0) or (0,−ni) depending
on its signature) or not to use it (by reading (0, 0)). If the PA is non-empty, then its language is {a · · · a︸ ︷︷ ︸

k

},

and there must be a non-empty subset of {n1, . . . , nk} so that the positive numbers sum up to n and the
negative numbers sum up to −n, for some n ∈ N. Hence, a · · · a︸ ︷︷ ︸

k

∈ L(A,C) iff the instance has a positive

answer, and thus the emptiness and membership problems are NP-hard.

PROOF OF PROPOSITION III.3

Proof: PSPACE-hardness follows from the fact that the Intersection Problem for NFA is already PSPACE-
complete [33, Lemma 3.2.3]; here we show that it belongs to PSPACE. Let (A1,C1), . . . , (Am,Cm) be PA
given as instance of the problem, with Ai = (Qi,A × Di, δi, qi0, Fi) and Di,Ci ⊆ Nni . Let us define
C = C1 × · · · ×Cm; note that an existential Presburger formula ϕC for C can be built from C1, . . . ,Cm

in linear time (due to Lemma II.1).
We define a NFA A so that ⊕L(A)∩C 6= ∅ iff the instance has a positive answer. Let R be

⋃
1≤i≤m(Di×

· · · × Dm) ∪ {∅̄}, where ∅̄ denotes the 0-tuple (i.e., the tuple of dimension 0). Let N =
∑
i∈m ni and

n =
∑
i∈m |Di|. We define the alphabet of A as

D def
=
⋃
i∈m
{0li} × Di × {0ri} ⊆ NN

where li =
∑

1≤j<i nj , ri =
∑
i<j≤m nj and 0k stands for the all 0’s k-tuple.2 Note that |D| = n. We

define the statespace of A as Q def
= Q1 × · · · × Qm × R. The idea is that A simulates the execution of

A1, . . . ,Am in parallel by iterating the following mechanism:
• it guesses an alphabet letter (ai, x̄i) ∈ A× Di for each Ai so that a1 = · · · = am,
• it stores the states q1, . . . , qm to which transitions lead for each automaton, as well as the vectors
x̄1, . . . , x̄m, and

• it reads x̄1, . . . , x̄m one at a time using m transitions.
The sole purpose of this way of simulating A1, . . . ,Am is to keep the alphabet of A linear. The idea is that,
by reading one x̄i at a time, we are summing (instead of multiplying) the auxiliary sets of A1, . . . ,Am.

Formally, we define the initial state as (q1
0 , . . . , q

m
0 , ∅̄), the final states as {(q1, . . . , qm, ∅̄) | qi ∈ Fi, i ∈m},

and the transitions as
• ((q̄, ∅̄), (x̄1, 0

r1), (q̄′, (x̄2, . . . , x̄m))) for every q̄ = (q1, . . . , qm), q̄′ = (q′1, . . . , q
′
m) and a ∈ A so that

(qi, (a, x̄i), q
′
i) ∈ δi for every i ∈m

• ((q̄, (x̄i, x̄i+1, . . . , x̄m)), (0li , x̄i, 0
ri), (q̄, x̄i+1, . . . , x̄m)) where x̄i ∈ Di and i ≤ m—note that

x̄i+1, . . . , x̄m is ∅̄ if i = m.
Observe that |A| is exponential in

∑
i |Ai|, but the size of its alphabet D is only linear in

∑
i |Ai|. We

observe that ⊕L(A)∩C 6= ∅ if, and only if,
⋂
i L(Ai,Ci) 6= ∅. Indeed, if ⊕L(A)∩C 6= ∅ there is a word

x̄1 · · · x̄s ∈ L(A) which means that s = `(m+1) for some ` ∈ N+, and there is a word a1 · · · a` ∈ A∗ so that
for every i ∈m, we have that (a1 · · · a`)⊗ (x̄′ix̄

