
HAL Id: hal-01778459
https://hal.science/hal-01778459

Submitted on 25 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronizing Relations on Words
Diego Figueira, Leonid Libkin

To cite this version:
Diego Figueira, Leonid Libkin. Synchronizing Relations on Words. Theory of Computing Systems,
2015, 57 (2), pp.287 - 318. �10.1007/s00224-014-9584-2�. �hal-01778459�

https://hal.science/hal-01778459
https://hal.archives-ouvertes.fr

Synchronizing Relations on Words∗

Diego Figueira Leonid Libkin

University of Edinburgh

Abstract

While the theory of languages of words is very mature, our understanding of relations on words is
still lagging behind. And yet such relations appear in many new applications such as verification of pa-
rameterized systems, querying graph-structured data, and information extraction, for instance. Classes of
well-behaved relations typically used in such applications are obtained by adapting some of the equivalent
definitions of regularity of words for relations, leading to non-equivalent notions of recognizable, regular,
and rational relations.

The goal of this paper is to propose a systematic way of defining classes of relations on words, of
which these three classes are just natural examples, and to demonstrate its advantages compared to some
of the standard techniques for studying word relations. The key idea is that of a synchronization of a pair
of words, which is a word over an extended alphabet. Using it, we define classes of relations via classes
of regular languages over a fixed alphabet, just {1,2} for binary relations. We characterize some of the
standard classes of relations on words via finiteness of parameters of synchronization languages, called
shift, lag, and shiftlag. We describe these conditions in terms of the structure of cycles of graphs under-
lying automata, thereby showing their decidability. We show that for these classes there exist canonical
synchronization languages, and every class of relations can be effectively re-synchronized using those
canonical representatives. We also give sufficient conditions on synchronization languages, defined in
terms of injectivity and surjectivity of their Parikh images, that guarantee closure under intersection and
complement of the classes of relations they define.

1 Introduction
Foundations of formal language theory have been largely developed in the 1960s and 1970s, and used heavily
in practically all areas of computer science. The field itself stayed somewhat dormant for a while, but that
changed over the past 10–15 years due to new application areas requiring techniques that could not have
been foreseen 30 or 40 years earlier. Among consumers of results in formal language theory are verification
(for instance, automata-based approaches to model-checking are now part of standard industrial verification
tools [7, 25]) and data management (standards for describing and querying XML documents, for instance,
are rooted in both word and tree automata [27, 31], and emerging graph data models are borrowing many
formal language concepts [3]).

Of interest to us in this paper are relations on words. That is, for a given finite alphabet A, we deal with
binary relations R⊆A∗×A∗. Their study goes back to Elgot, Mezei, Nivat in the 1960s [17, 28] with much
subsequent work done later (see, e.g., surveys [9, 15]). The standard notions of regularity that generate

∗The current article is the full version of [19].

1

the same class of languages —recognizability by finite monoids, definability by automata, or by regular
expressions— give rise to different classes of relations, called recognizable, regular, and rational relations.
Their properties may differ significantly from properties of regular languages: for instance, rational relations
are not closed under intersection and it is even undecidable whether the intersection of two such languages
is non-empty. Recognizable relations are just unions of products of regular languages; examples of regular
relations are prefix, equality, or equal length of words; and examples of rational relations are suffix, subword
(for instance, bb is a subword of aabbaa), and subsequence (bb is a subsequence of abaaba: letters need not
be consecutive).

There has been renewed interest in relations on words as of late. One motivation comes from verification
of safety and liveness properties of parameterized systems, where such relations describe transitions [1, 12,
23, 32]. Another comes from graph databases, which are actively studied as a suitable model for RDF data,
social networks data, and others [3]. Paths in graph databases are described by their labels, and need to be
compared, for instance, for their degree of similarity, e.g., their edit distance [4, 6, 26]. Yet another example
is the study of formal models underlying IBM’s tools for information extraction [18].

Many of the basic questions that arise in these new applications, however, are not the kind of questions
that had been addressed previously. Just to give an example, it is well known that checking nonemptiness
of the intersection of a rational relation and a regular relation is an undecidable problem. But what about
really used rational relations such as subword, suffix, subsequence (as opposed to artificial codings of the
halting problem) – can we test if their intersection with regular relations is nonempty? However natural
these questions are, they were answered only recently [5].

An even more basic question relates to the very choice and structure of the main classes of relations:
recognizable, regular, and rational. They appeared in a somewhat ad hoc way, just as analogs of different
ways of defining regularity of languages, but is there another way to explain these, and perhaps other classes
as well? This is the main point of our paper: we argue that there is a natural way to study relations on words,
and we do it by explaining how positions in words are synchronized.

As an example of synchronization, consider words w1 = ababb and w2 = baaaba. We can represent this
pair as a single word over {a,b}, by shuffling w1 and w2, i.e., interspersing letters of w1 among letters of w2.
For each position in the shuffle, we remember which word it came from – this is indicated by the symbols 1
or 2 above the letters in the figure.

w1

w2

a b a b a a b b b
1 2 2 1 2 1 1 2 1a b a b b

b a a a b a �
��

�

a a
2 2

When we read the letters marked i, for i = 1,2 we get the word wi. The word over {1,2} provides a
synchronization of the pair (w1,w2) – in our example, 12212112212. We show that the commonly occurring
classes of relations over words follow the same principle:

1. to decide whether (w1,w2) is in the relation, one runs an automaton over the shuffle;

2. classes of relations are then determined by the classes of allowed synchronizations.

For instance, recognizable relations are given by synchronizations from 1∗2∗, length-preserving regular
relations by synchronizations from (12)∗, arbitrary regular relations by synchronizations from (12)∗(1∗|2∗),
and rational relations by synchronizations from (1|2)∗.

For relations, we have proper inclusions recognizable (regular (rational [9], making them very dif-
ferent from languages. This raises the question: since every recognizable language is regular, and yet 1∗2∗ is
not contained in (12)∗(1∗|2∗), there must be multiple ways of synchronizing relations to obtain even known

2

classes. What are these ways, and how can they be characterized? And will those characterizations lead to
new naturally appearing classes?

These are the questions we answer. We define three parameters of regular languages in (1|2)∗: the shift
says how often we switch between 1s and 2s, the lag says how big the difference between the numbers of
1 and 2 is allowed to get, and shiftlag combines the two in a certain way. Then finite shift characterizes
recognizability, while finite shiftlag characterizes regularity of relations. Finite lag, which appears to be a
natural measure then, captures another known class of relations.

We provide automata characterizations of classes of synchronization languages in terms of the structure
of cycles in the graph representations of automata. All these turn out to be decidable. This shows one
advantage of dealing with relations in terms of their synchronizations. For instance, it is known that checking
whether a given rational relation is regular, is an undecidable problem (assuming the input is a transducer,
i.e., an automaton with output [9]). However, if the input to the problem is a synchronization language, then
it is decidable whether the relations it describes are all regular.

Another advantage of describing relations by their synchronizations is the ability to find classes closed
under intersection or complementation (rational relations, for instance, are not). We do it by imposing de-
cidable conditions on Parikh images of synchronization languages to guarantee closure properties of classes
of relations they give rise to.

We also look at re-synchronization of relations. For each class of relations, there may be many different
regular synchronizing languages over {1,2}. We show that in the standard cases, there exist canonical
synchronizing languages, and relations can be effectively resynchronized using those canonical languages.

2 Recognizable, regular, and rational relations
We start with some basic notations. Throughout the paper, A stands for a finite alphabet, N = {1,2, . . .}
for the set of positive natural numbers, and N0 for N∪{0}. The set of all words over A is denoted by A∗,
and the length of w in A∗ is denoted by |w|. If w = a1 . . .an, then w[i, j] stands for the subword ai . . .a j; in
particular, w[i] is the letter ai.

Recall that there are three standard ways of defining regular languages:

• Recognizability by finite monoids: the set A∗, equipped with the concatenation operation (denoted by
‘·’, whose unit is the empty word ‘ε’) is a monoid. A set L ⊆ A∗ is recognizable if there is a finite
monoid M and a homomorphism 〈A∗, ·,ε〉 →M so that L = f−1(M0) for some M0 ⊆M.

• Definability by finite automata, say NFAs.

• Definability by regular (sometimes called rational) expressions, i.e., those built from the empty word
and alphabet letters using union, concatenation, and the Kleene star.

Classical formal language theory tells us that these definitions generate the same class of languages,
known as regular languages. We now adapt them to binary relations on words.

Recognizable relations Since 〈A∗, ·,ε〉 is a monoid, A∗×A∗ has the structure of a monoid too. We can thus
define recognizable relations as sets R⊆A∗×A∗ for which there is a finite monoid M and a morphism
f : A∗×A∗→M such that R = f−1(M0) for some M0 ⊆M. This class will be denoted by REC.

Regular relations Let ⊥ 6∈ A be a new alphabet letter. A pair (w1,w2) of words from A∗ can be encoded
by a single word of length max(|w1|, |w2|) over the alphabet (A∪{⊥})× (A∪{⊥}): its ith letter
is the pair containing the ith letter of w1 and the ith letter of w2, with ⊥ used when i is greater

3

than the length of w1 or w2. For example, the encoding for the words of the figure of page 2 is
(a,b)(b,a)(a,a)(b,a)(b,b)(⊥,a). A regular relation R is given by an automaton over this alphabet: it
contains pairs (w1,w2) whose encodings are accepted by the automaton. The class of regular relations
is denoted by REG.

Rational relations There are two equivalent ways of defining them. One uses regular expressions, which
are now built from pairs in (A∪{ε})× (A∪{ε}) using the same operations of union, concatenation,
and Kleene star. Alternatively, rational relations can be defined by means of 2-tape automata, that
have 2 heads for the tapes and one additional control; at every step, based on the state and the letters
it is reading, the automaton can enter a new state and move some (not necessarily all) tape heads. The
class of rational relations is denoted by RAT.

Relations in REC are exactly the finite unions of products of regular languages over A [9, 17]. Examples
of relations in REG \REC are prefix, equality, or equal length. Examples of relations in RAT \REG are
suffix, given by

(⋃
a∈A(ε,a)

)∗ ·
(⋃

a∈A(a,a)
)∗; subword:

(⋃
a∈A(ε,a)

)∗ ·
(⋃

a∈A(a,a)
)∗ ·
(⋃

a∈A(ε,a)
)∗,

and subsequence:
(⋃

a∈A(ε,a)∪ (a,a)
)∗.

Note that unlike in the case of languages, where the three notions coincide, we have REC(REG(RAT.
The classes REC and REG are closed under intersection; however the class of rational relations is not. In
fact, one can find R ∈ REG and S ∈ RAT so that R∩ S 6∈ RAT. However, if R ∈ REC and S ∈ RAT, then
R∩S ∈ RAT.

Relations in REC and REG inherit all the closure/decidability properties of regular languages. If R ∈
RAT, then each of its projections is a regular language, and can be effectively constructed. Hence, the
nonemptiness problem is decidable for RAT. However, testing nonemptiness of the intersection of two
rational relations is undecidable. We refer to [9, 14, 30] for basic information on these relations and their
decision problems.

