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Abstract

We introduce a generalized Fast-Marching algorithm, able to compute paths globally
minimizing a measure of length, defined w.r.t. a variety of metrics in dimension two to five.
Our method applies in particular to arbitrary Riemannian metrics, and implements features
such as second order accuracy, sensitivity analysis, and various stopping criteria. We also
address the singular metrics associated with several non-holonomic control models, related
with curvature penalization, such as the Reeds-Shepp’s car with or without reverse gear, the
Euler-Mumford elastica curves, and the Dubins car. Applications to image processing and
to motion planning are demonstrated.

1 Introduction

In this paper we provide the numerical details involved in a generalized fast marching solver,
able to compute the distance from a point within a domain, and the related minimal paths.
Path length is measured w.r.t. a given metric which may take a variety of forms and involve
data-driven parameters. For instance the metric may be Isotropic (locally proportional to the
Euclidean norm), or Riemannian. Combining a dimension lifting trick with the choice of an
adequate singular metric, we are also able to penalize path curvature, according to the Reeds-
Shepp [RS90, DMMP16], Euler-Mumford [Mum94], or Dubins [Dub57] models. Our software is
referred to as the Hamiltonian Fast Marching (HFM) library1, because it relies on an original
and specific representation of Hamiltonian of the addressed problems (13), and uses the fast
marching method (a generalization of Dijkstra’s algorithm) to solve eikonal-type equations in a
single pass.

The search for optimal paths appears in many applications, such as motion planning and
image analysis, see the numerical section of this paper and e.g. [Set99, PPKC10]. The numerical
approach chosen in this paper is to first compute a distance map, which is the viscosity solution
to a Partial Differential Equation (PDE) of eikonal type [BCD97], and then extract the minimal
paths, which obey an Ordinary Differential Equation (ODE) defined in terms of the distance
map. In the case of isotropic metrics, the first task is essentially a solved problem [RT92,
Tsi95], however it becomes challenging when considering (strongly) anisotropic metrics [KS98,
SV01, BR06, AM11, Mir13, Mir14]. For that purpose, we rely on an original Eulerian and
causal discretization of the eikonal equation [Mir17a, Mir17b]. Two robust geodesic backtracking
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Figure 1: The four steps of minimal path computation. (I) Define a metric, here of Riemannian
type and visualized as a family of ellipsoids. (II) Compute of a distance map, here from the
center point, by solving the eikonal PDE (3). (III) Compute the geodesic flow direction p ∈
Ω 7→ dF∗p(du(p)). (IV) Backtrack the minimal geodesics, by solving the ODE (5).

methods are provided for the second task. The HFM software is made available as an open-
source C++ library with interfaces to Python R©, Matlab R©, and Mathematica R©. It is fast (albeit
single-threaded by nature), built for extensibility (for introducing additional classes of metrics,
stopping criteria, interfaces with other programming languages, etc), features uncommon but
useful methods such as reverse mode sensitivity analysis, and comes with a thorough series of
introductory notebooks.

1.1 Curve optimization via eikonal PDEs

In order to make our contributions clear and to relate them to the literature, we need to formally
state the addressed mathematical problem.

Let E = Rd be the ambient space, and let Ω ⊂ E be a domain. Our numerical method
requires Ω to be box shaped, possibly equipped with periodic boundary conditions, and with
inner obstacles. The geometry of the domain is described using a quasi-metric F : Ω × E →
[0,∞], which specific form is discussed later. This object defines a measure of path length
LF : Γ → [0,∞], where Γ := Lip([0, 1],Ω) is the set of locally Lipschitz paths, and a related
quasi-distance dF : Ω× Ω→ [0,∞], as follows. For any path γ ∈ Γ, and any points p,q ∈ Ω

LF (γ) :=

∫ 1

0
Fγ(t)(γ̇(t))dt, dF (p,q) := inf{LF (γ); γ ∈ Γ, γ(0) = p, γ(1) = q}. (1)

Depending on the choice of quasi-metric F the quasi-distance dF may or may not satisfy
dF (p,q) = dF (q,p) (symmetry), dF (p,q) < ∞ (global controllability), or dF (p,q) → 0 as
p → q (local controllability). For readability we choose to drop in the following the prefix
“quasi-”, used conventionally to emphasize that a metric or a distance may lack symmetry.
Note that we reserve the word metric for functions F measuring the length of tangent vectors,
and the word distance for functions such as dF measuring the minimal path length between two
points.

Our objective is to compute the distance map u : Ω→]−∞,∞] from the domain boundary,
which is defined as follows

∀p ∈ Ω, u(p) = inf
q∈∂Ω

u(q) + dF (q,p), ∀p ∈ ∂Ω, u(p) = σ(p), (2)

where σ : Ω→]−∞,∞] is a given initial delay. The distance from e.g. a single point of interest
q∗ ∈ ∂Ω is obtained by setting σ(q∗) = 0 and σ ≡ ∞ on ∂Ω\{q∗}. Under suitable assumptions,
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the function u is known to be the unique viscosity solution to the (generalized) eikonal PDE

∀p ∈ Ω, F∗p(du(p)) = 1, ∀p ∈ ∂Ω, u(p) = σ(p). (3)

We refer to [BCD97] for this theory, including the concept of discontinuous solutions to eikonal
equations, which is required for some of our problem instances [Mir17b] but is out of the scope
of this paper. The eikonal PDE (3) involves the dual metric F∗ : Ω× E∗ → [0,∞[, defined by

F∗p(p̂) := sup{〈p̂, ṗ〉; ṗ ∈ E, Fp(ṗ) ≤ 1}. (4)

Here and below, points p ∈ Ω are denoted with bold letters, tangent vectors ṗ ∈ E are distin-
guished with dots, and co-vectors p̂ ∈ E∗ are decorated with hats.

Once u is known, the minimal path joining a given q ∈ Ω from the corresponding optimal
p ∈ ∂Ω is extracted by solving (backwards in time) the following Ordinary Differential Equation
(ODE):

∀t ∈ [T−, T+], γ̇(t) = dF∗γ(t)(du(γ(t))), γ(T+) = q, (5)

where T− := σ(p) and T+ := u(q). We denoted by dF∗p(p̂) the differential of p̂ ∈ E∗ 7→ F∗p(p̂),
the dual metric at the point p ∈ Ω. See [DMMP16] Appendix C.

We discuss in §1.2 possible choices of metric F that can be addressed with the HFM library,
and in particular the singular metrics used to encode curvature penalization. The design choices
underlying our numerical method for solving the PDE (3) are then presented in §1.3. Applica-
tions of minimal path methods to image processing and motion planning are briefly surveyed in
§1.4, where we also present the outline of the paper.

1.2 Isotropic, Anisotropic and Non-Holonomic metrics

In the applications for which our software is intended, such as image processing and motion
planning, the metric F encoding the geometry of the domain is usually data driven and spatially
inhomogeneous. The specific structure of the expression of the metric is in principle dictated
by the application, but it must also be compatible with the numerical method used for minimal
path computation. We present in the following the metric models that can be addressed using
our software, distinguishing three general classes: Isotropic, Anisotropic, and Non-Holonomic.
In each case, we provide the generic expression of the primal metric, as well as the dual metric
which is defined by (4) and appears in the eikonal equation (3) and the geodesic backtracking
ODE (5).