′
i+m+1x̄

′
i+2(m+1) · · · x̄

′
s−(m+1)+i) ∈ L(Ai), where each x̄′j is

the projection of x̄j onto the components {
∑
i′<i ki′+1, . . . ,

∑
i′≤i ki′}. Further, since x̄1+· · ·+x̄s ∈ C, we

have that x̄′1 +· · ·+x̄′s ∈ Ci and since only the indices equivalent to i modulo m+1 contain vectors different
from 0̄, it follows that x̄′i+x̄

′
i+m+1+x̄′i+2(m+1)+· · ·+x̄

′
s−(m+1)+i ∈ Ci as well. Thus, a1 · · · a` ∈ L(Ai,Ci)

for every i. On the other hand, if
⋂
i L(Ai,Ci) 6= ∅ there is a word a1 · · · as ∈ A∗ and, for every i ∈ m,

a word x̄i1 · · · x̄is ∈ D∗i so that x̄i1 + · · · + x̄is ∈ Ci and (a1 · · · as)⊗ (x̄i1 · · · x̄is) ∈ L(Ai). This means that

2For the cases i = 1 and i = m we obtain D1 × {0r1} and {0ln} × Dn respectively.

ȳ1
1 · · · ȳm+1

1 · · · ȳ1
s · · · ȳm+1

s ∈ L(A) and ȳ1
1 + · · · + ȳm+1

1 + · · · + ȳ1
s + · · · + ȳm+1

s ∈ C, where ȳij (with
i ≤ m) is the vector containing x̄ij in the coordinates {

∑
i′<i ki′ + 1, . . . ,

∑
i′≤i ki′} and 0 everywhere else,

and ȳm+1
j = 0̄.

Let us fix an arbitrary linear order on D = {d̄1 < · · · < d̄n}. By [36, Theorem 7.3.1], the Parikh image
Π(L(A)) ⊆ Nn of A can be described by a finite union of linear sets of the form

{v̄0 +
∑
i∈n′

αiv̄i | α1, . . . , αn′ ∈ N} (6)

so that n′ ≤ n, and maxi ||v̄i||∞ is O(|Q|O(n) ·nO(n)). From this representation one can obtain a semilinear
set corresponding to ⊕L(A) ⊆ NN whose every linear set is of the form (6) so that n′ ≤ n and maxi ||v̄i||∞ is
n·O(|Q|O(n)·nO(n))—and therefore exponential in

∑
i |Ai|. To do this, we replace every v̄i = (β1, . . . , βn) ∈

Nn with β1 · d̄1 + · · ·+ βn · d̄n ∈ NN , where βj · d̄j = (βj · d̄j [1], . . . , βj · d̄j [N]) ∈ NN .
Therefore, due to Lemma II.1, we obtain:

Observation A.1. ⊕L(A) can be represented as a disjunction
∨
i ϕi of existential Presburger formulas,

each of which has size linear in n+N and logarithmic in |Q|.

Hence, ϕ =
∨
i ϕi∧ϕC represents ⊕L(A)∩C and each ϕi∧ϕC is of size polynomial in {(Ai,Ci)}i∈m.

By [41, Theorem 6 (A)],3 if an existential Presburger formula such as θ = ϕi ∧ ϕC is satisfiable, there
is a satifying assignment so that each variable is assigned a number that is exponential in |θ|. Thus, ϕ is
satisfiable iff there exists a word v ∈ D∗ so that ⊕v ∈ ⊕L(A) ∩C and ||⊕v||∞ is at most exponential
in {(Ai,Ci)}i∈m. By building A on-the-fly we can guess and verify the existence of such v using only
polynomial space. By Savitch’s theorem (PSPACE = NPSPACE), we can then test, in PSPACE, whether ϕ
is satisfiable, which is equivalent to A being nonempty, which in turn is equivalent to

⋂
i L(Ai,Ci) 6= ∅.

Thus, the statement follows.

PROOF OF PROPOSITION III.4

We show the following: For any fixed PA (A1,C1), given a NFA A2, the problem of whether L(A1,C1)∩
L(A2) 6= ∅ is in NLOGSPACE.