3 Synchronizations of relations
We now formalize the idea of synchronizations informally described in the introduction. We write k for the
set {1, . . . ,k}. A synchronization of a pair (w1,w2) of words in A∗ is a word over 2×A so that the projection
on A of positions labeled i is exactly wi, for i = 1,2 (see the figure on page 2). Every word w in (2×A)∗ is a
synchronization of a uniquely determined pair (w1,w2), where wi is the sequence of A-letters corresponding
to the symbol i in the first position of 2×A. We denote such (w1,w2) by [[w]] and extend it to languages
S⊆ (2×A)∗ by [[S]] = {[[w]] | w ∈ S}.

For two words u = a1 · · ·an ∈A∗ and v = b1 · · ·bn ∈ B∗, we write u⊗v for the word (a1,b1) · · ·(an,bn) ∈
(A×B)∗. The main idea of our approach to relations on words comes from two different ways of viewing
words in (2×A)∗.

• Every word w ∈ (2×A)∗ is a synchronization of a pair [[w]] = (w1,w2).

• Every word w ∈ (2×A)∗ is of the form u⊗v with u ∈ 2∗ and v ∈ A∗.

This makes it possible to define relations consisting of pairs [[w]] with restricted synchronizations, i.e.,
w = u⊗v and u belongs to a given language L⊆ 2∗.

Formally, if L ⊆ 2∗, we say that u⊗v is L-controlled if u ∈ L; a language is L-controlled if all its words
are. We now look at relations given by L-controlled synchronizations, i.e., for a regular language L⊆ 2∗, let

REL(L) = {[[S]] | S is a regular L-controlled language} (1)

4

If C is a class of relations over A∗, then L⊆ 2∗ is a synchronization for C if REL(L)⊆C , that is, all relations
given by L-controlled synchronizations belong to C . We remark that a similar approach to defining relations
was used in [21], although the questions considered were completely different.

Procedurally, each relation in REL(L) is obtained as follows:

1. Choose an automaton over 2×A;

2. consider words u⊗v it accepts so that u ∈ L,

3. view v as a synchronization of (w1,w2) and add the pair to the relation.

This view suggests natural candidates for capturing classes REC,REG, and RAT. For REC, relations are
unions of products of regular languages, so synchronizations are of the form 1∗2∗: one starts by going over
the first word, and then over the second. For REG, they are from (12)∗(1∗|2∗): we first go over two words
letter-by-letter, and then write out the rest of the longer word. For RAT, there are no restrictions. Indeed, we
can show the following.

(I) REL(1∗2∗) = REC.

(II) REL((12)∗ · (1∗|2∗)) = REG.

(III) REL((1|2)∗) = RAT.

(I)-[⊇] The fact that REL(L) contains any union of products of regular languages (and hence that REC ⊆
REL(L)) is straightforward. Note that REL(L) is closed under finite union, and for any two regular languages
L1,L2 we have that L1×L2 ∈ REL(L) because (1⊗L1) · (2⊗L2) is an L-controlled language.

(I)-[⊆] On the other hand, let R ∈ REL(L), defined by a L-controlled language S. Let S be described by
an NFA AS with statespace Q, initial state q0 and final states F . Let Lq,q′

i be the language consisting of all
words v ∈ A∗ so that there is a partial run of AS on i⊗v starting in state q and ending in state q′. Note that
Lq,q′

i is regular. Hence, R = [[S]] =
⋃

q∈Q,q′∈F Lq0,q
1 ×Lq,q′

2 , and thus any relation in REL(L) is a finite union
of products of languages. Therefore, REL(L)⊆ REC.

(II)-[⊇] Let R⊆ A∗×A∗ be a regular relation, represented by an NFA A over the alphabet (A∪{⊥})2,
where (u1,u2) is in R if and only if u′1⊗u′2 ∈ L(A), where u′i ∈ (A∪ {⊥})∗ is the result of padding ui
with a suffix of max(|u1|, |u2|)− |ui| letters ⊥. Let Q be the statespace of A. We produce an NFA A′

over 2×A so that [[L(A′)]] = R and L(A′) is L-controlled. Let Q′ = 2×Q. For any transition (q,(a,b),q′)
of A, where a,b 6= ⊥, we have two transitions ((1,q),(1,a),(2,q)) and ((2,q),(2,b),(1,q′)) in A′; and
for any transition (q,(⊥,b),q′) (resp. (q,(a,⊥),q′)) of A, we have a transition ((1,q),(2,b),(1,q′)) (resp.
((1,q),(1,a),(1,q′))) in A′. It follows that a pair (u,v) is accepted by the relation represented by L(A′) if,
and only if, (u,v) is in [[L(A′)]]. Further, it is plain that by the behavior of A (i.e., once it reads a letter
(a,⊥) for a ∈ A, it reads only ⊥ in the second component, and likewise for the first component) A′ must be
L-controlled.

(II)-[⊆] Let A be an NFA over 2×A so that L(A) is L-controlled, with statespace Q. Note that Q can be
partitioned into four sets Q1,Q2,Q′1,Q

′
2, so that the transition relation δ of A is such that

δ ⊆
⋃

i∈2
Qi×{i}×A× (Q\Qi) ∪

⋃

i∈2
Q′i×{i}×A×Q′i (†)

that is, all outgoing transitions from Qi,Q′i read letters from {i}×A, and there is an alternation between
Q1 and Q2 until a state from Q′i is reached, and after that it stays only in Q′i. We can build an automaton

5

A′ over (A∪{⊥})2 representing the same relation as follows. For every two transitions (q1,(1,a),q2) and
(q2,(2,b),q′) of A where qi ∈Qi, we have a transition (q1,(a,b),q′) in A′; for every transition (q1,(1,a),q′1)
where q1,q′1 ∈ Q1 ∪Q′1, we have a transition (q1,(a,⊥),q′1) in A′; and for every transition (q2,(2,b),q′2)
where q2,q′2 ∈ Q2 ∪Q′2, we have a transition (q2,(⊥,b),q′2) in A′. By (†), it follows that A′ represents the
relation [[L(A)]].

(III) Note that L = (1|2)∗ = 2∗ imposes no constraint on REL(L). That is, REL(L) is the set of all
relations [[S]] so that S ⊆ 2×A is regular. Any automaton A over 2×A can be alternatively seen as a
two-tape automaton A′, having one head on each tape, where a transition (q,(i,a)q,′) in A corresponds to
a transition in A′ from q to q′ reading letter a from tape i. Conversely, any two-tape automaton A′ can be
converted into an NFA A over 2×A. For both directions, the set of relations accepted by A′ is [[L(A)]]. These
are precisely the relations in RAT, and hence the statement follows.

It is easy to see that REL(L) is closed under union, alphabetic morphisms, and inverse alphabetic mor-
phisms, and that L1 ⊆ L2 implies REL(L1)⊆ REL(L2).

Remark One may ask why we need to take both S and L regular in the definition (1) of REL(L). The
reason why S needs to be regular is that even with regular L (e.g., 1∗), REL(L) would otherwise contain
non-rational relations (e.g., {(anbn,ε) | n ∈ N}). If, on the other hand, L is not regular, strange things may
happen. For instance, it could be that all relations in REL(L) are finite, although L is infinite. Indeed,
take L as the set of all words 1p for prime p. Note that there is no infinite regular L-controlled language,
since it would imply that an infinite number of distinct primes is semi-linear. Thus, all regular L-controlled
languages are finite, and REL(L) is the set of all finite relations on A∗×{ε} so that the first component is of
prime length.

4 Synchronizations for recognizable, regular, and rational relations
We have seen examples of languages characterizing the classes of recognizable, regular, and rational rela-
tions, but those are not unique. There are trivial examples such as REL(1∗2∗) = REL(2∗1∗) = REC, and
REL((12)∗(1∗|2∗)) = REL((21)∗(1∗|2∗)) = REG, but others as well, e.g., the fact that REL(1∗2∗1∗2∗) is the
same class as REC, or REL(((12)∗1(12)∗2)∗(1∗|2∗)) = REG.

What kind of parameters guarantee that L ⊆ 2∗ synchronizes relations in a class C , for the classes we
study here? That is, what parameters guarantee that with the synchronization language L, we are guaranteed
that the resulting relations are in C ?

We now answer this question, but first we need some definitions. Given a word w over some finite
alphabet, and a letter a in the alphabet, we define #a(w) as the number of occurrences of a in w. Given a
word w ∈ 2∗, a position i≤ |w|, and δ ∈ N, we say i is

• δ -lagged if |#1(w[1, i])−#2(w[1, i])|= δ ;

• ≥δ -lagged if |#1(w[1, i])−#2(w[1, i])| ≥ δ ;

• ≤δ -lagged if |#1(w[1, i])−#2(w[1, i])| ≤ δ .

That is, these parameters show by how much the numbers of 1s and 2s in w ∈ 2∗ differ.
A shift of w is a position i ∈ {1, . . . , |w|− 1} so that w[i] 6= w[i+ 1]. Two shifts i < j are consecutive if

there is no shift l so that i < l < j.
Let shift(w) be the number of shifts of w, let lag(w) be the maximum lag of a position in w, and let

shiftlag(w) be the maximum n ∈ N so that w contains n consecutive shifts which are >n-lagged. We lift
these notions to languages by taking maxima, e.g., shift(L) = maxw∈L shift(w), and likewise for lag(L) and

6

shiftlag(L). If words of arbitrarily large lag (shift, or shiftlag) occur in L, we write shift(L) = ∞ (and likewise
for the other parameters).

Observe that finite shift and finite lag imply that shiftlag is finite, but the converse is not true: for
L = (12)∗1∗ we have shiftlag(L)< ∞ and yet lag(L) = shift(L) = ∞.

It turns out that finiteness of the shiftlag parameter corresponds to synchronizing regular languages,
and finiteness of shift corresponds to synchronizing recognizable languages. An arbitrary regular L ⊆ 2∗ is
guaranteed to synchronize rational languages.

As for the finite lag, it corresponds to a class of languages that is known as well. The class REGbld of
bounded length discrepancy relations [20, 30] is defined as follows. Recall the definition of rational relations
using two-tape automata. For a rational relation to be in REGbld it is required that there be δ ≥ 0 so that in
accepting runs of such automata, the heads for the two tapes are never more than δ positions apart. It also
follows from [20, 30] that REGbld is the class

⋃
k∈N0

REL(Lk), for Lk = (12)∗(1k|2k). Note that REL(L0) is
the class of length preserving relations. A closely related class R≤ = {(w1,w2)∈A∗×A∗ | |w1| ≤ |w2|} [24]
can be equally defined by REL((12|2)∗).

Now we can state the characterization result.
Let L⊆ 2∗ be a regular language. Then:

(I) L synchronizes recognizable relations iff shift(L)< ∞,

(II) L synchronizes regular relations iff shiftlag(L)< ∞,

(III) L synchronizes relations in REGbld iff lag(L)< ∞,

(IV) L synchronizes rational relations.

In order to prove Theorem 4, we first need two lemmas.
For every s ≥ 1, we have REL((1∗2∗)s) = REC. This is a consequence of a synchronization theorem,

Theorem 5-(II), which implies that for every (1∗2∗)s-controlled language S there is a (1∗2∗)-controlled
language S′ so that [[S]] = [[S′]]. This fact, in conjunction with Proposition 3-(I), shows the statement.

In the lemma below, we extend the notion of concatenation to classes of relations in the natural way, i.e.,
element-wise.