Isotropic metrics are locally proportional to the Euclidean norm, which is defined as usual
on the embedding space E := Rd ⊇ Ω. The dual metric turns out to be proportional to the
Euclidean norm as well, but with an inverse ratio. For any point p ∈ Ω, any vector ṗ ∈ E and
any co-vector p̂ ∈ E∗

Fp(ṗ) := c(p)‖ṗ‖, F∗p(p̂) = ‖p̂‖/c(p). (6)

The cost function c : Ω→]0,∞[ appearing in these expressions, is given by the user and usually
data driven. It is homogeneous to the inverse of a speed, and assumed to be continuous. The
HFM software uses the classical discretization scheme [RT92] to numerically solve isotropic
eikonal equations on cartesian grids of arbitrary dimension.

Anisotropic metrics define, at any given point, different norms for unit euclidean vectors
in different directions. Riemannian metrics are the simplest and most common instance of
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Figure 2: A metric associates to each point a gauge, i.e. a generalized norm which may be non-
symmetrical and may take infinite values. The three first figures display unit balls (also referred
to as Tissot’s indicatrix) of the gauges of successively: an Isotropic metric, an Anisotropic
Riemannian metric, and the non-holonomic sub-Riemannian metric associated with the Reeds-
Shepp model on R2 × S1. In the later case, the admissible directions of motion depend on the
present angular coordinate θ, associated with the vertical axis, reflecting the fact that a car
cannot move sideways.

anisotropic metrics. They are determined by a field M : Ω → S++(E) of positive definite
tensors, and take the form

Fp(ṗ) := ‖ṗ‖M(p), F∗p(p̂) = ‖p̂‖D(p), (7)

where ‖ṗ‖M :=
√
〈M ṗ, ṗ〉, and where D(p) := M(p)−1 denotes the dual tensor field. The

HFM software uses the recently developed FM-VR1 numerical scheme [Mir17a], to solve Rie-
mannian eikonal equations, in dimension d ∈ {2, 3}. Finsler metrics [ZSN09, CMC16c], i.e.
non-Riemannian anisotropic metrics, are presently not supported by the HFM software. For
these we refer to the earlier open source library [Mir15], due to the first author, which imple-
ments the (two-dimensional) FM-ASR scheme [Mir13].

Non-Holonomic control models forbid, at some points in space p ∈ Ω, some directions of
motion ṗ ∈ E. The corresponding metrics are singular, in that they associate infinite costs
Fp(ṗ) = +∞ to these forbidden directions. Sub-Riemannian metrics are the simplest instances
of non-holonomic metrics, and can be regarded as generalized Riemannian metrics having some
infinite eigenvalues. The HFM software is able to handle strongly anisotropic Riemannian met-
rics, with condition numbers & 10, which can approximate sub-Riemannian metrics convincingly
enough for many applications. We implement in particular the Reeds-Shepp car model, defined
on the configuration space R2 × S1 of positions and orientations, which is adequate for mod-
eling wheelchair-like vehicles [RS90] but is also fundamental in image vision [Pet03]. Several
generalisations, defined on the 5-dimensional domain R3 × S2, see [DMMP16, Mir17a], are also
present.

We address the computation of planar paths globally minimizing several curvature dependent
energies, following [Mir17b]. For that purpose, consider again the three-dimensional state space
M := R2 × S1 of positions and orientations, which points are denoted p = (x, θ). A singular
quasi-metric F is introduced, involving a data-driven cost function c : M→]0,∞[ and a curvature
penalty C : R →]0,∞]. For any tangent vector ṗ = (ẋ, θ̇), with unit physical velocity ‖ẋ‖ = 1
and arbitrary angular velocity θ̇, and any co-tangent vector (x̂, θ̂), one has

F(x,θ)(ẋ, θ̇) := c(x, θ) ·

{
C(θ̇) if ẋ = n(θ),

+∞ otherwise.
F∗(x,θ)(x̂, θ̂) = c(x, θ)−1 sup

θ̇∈R

〈x̂,n(θ)〉+ θ̂θ̇

C(θ̇)
. (8)
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We denoted n(θ) := (cos θ, sin θ), and adopted the convention that S1 := R/(2πZ) has tangent
space R. The quasi-metric F is extended by positive 1-homogeneity to the case ‖ẋ‖ 6= 1, and the
dual metric expression follows from (4), see also Appendix A. Consider a path η : [0, T ] → R2,
parametrized at unit euclidean speed, and abusively identify the unit vector η̇(s) with the
corresponding direction in S1. Then the length of the orientation-lifted path (η, η̇) measured
w.r.t. the above metric F equals the following curvature penalized energy

LF ((η, η̇)) =

∫ L

0
c(η(s), η̇(s)) C(η̈(s)) ds,

In addition, by construction of the metric F , any orientation lifting (η, η̃) : [0, T ] → R2 × S1

of the physical path η, distinct from the canonical one (η, η̇), satisfies LF ((η, η̃)) = +∞, hence
cannot be optimal.

The state dependent cost c(x, θ) is arbitrary and user defined, but the curvature cost C(θ̇)
must presently be chosen among the following instances, related to the Reeds-Shepp car without
reverse gear [DMMP16], the Euler-Mumford elastica curves [Mum94], and Dubins’s car [Dub57].
For any κ ∈ R, standing for the path curvature θ̇

CRS(κ) :=
√

1 + (ξκ)2, CEM(κ) := 1 + (ξκ)2, CD(κ) :=

{
1 if |ξκ| ≤ 1,

+∞ else,
(9)

where the parameter ξ > 0 modulates the amount of curvature penalization and has the di-
mension of a turning radius. Note that the metric (8) associated with (9, left) defines a model,
referred to as the Reeds-Shepp forward model, which distinguishes itself from the original sub-
Riemannian Reeds-Shepp model [RS90, Pet03] discussed in the previous paragraph by the ab-
sence of reverse gear, see the discussion in [DMMP16]. Finally, we also provide the more parame-
trable models defined by the metrics of the form

F(x,θ)(ẋ, θ̇) = c(x, θ) C
(
ξ(x, θ)(θ̇ − κ(x, θ))

)
if ẋ = n(θ). (10)

As before, the metric is extended 1-homogeneously to the case where x is positively collinear
with n(θ), and set to +∞ otherwise. The fields ξ : M→]0,∞[ and κ : M→ R, provided by the
user, locally modulate the turning radius and imbalance of the car. See Figure 20.

1.3 An Eulerian and causal discretization of the eikonal equation

The HFM software relies on an Eulerian and causal discretization of the eikonal equation (3),
on a cartesian grid, based on the papers [Mir17a, Mir17b]. We briefly describe here these two
design choices, and contrast them with the possible alternatives.

Numerical solvers of the time optimal control problem (2) can be of either semi-Lagrangian or
Eulerian nature. Semi-Lagrangian schemes are a discretization of Bellman’s optimality principle,
which expresses that the characterization (2, left) of the problem solution u still holds if the global
domain boundary ∂Ω is replaced with the boundary ∂V (p) of an arbitrary (in practice chosen
small) neighborhood V (p) ⊂ Ω of the current point p. A continued line of research has been
devoted to this approach since the seminal work [Tsi95], see the paragraph on causality below.
The HFM software does not follow this popular route, but relies in contrast on an Eulerian
scheme, directly expressing the eikonal PDE (3) at the discrete level using finite differences,
similarly to [RT92, BDMS15]. This approach requires an exact or approximate representation
of the dual metric in the following form: for any point p ∈ Ω, and any co-vector p̂ ∈ E∗

F∗p(p̂)2 ≈
∑

1≤i≤I
αi(p) max{0, 〈p̂, ėi〉}2, (11)
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Figure 3: The stencil of a PDE numerical scheme is the collection of offsets, towards close
neighbors usually, involved in its definition. We display the stencils used for the discretization
of eikonal equations, associated with (left, center left) an isotropic metrics in dimension 2 and
3, (center right) an anisotropic Riemannian metric, (right) the Euler-Mumford elastica model.