Proof: Let A be the projection of the second component of A1 intersected with A2, that is, L(A) = {v |
∃u ∈ L(A2) s.t. u⊗ v ∈ L(A1)}. Notice thatA is linear inA2. It suffices to check whether ⊕L(A)∩C1 6= ∅.
By the previous Observation A.1 in the proof of Proposition III.3, we have that ⊕L(A) ∩ C1 can be
represented by an existential Presburger formula ϕ =

∨
i ϕi ∧ ϕC1

so that each ϕi ∧ ϕC1
is logarithmic in

the number of states of A, and thus also logarithmic in A2.
By [41, Theorem 6 (A)], each θ = ϕi ∧ϕC1

is satisfiable iff there is a satisfying assignment so that each
variable is assigned a number that is exponential in θ, and hence polynomial in A2. Thus, ϕ is satisfiable
iff there exists a word v ∈ D∗ so that ⊕v ∈ ⊕L(A) ∩C1 and ||⊕v||∞ is at most polynomial in A2. This
can be checked in NLOGSPACE guessing one position of v at a time and keeping a counter of logarithmic
number of bits, ensuring that the sum of the guessed word is of size at most polynomial in A2.

PROOF OF PROPOSITION V.1

Proof: Let A be a NFA synchronizing R ⊆ (A∗)n. Let w1, . . . , wK be all the words of A+ of length
at most k. Note that the set

C = {(x1
1, . . . , x

K
1 , . . . , x

1
n, . . . , x

K
n) ∈ Nn·K | ∃ū ∈ R s.t. ∀i ∈ n, j ∈ K we have xji = #wj

(ū[i])}

is semilinear. Indeed, it suffices to extend A to work over the alphabet n × A≤k in order to keep track of
the last k letters seen for each of the components i ∈ n, and then take its Parikh image.

Consider then the
−→
Ln-controlled PA (A′,C), where A′ operates over the alphabet (n × A) × {0, 1}nK

(with {0, 1}nK as the auxiliary set), so that whenever it reads (j, a, (u1
1, . . . , u

K
1 , . . . , u

1
n, . . . , u

K
n)) we have

that uij′ = 1 iff j = j′ and the word read so far in the j-th component has wi as a suffix, for every i ∈ K.

3It is worth mentioning that Scarpellini shows this for the version of Presburger arithmetic we use (that is, with the doubling function).

Thus, for every w ∈ L(A′,C) there is v so that w⊗ v ∈ L(A′) and ⊕v ∈ C. By definition of A′, assuming
[[w]]n = (u1, . . . , un) we obtain

⊕v = (#w1
(u1), . . . ,#wK

(u1), . . . ,#w1
(un), . . . ,#wK

(un)) ∈ C.

This means that there is (v1, . . . , vn) ∈ R so that #wj
(vi) = #wj

(ui) for all i ∈ n, j ∈ K. This shows that
shufflek(R) ∈

−−→
REGnPA. It is easy to see that a

←−
Ln-controlled automaton synchronizing the same relation as

A′ can also be built. Thus, shufflek(R) is in
−−→
REGnPA ∩

←−−
REGnPA.

PROOF OF PROPOSITION V.2

A language L ⊆ k∗ is Parikh-injective if the function Π : L→ Nk is injective.

Lemma A.2. If L ⊆ k∗ is Parikh-injective, then for any two PA L-controlled languages S1, S2 ⊆ (k×A)∗

we have
[[S1 ∩ S2]]k = [[S1]]k ∩ [[S2]]k.

Proof: This is a trivial generalization of the case for regular relations and k = 2 contained in [23]
that we repeat here for the sake of clarity. Let S1, S2 ⊆ (k × A)∗ be two L-controlled PA languages. It
is immediate that the language S∩ = S1 ∩ S2 is L-controlled and [[S∩]]k ⊆ [[S1]]k ∩ [[S2]]k. We show that
[[S1]]k ∩ [[S2]]k ⊆ [[S∩]]k. Suppose that ū ∈ [[S1]]k ∩ [[S2]]k. Then, there must be w1 ∈ S1 and w2 ∈ S2 so that
[[w1]]k = [[w2]]k = ū. Note that the projection onto the first component of w1 must be equal to the projection
onto the first component of w2 since L is Parikh-injective. Then, we must have that w1 = w2 and thus
ū ∈ [[S∩]]k.