For every δ ∈ N, we have REL(L≤δ -lag) (REG and REL(L≤δ -lag) ·REC = REG. Note that any
relation R ∈ REL(L≤δ -lag) only contains pairs (u,v) so that −δ ≤ |u|− |v| ≤ δ . Hence the regular relation
{(u,ε) | u ∈A∗} is not in REL(L≤δ -lag), and thus REL(L≤δ -lag) 6= REG. On the other hand, we have that any
R ∈ REL(L≤δ -lag) is regular, since it can be recognized by a nondeterministic automaton on two tapes with a
look-ahead of δ , which can be simulated in the states of the automaton. Hence, REL(L≤δ -lag)(REG.

Since the concatenation of a regular relation and a recognizable relation is regular [9], we are only left to
show REG⊆ REL(L≤δ -lag) ·REC. It is easy to see from their automata description that every regular relation
R∈REG can be factored into a finite union of relations R1 ·R2 so that R1 is (12)∗-controlled and R2 is (1∗|2∗)-
controlled. Since (12)∗ ∈ REL(L≤δ -lag) for δ = 1, it follows that REG ⊆ REL(L≤1-lag) ·REC. Note that for
every δ ≤ δ ′ we have L≤δ -lag ⊆ L≤δ ′-lag. Then, by the above and monotonicity, REG⊆ REL(L≤δ -lag) ·REC
for every δ ≥ 1.

We can now prove the theorem.
[of Theorem 4] (II)-(if) Let n ∈ N so that shiftlag(L) < n. Since L is regular, this implies that there is

some δ ′ where all shifts of every w ∈ L are ≤δ ′-lagged for some δ ′, except perhaps the last n−1 shifts.

Claim 1 There is some δ ′ so that for all w ∈ L and for all shifts i of w that are not among the last n− 1
shifts, we have that they are ≤δ ′-lagged.

7

w : 1 1 1 1 1 2 1 1 1 1 1
δ :

i1 i2 i3 i4

ij ij�

1 2 3 4 5 4 5 6 7 8 9

ii�

1

2
. . .

. . .1
10

2
9

i5

Figure 1: Example, where w has a prefix 1111121111112 after which it has n−1 shifts, n = 4, δ ′ = 9, and
|Q|= 1. Shift positions are circled.

Remember that L is regular. Let AL be an NFA accepting the language L with a state space Q. Let δ ′ =
n(|Q|+1)+1. Suppose, by means of contradiction, that there is w∈ L with a shift i∈{1, . . . , |w|} that is >δ ′-
lagged, so that there are at least n−1 shifts to the right of i. Let us assume, without any loss of generality,
that #1(w[1, i])−#2(w[1, i])> δ ′. Figure 1 contains an example. Since w ∈ L, let ρ : {0, . . . , |w|} → Q be an
accepting run of AL on w. Let i′ ≤ i be

• the largest shift i′ < i that is ≤n-lagged, if there is any, or

• i′ = 1 otherwise.

Note that in [i′, i] there cannot be more than n shifts, since otherwise w would have n consecutive >n-lagged
shifts contradicting shiftlag(w)< n. Also, in [i′, i] there must be k = δ ′−n positions i′ ≤ i1 < · · ·< ik ≤ i so
that for every j ∈ {1, . . . ,k−1}

#1(w[i j +1, i j+1])−#2(w[i j +1, i j+1]) = 1, (2)

where, by definition of δ ′, k = n|Q|+ 1 (cf. Figure 1). Remember that there are no more than n shifts in
[i′, i] and i is itself a shift; hence, since k > n|Q|, there must be |Q|+ 1 such positions i j1 < · · · < i j|Q|+1 so
that there is no shift in [i j1 , i j|Q|+1 − 1]. Then, there must be two distinct positions i j, i j′ ∈ {i j1 , . . . , i j|Q|+1},
i j < i j′ , so that ρ(i j) = ρ(i j′) and there is no shift in [i j, i j′ − 1] (cf. Figure 1). We show that we can then
“pump” the subword of w inside [i j, i j′] to obtain a larger word w′ ∈ L that has n shifts >n-lagged, that is,
where shiftlag(w′)≥ n. Indeed, for any l ∈ N, we have that

w′ = w[1, i j] · (w[i j +1, i j′])
l ·w[i j′ +1, |w|] ∈ L.

Note that w′ has as many shifts as w. Moreover, shift i in w corresponds now to shift î= i+(l−1)·|[i j+1, i j′]|
in w′, and we have

#1(w′[1, î])−#2(w′[1, î])> (l−1)+δ
′

since for every iteration of w[i j +1, i j′] we add more letters 1 than letters 2, as a consequence of (2).
If we take l = |w|+1, we then have that

• w′ has at least n shifts in [î, |w′|], because w has at least n shifts in [i, |w|] and w′[î, |w′|] = w[i, |w|], and

8

• #1(w′[1, î])−#2(w′[1, î])> |w|+δ ′.

Therefore, the last n shifts of w′ are all >n-lagged, contradicting shiftlag(L) < n. The contradiction comes
from assuming that for all δ ′ there is w ∈ L and a >δ ′-lagged shift i of w that is not among the last n− 1
shifts.

As a consequence of the above Claim 1, there must be some δ ′′ where all the positions occurring before
the last n shifts are ≤δ ′′-lagged.

Claim 2 There is some δ ′′ so that for all w ∈ L and all i so that w has at least n shifts in [i, |w|], we have
that i is ≤δ ′′-lagged.

Let δ ′ be as in Claim 1. Take any position i so that there are at least n shifts in [i, |w|]. Take also the two
positions i1 ≤ i≤ i2 so that

• i2 is a shift,

• i1 is a shift or i1 = 1, and

• there are no shifts in [i1 +1, i2−1].

By Claim 1, it follows that both i1 and i2 are≤δ ′-lagged. Since w[i1+1, i2] is a string of only 1’s or only 2’s,
it cannot be that |w[i1 + 1, i2]| > 2δ ′, as otherwise either i1 or i2 would not be ≤δ ′-lagged. It then follows
that i must be ≤2δ ′-lagged. Hence, taking δ ′′ = 2δ ′, the statement follows.

A direct consequence of Claim 2 is that there is some δ ′′ so that

L ⊆ L≤δ ′′-lag · (1∗|2∗)n (3)

because (1∗|2∗)n contains all words with at most n shifts, and L≤δ ′′-lag is the (regular) language of all words
with≤δ ′′-lagged positions. Since REL(L′) =REC for L′ = (1∗|2∗)n by Lemma 4, we obtain that REL(L′′) =
REG for L′′= L≤δ ′′-lag ·(1∗|2∗)n by Lemma 4. Finally, as stated in (3), we have that L⊆ L′′ where REL(L′′) =
REG. Applying monotonicity, we then have REL(L)⊆ REG.

(II)-(only if) Suppose that shiftlag(L) = ∞. Note that this means that for every s,δ ∈ N there is some
w∈ L that has s consecutive shifts >δ -lagged (because in particular there is some w∈ L so that shiftlag(w)>
max(s,δ)). We build an L-controlled relation S⊆ (2×A)∗ so that [[S]] ∈ RAT\REG.

Let A be any two-letter alphabet {a,b}. Let S⊆ (2×{a,b})∗ consisting of all words u⊗v∈ (2×{a,b})∗
so that u ∈ L, and for every i ∈ {1, . . . , |v|},

• v[i] = a if i is a shift of u, and

• v[i] = b otherwise.

It is plain that S is a regular L-controlled relation since L is regular, and hence that [[S]]∈ REL(L) is a rational
relation. Next we show that [[S]] 6∈ REG.

Note that every pair in the relation has almost the same number of a’s:

For every (u′,v′) ∈ [[S]], −1≤ #a(u′)−#a(v′)≤ 1. (†)

Suppose, by means of contradiction, that [[S]] is regular and therefore, by Proposition 3, [[S]] ∈ REL(L′)
for L′ = (12)∗(1∗|2∗). Hence, there must be some L′-controlled relation S′ ⊆ (2×{a,b})∗ so that [[S′]] = [[S]].
Let AS be an NFA accepting S with statespace Q, and let AS′ be an NFA accepting S′ with statespace Q′.

9

Let s = 2|Q′|+ 2, and let us define the constant K = s2|Q|. We hence define δ = 2K. There must
then be some w = u⊗v ∈ S with s consecutive shifts that are >δ -lagged. Let 1 ≤ i1 < · · · < is ≤ |u| be
the shifts in question. Let us assume, without any loss of generality, that w is minimal in length and that
#1(u[1, i1])−#2(u[1, i1])> δ .

Due to minimality of w, it can be shown through a pumping argument, that the lengths of w[i1, is] and of
w[is +1, |w|] are bounded by a function on s and |Q|.

Claim 3 |w|− i1 ≤ s2|Q|= K.

Let ρ : [0, |w|]→Q be an accepting run of AS on w. For any l ∈ s we have that u[il +1, il+1] is a string of 1’s
or a string of 2’s.

Suppose that u[il +1, il+1] is a string of 2’s, and suppose that the string has length greater than |Q|. Then
there are two distinct elements i, j ∈ [il + 1, il+1] so that i < j, u[i] = u[j] = 2 and ρ(i) = ρ(j). We then
have that w′ = w[1, i] ·w[j+1, |w|] ∈ S and it has s consecutive >δ -lagged shifts, because we only removed
positions labeled with 2. But this is not possible by minimality of w. Hence, u[il + 1, il+1] cannot contain
more than |Q| elements 2, and thus

#2(u[i1 +1, is])≤ (s−1)|Q|. (4)

Now suppose that u[il +1, il+1] is a string of 1’s, and suppose that the string has length greater than s|Q|.
Then, there are two distinct elements i, j ∈ [il +1, il+1] so that u[i] = u[j] = 1, ρ(i) = ρ(j) and i− j ≤ |Q|.
We then have that w′ = w[1, i] ·w[j + 1, |w|] ∈ S. Further, w′ has s consecutive >δ -lagged shifts, because
although we removed some positions marked with 1, we left sufficiently many (at least (s−1)|Q|) to make
sure that, by (4),

#1(u[i1 +1, i] ·u[j+1, il+1])−#2(u[i1 +1, i] ·u[j+1, il+1])≥ 0,

and hence that there are still s shifts >δ -lagged in w′. However, this is not possible by minimality of w.
Hence, u[il +1, il+1] cannot contain more than s|Q| positions labeled 1, and thus

#1(u[i1 +1, is])≤ (s−1)s|Q|. (5)

Then, by (4) and (5), the length of u[i1, is] is bounded by (s−1)|Q|+(s−1)s|Q|+1.
A simpler consequence of the minimality of w is that

|[is +1, |w|]| ≤ |Q|. (6)

Then, summing up, [i1, |w|] is bounded by

|Q|︸︷︷︸
by (6)

+(s−1)|Q|︸ ︷︷ ︸
by (4)

+(s−1)s|Q|︸ ︷︷ ︸
by (5)

+1 = s2|Q|+1.

Thus, |w|− i1 ≤ s2|Q|= K. Since δ = 2K < #1(u[1, i1])−#2(u[1, i1]) and #2(u[i1+1, |w|])≤K by Claim 3,
we have that

#1(u)−#2(u)> K. (7)

Let w′ = u′⊗v′ ∈ S′ be the corresponding word in S′, so that [[w]] = [[w′]]. Let ρ ′ : [0, |w′|]→ Q′ be an
accepting run of AS′ on w′. Note that u′ can be factored into u′ = u′1 ·u′2 with u′1 ∈ (12)∗ and u′2 ∈ 1∗. (The
other possibility, u′2 ∈ 2∗, is only easier.)