where αi = αi(p) ≥ 0 and ėi = ėi(p) ∈ Zd are weights and offsets respectively, with index
1 ≤ i ≤ I. The dependency of the offset ėi = ėi(p) w.r.t. the base point p is usually omitted
in equations such as (11), to alleviate notations. The design of these weights and offsets is
non-trivial, see §2 and [Mir17a, Mir17b], and expressions slightly more general than (11) are
often needed as well (13). The eikonal PDE (3), is then discretized under the following form

∀p ∈ X,
∑

1≤i≤I
αi(p) max{0, U(p)− U(p− hėi)}2 = h2, ∀p ∈ ∂X, U(p) = σ(p). (12)

where h > 0 is the discretization scale, and X and ∂X are subsets of the cartesian grid hZd
devoted to discretizing Ω and ∂Ω respectively. Note, crucially, that the numerical scheme (12,
left) is a non-decreasing function of the finite differences (U(p)−U(p−hė))ė∈Zd . This property,
referred to as monotony or degenerate ellipticity, is essential in establishing the well posedness
and stability of the discretized problem, see [Obe06]. The implementation of the HFM library
is slightly more flexible than (12), allowing for e.g. axis dependent grid scales, the introduction
of obstacles in the domain, and second order accuracy.

Causality is a property of the discretization scheme which reflects the deterministic nature of
the original control problem, and enables it to be solved in a single pass using the fast marching
algorithm/dynamic programming principle, see §3.1. In the context of Eulerian schemes, causal-
ity means that the numerical scheme is a function of the positive parts of the finite differences
(U(p) − U(p − hė))ė∈Zd , which is indeed the case in (12, left). See Definition 2.1 below for a
formal definition, and [SV01] for a counterpart in the context of semi-Lagrangian schemes. At
the continuous level, u(p) can be regarded as the arrival time at p ∈ Ω of a front originating
from the domain boundary ∂Ω at the given time σ, and propagating with a speed locally dic-
tated by the metric F . The continuous counterpart of the causality property is the fact that
the front arrival time at a given point only depends on the earlier arrival times, and not on the
future ones. In the context of shortest paths on graphs, causality amounts to the positivity of
the edge weights, which similarly enables Dijkstra’s single pass algorithm. Note that monotone
but non-causal discretization schemes can also be numerically solved, using a variety of iterative
methods such as Fast-Sweeping [Zha05] or (adaptive) Gauss-Seidel iterations [BR06, BDMS15].
Their practical usage can however be tedious, in particular with the strongly anisotropic and
inhomogeneous metrics encountered in image processing, which lead to long and unpredictable
computation times [BC10].

Designing causal discretization schemes for anisotropic metrics is a non-trivial task, which has
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been the subject of a continued line of research in the semi-Lagrangian setting [KS98, JBT+08,
AM11], following the discovery [SV01, Vla08] that it is related to a geometrical property of
the discretization stencils. The works [Mir13, Mir14] assume a cartesian grid discretization and
use, similarly to here but in the semi-Lagrangian setting, tools from lattice geometry to design
reasonably small causal stencils for (strongly) anisotropic metrics. In the Eulerian setting, the
design of causal schemes for non-isotropic metrics has in contrast been overlooked until the
recent works [Mir17a, Mir17b], which are at the foundation of the proposed software.

1.4 Applications to image processing and motion planning

Minimal path methods have numerous applications [Set99, PPKC10], of which we can only give
a glimpse. We focus here on applications which can directly benefit from the numerical methods
provided within the proposed software, and in particular from paths globally minimizing a
curvature dependent energy.

Motion planning. When preparing the motion of a automatic vehicle in a known environ-
nement, or the movement of an articulated machine such as a robotic arm, using the path globally
minimizing a well chosen energy has obvious advantages [Lat12]. A variety of methods for path
optimization exist, such as local optimization from an initial guess, geodesic shooting, stochastic
exploration, or fine geometrical descriptions [BCL94]. Approaches based on the eikonal PDE
have uncomparable flexibility, and a guarantee of global optimality. Their main drawbacks are
their cost for the complex models, due to the curse of dimension, and until recently the inability
to handle non-holonomic constraints. The HFM library solves the latter issue, and for instance
allows to introduce curvature penalization in the energy functional, so as to minimize the ef-
fort on the machine structure. Hard constraints can also be accounted for, such as a vehicles
with a bounded turning radius. In the proof of concept work [MD17], the HFM library is used
to optimize a surveillance system for detecting an an enemy vehicle, subject to non-holonomic
constraints, in a worst case scenario.

Image Segmentation. Numerous imaging applications involve paths, such as two dimensional
region segmentation, tubular structure segmentation, or white fiber tracking in dMRI scans of
the brain. Various path constructions exist, such as fiber following methods based on ODEs
in the last case, often enhanced with stochastic perturbations [SKF+14]. Another convenient
selection principle is to select a path minimizing an adequate energy, which in practice is obtained
by local optimization [KWT88], or by solving an eikonal equation [CK97]. The latter approach,
chosen in this paper, has the appealing guarantee that globally optimal path is found, but it
was historically more limited in the type of energies that could be minimized. The HFM library
intends to alleviate this constraint, by enabling the efficient computation of globally optimal
Riemannian geodesics, as well as paths minimizing a family of curvature dependent energies.
We refer to [PPKC10], for an in-depth overview of the uses of minimal paths in image processing,
and devote the following paragraphs to works which specifically investigate the use of anisotropic
(Riemannian or Finslerian) or non-holonomic (curvature penalizing) metrics in image processing.

Riemannian metrics were first applied in [BC10] to the segmentation of image regions and
of tubular structures. The metric tensors are built in a preliminary step, based on a local fil-
tering of the image, and are intended to guide the minimal paths along the image structures of
interest; their design remains a challenging task, which is application dependent, requires expert
knowledge, and remains the object of active research. Activity in the field [CCM14, CMC16a]
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was renewed after the development of fast Riemannian eikonal equation solvers [Mir14]. Fins-
lerian metrics allow path length to be measured differently depending on the direction, by e.g.
augmenting a Riemannian metric with an asymmetric linear term [Ran41]. They have impor-
tant applications in image segmentation [MPAT08, CMC16c]. An efficient discretization scheme
exists for two dimensional finslerian eikonal equations [Mir13, Mir15], but for technical reasons2

it is not implemented in the HFM library.
Path energies featuring second order terms, such as curvature, are completely natural in

image segmentation [KWT88]. Curvature penalization is for instance a good prior for region
segmentation in noisy images, in particular if the objects of interest are convex [CMC16b].
Another use case is tubular structure segmentation in images of the retina, which feature complex
overlays of vessels: curvature penalization helps eliminate “shortcuts” where the extracted path
runs along the concatenation of several distinct intersecting vessels [BDMS15]. Finally, white
fiber tractography in dMRI scans of the brain is a promising application field: the curvature
penalty adds inertia to the paths, preventing them from getting lost at fiber crossings [DMMP16].
Global optimization path energies featuring curvature and higher order tems, using dynamic
programming, was first investigated in [SUKG13, LRr13]. We do believe that the approach used
in the HFM library lies on firmer grounds, which are presented mathematically in §2.4 and which
history is briefly described below. The first step was to introduce the configuration space of all
positions (in the image domain) and orientations [PKP09]. Among other things, this allows to
design the cost function(s) involved in the path energy using an orientation sensitive filtering of
the image, based on e.g. wavelets [DFGtHR07] or Gabor filters. The second step is to relate the
second order energy model of interest with a non-holonomic metric on the configuration space,
see [BDMS15, CMC16b] for the Reeds-Shepp and Euler-Mumford models respectively. The final
step is to design a causal discretization scheme so as to solve the resulting eikonal PDE (possibly
slightly relaxed) more efficiently, which was addressed in [SBD+15, DMMP16, Mir17a, Mir17b].