Corollary A.3. If L ⊆ k∗ is Parikh-injective, then RELPA(L) is effectively closed under intersection.

The following is a simple observation from the definition of
−→
Lk and

←−
Lk.

Lemma A.4. For every k ∈ N+,
−→
Lk and

←−
Lk are Parikh-injective.

Thus, by Lemma A.2, we obtain Proposition V.2 as a corollary.

PROOF OF THEOREM VI.1

In the proofs that follow, we will assume that, for S a class of relations, formulae of CRPQrel(S) are of
the form

ϕ(z̄) :– x1
π1−→ y1, . . . , xl

πl−→ yl, R1(χ̄1), . . . , Rm(χ̄m), (†)

where
• without loss of generality we assume that languages witnessing all the πis are A∗ (since any regular

condition λ(πi) ∈ Li can be checked in the second part of the query by Li(πi)),
• {πi | i ∈ l} are the path variables of ϕ,
• {xi, yi | i ∈m} are the node variables of ϕ,
• the πi’s are pairwise distinct,
• every Rj is in S and χ̄j is a kj-tuple of of variables from {πi}i of the same dimension kj as Rj ,
• the elements of z̄ range over the node variables of ϕ.

Proof: The lower bounds for this problem come from the evaluation problem for ECRPQ [6], which
is a subclass of instances of this problem. Henceforward we assume we work with

−−→
REGPA, since the proof

for
←−−
REGPA is completely analogous.

Let us first show the combined complexity case, where both the query and graph are part of the input. Let
ϕ be as in (†), and let G = 〈V,E〉 be a labelled graph over the aphabet A. Let v̄ be a vector of vertices that
is given. We want to check if v̄ ∈ ϕ(G). We first guess a valuation ν : {xi, yi}i∈l → V so that ν(z̄[i]) = v̄[i]
for every i ∈ l. Given two vertices x, y of G, let us write G[x, y] to denote the language recognized by the
NFA whose transition relation is the labeled graph G, and initial and final states are, respectively, x and y.
Next, we produce the following relations

• the relation

R×
def
= {(w1,1, . . . , w1,k1 , . . . , wm,1, . . . , wm,km) | (wj,1, . . . , wj,kj) ∈ Rj , j ∈m}

which is simply the crossproduct R1 × · · · ×Rm;
• for every π that appears both in position i of Rj and i′ of Rj′ a relation

R./i,j,i′,j′
def
= {(w1,1, . . . , w1,k1 , . . . , wm,1, . . . , wm,km) | wj,i = wj′,i′}

which assures that the i-th component of Rj is joined with the i′-th component of Rj′ ;
• for every RPQ x

π−→ y so that π appears in position i of Rj a relation

SG,νi,j
def
= {(w1,1, . . . , w1,k1 , . . . , wm,1, . . . , wm,km) | wj,i ∈ G[ν(x), ν(y)]}

which ensure that the path π is compatible with G, ν, that is, that π is indeed a path of G from the
node associated to x to the node associated to y in the guessing ν.

We first show that the intersection of all these relations is nonempty iff v̄ is a solution of ϕ(G). From right-to-
left, if v̄ ∈ ϕ(G), through the guessed valuation ν, there are paths w1, . . . , wl of G corresponding to the paths
π1, . . . , πl so that for every Rj(χ̄j) with χj = (πi1 , . . . , πikj

) we have a tuple w̄j = (wi1 , . . . , wikj
) ∈ Rj .