10

Notice that u[|u|−K, |u|] contains s shifts, by Claim 3, and in particular s/2 shifts labeled with 1. There-
fore, w[|u| −K, |u|] contains at least s/2 letters (1,a) by definition of S. By (7), we have that |u′2| ≥ K.
Thus, u′2 must contain at least s/2 positions labeled with a. Since s/2 = |Q′|+1, there must be two distinct
positions |u′1|< i < j ≤ |w′| labeled with a so that ρ ′(i) = ρ ′(j). Consider then w′′ = w′[1, i] · (w′[i+1, j])4 ·
w′[j+1, |w′|]. Note that w′′ ∈ S′. By property (†), we had that [[w′]] has the same quantity of a’s (plus-minus
one) in the first and second components. Therefore, [[w′′]] has at least two more a’s in its first component
than in its second component. Hence, due to property (†), it cannot be that [[w′′]] ∈ [[S]], and thus [[S]] 6= [[S′]].
The contradiction comes from assuming that there exists an L′-controlled language S′ so that [[S′]] = [[S]].
Hence, [[S]] 6∈ REG.

(I)-(if) Let shift(L)< n. Note that L′ = (1∗2∗)n contains all words with less than n shifts. Hence, L⊆ L′.
By Lemma 4, REL(L′) = REC, and since L⊆ L′, it follows that REL(L)⊆ REC by monotonicity.

(I)-(only if) Suppose shift(L) = ∞. We exhibit a relation of REL(L) which is not in REC. We use the
same relation as a previous part of this proof, but we repeat it here for the reader’s convenience. Let A be any
two-letter alphabet {a,b}. Let S ⊆ (2×{a,b})∗ consisting of all words u⊗v ∈ (2×{a,b})∗ so that u ∈ L,
and for every i ∈ {1, . . . , |v|},

• v[i] = a if i is a shift of u, and

• v[i] = b otherwise.

It is plain that S is a regular L-controlled relation since L is regular, and hence that [[S]]∈ REL(L) is a rational
relation. Next we show that [[S]] 6∈ REC.

Note that every pair in the relation has almost the same number of a’s:

For every (u,v) ∈ [[S]], −1≤ #a(u)−#a(v)≤ 1. (‡)

By means of contradiction, suppose that [[S]]∈REC. Then, by Proposition 3-(I), there is a 1∗2∗-controlled
language S′ ⊆ (2×{a,b})∗ so that [[S′]] = [[S]]. Let AS′ be an NFA recognizing S′ with statespace Q′. Let
u⊗v ∈ S be a word so that u has more than |Q′| shifts, and hence [[u⊗v]] has more than |Q′| letters a (that
is, the the sum of occurrences of a’s in both components is greater than |Q′|). Since [[S′]] = [[S]] there is
some w′ = u′⊗v′ ∈ S′ so that [[u′⊗v′]] = [[u⊗v]]. Let ρ ′ : [0, |w′|]→ Q′ be an accepting run of AS′ on w′.
Note that u′ has at most one shift. Let i be the only shift of u′ (if u′ has no shifts the reasoning is only
easier). Since v′ has more than than |Q′| a’s, there must be two positions j1, j2 of w′ so that ρ ′(j1) = ρ ′(j2),
v′[j1] = v′[j2] = a and either 1 ≤ j1 < j2 ≤ i or i < j1 < j2 ≤ |w′| (as a consequence of S′ being 1∗2∗-
controlled). Note then that w′[1, j1] · (w′[j1 +1, j2])n ·w′[j2 +1, |w′|] ∈ S′ for every n ∈ N. Take n = 4, and
let w′′ = w′[1, j1] · (w′[j1 + 1, j2])4 ·w′[j2 + 1, |w′|] ∈ S′. Note that [[w′′]] has at least two more a’s in one
component than in the other, because w′ has at most a difference of one a between its components, due to
(‡). Hence, w′′ is in contradiction with (‡), and it cannot be that [[S′]] = [[S]]. Therefore, [[S]] 6∈ REC and thus
REL(L) 6⊆ REC.

(III) This is direct by definition of REGbld.

(IV) This is direct from definition of REL(L) and Proposition 3-(III).
We conclude the section with a couple of examples of applications of the main result. First, we show

that REL((112)∗) 6⊆ REG. Indeed, note that for every s,δ , the word w = (112)δ+s is in (112)∗ and the last
s shifts of w are ≥δ -lagged. Hence, there must be some L-controlled regular language S ⊆ (2×A)∗ so that
[[S]] is not a regular relation.

11

As another example, we get more ways of synchronizing regular relations: given L1 = (1k · 2k)∗, L2 =
(1∗ ·2∗)k for some fixed k, we have REL(Li)⊆ REG (in fact, REL(L2)⊆ REC).

Finally, we consider the (r/s)-synchronized relations [30, p.660] studied in [13]. This class can be
defined as REL(Lr/s), where

Lr/s = (1r2s)∗
(⋃

r′<r

(1r′2∗) |
⋃

s′<s

(1∗2s′)
)
. (8)

It is easy to see that shiftlag(Lr/s) = ∞ whenever r 6= s, and hence that (r/s)-synchronized relations (with
r 6= s) are not in REG.

4.1 Automata theoretic characterizations
We characterized classes of relations via conditions imposed on their synchronization languages: finite shift,
lag, or shiftlag. Now we show that these conditions themselves can be characterized using automata, or more
precisely, the underlying labeled graphs of automata. It turns out that the structure of the cycles provides the
desired characterizations.

Since in this section we deal with synchronization languages, we consider automata over the alphabet
{1,2}. For a given NFA A, we consider the transition graph GA of A as the usual representation of the
transition relation, where GA is a directed graph where states are vertices and edges are labeled by transitions.
A path is a finite sequence of edges of GA so that the arriving vertex of each edge is equal to the departing
vertex of the next one. A cycle is a path whose first and last vertices are equal. A simple cycle is a cycle
whose only repetition of vertex is the first and last ones. Given a cycle C of GA, we define #a(C) as the
number of edges in C labeled with transitions reading letter a. In a heterogeneous cycle C we have #1(C)> 0
and #2(C) > 0; otherwise a cycle is homogeneous. A cycle C is balanced if #1(C) = #2(C), otherwise it is
unbalanced (these definitions are closely related to the notions of balanced/unbalanced oriented cycles in
digraphs, cf. [22]). Note that all balanced cycles are also heterogeneous.

Recall that the trim automaton is the result of removing all states which are not reachable from the initial
state, and all states from which no final state is reachable.

For any trim NFA A over the alphabet 2, and its transition graph GA,

(I) shiftlag(L(A)) = ∞ iff

• GA contains a heterogeneous unbalanced cycle, or

• GA contains a path from a homogeneous to a heterogeneous cycle,

(II) shift(L(A)) = ∞ iff GA has a heterogeneous cycle,

(III) lag(L(A)) = ∞ iff GA has an unbalanced cycle.

Let Q be the statespace of A. Given w ∈ L(A) and an accepting run ρ : [0, |w|]→ Q of A on w, the path P
on GA induced by w,ρ is defined as the sequence of edges e1 · · ·e|w| of GA, so that ei is the edge between
ρ(i−1) and ρ(i) labeled with (ρ(i−1),w[i],ρ(i)).

(I)-(if) Let n ∈ N. We show that assuming one of the two properties is met, there is some w ∈ L(A) with
shiftlag(w)≥ n.

If GA has a heterogeneous cycle Chet with #1(Chet) 6= #2(Chet), one can iterate this cycle to obtain a word
w with shiftlag(w)> n. In other words, suppose that w ∈ L(A) with an accepting run ρ : [0, |w|]→Q so that
the path P induced by w,ρ contains a heterogeneous unbalanced cycle Chet between the positions i≤ j where

12

we assume, without any loss of generality, #1(Chet) > #2(Chet) > 0. Since this means that ρ(i−1) = ρ(j),
we have that

wm = w[1, i−1] · (w[i, j])m ·w[j+1, |w|] ∈ L(A)

for every m ∈ N, and #1(w[i, j]) > #2(w[i, j]) > 0 because #1(Chet) > #2(Chet) > 0. Hence, if we take m =
|w|+2n, it is easy to see that wm has n consecutive shifts that are >n-lagged. Thus, shiftlag(wm)≥ n.

If, on the other hand, there is a path from a homogeneous cycle Chom to a heterogeneous cycle Chet in GA,
then we show that we can iterate both cycles enough times to obtain a word w∈ L(A) so that shiftlag(w)> n.
Suppose w ∈ L(A) with an accepting run ρ : [0, |w|]→ Q, so that the path P induced by w,ρ contains both
cycles, where Chom occurs before Chet. That is, there are 0 < i < j ≤ i′ < j′ ≤ |w| so that

• ρ(i) = ρ(j) and Chom is the cycle induced by w[i, j], ρ|[i−1, j], and

• ρ(i′) = ρ(j′) and Chet is the cycle induced by w[i′, j′], ρ|[i′−1, j′].

Note that for any m, l ∈ N we have

wm,l = w[1, i] · (w[i+1, j])m ·w[j+1, i′]︸ ︷︷ ︸
um

·(w[i′+1, j])l ·w[j′, |w|]︸ ︷︷ ︸
vl

∈ L(A).

If we take m = (n+2)|w| and l = n, we obtain that

• |#1(um)−#2(um)|> (n+1)|w|,

• |vl | ≤ n|w|, and

• shift(vl)> n.

Therefore, wm,l = um · vl is so that shiftlag(wm,l)≥ n.
Thus, if any of the conditions in (I) is met, we must have that shiftlag(L(A)) = ∞.
(I)-(only if) Suppose now that shiftlag(L(A)) = ∞. We choose n = 2|Q|+1, and show that any accepting

run of A on w ∈ L(A) so that shiftlag(w)≥ n must induce a path P containing either

(i) a heterogeneous cycle Chet with #1(Chet) 6= #2(Chet), or

(ii) a homogeneous cycle Chom and a heterogeneous cycle Chet, so that Chom occurs before Chet in P.

Note that once this is verified, the statement follows.
Let ρ : [0, |w|]→ Q be an accepting run of A on w so that shiftlag(w) > n. Consider the path P on GA

induced by ρ,w. By definition of shiftlag(w) > n, there must be n consecutive >n-lagged shifts 1 ≤ a1 <
a2 < · · ·< an ≤ |w| in w. Without any loss of generality, assume that

#1(w[1,a1])−#2(w[1,a1])> n, (†)

and that for every odd index i, w[ai] = 1 and for every even index i, w[ai] = 2. Since n > 2|Q|, it follows that
there must be ai < a j < al with ρ(ai) = ρ(a j) = ρ(al), and thus there must be a heterogeneous cycle inside
P (the one defined between positions i+1 and l). Further, by (†), there are positions 0≤ b1 < · · ·< bn ≤ a1
so that #1(w[bi + 1,bi+1])− #2(w[bi + 1,bi+1]) = 1 for every i ∈ n−1. Since n > |Q|, there must be two
bi < b j so that ρ(bi) = ρ(b j). Hence the cycle C of P induced by w[bi +1,b j],ρ|[bi,b j] necessarily verifies

#1(C)> #2(C). (‡)

Now there are two possibilities.

13

• If #2(C)> 0 then C is heterogeneous and with #1(C) 6= #2(C) by (‡), verifying condition (i).