Outline. We discuss in §2 the models that can be addressed with our numerical method, and
describe in detail our discretization of the related eikonal PDEs. Section §3 describes the fast
marching algorithm, and the related methods of geodesic backtracking and sensitivity analysis.
Numerical experiments are presented in §4.

2 Expression of the Hamiltonian

In this section, we describe the discretization of several generalized eikonal equations, using
an original and specific representation of the corresponding Hamiltonian, as announced in the
introduction (11). These implementation principles are at the foundation of our numerical
method, but are invisible from the top-level interface of the HFM library. They are of interest
to curious users and to those who would like to extend the core C++ library with additional
models and features.

In the rest of this paper we denote by Hp := (F∗p)2, p ∈ Ω, the squared dual metric, which is
abusively referred to as the Hamiltonian. Note that, in classical mechanics, the Hamiltonian is
defined as 1

2Hp, but the multiplicative factor 1/2 tends to introduce unnecessary clutter in both
the description and the implementation of our numerical method. Our approach requires the
Hamiltonian to be representable, exactly or approximately (in which case a consistency error is

2It uses a semi-Lagrangian discretization, in contrast with the Eulerian discretization chosen for the HFM
library, see §1.3.
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introduced), in the following general form. For any point p ∈ Ω and any co-vector p̂ ∈ E∗

Hp(p̂) ≈ max
1≤k≤K

( ∑
1≤i≤I

αik〈p̂, ėik〉2+ +
∑

1≤j≤J
βjk〈p̂, ḟjk〉2

)
, (13)

where a+ := max{0, a} for any a ∈ R. The integers I, J,K are meta-parameters which are
fixed for each class of metric. In contrast, the weights αik, βjk ≥ 0 and the offsets ėik, ḟjk ∈ Zd
implicitly depend on the current point p ∈ X of the domain, where 1 ≤ i ≤ I, 1 ≤ j ≤ J , and
1 ≤ k ≤ K. Let us mention that several strategies, discussed in §3.1.3, are used to limit the
memory footprint of storing the local parameters αik, βjk, ėik, ḟjk of the Hamiltonian.

The finite-difference approximationHU(p) of a continuous function’s HamiltonianHp(du(p)),
at a point p ∈ Ω, is obtained by inserting the following first order upwind approximations in
the r.h.s. of (13)

〈dU(p), ė〉2+ ≈ h−2 max{0, U(p)− U(p− hė)}2, (14)

〈dU(p), ė〉2 ≈ h−2 max{0, U(p)− U(p− hė), U(p)− U(p + hė)}2. (15)

We denoted by U : X ∪ ∂X → R a discrete map, where X and ∂X are disjoint finite subsets
of the cartesian grid hZd of scale h > 0, devoted to approximating Ω and ∂Ω. By convention,
if needed, U is extended by +∞ outside of its domain so as to implement outflow boundary
conditions. The eikonal equation (3) is thus discretized in the form

∀p ∈ X, HU(p) = 1, ∀p ∈ ∂X, U(p) = σ(p). (16)

To be more specific, our implementation requires the discretization domain X ∪ ∂X to be box
shaped. It also allows for various types of boundary conditions, devoted to e.g. the commonly
used manifolds R2× S1 and R3× S2, and for axis-dependent grid scales, such as a physical scale
and an angular scale in the previous case. See §D for more detail on the discretization grid
conventions.

Before turning to specific models, we formally define the properties of monotony and causal-
ity, already mentioned in the introduction §1.3. These properties enable solving the system (16)
in a single pass using the fast marching algorithm, see §3.1.

Definition 2.1. A numerical scheme on a finite set Z is a map H : Z×R×RZ → R. It is said

• Monotone iff H is non-decreasing w.r.t. the second and (each of the) third variables.

• Causal iff H only depends on the positive part of the third variable(s).

Slightly abusively one denotes for any U : Z → R and any p ∈ Z

HU(p) := H
(
p, U(p), (U(p)− U(q))q∈Z

)
.

For notations to match between Definition 2.1 and (16), one must set Z := X ∪ ∂X, and
define HU(p) := U(p) for all p ∈ ∂X. By design, these properties are obeyed by any numerical
scheme obtained by inserting the upwind finite differences (14) in an expression of the form (13),
namely

HU(p) := h−2 max
1≤k≤K

( ∑
1≤i≤I

αik max
{

0, U(p)− U(p− hėik)
}2

(17)

+
∑

1≤j≤J
βjk max

{
0, U(p)− U(p− hḟjk), U(p)− U(p + hḟjk)

}2
)
.
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2.1 Dijkstra’s algorithm

We show that, with a special choice of parameters, our discretization scheme (16) reduces to
the classical problem of finding shortest paths on a graph with non-negative edge lengths. In
addition, the fast marching algorithm reduces to Dijkstra’s method in that case. Indeed, assume
that I = 1 and J = 0, while K ≥ 1 remains arbitrary. Then HU(p) = 1 rewrites as

max
1≤k≤K

(
U(p)− U(p− hėk)

lk(p)

)2

+

= 1, equivalently U(p) = min
1≤k≤K

lk(p) + U(p− hėk).

We denoted lk := 1/
√
α1k and ėk := ė1k, which both (sometimes implicitly) depend on the

current point p. Almost any optimal control problem can be addressed with Dijkstra’s algorithm,
by using sufficiently wide stencils, including those involving curvature or torsion dependent
energies [SUKG13]. We advocate however for more clever designs of the weights and offsets, as
discussed below for several metric structures of interest, so as to improve the accuracy of the
numerical results.

2.2 Isotropic metrics

We recall in this subsection the Eulerian discretization of isotropic eikonal equations, which dates
back to [RT92]. As discussed in the general introduction, isotropic metrics are (by definition)
locally proportional to the euclidean norm ‖ · ‖ on the ambient space E := Rd: one has Fp(ṗ) =
c(p)‖ṗ‖, for any point p ∈ Ω and any vector ṗ ∈ E, where c : Ω →]0,∞[ is a cost function
provided by the user. The dual metric reads F∗p(p̂) = c(p)−1‖p̂‖, for any co-vector p̂ ∈ E∗.

The Hamiltonian is representable exactly in the form (13), using only d scalar products
(I = 0, J = d, K = 1). Denoting by ėi = (0, · · · , 0, 1, 0, · · · , 0) the unit vector directed along
the i-th coordinate axis, for any 1 ≤ i ≤ d, one has indeed

Hp(p̂) = c(p)−2‖p̂‖2 = c(p)−2
∑

1≤i≤d
〈p̂, ėi〉2. (18)

Note that, in this special case, the offsets (ėi)
d
i=1 do not depend on the current base point

p ∈ Ω. For completeness, we write the full form of the discretization scheme, specializing (17)
and recovering [RT92]. For any U : X ∪ ∂X → R and any grid point p ∈ X

HU(p) = (c(p)h)−2
∑

1≤i≤d
max{0, U(p)− U(p− hėi), U(p)− U(p + hėi)}2. (19)

Several numerical schemes often exist for discretizing a given eikonal equation. Substituting
〈p, ėi〉2 = 〈p, ėi〉2− + 〈p, ėi〉2+ in (18) yields for instance the alternative discretization

H̃U(p) = (c(p)h)−2
∑

1≤i≤d

∑
τ∈{−1,1}

max{0, U(p)− U(p− τhėi)}2. (20)

This scheme is typically less accurate than (19) near the cut locus (the points of non-differentiability
of the distance map), but has the advantage of being differentiable w.r.t. the entries of the dis-
crete map U , which is welcome if the eikonal PDE solution is part of a larger optimization
problem, see §4.2.