This means that (w̄1, . . . , w̄j) ∈ R× and further that it verifies the equalities of R./i,j,i′,j′ . Further, since the
words wi according to x1

π1−→ y1, they also verify the restrictions imposed by SG,νi,j . From left-to-right, if
there is a tuple (w̄1, . . . , w̄m) ∈ R×∩

⋂
R./i,j,i′,j′ ∩

⋂
SG,νi,j this means that the valuation ν correctly guessed

nodes that are compatible with the paths in w̄1, . . . , w̄m contained in G. We are now left with the task to
give a PSPACE procedure to test the above relations for emptiness.

It is easy to see that each of the aforementioned relations are
−→
L t-controlled for t =

∑
j∈m kj since each

Rj is
−→
Lkj

-controlled. Further, it is easy to see that for every one of these relations one can build a PA
synchronizing it in polynomial time, given PA synchronizing the Rj’s of ϕ. For example, for R× it suffices
to take the crosspduct of their cosntraint sets and to compose the NFA for each relation: first the automaton
on {1, . . . , k1} ×A synchronizing R1, then the automaton on {k1 + 1, . . . , k1 + k2} ×A synchronizing R2

(note that we shift the alphabets), etc. The resulting automaton is then
−→
L t-controlled. For R./i,j,i′,j′ and SG,νi,j

the construction is straightforward.
Now that we have

−→
L t-controlled PA PA1, . . . ,PAs synchronizing each of the relations above, we have

that, the intersection of all these PA synchronizes the intersection of all the relations above, that is

[[PA1 ∩ · · · ∩ PAs]]t = [[PA1]]t ∩ · · · ∩ [[PAs]]t
= R× ∩

⋂
R./i,j,i′,j′ ∩

⋂
SG,νi,j .

This is a consequence of Proposition V.2. This menas that R× ∩
⋂
R./i,j,i′,j′ ∩

⋂
SG,νi,j 6= ∅ if and only

if L(PA1 ∩ · · · ∩ PAs) 6= ∅. We can then test the emptiness of the latter intersection in PSPACE thanks to
Proposition III.3. Note that, even though we performed an initial polynomial guessing, by Savitch’s Theorem
the procedure remains PSPACE.

Let us now analyse the case where the query ϕ is fixed. Note that the relations SG,νi,j ’s can be synchronized
using NFA’s instead of PA’s. (In other words, we don’t need to make use of the semilinear constraint set.)
Let then A2 be the NFA synchronizing

⋂
SG,νi,j . Since the number of relations SG,νi,j ’s is bounded by a

function on ϕ, we have that A2 can be built so that it is polynomial in the NFA synchronizing the SG,νi,j ’s,
which in turn are polynomial in G, v̄. Further, its transitions can be produced on-the-fly using logarithmic
space. Let (A1,C1) be the (fixed) PA synchronizing the remaining (fixed) relations R× ∩

⋂
R./i,j,i′,j′ . Using

Proposition III.4, it follows that we can check whether L(A2) ∩ L(A1,C1) is empty in NLOGSPACE, and
thus whether v̄ ∈ ϕ(G).

PROOF OF THEOREM VI.3

Proof: (I) We first show that the combined complexity for strongly acyclic queries of CRPQ(RELPA(All))
is in NLOGSPACE. Let G = 〈V,E〉 be a labelled graph over the aphabet A, and let v̄ be a vector of vertices of
G. Assume ϕ is a strongly-acyclic query of the form (†). We want to check if v̄ ∈ ϕ(G). Without any loss of

generality, let us assume that Gϕ is connected. (If it’s not connected, one can divide the input vector and query
into connected queries, and test each one for membership.) Let (A1,C1), . . . , (Am,Cm) be PA synchronizing
R1, . . . , Rm, where Ci ⊆ Nki for every i. We now proceed as in the proof of Theorem VI.1, where we
reduce the problem to the intersection of several relations of arity k1 + · · · + km, assuming Ri ⊆ (A∗)ki
for i ∈m. We consider the same relations defined in that proof: R×, R./i,j,i′,j′ ’s, SG,νi,j ’s. Remember that the
intersection of these relations is non-empty iff v̄ is a solution of ϕ(G). The key observation here is that we
can build, in polynomial time, m PA synchronizing the relations S1, . . . , Sm so that

R× ∩
⋂
i,j

SG,νi,j = S1 × · · · × Sm.