• The other possibility is that C is homogeneous. Since there is a path from C to a heterogeneous cycle
Chet, the condition (ii) is met.

(II)-(if) Suppose that GA contains a heterogeneous cycle Chet. Then, there must be some word w ∈ L(A)
with an accepting run ρ : [0, |w|]→ Q so that the path P induced by w,ρ contains Chet between positions
i ≤ j of P. Therefore ρ(i− 1) = ρ(j), and wn = w[1, i− 1] · (w[i, j])n ·w[j+ 1, |w|] ∈ L(A) for any n ∈ N.
Note that as a consequence of Chet being heterogeneous, w[i, j] contains at least one letter 1 and one letter 2.
Thus, wn contains at least n shifts, and therefore shift(L(A)) = ∞.

(II)-(only if) Suppose that shift(L(A)) = ∞, that is, for every n ∈ N there is a word w ∈ L(A) so that
shift(w)> n. Take n = 2|Q|, and let w ∈ L(A) so that shift(w)> n. There must be more than |Q| shifts in w
with the same letter i ∈ 2. Without any loss of generality, suppose there are shifts 1≤ i1 < · · ·< i|Q|+1 ≤ |w|
so that w[i j] = 1 for all j ∈ {1, . . . , |Q|+1}. Then there must be two i j1 < i j2 so that ρ(i j1) = ρ(i j2). Hence,
the word w[i j1 +1, i j2] has length ≥ 2, and contains at least one letter 1 (the last letter) and at least one letter
2 (the first letter, as otherwise i j1 would not be a shift with letter 1). It then follows that the path on GA
induced by w[i j1 +1, i j2],ρ|[i j1 ,i j2]

is indeed a heterogeneous cycle.

(III) This is shown in [30, Lemma 6.7, p. 603].
Checking whether REL(L(A))⊆ REG, REL(L(A))⊆ REC or REL(L(A))⊆ REGbld

2 can be done in poly-
nomial time in the size of A.

Note that Corollary 4.1 does not mean that it is decidable whether a relation R ∈ RAT is in REG (in fact,
this problem is undecidable [9, Theorem 8.4-(vi)]). What one can check is whether a synchronized relation
has a “safe” control, in the sense that it synchronizes regular relations. Hence, for any relation R controlled
by L(A), if REL(L(A))⊆ REG then R ∈ REG, but the opposite does not necessarily hold. For example, if we
take L′ = (1|2)∗, we have that REL(L′) 6⊆ REG but the universal relation A∗×A∗ is obviously in REG.

5 Resynchronizing relations
We saw that different languages in 2∗ can generate the same class relations, and yet for the commonly used
classes, we have synchronization languages that somehow look canonical: for instance, (12)∗(1∗|2∗) for
REG. Thus, we now address the question whether we can resynchronize relations using those canonical
synchronization languages, and if so, can we do it effectively?

To pose this formally, suppose two different languages S,S′ ⊆ (2×A)∗ controlled by L,L′ ⊆ 2∗ respec-
tively represent the same relation, i.e., [[S]] = [[S′]]. Then we say that S is an L-resynchronization of S′. Given
a class C of regular languages over 2, we say that L0 ∈ C is a canonical representative of C if for every
L ∈C and every L-controlled language S there exists an L0-resynchronization of S. In other words, for every
L ∈ C and R ∈ REL(L), there is an L0-controlled S′ ∈ (2×A)∗ so that [[S′]] = R. If, in addition, there is
a recursive procedure that constructs such an L0-resynchronization of S, then we say that L0 is an effective
canonical representative of C .

Let RLall be the class of all regular languages over 2, and let RLfin
param stand for the class of regular

languages L⊆ 2∗ with finite parameter param, where param is lag, or shift, or shiftlag. We also let RLlag≤δ

denote the class of all regular languages L⊆ 2∗ with lag(L)≤ δ .
Take, for example, L1 = (1122)∗1∗2∗ and L2 = (12)∗(1∗|2∗), and a L1-controlled relation S1. Since

shiftlag(L1) < ∞, [[S1]] ∈ REG by Theorem 4. Further, since by Proposition 3-(II) REL(L2) = REG, there

14

must be some L2-controlled relation S2 so that [[S2]] = [[S1]]. In other words S2 is the L2-resynchronization of
S1. Since REL(L2) = REG in fact L2 is a canonical representative of RLfin

shiftlag.
[Resynchronization theorem]

(I) (12)∗(1∗|2∗) is an effective canonical representative of RLfin
shiftlag;

(II) 1∗2∗ is an effective canonical representative of RLfin
shift;

(III) there is no canonical representative of RLfin
lag;

(IV) (12)∗(1≤δ |2≤δ) is an effective canonical representative of RLlag≤δ ;

(V) 2∗ is an effective canonical representative of RLall.

If the relations are given as NFA, the synchronization procedures are in exponential time.
For the proof of the Theorem above wee need to introduce some standard notions. The shuffle sh(U,V)

of two languages U,V ⊆ A∗ is the set of all words u1 · v1 · · ·uk · vk so that u1 · · ·uk ∈U , v1 · · ·vk ∈ V . The
strongly connected components (henceforth SCC) of GA are its maximal strongly connected subgraphs. An
SCC is heterogeneous if it contains a heterogeneous cycle; an SCC is homogeneous if it contains a cycle
and all cycles it contains are homogeneous; otherwise, an SCC without cycles (that is, a single vertex) is an
edgeless SCC. The condensation of GA (written con(GA)) is the directed acyclic graph (henceforth DAG)
induced by the SCC’s of GA. This is the DAG where nodes are SCC’s of GA and there is an edge labeled
(q,(i,a),q′) from vertex v to (a different) vertex v′ if q belongs to the SCC of v, q′ belongs to the SCC of v′

and there is an edge labeled (q,(i,a),q′) from q to q′ in GA (in other words, (q,(i,a),q′) is a transition of A).
For the proof of Theorem 5 we use the following lemma. [Bounds for shiftlag, shift, lag] Given an NFA

A over the alphabet 2 with statespace Q,

(I) if shiftlag(L(A))< ∞, then shiftlag(L(A))≤ |Q|;

(II) if shift(L(A))< ∞, then shift(L(A))≤ |Q|;

(III) if lag(L(A))< ∞, then lag(L(A))≤ |Q|.

Assume without any loss of generality that A is trim. Given a set of vertices S, let A|S be the NFA whose set
of initial states is S, and its transition relation corresponds to the subgraph of GA induced by all the vertices
reachable from S.

(I) By Theorem 4.1-(I) every SCC S of GA is so that

(a) S is edgeless, or

(b) S is homogeneous and all SCC’s S′ reachable from S are homogeneous or edgeless, or

(c) S is heterogeneous, and all simple cycles C in S are so that #1(C) = #2(C).

Let us analyze each case separately. Let S1, . . . ,Sn be the set of SCC’s reachable from S (excluding S).

(a) Then, shiftlag(L(A|S))≤ 1+ shiftlag(L(A|S1∪···∪Sn)).

(b) Then, any word w accepted by A|S is contained in (1∗2∗)≤l , where l is the number of SCC’s in GA|S .
Therefore, shift(L(A|S))≤ l and therefore shiftlag(L(A|S))≤ l.

15

(c) We then have that any word w in L(A|S) is of the form w = u · v where u ∈
⋃

i≤|S|(sh(1i,2i))∗ and
v ∈ L(A|S1∪···∪Sn). Recall that sh(1i,2i) represents the set of shuffles of 1i and 2i (i.e., all the words
over 2 having exactly i 1’s and i 2’s). Note that

– there are no positions >|S|-lagged in u, and

– position |u| is 0-lagged in w.

Thus, shiftlag(L(A|S))≤max(|S|,shiftlag(L(A|S1∪···∪Sn))).

Combining (a), (b) and (c), and by the fact that con(GA) is a DAG, we obtain that shiftlag(L(A))≤ |Q|.

(II) By Theorem 4.1-(II) there are no heterogeneous cycles in GA, and every SCC S of GA is hence
homogeneous or edgeless. Shifts can hence only occur in transitions between SCC’s in GA (i.e., transitions
that involving states from two different SCC’s). Since the condensation of GA is a DAG, there are not more
than |Q| different SCC that an accepting run of A for a word can go through. Hence, shift(L(A))< n, where
n is the number of SCC’s of A minus one. Since n≤ |Q|, the statement follows.

(III) By Theorem 4.1-(III) all cycles C in GA are so that #1(C) = #2(C). By means of contradiction,
suppose that there is some w ∈ L(A) with lag(w) > |Q|, and an accepting run ρ : [0, |w|]→ Q of A on w,
where Q is the statespace of A. Further, suppose that w is minimal in length; that is, any word w′ shorter than
w is so that lag(w′)≤ |Q|. Since |w|> |Q|, let 0≤ i < j ≤ |w| be any two indices so that ρ(i) = ρ(j). Note
that the path induced by w[i, j− 1],ρ|[i, j] is a cycle C, and by hypothesis it must be so that #1(C) = #2(C).
Therefore, #1(w[i, j−1]) = #2(w[i, j−1]). Consider then the word w′ = w[1, i−1] ·w[j, |w|]. We have that
w′ ∈ L(A) and that lag(w′) = lag(w) because we removed a subword with equal number of letters 1 and 2.
This is an absurd by minimality of w. Thus, it cannot be that lag(L(A))> |Q| and the statement follows.

We are now in conditions to prove Theorem 5. [of Theorem 5] We start by showing (II) and (IV) because
we use these items in the proof of (I).

(II) Let S ⊆ (2×A)∗ be an L-controlled regular language with shift(L) < ∞. We assume, without any
loss of generality, that L = {u | u⊗v ∈ S}. Let A be an NFA recognizing S with statespace Q, initial state
q0 and set of final states QF . Note that, since S is L-controlled, one can build in linear time an automaton
AL recognizing L, having the same statespace Q (the transformation consists in replacing every transition
(q,(i,a),q′) with (q, i,q′)). Hence, by Lemma 5-(II), shift(L)≤ |Q|.

Let us call 1-edge (resp. 2-edge) an edge of GA labeled with a transition reading the letter 1 (resp. 2) in
its first component. Note that every SCC of GA is homogeneous or edgeless by Theorem 4.1-(II). Hence, if
a SCC has only 1-edges, we call it a 1-SCC. Otherwise (if it has only 2-edges), we call it a 2-SCC. For the
purpose of this proof, it is indifferent whether we categorize edgeless SCC’s as 1-SCC’s or 2-SCC’s, but just
to fix nomenclature, let us call them 1-SCC’s. Hence, every SCC in GA is a 1-SCC or a 2-SCC.

Note that any path on GA induces a (possibly empty) path on con(GA) (cf. Figure 2). By acyclicity there
are at most exponentially many paths in con(GA).

For any (possibly empty) path P in con(GA) and final state q ∈ QF , let SP,q be the set of all words w ∈ S
with an accepting run of A ending in q and inducing the path P in con(GA). Hence,

S =
⋃
{SP,q | P is a path of con(GA) and q ∈ QF}.

We conclude the proof by showing that for every path P in con(GA) and q ∈QF we can build, in polynomial
time, a (1∗2∗)-controlled automaton AP,q so that [[L(AP,q)]] = [[SP,q]].