Diagonal metrics are an elementary generalization of isotropic metrics, in which the propa-
gation cost is possibly distinct along each coordinate axis. The metric, and dual metric, read:

Fp(ṗ) =

√ ∑
1≤i≤d

ci(p)2〈ėi, ṗ〉2, F∗p(p̂) =

√ ∑
1≤i≤d

ci(p)−2〈p̂, ėi〉2. (21)
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Figure 4: Dual unit ball {ṗ; ‖ṗ‖D−1 ≤ 1}, and offsets associated by Voronoi’s first reduction to
a tensor D, involved in the decomposition (23). Left: several examples in dimension two. Right:
a three dimensional case.

Thus Hp(p̂) := F∗p(p̂)2 naturally has the required form (13), with again I = 0, J = d, K = 1.

2.3 Riemannian metrics, and sub-Riemannian approximations

Riemannian metrics are the most common class of non-isotropic metrics. They are determined
by a field M : Ω → S++(E) of positive definite tensors, and take the form Fp(ṗ) := ‖ṗ‖M(p),

where we recall ‖ṗ‖M :=
√
〈M ṗ, ṗ〉. In differential geometry, the natural distance on a sub-

manifold of Rn can be described by a Riemannian metric on a parametrization domain. In image
segmentation, the Riemannian tensors may stem naturally from the data [FDHTV+16], or be
creatively designed based on some local image analysis [BC10].

In order to discretize Riemannian eikonal equations, we introduce an adequate decomposition
of positive definite tensors. The condition number of a positive definite tensor D ∈ S++(Ed) is
defined by

Cond(D) :=
√
‖D‖‖D−1‖. (22)

Proposition 2.2. Let D ∈ S++(E), where E := Rd, and let d′ := d(d+ 1)/2. Then there exists
non-negative weights αi ≥ 0 and integer offsets ėi ∈ Zd, where 1 ≤ i ≤ d′, such that

D =
∑

1≤i≤d′
αi ėi ⊗ ėi. (23)

Furthermore, this decomposition can be chosen such that ‖ėi‖ ≤ Cond(D)α, for all 1 ≤ i ≤ d′,
where α := d− 1. In dimension d ≤ 3, one has the improved estimate α = 1.

We assume in the following that the decomposition (23) is the one provided by Voronoi’s first
reduction of the quadratic form ṗ 7→ 〈ṗ, Dṗ〉, which enjoys these properties.

We refer to [Mir17b] for the proof of Proposition 2.2, and to [Sch09] for more background
on Voronoi’s theory and the field of additive lattice geometry. Our numerical codes devoted
to Riemannian metrics do compute the tensor decomposition (23) at each gridpoint, using a
simple and efficient algorithm due to Selling [Sel74], see Appendix B. This algorithm applies
in dimension d ∈ {2, 3} only, but we hope to address the case d ∈ {4, 5} in future using other
techniques. Our discretization scheme directly involves the offsets (ei)

d′
i=1, hence their norm

should be as small as possible. The chosen construction is proved in [Mir16] to be optimal in
this regard, in dimension d = 2, and sharp worst and average case estimates of the stencil radius
are also established. The tensor decomposition (23) can be used to discretize PDEs other than
eikonal equations, such as anisotropic diffusion [FM14].
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Proposition 2.2 yields an exact representation of Riemannian Hamiltonians in the desired
form (13), using d′ := d(d + 1)/2 scalar products (I = 0, J = d′, K = 1). Indeed, for any
point p ∈ Ω and any co-vector p̂ ∈ E∗, one has denoting by D(p) :=M(p)−1 the inverse of the
Riemannian metric tensor

Hp(p̂) = ‖p̂‖2D(p) = 〈p̂, D(p)p̂〉 =
∑

1≤i≤d′
αi(p) 〈p̂, ėi〉2. (24)

The weights αi(p) ≥ 0 and the offsets ėi = ėi(p) ∈ Zd are those appearing in the decomposition
(23) of D(p). Specializing (17) yields

HU(p) =
∑

1≤i≤d′
αi(p) max{0, U(p)− U(p− hėi), U(p)− U(p + hėi)}2. (25)

In comparison with the classical discretization (19) of isotropic eikonal equations, the offsets are
point dependent: ei = ei(p), and are slightly more numerous: d′ instead of d. Interestingly, if
the Riemannian metric tensor is proportional to the identity matrix, M(p) = c(p)2 Id at some
point p ∈ Ω, then one can show that (24) reduces to the previous numerical scheme (19) (in
particular d′ − d of the coefficients αi(p) vanish, while the others are equal to c(p)−2).

Sub-Riemannian metrics can be regarded as degenerate Riemannian metrics, which metric
tensors have some infinite eigenvalues. The inverse tensor D : Ω → S+(E∗) is well defined,
positive semi-definite, but rank deficient. They define non-holonomic control models, in the
sense that, at some points in space p ∈ Ω, some directions of motion ṗ ∈ E are forbidden,
namely those outside of the span of D(p). Proper sub-Riemannian metrics should also obey a
local controllability property, expressed in terms of commutators of vector fields, which is out
of the scope of this paper, see [Mon06]. The HFM library addresses sub-Riemannian metrics
using a relaxation approach, involving a family Fε of Riemannian metrics which tensors Mε

explode as some parameter ε → 0. This technique is viable numerically thanks to the good
behavior of our numerical scheme with strongly anisotropic metrics. In practice, tensors of
condition number Cond(Mε) ≈ 10 offer a good compromise between (a) the sharpness of the
sub-Riemannian relaxation, and (b) the size of the discretization stencils, see Proposition 2.2.

The Reeds-Shepp car model (with reverse gear) [RS90] is perhaps the most notorious example
of a sub-Riemannian metric, also appearing in Petitot’s description of the visual cortex V1
[Pet03]. This model is posed on the manifold M := R2 × S1 of positions and orientations, and
is described here for a positive relaxation parameter ε > 0. For any point (x, θ) ∈ M and any
tangent vector (ẋ, θ̇) ∈ T(x,θ)M = R2 × R we define following [SBD+15]

Fε(x,θ)(ẋ, θ̇)
2 = ‖(ẋ, θ̇)‖2Mε(x,θ)

:= c(x, θ)2
(
〈n(θ), ẋ〉2 + ε−2〈n(θ)⊥, ẋ〉2 + (ξθ̇)2

)
, (26)

where c : Ω→]0,∞[ is a given cost function, and ξ > 0 is a parameter homogeneous to a radius
of curvature. We denoted by n(θ) := (cos θ, sin θ) the unit vector of orientation θ ∈ S1, and by
n(θ)⊥ the clockwise orthogonal vector. Lateral physical motions, in the direction of n(θ)⊥, see
their cost strongly penalized by the ε−2 factor in (26), and are completely excluded in the limit
sub-Riemannian model for which ε = 0. Our software also implements the higher dimensional
generalization of this model on R3×S2, first considered in [DMMP16], as well as a “dual” variant
introduced in [Mir17a] which penalizes non-planarity (akin to a torsion penalization) instead of
curvature.