This can be done because, on the one hand the relation R× is just R× = R1 × · · · ×Rm, and on the other
hand the relations SG,νi,j ’s impose at most one further constraint for each of the coordinates of R× (here
we’re using the fact that in the query (†) all the πi’s are distinct).

We still have to produce the intersection with R./i,j,i′,j′ . Remember that R./i,j,i′,j′ basically joins component i
of the tuple from relation Rj with component i′ of the tuple from relation Rj′ . Due to the strong-acyclicity of
ϕ, this join graph looks like a tree, which allows us to use the repeated application of Lemma VI.4 obtaining
a PSPACE procedure. More formally, strong-acyclicity entails the existence of a permutation p = `1, . . . , `m
of 1, . . . ,m and indices i1, j1, . . . , im−1, jm−1 so that

S./
def
=
(
(S`1 ./i1,j1 S`2) · · ·

)
./im−1,jm−1 S`m = permp(S1 × · · · × Sm ∩

⋂
i,j,i′,j′

R./i,j,i′,j′)

where permp(R) of a relation R ⊆ Ak1+···+km is defined as

{(w`1,1, . . . , w`1,k`1 , . . . , w`m,1, . . . , w`m,k`m) | (w1,1, . . . , w1,k1 , . . . , wm,1, . . . , wm,km) ∈ R}.

Thus through the (m− 1 times) application of Lemma VI.4 we obtain a PA (A,C) synchronizing S./, so
that:
• A has an exponential number of states,
• A has a linear alphabet size, and
• C = C`1 × · · · ×C`m .

Finally, given the bounds above, by building A on-the-fly we obtain a PSPACE procedure as described in
the proof of Proposition III.3.

If the query ϕ is fixed, we proceed in a similar way as in the proof of Theorem VI.1. We observe that we
can build the transition relations of S1, . . . , Sm in NLOGSPACE. It is easy to see that the automaton build
by Lemma VI.4 can be built on-the-fly using logarithmic space. Thus, by a constant number of applications
(as m is fixed) of the construction we obtain that a PA synchronizing S./ can be built on-the-fly and test
for emptiness in NLOGSPACE.

(II) We proceed as before, where for each connected component we have that there is a constant number
of automata involved and thus we can produce a PA for the intersection in polynomial time and check for
non-emptiness in NP due to Proposition III.2.

(III) We proceed as before, using the second part of Proposition III.2 this time.

PROOF OF LEMMA VI.4

We show the following. Given two PA (A1,C1), (A2,C2) synchronizing R1 ⊆ (A∗)k1 , R2 ⊆ (A∗)k2 ,
and given i1 ∈ k1, i2 ∈ k2, one can build in polynomial time a PA (A,C) synchroninzing

R1 ./i1,i2 R2
def
= {ū1ū2 | ū1 ∈ R1, ū2 ∈ R2, ū1[i1] = ū2[i2]} ⊆ (A∗)k1+k2

so that C = C1 ×C2 and so that the size of the auxiliary set of A is linear in those of A1,A2.
Proof: Let A1 = (Q1,A×D1, δ1, q

1
0 , F1),A2 = (Q2,A×D2, δ2, q

2
0 , F2). We define D = D1×{0k2}∪

{0k1}×D2, Q = Q1 ×Q2 × (2×A∪ {ε}). The idea is that a state (q1, q2, (`, a)) represents that we are in
state q1 of A1, in state q2 of A2 and that we need to move forward Ai from qi until it reads a letter of the
form (i`, a); more formally, from such a state we can either
• if ` = 1, advance through a transition (q1, ((j, a

′), v̄), q′1) ∈ δ1 by reading a letter ((j, a′), v̄ 0k2) to the
state

– (q′1, q2, (`, a)) if j 6= i1, or
– (q′1, q2, ε) if (j, a′) = (i1, a); or

• if ` = 2, advance through a transition (q2, ((j, a
′), v̄), q′2) ∈ δ2 by reading a letter ((j, a′), 0k1 v̄) to the

state
– (q1, q

′
2, (j, a)) if j 6= k1 + i2, or

– (q1, q
′
2, ε) if (j, a′) = (k1 + i2, a).