Claim 4 For every path P in con(GA) and q ∈ QF , an automaton AP,q so that

16

GA

con(GA)

q0

q1

q2 q3

q4

q5

q6

q0

q1

q2 q3

q4

q5

q6

path in GA

con(GA)path in

1 1
1

2

2

1
1

2

1

2

1-SCC

1-SC
C

2-SCC

1-SCC

q12
q5

q12 q4

q21 q3 q32 q6

q
5 1

q
6

Figure 2: Example of path in GA and corresponding path in con(GA). For simplicity, we assume that the
alphabet is singleton A= {a}, and we therefore omit ‘a’ in the transitions.

17

v�1

v�2v2

v1

1-SCC 1-SCC 2-SCC 1-SCC 2-SCC 1-SCC2 1 1 1 2

1-SCC 1-SCC 1-SCC 1-SCC1 1 1

2-SCC 2-SCC2 2

GP,q

GP,q,1

GP,q,2

G�
P,q

�
��

�

Figure 3: Example of construction of G′P,q from GP,q. The SCC are abstracted as grey boxes, labeled “1-
SCC” or “2-SCC” depending on the sort of SCC they are. Edges are also labeled depending on whether they
are 1-edges or 2-edges. Dotted lines are used to identify two vertices as being the same.

• [[L(AP,q)]] = [[SP,q]] and

• L(AP,q) is (1∗2∗)-controlled

is computable in polynomial time in |A|.

We can assume, without any loss of generality, that P is not empty, and contains

• a vertex corresponding to a 1-SCC, or a 1-edge, and

• a vertex corresponding to a 2-SCC, or a 2-edge,

since otherwise SP,q would be trivially (1∗2∗)-controlled and an automaton can be easily built in polynomial
time in |A|.

Let GP,q be the transition graph of the NFA recognizing SP,q, which is the result of removing from A

• all the states from SCC’s that are not in P and its associated transitions, and

• all transitions (q,(i,a),q′) not appearing in P, so that q,q′ do not belong to the same SCC.

Note that con(GP,q) is a directed chain, where there is at most one edge traveling between two vertices
from different SCC’s; the shape of GP,q is depicted in the top picture of Figure 3 (the path in this Figure is
unrelated to the path of the previous Figures). Let statesq0,q(P) be the sequence of states appearing in P,
prefixed with q0 and suffixed with q; that is, if

P = (v1,(q1,(i1,a1),q′1),v2), . . . ,(vn,(qn,(in,an),q′n),vn+1),

then statesq0,q(P) = q0,q1,q′1, . . . ,qn,q′n,q. The idea is that statesq0,q(P) represents the sequence of states
that any accepting run of the automaton recognizing SP,q has to go through (there could, however, be some
repetitions of states if the incoming and outgoing state of a SCC are the same in P). For example, in the path
P depicted in Figure 2, we have statesq0,q6 = q0,q1,q5,q5,q6,q6, note that it includes, for every SCC, the
incoming and outgoing states (q0,q1 for the first, q5,q5 for the second, and q6,q6 for the third SCC). In the
top picture of Figure 3, the vertices in statesq0,q(P) are depicted as bullets. Consider the graph GP,q,1 as the
result of

18

1. removing all 2-edges from GP,q,

2. removing all vertices without incoming or outgoing edges that remain, and

3. associating vertices to make it a connected graph, so that the relative appearance of the 1-SCC’s and
1-edges given by P is preserved.

This construction is shown in Figure 3. Let v1,v′1 be the first and last vertices in the construction of GP,q
(cf. Figure 3). That is, v1 corresponds to the first vertex in statesq0,q(P) that has an outgoing 1-edge in GP,q,
and v′1 corresponds to the last vertex in statesq0,q(P) that has an incoming 1-edge in GP,q.

We define GP,q,2 and v2,v′2 analogously to GP,q,2 and v1,v′1, but removing 1-edges instead (cf. Figure 3).
Now, let G′P,q be the transition graph resulting from composing GP,q,1 with GP,q,2 by associating v′1 with
v2 (cf. Figure 3). Let us define the automaton AP,q as having the transition relation defined by G′P,q, where
the initial state is v1 and the set of final states is {v′2}. We then have that AP,q is (1∗2∗)-controlled and
[[L(AP,q)]] = [[SP,q]]. The statement follows directly from the previous claim, defining

S′ =
⋃

P,q

L(AP,q)

for every path P of con(GA) and q ∈ QF , and defining AS′ as the union of all automata AP,q’s. Then, S′ is a
(1∗2∗)-resynchronization of S, and AS′ can be built in exponential time.

We now show another claim concerning (1∗2∗)-controlled languages, that will be useful in the proof of
(I).

Claim 5 For any (1∗2∗)-controlled automaton A one can build, in polynomial time, (12)∗-controlled au-
tomata Ahead

1 , . . . ,Ahead
t and (1∗|2∗)-controlled automata Atail

1 , . . . ,Atail
t so that

[[L(A)]] =
⋃

i∈t
[[L(Ahead

i) ·L(Atail
i)]].

In the scope of this proof, let Q be the statespace of A, with initial state qinit and set of final states QF . Let
us define the automaton A′ over the same alphabet as A with the statespace Q×Q×2, with a transition

• ((q1,q2,1),(1,a),(q′1,q2,2)) if (q1,(1,a),q′1) is a transition of A and q2 ∈ Q, and

• ((q1,q2,2),(2,a),(q1,q′2,1)) if (q2,(2,a),q′2) is a transition of A and q1 ∈ Q.

Note that for every q1,q1,q′1,q
′
2 ∈ Q, A′[(q1,q2,1),(q′1,q

′
2,1)] is (12)∗-controlled. Also, note that for every

q′1,q2,q′2 ∈ Q and q f ∈ QF ,

L(A′[(qinit,q2,1)(q2,q′2,1)])︸ ︷︷ ︸
Lhead

1

·(L(A[q′2,q f])∩ ({2}×A)∗)︸ ︷︷ ︸
Ltail

1

and
L(A′[(qinit,q2,1)(q′1,q f ,1)])︸ ︷︷ ︸

Lhead
2

·(L(A[q′1,q2])∩ ({1}×A)∗)︸ ︷︷ ︸
Ltail

2

are (12)∗(1∗|2∗)-controlled, and that automata recognizing Lhead
i ,Ltail

i can be obtained in polynomial time.
From the definition of Lhead

i and Ltail
i and the previous observation, we show that for any word w ∈

Lhead
i ·Ltail

i there is some w′ ∈ L so that [[w]] = [[w′]], and vice versa.

19

Observe that for any q1,q′1,q2,q′2 ∈Q, w∈L(A′[(q1,q2,1)(q′1,q
′
2,1)]) if, and only if, wodd ∈L(A[q1,q′1])∩

({1}×A)∗ and weven ∈ A[q2,q′2]∩ ({2}×A)∗, where wodd (resp. weven) is the subword of w of odd (resp.
even) positions.

From any accepting run of A′[(qinit,q2,1),(q2,q′2,1)] on w1 and an accepting run of A[q′2,q f] on w2 ∈
({2}×A)∗ one can build an accepting run of A on (w1)odd · (w1)even ·w2, where [[(w1)odd · (w1)even ·w2]] =
[[w1 ·w2]]. Similarly, from an accepting run of

A′[(qinit,q2,1),(q′1,q f ,1)]

on w1 and an accepting run of w2 ∈ ({1}×A)∗ on A[q′1,q2] one can build an accepting run of A on (w1)odd ·
w2 ·(w1)even, where [[(w1)odd ·w2 ·(w1)even]] = [[w1 ·w2]]. Indeed, note that in both cases, (w1)odd = (w1){1}×A
and (w1)even = (w1){2}×A.

Conversely, for every accepting run of A on w, let w′ be the interleaving of w{1}×A[1,m] and w{2}×A[1,m],
where m = min(|w{1}×A|, |w{2}×A|) (more formally, it is the word w′ ∈ sh(w{1}×A[1,m],w{2}×A[1,m]) so
that w′ ∈ (({1}×A) · ({2}×A))∗). If |w{1}×A| ≤ |w{2}×A| then for some q2,q′2 ∈ Q and q f ∈ QF there
is an accepting run of A′[(qinit,q2,1),(q2,q′2,1)] on w′, and accepting run of A[q′2,q f] on w[2m+ 1, |w|] ∈
({2}×A)∗. Similarly, if |w{1}×A| > |w{2}×A| then for some q2,q′1 ∈ Q and q f ∈ QF there is an accepting
run of A′[(qinit,q2,1)(q′1,q f ,1)] on w′, and accepting run of A[q′1,q2] on w[2m+1, |w|] ∈ ({1}×A)∗. In both
cases, observe that [[w′ ·w[2m+1, |w|]]] = [[w]].

Summing up, for every pair (u,v) ∈ A∗×A∗, there is a word w ∈ Lhead
i ·Ltail

i with [[w]] = (u,v) for some
i ∈ 2 if, and only if, there is some w′ ∈ L(A) with [[w′]] = (u,v).

Hence, defining L′ as the union of all the above Lhead
1 · Ltail

1 and Lhead
2 · Ltail

2 languages for all possible
q2,q′2,q

′
1 ∈Q and q f ∈QF , it follows that [[L(A)]] = [[L′]]. Since every Lhead

i is (12)∗-controlled and every Ltail
i

is (1∗|2∗)-controlled, and since automata for these languages can be built in polynomial time, the statement
follows.

(IV) This follows from [30, Proposition 6.9, pp. 604–605]. Although in the cited work the complexity
is not given, it follows from the proof that it can be built in exponential time. In fact, note that it suffices to
build an automaton whose every state has a buffer of lag(L) letters.

(I) Let S be an L-controlled regular language S ⊆ (2×A)∗ with shiftlag(L) < ∞. Let A be an NFA
recognizing S with statespace Q, initial state q0 and set of final states QF .

Note that since the projection of S onto 2 is inside L, we can apply Theorem 4.1-(I) to A, obtaining that
there are no paths from homogeneous SCC’s to heterogeneous SCC’s in GA (and there are no heterogeneous
cycles C with #1(C) 6= #2(C)). Let Qhom be the set of all vertices of GA that are reachable from a vertex
of a homogeneous SCC. Note that Qhom includes all vertices in homogeneous SCC’s, plus some vertices
from edgeless SCC’s. Also, note that the subgraph of GA induced by Qhom has no heterogeneous cycles. Let
Qhet = Q \Qhom. Hence, Qhet includes all vertices in heterogeneous SCC’s and some vertices in edgeless
SCC’s. Also, by the property before, the subgraph of GA induced by Qhet is connected. Figure 4 contains an
example. Further, any path P̂ in GA is of the form (1) P̂ · (q,τ,q′) · P̂′, (2) P̂, or (3) P̂′, where

• P̂ is a (possibly empty) path of the subgraph of GA induced by Qhet,

• P̂′ is a (possibly empty) path of the subgraph of GA induced by Qhom,

• q ∈ Qhet, q′ ∈ Qhom, and τ is a transition of A.

20

hom hom hom

hethet

edgeless

2

1

2

2

2

1

2

1

2
1

1

1

2

1

1 2

Qhet

Qhom2

1

2

2

2

1

2

1

2
1

1

1

2

1

1 2

Figure 4: Example of GA with the subgraphs induced by Qhom and Qhet. For simplicity we assume that
A= {a} and we hence omit the letter a when depicting edges labeled by (i,a).