We can make explicit the tensor field Mε : R2 × S1 → S++(R3) such that Fε(x,θ)(ẋ, θ̇) =

‖(ẋ, θ̇)‖Mε(x,θ), for all (x, θ) ∈ R2 × S1. The matrix Mε(x, θ) is block-diagonal with structure
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(2× 2, 1× 1), and reads

Mε(x, θ) = c(x, θ)2

 n(θ)⊗ n(θ)
+ ε−2 n(θ)⊥ ⊗ n(θ)⊥

ξ2

 .

The eigenvectors are (n(θ), 0), (n(θ)⊥, 0), and (0, 1), with corresponding eigenvalues c(x, θ)2(1,
ε−2, ξ2). Computing the inverse tensors Dε(x, θ) :=Mε(x, θ)

−1, we obtain the following expres-
sion of the Hamiltonian: for any co-vector (x̂, θ̂) ∈ T ∗(x,θ)M

Hε(x,θ)(x̂, θ̂) = ‖(x̂, θ̂)‖2Dε(x,θ) := c(x, θ)−2
(
〈x̂,n(θ)〉2 + ε2〈x̂,n(θ)⊥〉2 + (θ̂/ξ)2

)
. (27)

From this point, the HFM library applies the previous Riemannian discretization strategy
(24), with a positive relaxation parameter. In practice, choosing ε := 0.1 yields good results.
Note that the matrix Dε(x,θ) of the sub-Riemannian Hamiltonian is rank deficient when ε = 0,
hence Proposition 2.2 is not directly applicable to the limit model.

2.4 Curvature penalized models

This section is devoted to the computation of paths globally minimizing a curvature dependent
energy, following [Mir17b], which is one of the main novelties brought by the HFM library. For
that purpose we reformulate these second order planar paths models as ordinary shortest path
problems in the three dimensional domain M := R2×S1, and w.r.t. a singular metric F : TM→
[0,∞], see §1.2. Said otherwise, the introduction of a second order path derivative in the cost
function comes at the price of (i) an extra dimension S1, and (ii) a strongly (formally infinitely)
anisotropic metric F . This approach shares many similarities with the sub-Riemannian Reeds-
Shepp model (26), the main difference being that the models considered in this section lack the
ability to shift into reverse gear. We describe below the computation of the dual metric, and its
approximation in the form (13) which is required for our discretization strategy.

The dual metric F∗ to the models of interest is described in (8) as the solution to a one
dimensional optimization problem. More precisely, one has

F∗(x,θ)(x̂, θ̂) = c(x, θ)−1f(x̂, θ̂),

where x̂ := 〈x̂,n(θ)〉 ∈ R, and where f : R2 → [0,∞[ is defined as the following maximum

f(x̂, θ̂) := sup
θ̇∈R

x̂+ θ̂θ̇

C(θ̇)
, extremal when θ̂C(θ̇) = (x̂+ θ̂θ̇)C′(θ̇). (28)

We specialize, in the next equation, the optimality condition (28, right) for the curvature costs
CRS, CEM and CD associated to the Reeds-Shepp, Euler-Mumford, and (non-smooth) Dubins
models, see (9). After simplification this condition respectively reads

θ̇x̂ξ2 = θ̂, θ̇2ξ2θ̂ + 2θ̇ξ2x̂− θ̂ = 0, θ̇ξ ∈ {−1, 1, ∞}.

Recall that ξ > 0 is a parameter, homogenous to a radius of curvature, which modulates the
intensity of curvature penalization. Solving for θ̇, and inserting the optimal value in (28, left),
one obtains the following expression of f(x̂, θ̂) respectively√

x̂2
+ + (θ̂/ξ)2, x̂+

√
x̂2 + (θ̂/ξ)2, max{0, x̂+ θ̂/ξ, x̂− θ̂/ξ} (29)
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Figure 5: Left: Applying Proposition 2.3 to a vector (black) with ε = 0.1, in dimension 3, yields
the red offsets. Center: Discretization stencil for the Reeds-Shepp model, red offsets obtained
by applying Proposition 2.3 in dimension d = 2, blue offsets related to the angular dimension.
Right: Stencil for Dubins model, red and blue offsets obtained by applying Proposition 2.3 in
dimension d = 3 to two distinct vectors.

We refer to Appendix A for the details of the computations, and to [Mir17b] for a different
proof.

Let us focus on the case (29, left) of the Reeds-Shepp forward model, which squared dual
metric thus reads

HRS
(x,θ)(x̂, θ̂) = c(x, θ)−2

(
〈x̂,n(θ)〉2+ + (θ̂/ξ)2

)
. (30)

The main difference with the classical Reeds-Shepp reversible model (with reverse gear), which
Hamiltonian is obtained by setting ε = 0 in (27), is the positive part in the physical term
〈x̂,n(θ)〉2+. This difference accounts for the lack of reverse gear in the present model. The
discretization of this term is addressed in the next proposition, proved in [Mir17b], which in-
troduces (similarly to the reversible case) a relaxation parameter ε > 0. We denote by Pn the
orthogonal projection onto the hyperplane orthogonal to a unit vector n:

Pn := Id−n⊗ n.

Proposition 2.3. Let n ∈ E := Rd and let ε > 0. Consider non-negative weights and offsets
(αi, ėi)

I
i=1 ∈ (R+ × E)I , obtained e.g. by Proposition 2.2, such that for all x̂ ∈ E∗ one has

〈x̂,n〉2 + ε2‖Pn x̂‖2 =
∑

1≤i≤I
αi〈x̂, ėi〉2.

Assume that 〈n, ėi〉 ≥ 0 (otherwise replace ėi with its opposite), for all 1 ≤ i ≤ I. Then

〈x̂,n〉2+ ≤
∑

1≤i≤I
αi〈x̂, ėi〉2+ ≤ 〈x̂,n〉2+ + ε2‖Pn x̂‖2.

Denote by αεi (θ) and eεi (θ) the weights and offsets obtained by applying Proposition 2.3 to
the vector n(θ) ∈ R2 and a suitably small ε > 0, where 1 ≤ i ≤ I and I = d′ = d(d + 1)/2 =
(2 × 3)/2 = 3, see Proposition 2.2. Then we approximate the Hamiltonian (30) of the Reeds-
Shepp forward model in the form (13) with parameters I = 3, J = 1, K = 1, as follows

HRS
(x,θ)(x̂, θ̂) ≈ c(x, θ)

−2
( ∑

1≤i≤I
αεi (θ)〈x̂, ėεi (θ)〉2+ + (θ̂/ξ)2

)
.
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For completeness, we write the full discretization scheme for this model, specializing (17). Let
h > 0 be the gridscale and let Mh := hZ2× (hZ/2πZ). We assume here that 2π/h is an integer3,
so that the discretization of the periodic circle S1 makes sense. For any U : Mh → R and any
(x, θ) ∈Mh

HRS
ε U(x, θ) :=(c(x, θ)h)−2

( ∑
1≤i≤I

αεi (θ) max{0, U(x, θ)− U(x− hėεi (θ), θ)}2

+ ξ−2 max{0, U(x, θ)− U(x, θ − h), U(x, θ)− U(x, θ − h)}2
)
.

The Dubins Hamiltonian is discretized using a similar procedure. In view of (29, right) one
has indeed

HD
(x,θ)(x̂, θ̂) = c(x, θ)−2 max{(〈x̂,n(θ)〉+ θ̂/ξ)2

+, (〈x̂,n(θ)〉 − θ̂/ξ)2
+}. (31)

Apply Proposition 2.3 to the three dimensional vectors v+(θ) := (n(θ), ξ−1) and v−(θ) :=
(n(θ),−ξ−1), and denote by αε+i(θ), α

ε
−i(θ), ėε+i(θ) and ėε−i(θ) the corresponding weights and

offsets, where 1 ≤ i ≤ I and I = (3×4)/2 = 6. Then we approximate (31) in the form (13) with
parameters I = 6, J = 0, K = 2, as follows

HD
(x,θ)(x̂, θ̂) ≈ c(x, θ)

−2 max
{ ∑

1≤i≤I
αε+i(θ) 〈p̂, ėε+i(θ)〉2+,

∑
1≤i≤I

αε−i(θ) 〈p̂, ėε−i(θ)〉2+
}
.