A state of the form (q1, q2, ε) means that component i1 from A1 and i2 from A2 are synchronized and we
can either
• advance through a transiton (q1, ((j, a), v̄), q′1) ∈ δ1 by reading a letter ((j, a), v̄ 0k2) to the state

– (q′1, q2, ε) if j 6= i1 or
– (q′1, q2, (2, a)) if j = i1, or

• advance through a transiton (q2, ((j, a), v̄), q′2) ∈ δ2 by reading a letter ((k1 + j, a), 0k1 v̄) to the state
– (q1, q

′
2, ε) if j 6= i2 or

– (q1, q
′
2, (1, a)) if j = i2.

Finally, the initial state is (q1
0 , q

2
0 , ε) and the final states {(q1, q2, ε) | q1 ∈ F1, q2 ∈ F2}. Note that the size

of A is polynomial in A1,A2, and that D is linear in D1,D2. Further, we have [[L(A,C)]]k1+k2 = R1 ./i1,i2
R2.

PROOF OF PROPOSITION VII.2

Proof: Consider an expression with choice (E,C) where E = {(e1, v̄1), . . . , (em, v̄m)}. Let Ai be a
DFA for L(ei), for i ∈ m. We assume that Ai = (Qi,A, qi0, Fi, δi) where δi is a function from Qi × A to
Qi. Let A0 = (Q0,A, q0

0 , δ0, F0) be a DFA whose language is A∗ −
⋃
{L(ei) | i ∈ m} (it corresponds to

the expression e0 used in the definition of acceptance by a Parikh expression with choice).
This Parikh expression with choice is captured by a PA (Q,A, q̄0, δ, F,C), where:
• the statespace Q is the subset of Q0 ×Q1 × · · · ×Qm that consists of tuples (s0, s1, . . . , sm) so that
si ∈ Fi for at least one i ∈ m (note that in any simultaneous run of the Ais over any word, at any
point in the run at least one state will be final, by the definition of A0; hence, this requirement simply
eliminates unreachable states);

• q̄0 = (q0
0 , q

1
0 , . . . , q

m
0);

• F = Q, i.e., every state is final and acceptance is by the constraint set;
• a transition (s̄, a, v̄, s̄′), where s̄ = (s0, s1, . . . , sm) and s̄′ = (s′0, s

′
1, . . . , sm) is in δ iff

– s′i = δi(si, a) for all i ∈m, and
– there is j ∈m such that s′j ∈ Fj and v̄ = v̄j or s′0 ∈ F0 and v̄ = 0̄.

That is, the Parikh automaton simulates all the automata A0,A1, . . . ,Am in parallel; if one of them, say Ai,
upon reading letter a enters a final state (which means the prefix is in L(ei)), the corresponding vector v̄i can
be added to the counters (or all zeros, in the case of A0). It is routine to verify that this automaton captures
(E,C). Note also that it satisfies the condition mentioned in the paper: if (s̄, a, v̄′, s̄′) and (s̄, a, v̄′′, s̄′′) are
both in δ, then s̄′ = s̄′′ (although v̄′ need not equal v̄′′, so this is a weaker requirement that the determinism
of PAs).

	Introduction
	Preliminaries
	Parikh automata
	Complexity of Parikh automata

	Query evaluation with Parikh automata
	Synchronized Parikh relations
	Synchronizations and regularity for Parikh relations

	Parikh relations in queries
	CRPQs with relations
	Regularity and query evaluation
	Syntactic restrictions

	Regular expressions for Parikh automata
	Expressions with marking
	Expressions with choice

	Conclusions
	References
	Appendix