Let Ahet be A restricted to Qhet, and let Ahom be A restricted to Qhom. For every pair of states qhet ∈ Qhet
and qhom ∈ Qhom, let Lqhet,qhom be the union of all

L(Ahet[q0,qhet]) · {(i,a)} ·L(Ahom[qhom,q f])

for every q f ∈ QF and (i,a) ∈ 2×A so that (qhet,(i,a),qhom) is a transition of A (if there is no such (i,a),
let Lqhet,qhom = /0). We remind the reader that Ahet[q,q′] (resp. Ahom[q,q′]) where q or q′ are not in Qhet
(resp. Qhom) denotes the automaton accepting the empty language. Let Lhom =

⋃
q f∈QF

L(Ahom[q0,q f]) and
Lhet =

⋃
q f∈QF

L(Ahet[q0,q f]). It follows that

S = Lhom∪Lhet∪
⋃

qhet∈Qhet,qhom∈Qhom

Lqhet,qhom .

We show that we can build, in exponential time, a (12)∗(1∗|2∗)-controlled automaton for each of these
languages. Since the case of Lqhet,qhom is more general than Lhom and Lhet, we will only prove this case.

Note that by definition of Ahet and Ahom, and since GA has no unbalanced heterogeneous cycles, for every
qhet ∈Qhet,qhom ∈Qhom,q f ∈QF we have that both lag(L(Ahet[q0,qhet]))<∞ and shift(L(Ahom[qhom,q f]))<
∞. Hence, by Lemma 5,

• lag(L(Ahet[q0,qhet]))≤ n,

• shift(L(Ahom[qhom,q f]))≤ n,

for n = |A|.

21

By the already shown item (II), let Ahom
qhom,q f

be a (1∗2∗)-controlled automaton so that [[L(Ahom[q0,qhom])]] =

[[L(Ahom
q0,qhom

)]]. By item (IV), let Ahet
q0,qhet

be a (12)∗(1≤n|2≤n)-controlled automaton so that [[L(Ahet[q0,qhet])]] =

[[L(Ahet
q0,qhet

)]]. These automata can be built in exponential time.
We finally show that a (12)∗(1∗|2∗)-controlled automaton for Lqhet,qhom can be built from Ahet

q0,qhet
and all

the Ahom
qhom,q f

’s for all q f ∈ QF in polynomial time, and thus the statement follows.

Claim 6 A (12)∗(1∗|2∗)-controlled automaton for Lqhet,qhom can be built from Ahet
q0,qhet

and all the Ahom
qhom,q f

’s
in polynomial time.

It is plain that from Ahom
qhom,q f

(which is 1∗2∗-controlled) one can build 1∗-controlled automata Bhom-1∗
1 , . . . ,Bhom-1∗

t

and 2∗-controlled automata Bhom-2∗
1 , . . . ,Bhom-2∗

t in polynomial time so that

L(Ahom
qhom,q f

) =
⋃

i∈t

(
L(Bhom-1∗

i) ·L(Bhom-2∗
i)

)
.

Also, it is easy to see that from Ahet
q0,qhet

(which is (12)∗(1≤n|2≤n)-controlled) one can build (12)∗-

controlled automata Ahet-(12)∗
1 , . . . ,Ahet-(12)∗

s , 1≤n-controlled automata Ahet-1∗
1 , . . . ,Ahet-1∗

s and 2≤n-controlled
automata Ahet-2∗

1 , . . . ,Ahet-2∗
s in polynomial time, so that

L(Ahet
q0,qhet

) =
⋃

i∈s

(
L(Ahet-(12)∗

i) ·L(Ahet-1∗
i) ·L(Ahet-2∗

i)
)
.

We then have that

[[Lqhet,qhom]] =
⋃

`∈2
[[
⋃

i∈t, j∈s
L(Ahet-(12)∗

j) ·L(Ahet-1∗
j) ·L(Ahet-2∗

j) ·L`,qhet,qhom ·

·L(Bhom-1∗
i) ·L(Bhom-2∗

i)]]

where L`,qhet,qhom = {(`,a) | (qhet,(`,a),qhom) in A}. Note that, for `= 1 we have

[[
⋃

i∈t, j∈s
L(Ahet-(12)∗

j) ·L(Ahet-1∗
j) ·L(Ahet-2∗

j) ·L1,qhet,qhom ·

·L(Bhom-1∗
i) ·L(Bhom-2∗

i)]]

= [[
⋃

i∈t, j∈s
L(Ahet-(12)∗

j) ·L′1,i, j]], where

L′1,i, j = L(Ahet-1∗
j) ·L1,qhet,qhom ·L(B

hom-1∗
i) ·L(Ahet-2∗

j) ·L(Bhom-2∗
i).

Since L′1,i, j is 1∗2∗-controlled, we can apply the previous Claim 5 on L′1,i, j obtaining (12)∗-controlled
automata Ahead

1 , . . . ,Ahead
m and (1∗|2∗)-controlled automata Atail

1 , . . . ,Atail
m so that

[[L′1,i, j]] =
⋃

k∈m
[[L(Ahead

k) ·L(Atail
k)]].

in polynomial time. Defining L′′1,i, j =
⋃

k∈m L(Ahead
k) ·L(Atail

k), we obtain that L′′1,i, j is (12)∗(1∗|2∗)-controlled,
and an automaton for L′′1,i, j can be computed in polynomial time. Thus,

22

[[
⋃

i∈t, j∈s
L(Ahet-(12)∗

j) ·L(Ahet-1∗
j) ·L(Ahet-2∗

j) ·L1,qhet,qhom ·

·L(Bhom-1∗
i) ·L(Bhom-2∗

i)]]

= [[
⋃

i∈t, j∈s
L(Ahet-(12)∗

j) ·L′′1,i, j]],

where note that L′′′1 =
⋃

i∈t, j∈s L(Ahet-(12)∗
j) ·L′′1,i, j is (12)∗(1∗|2∗)-controlled, and an automaton for L′′′1 can be

built in polynomial time.
For `= 2 we apply a similar reasoning,

[[
⋃

i∈t, j∈s
L(Ahet-(12)∗

j) ·L(Ahet-1∗
j) ·L(Ahet-2∗

j) ·L2,qhet,qhom ·

·L(Bhom-1∗
i) ·L(Bhom-2∗

i)]]

= [[
⋃

i∈t, j∈s
L(Ahet-(12)∗

j) ·L′2,i, j]]

this time taking
L′2,i, j = L(Ahet-1∗

j) ·L(Bhom-1∗
i) ·L2,qhet,qhom ·L(A

het-2∗
j) ·L(Bhom-2∗

i).

and obtaining, through Claim 5, a (12)∗(1∗|2∗)-controlled language L′′′2 so that

[[
⋃

i∈t, j∈s
L(Ahet-(12)∗

j) ·L(Ahet-1∗
j) ·L(Ahet-2∗

j) ·L2,qhet,qhom ·

·L(Bhom-1∗
i) ·L(Bhom-2∗

i)]] = [[L′′′2]].

Hence,

[[Lqhet,qhom]] =
⋃

`∈2
[[L′′′`]]

and an automaton recognizing
⋃

`∈2 L′′′` can be built in polynomial time.

(III) For any L ∈ RLfin
lag with lag(L) = k, consider the singleton language L′ = {1k+1} ∈ RLfin

lag. Note that
any nonempty L′-controlled relation cannot have a L-resynchronization. Thus, there cannot be a canonical
representative of RLfin

lag.

Note that, however, the class RLfin
lag∪{(12)∗(1∗|2∗)} has (12)∗(1∗|2∗) as an effective canonical represen-

tative by item (I).
(V) This is straightforward since 2∗ contains all languages over 2, and therefore all relations are 2∗-

controlled.

6 Closure via Parikh images
It is well known that the class REG is effectively closed under Boolean operations. Although RAT is a
natural generalization of REG, it is not a Boolean algebra (let alone an effective one), not being closed

23

under intersection or complement [9]. Even testing whether a rational relation is regular, or whether it has
an empty intersection with a regular relation is undecidable [9]. Since regular relations are characterized
via finite shiftlag, it is natural to ask whether infinite shiftlag somehow describes “dangerous” classes of
relations. That is, does this mean for example that for any L ⊆ 2∗ with shiftlag(L) = ∞ the intersection
problem is undecidable for REL(L)? The answer to this question is negative: take for instance L = (122)∗

with shiftlag(L) = ∞. However, it is not hard to see that REL(L) is effectively closed under intersection.
This raises the question of whether there are classes C ⊆ RAT that are natural, expressive, and well-

behaved, that is, so that

• REC(C ,

• C is effectively closed under union, intersection and complementation (i.e., is an effective Boolean
algebra); and

• C corresponds to a natural condition on the language.

Note that REG is one such example. Here we address the question from our perspective in terms of
control languages. The idea is to show sufficient conditions of synchronization languages L so that REL(L)
is effectively closed under intersection, or an effective boolean algebra. We state those in terms of Parikh
images of languages.

Recall that the Parikh image of a word w ∈ k∗, written Π(w), is the vector of Nk
0 whose ith component

contains #i(w), the number of occurrences of i in w. The Parikh image of a language L is Π(L) = {Π(w) |
w ∈ L}. It is well known that for regular and context-free languages L, sets Π(L) are exactly the semi-linear
sets in Nk

0, see [29].
A language L⊆ k∗ is

• Parikh-injective if the function Π : L→ Nk
0 is injective, and

• Parikh-surjective if the function Π : L→ Nk
0 is surjective.

• (12)∗(1∗|2∗) and 1∗2∗ are Parikh-injective, while (1|2)∗ is not.

• It can easily be shown that L = w∗1 ·w∗2 · · ·w∗` ⊆ k∗ is Parikh-injective if `≤ k and {Π(w1), . . . ,Π(w`)}
generate a linear subspace of (N0)

k of dimension `. For example, (122)∗(112)∗ is Parikh-injective.

• (12)∗(1∗|2∗), 1∗2∗, and (1|2)∗ are Parikh-surjective, but (122)∗(112)∗ is not Parikh-surjective.

• It is easy to see that Lr/s as defined in (8) is Parikh-injective and Parikh-surjective for any choice of
r,s. For example, if r = 1, s = 2, we have Lr/s = (122)∗(2∗|1∗2|1∗), which is Parikh-injective and
Parikh-surjective, since , as shown in Figure 5, every element of (N0)

2 is covered, and there is only
one way to reach any element of (N0)

2.

We now analyze the (effective) closure of classes REL(L) under Boolean operations. It turns out that
closure under union is free, but for closure under intersection and complement, the newly introduced criteria
serve as sufficient conditions.

Let L⊆ 2∗ be a regular language. Then

(I) REL(L) is effectively closed under union, alphabetic morphisms, and inverse alphabetic morphisms;

(II) if L is Parikh-injective, then REL(L) is effectively closed under intersection;

24

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

. . .

. .
.

Figure 5: Example of a Parikh-injective and Parikh-surjective language.

(III) if L is both Parikh-injective and Parikh-surjective, then REL(L) is effectively closed under comple-
ment.

(I) Let S1,S2 ⊆ (2×A)∗ be two L-controlled relations. It is immediate that the language S∪ = S1 ∪ S2
is L-controlled. We then have that [[S1]]∪ [[S2]] = [[S∪]]. The fact that it is closed under (inverse) alphabetic
morphisms is immediate from the definition of REL(L).