The final PDE discretization scheme is as usual obtained by specializing (17). The Euler-
Mumford elastica model is addressed using a similar procedure, for which we refer to [Mir17b]
due to space constraints.

3 Implementation

In this section, we provide the implementation details for the Fast-Marching algorithm, used to
numerically solve our Eulerian and causal discretization (16) of the eikonal PDE. We strongly
rely on the specific form (13) of the Hamiltonian approximation. We also discuss geodesic
backtracking, and sensitivity analysis.

In order to keep notations simple, we assume that the Hamiltonian H of the model of interest
is representable in the form (13) with parameters J = 0 and K = 1, whereas I remains arbitrary.
The following arguments can be easily adapted to the general case where J and K are arbitrary
as well. For any discretization point p ∈ X, any co-vector p̂ ∈ E∗, and any discrete map U , the
Hamiltonian and finite differences scheme are thus assumed to read

Hp(p̂) =
∑

1≤i≤I
αi max{0, 〈p̂, ėi〉}2, HU(p) := h−2

∑
1≤i≤I

αi (U(p)− U(p− hėi))
2
+ . (32)

The weights αi = αi(p) ≥ 0 and offsets ėi = ėi(p) ∈ Zd, where 1 ≤ i ≤ I, depend on the current
point p ∈ X. Recall that the objective is to find U : X ∪ ∂X →]−∞,∞] obeying

∀p ∈ X, HU(p) = 1, ∀p ∈ ∂X, U(p) = σ(p), (33)

where X and ∂X are finite subsets of hZd, and where the boundary data σ : ∂X →]−∞,∞] is
given. In the following, we denote by N := #(X t ∂X) the cardinality of the discrete domain.

3In the HFM software, two distinct scales hx and hθ are used, and the latter is specified via the integer
nθ := 2π/hθ.
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3.1 Fast marching

The fast marching algorithm is a generalization of Dijkstra’s algorithm [Dij71] for the com-
putation of shortest paths on graphs. Said otherwise, it is a specialization of the dynamic
programming principle. The general structure is unchanged, see Algorithm 1, and in particular
each point of the domain X ∪∂X is tagged as Accepted only once, after what the corresponding
value of the computed solution U is frozen.

Algorithm 1 Fast marching

Pre-compute the reversed stencils (V [p])p∈X∪∂X , defined in (35).
Tag points of ∂X as Trial, and other points as Far.
Initialize U : X ∪ ∂X →]−∞,∞] to the value +∞ on X, and the boundary condition on ∂X.
While there remains Trial points.

Find a Trial point q minimizing U .
Tag q as Accepted, and call Post-process(q).
For each neighbor p ∈ V [q], either Far or Trial

If p is Far, then tag it as Trial, and call Pre-process(p).
Update U(p), taking into account the value U(q) of the last Accepted point.

The collection of points tagged as Trial can be regarded as a propagation front. Two ad-
ditional sub-routines, appearing as Pre-process(p) and Post-process(q) in Algorithm 1, and
referred to as pre-processing and post-processing, are called when a point enters and leaves the
front respectively. By default, some memory management is performed at these points, see §3.1.2
and §3.1.3, but additional tasks may optionally be plugged in as well. At the post-processing
stage one may for instance check for stopping criteria, or slightly alter the value U(p) before it
is frozen using the (formally) second order HAFMM numerical scheme [Set99].

3.1.1 Stencils and reversed stencils

Our algorithm uses point dependent, adaptive stencils, hence we need to cautiously determine
the dependency graph underlying the discretized problem (33). For that purpose, we introduce
the forward stencil V(p) ⊂ X ∪ ∂X, of an arbitrary interior point p ∈ X, and its counterpart
the reversed stencil V [q] ⊂ X, for all q ∈ X ∪ ∂X. The forward stencil V(p) at p ∈ X, collects
all points q ∈ X ∪ ∂X whose value U(q) is involved in the definition HU(p), see (32, right).

V(p) := {q = p− hėi(p); 1 ≤ i ≤ I, q is visible from p} ∩ (X ∪ ∂X), (34)

The intersection with X ∪ ∂X is meant to exclude all points q which fall outside of the (box
shaped) discrete domain. Outside of this domain, the unknown function U is by convention
extended by +∞, which amounts to implement outflow boundary conditions. The visibility
constraint is a test ensuring that the segment [p,q] does not intersect any of the obstacles that
may optionally be introduced within the domain. This condition is required because our adaptive
stencils are often 5 to 10 pixels wide, hence they would otherwise jump over thin obstacles, such
as walls in in building maps which are usually drawn 1 pixel wide. See Figure 6.

The reversed stencil V [q] ⊆ X at q ∈ X∪∂X, is defined by inverting the stencil connectivity
graph:

V [q] := {p ∈ X; q ∈ V(p)}. (35)

Thus V [q] collects all points p ∈ X such that HU(p) depends on U(q). Forward and reverse
stencils coincide in the classical discretization of isotropic fast marching (2.2), but differ in most
other cases.
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Valid obstacles Incorrect obstacles

Figure 6: Obstacles are specified to the HFM software as boolean images. They must be
“water tight”: contiguous obstacle voxels must share a full (d− 1)-dimensional face. Otherwise
the numerical scheme will leak through, and the extracted minimal paths may jump across walls.

The numerical cost of constructing the stencils and the reversed stencils can be neglected in
models for which these sets are independent of the current point (e.g. isotropic metrics §2.2),
or depend only on a strict subset of its coordinates (e.g. the angular coordinate for curvature
penalized models §2.4), by exploiting redundancy as discussed in §3.1.3 below. In other cases
(e.g. Riemannian metrics §2.3), the construction of the direct stencils V(p) has complexity4

O(I) for each p ∈ X, thus O(NI) overall. Once this is done, the reversed stencils are computed
by sorting the pairs {(p,q); p ∈ X,q ∈ V(p)} according to their second element, which costs
O(IN lnN).

Finally, let us mention that equations (34) and (35) do not reflect our implementation entirely
faithfully, for two reasons. First, we actually store the offsets instead of the points, e.g. ėi(p) ∈ Zd
instead of p−hėi(p) in (34). Second, the visibility and out of domain tests are performed while
dynamic programming is running, and not during the initial stencil construction as suggested
in (34).

3.1.2 Elementary update

Consider a point p ∈ X tagged Trial, and which value U(p) must be updated w.r.t. the Accepted
points, as specified in the last line of Algorithm 1. This means that the currently stored value
U(p) must be replaced with the largest solution λ ∈ R to the following univariate quadratic
equation:∑

i∈I
αi(p) (λ− U(qi))

2 = 1, where I := {1 ≤ i ≤ I; qi ∈ V(p), qi is Accepted}. (36)

The neighbor points qi := p − hėi(p), where 1 ≤ i ≤ I, are those appearing in the numerical
scheme HU(p) at p, see (32, right). Note that the index set I excludes points that are out of
the domain X ∪ ∂X, are not visible from p, or are tagged Trial or Far. One can show that, by
construction of the fast marching algorithm5, equation (36) has two real roots, the smallest of
which is a numerical artifact, while the largest denoted λ∗ satisfies by construction λ∗ ≥ U(qi)
for all i ∈ I, and defines the updated value of U(p).