(II) Let S1,S2 ⊆ (2×A)∗ be two L-controlled relations. It is immediate that the language S∩ = S1∩S2 is
L-controlled and [[S∩]] ⊆ [[S1]]∩ [[S2]]. We show that [[S1]]∩ [[S2]] ⊆ [[S∩]]. Suppose that (u,v) ∈ [[S1]]∩ [[S2]].
Then, there must be w1 ∈ S1 and w2 ∈ S2 so that [[w1]] = [[w2]] = (u,v). Note that the projection onto the first
component of w1 must be equal to the projection onto the first component of w2 since L is Parikh-injective.
Then, we must have that w1 = w2 and thus (u,v) ∈ [[S∩]].

(III) Let S ⊆ (2×A)∗ be an L-controlled relation. Let Sc be the complement of S and let [[S]]c be the
complement of [[S]]. We show the following,

[[S]]c = [[Sc∩ (L⊗A∗)]],

where L⊗A∗ denotes the set of all words u⊗v where |u|= |v|, u ∈ L and v ∈ A∗.
[⊆] Suppose (u,v) 6∈ [[S]]. We show that there must be some w ∈ Sc∩ (L⊗A∗) so that (u,v) = [[w]]. Since

L is Parikh-injective, there must be at most one word w′ ∈ L so that Π(w′) = (|u|, |v|). Since the Parikh
image of L is the whole universe N2

0, there must be at least one word w′ ∈ L so that Π(w′) = (|u|, |v|). Hence,
there is exactly one word w′ ∈ L so that Π(w′) = (|u|, |v|). Let w = u′⊗v′ ∈ (2×A)∗ be the only word so
that u′ = w′ and [[w]] = (u,v). Note that w 6∈ S (otherwise (u,v) would be in [[S]]) and that its projection onto
the first component (i.e., w′) is in L. Therefore, w ∈ Sc∩ (L⊗A∗).

[⊇] Suppose now that w ∈ Sc∩ (L⊗A∗). We show that [[w]] 6∈ [[S]]. Assume, by means of contradiction,
that [[w]] ∈ [[S]]. Then, there is some w′ ∈ S so that [[w′]] = [[w]]. It cannot be that w′ = w, as it would be
in contradiction with w ∈ Sc ∩ (L⊗A∗). Since L is Parikh-injective, and both w and w′ are L-controlled, it
must be that w = w′, as otherwise [[w′]] 6= [[w]], which is not possible as already observed. The contradiction
comes from assuming that [[w]] ∈ [[S]]. Thus, [[w]] 6∈ [[S]] and [[S]]c ⊇ [[Sc∩ (L⊗A∗)]].

If L ⊆ 2∗ is Parikh-injective and Parikh-surjective, then REL(L) is an effective boolean algebra, closed
under alphabetic morphisms and inverse alphabetic morphisms.

Observe that in this context, REG and REC are simply two examples of the (infinitely) many such well-
behaved classes.

25

• REC and REG are effective boolean algebras because they correspond to REL(1∗2∗) and REL((12)∗(1∗|2∗)),
where 1∗2∗, (12)∗(1∗|2∗) are Parikh-injective and Parikh-surjective.

• REL((122)∗(112)∗) is effectively closed under intersection.

• It was shown in [13] that the class of (r/s)-synchronized relations is an effective Boolean algebra.
Our results provide an alternative proof, since Lr/s is Parikh-injective and Parikh-surjective.

Observation Theorem 6 cannot be generalized to finite unions of Parikh-injective languages, since for in-
stance REL(L) for L = ((12)∗1∗)|(1∗(12)∗) is not closed under intersection. In fact, its intersection problem
is undecidable. This follows from the fact that REL(L) contains the suffix relation and all regular relations
(where the first component is longer than the second). By [5, Theorem V.1], this problem is undecidable.

7 Future work
We presented a new way of looking at relations on words, and this new perspective opens up several di-
rections. An obvious one is to extend results to k-ary relations, for k > 2. We know that exact analogs of
Proposition 3, Theorem 4, and Theorem 4.1 continue to hold. Other directions are as follows.
Containment One of the classical language-theoretic problems is language containment, which in this case
is formulated as follows: given L1,L2 ⊆ 2∗, is REL(L1)⊆ REL(L2)? We would like to understand decidabil-
ity/complexity issues for containment.
Two-wayness Another way to extend the framework is by using two-way automata. Then, instead of having
a synchronization language over the alphabet {1,2}, we have it over the alphabet {1,2, 1̄, 2̄}, where i, ī are
interpreted as moving the ith head to the right or to the left respectively. For example, in this context,
REL(1∗2̄∗) contains the relation {(w,wr) ∈ A∗×A∗ | w is the reverse of wr}.
Model theory approach One way of capturing regularity is by standard model-theoretic techniques: one can
find (so-called universal automatic) first-order structures over Σ∗ so that definable relations are regular (or
nice subclasses of regular) relations. For instance, using the binary predicates for prefix and equal length, and
unary predicates for each letter a ∈ Σ checking if the last letter of a word is a, we get one such structure [10].
By virtue of translation into automata, such structures are decidable, and their model-theoretic properties
have been investigated [8]. We would like to extend this investigation and connect definability in infinite
structures over Σ∗ with different classes of relations of the form REL(L).
Context-free relations Another natural extension is to look for other classes of relations, say analogs of
context-free languages. In particular, one can look at a generalization of rational relations, the pushdown
relations of [16], which are those recognized by multi-tape automata with a stack or, equivalently, by a
context-free grammar. In view of our approach here, this is not the only way of generalizing REC, REG,
and RAT with pushdown automata. Indeed, in our framework, the simplest way to generalize these relations
with the power of context-free languages, is to consider —instead of REL(L)— the class RELCF(L) as the
set of all relations [[S]], for any L-controlled context-free language S⊆ (2×A)∗.

In this framework we can show that RELCF(2∗), the context-free analog of rational relations, is the class
of pushdown relations of [16]. Analogs of recognizable and regular relations are RELCF((12)∗(1∗|2∗)) and
RELCF(1∗2∗). Those properly contain REG and REC, respectively, are contained in RELCF(2∗), but are
incomparable with each other as well as with RAT. We want to conduct a further study of those, perhaps
extending to visibly pushdown languages [2] due to their appeal in both verification and modeling XML.

We also would like to use the structural approach to look for better behaved classes of relational word
transducers for verification purposes, and for classes of relations that can be effectively used in querying

26

graph data. Finally, we would like to use it to identify classes of well behaved relations over data words [11]
and study logics over them, extending the approach of [5, 6] with data.

Work partially supported by EPSRC grants G049165 and J015377.

References
[1] Abdulla, J., Jonnson, B., Nilsson, M., Saksena, M.: A survey of regular model checking. In: Interna-

tional Conference on Concurrency Theory (CONCUR’03), pp. 35–48 (2003)

[2] Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Symposium on Theory of Computing
(STOC’04), pp. 202–211 (2004)

[3] Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1) (2008)

[4] Anyanwu, K., Sheth, A.: ρ-queries: enabling querying for semantic associations on the semantic web.
In: 12th International World Wide Web Conference (WWW’03), pp. 690–699 (2003)

[5] Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations and the generalized intersec-
tion problem. In: Annual IEEE Symposium on Logic in Computer Science (LICS’12), pp. 115–124.
IEEE Computer Society Press (2012). DOI 10.1109/LICS.2012.23

[6] Barceló, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path queries over graph-
structured data. ACM Trans. Database Syst. 37(4), 31 (2012)

[7] Ben-Ari, M.: Principles of the Spin model checker. Springer (2008)

[8] Benedikt, M., Libkin, L., Schwentick, T., Segoufin, L.: Definable relations and first-order query lan-
guages over strings. J. ACM 50(5), 694–751 (2003)

[9] Berstel, J.: Transductions and Context-Free Languages. B. G. Teubner (1979)

[10] Blumensath, A., Grädel, E.: Automatic structures. In: LICS, pp. 51–62 (2000)

[11] Bojańczyk, M.: Automata for data words and data trees. In: 21st International Conference on Rewriting
Techniques and Applications (RTA), Leibniz International Proceedings in Informatics (LIPIcs), vol. 6,
pp. 1–4 (2010)

[12] Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: International Confer-
ence on Computer Aided Verification (CAV’00), pp. 403–418. Springer-Verlag, London, UK (2000)

[13] Carton, O.: The growth ratio of synchronous rational relations is unique. Theor. Comput. Sci. 376(1-2),
52–59 (2007)

[14] Carton, O., Choffrut, C., Grigorieff, S.: Decision problems among the main subfamilies of rational
relations. RAIRO Theoretical Informatics and Applications 40(2), 255–275 (2006)

[15] Choffrut, C.: Relations over words and logic: A chronology. Bulletin of the EATCS 89, 159–163
(2006)

[16] Choffrut, C., Culik II, K.: Properties of finite and pushdown transducers. SIAM J. Comput. 12(2),
300–315 (1983)

27

[17] Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM J. Res. Dev. 9(1),
47–68 (1965). DOI 10.1147/rd.91.0047. URL http://dx.doi.org/10.1147/rd.91.0047

[18] Fagin, R., Kimelfeld, B., Reiss, F., Vansummeren, S.: A formal framework for information extraction.
In: ACM Symposium on Principles of Database Systems (PODS’13) (2013, to appear.)

[19] Figueira, D., Libkin, L.: Synchronizing relations on words. In: International Symposium on The-
oretical Aspects of Computer Science (STACS’14), Leibniz International Proceedings in Informat-
ics (LIPIcs), vol. 25, pp. 93–104. Leibniz-Zentrum für Informatik, Lyon, France (2014). DOI
10.4230/LIPIcs.STACS.2014.518

[20] Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite words. Theor. Com-
put. Sci. 108(1), 45–82 (1993)

[21] Harju, T., Mateescu, A., Salomaa, A.: Shuffle on trajectories: The schützenberger product and related
operations. In: MFCS, pp. 503–511 (1998)

[22] Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press (2004)

[23] Jonsson, B., Nilsson, M.: Transitive closures of regular relations for verifying infinite-state systems.
In: International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’00), pp. 220–234. Springer-Verlag (2000)

[24] Leguy, J.: Transductions rationnelles décroissantes. ITA 15(2), 141–148 (1981)

[25] McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)

[26] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple
building blocks of complex networks. Science 298(5594), 824–827 (2002)

[27] Neven, F.: Automata, Logic, and XML. In: EACSL Annual Conference on Computer Science Logic
(CSL’02), pp. 2–26 (2002)

[28] Nivat, M.: Transduction des langages de Chomsky. Ann. Inst. Fourier 18, 339–455 (1968)

[29] Parikh, R.: On context-free languages. Journal of the ACM 13(4), 570–581 (1966)

[30] Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)

[31] Schwentick, T.: Automata for XML - a survey. J. Comput. Syst. Sci. 73(3), 289–315 (2007)

[32] To, A.W., Libkin, L.: Algorithmic metatheorems for decidable LTL model checking over infinite sys-
tems. In: International Conference on Foundations of Software Science and Computational Structures
(FOSSACS’10), pp. 221–236 (2010)

28

http://dx.doi.org/10.1147/rd.91.0047

	Introduction
	Recognizable, regular, and rational relations
	Synchronizations of relations
	Synchronizations for recognizable, regular, and rational relations
	Automata theoretic characterizations

	Resynchronizing relations
	Closure via Parikh images
	Future work