Some of our discretization schemes involve a rather large number of neighbors, for instance
I = 12 for three dimensional Riemannian metrics, and I = 27 for the (default implementation

4 We rely on basis reduction techniques to compute the tensor decomposition of Proposition 2.2, see §B. Strictly
speaking, their cost depends on the tensor condition number, but it grows so slowly that it can be regarded as
constant for the applications of interest, see [NS04] for a complexity analysis of similar methods.

5Using the fact that points are tagged as Accepted sequentially, in the order of increasing values of U .
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of the) Euler-Mumford elastica model. The latter figure may increase if the user requests more
accuracy, see the discretization details in [Mir17b]. In order to maintain a O(1) complexity of
the elementary update, we cache for each Trial point p ∈ X the coefficients (a, b, c) of the second
degree polynomial aλ2 − 2bλ + c defined by (36). This cache is initialized as (0, 0,−1) when
Pre-process(p) is called, is increased (component-wise) by αi(p) (1, U(qi), U(qi)

2) each time a
new neighbor qi is Accepted, and is deleted when Post-process(p) is called.

The fast marching algorithm, similarly to Dijkstra’s algorithm, must also maintain a queue
of all Trial points, sorted by increasing values of U . For each point p ∈ X t ∂X, queue
maintenance operations include the insertion of the new key (when p is first tagged as Trial),
a local re-ordering when the attached value U(p) is modified (at most I times), and eventually
the key removal (when p is tagged as Accepted). The overall complexity, using a heap based
sorted data structure, is thus

O(IN lnN).

3.1.3 Memory usage

The memory footprint of our algorithm is linear w.r.t. the number N of discretization points.
The proportionality constant does matter however, since the image resolution of e.g. dMRI
medical data is often huge. In addition, several applications introduce extra domain dimen-
sions, accounting for e.g. the orientation, grayscale, or radius of the extracted tubular structure
[CMC16a, PKP09], which multiplies the number of discretization points. For this reason, the
HFM software implements several memory optimizations, discussed in this paragraph. We use
the O(·) notation6 to denote space complexity, counted in Bytes.

Our generalized fast marching solver uses wide stencils, which weights and offsets take sig-
nificant memory space if stored indiscriminately. By default7 we use weights αi ∈ R of “double”
type, hence occupying 8 Bytes8, and offsets ėi ∈ Zd with “signed char” components, hence
occupying d Bytes, where d is the domain dimension, and where 1 ≤ i ≤ I. The storage cost of
the forward and the reversed stencils is thus respectively

O(IN1(8 + d)) O(IN2d)

where N1 and N2 are the number of actually stored stencils. An extensive storage (N1 = N2 =
N) of the numerical scheme stencils thus costs O(I(8 + 2d)N), whereas the memory footprint of
the input speed function and of the output value function is O(2× 8N). For the Euler-Elastica
model, which uses quite large stencils (I = 27 and d = 3), the space complexity O(378N) of our
numerical method would thus vastly exceed the incompressible external cost O(16N) of input
and output. Fortunately, we have developed two data management strategies for stencil storage
which make the former cost negligible for this specific model, and severely limit it for others.

• Data sharing. The stencil offsets ėi(p) of some models only depend on a strict subset p of
the coordinates of the current point p ∈ X, e.g. none (p = ∅) for isotropic metrics §2.2, or
the angular coordinate only (p = θ where p = (x, θ)) for curvature penalized models §2.4
such as the Euler-Mumford elasticae. In addition, the weights are proportional to (the
inverse square of) some user provided cost functions c(p, l), p ∈ Ω, 1 ≤ l ≤ L, where L is
one or is a small positive integer. In summary, the discretization stencil structure takes

6This notation is slightly abusive here, since there is no hidden proportionality constant.
7The C++ code is templated over these types.
8A Byte, the unit of computer memory capacity, consists of 8 bits.
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the form

ėi = ėi(p), αi = c(p, li(p))−2αi(p). (37)

We take advantage of this structure by storing only the offsets ėi(p) ∈ Zd, weights αi(p) ≥
0 and cost index li(p) ∈ J1, LK (omitted if L = 1) associated with the points of the lower
dimensional domain p ∈ X. We denoted J1, LK := [1, L]

⋂
N. Thus N1 = N2 = #(X) �

N .

For instance, in the Euler-Mumford elastica model, N1 = N2 is the number of angular
directions, which is typically around 60. Thus the huge footprint O(378N) of extensive
stencil storage for this model, mentioned above, is with our strategy reduced to a negligible
constant cost O(378× 60).

• Recomputation. For a number of models, either Riemannian or involving generalized cur-
vature costs (10), the numerical scheme stencils lack redundancy, hence the previous data
sharing strategy is not applicable. We thus implement an alternative strategy for memory
usage reduction, which is to only store the direct stencils V(p) of the points currently
tagged as Trial. Stencils must then be computed twice: (i) initially, so as to construct the
reversed stencils V [p], and (ii) when a point label changes from Far to Trial. The storage
cost of the forward stencils becomes negligible, since N1 ≈ N1−1/d � N . The additional
computational complexity introduced by these recomputations is moderate - actually, it is
dominated by the incompressible cost of maintaining the priority queue of all Trial points.
The reversed stencils V [p] still must be stored all, thus N2 = N , but fortunately they use
only a fraction of the memory space of the forward ones (namely d/(8 +d) where typically
d ∈ {2, 3}).
For the Euler-Mumford elastica model (I = 27 and d = 3), generalized in the sense of
(10), the cost of extensive stencil storage O(378N) is reduced with this recomputation

strategy to O(81N + 297N
2
3 ). In comparison, the cumulated cost of the input parameter

fields ξ, κ, c : X → R, and of the output, is O(32N).

Our algorithm also stores the coefficients of the second degree polynomials (36) associated
with the Trial points, in addition to the stencils, which incurs the memory costO(4N+24N1−1/d)
with the chosen implementation9. Finally, we chose to store the set I of active neighbors of each
point, defined in (36), which costs O(dln2 IeN), for use in geodesic backtracking and sensitivity
analysis.

3.2 Geodesic extraction

Geodesic backtracking is done by solving an ODE (5) involving the distance map, which is
numerically approximated in a preliminary step by solving the discretized eikonal PDE (33).
Despite the apparent simplicity of numerical ODE integration, this task deserves caution. Naive
implementations of ODE geodesic backtracking indeed suffer from artifacts such as paths (i)
interrupted nearby obstacles before they reach the seed points, (ii) going past the seed points,
or (iii) endlessly oscillating close to singularities of the distance map. These difficulties are
particularly marked when using metrics which are (a) strongly inhomogeneous, (b) strongly
anisotropic, leading to wide discretization stencils, and (c) non-holonomic and/or non-locally

9The three floating point coefficients of this quadratic polynomial are stored in an array sized according to the

number ≈ N1− 1
d of trial points. A table of unsigned integers stores, for each point p ∈ X∪∂X, the corresponding

array index if p is tagged Trial, or a dummy value otherwise.
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controllable, often leading to discontinuous (in addition to being non-differentiable) front arrival
times.

The proposed software implements two robust numerical methods for geodesic backtracking.
They produce similar results in practice, but are based on distinct principles that we discuss
below. These methods presently lack a proper convergence analysis, in particular for non-
holonomic models, hence they may be regarded as partly heuristic.

3.2.1 Modified Euler method using upwind gradients

Our first approach to geodesic backtracking is to solve the ODE (5) using an explicit second
order integration scheme, and an upwind approximation of the geodesic flow direction. More
precisely, consider the differential equation

γ̇(t) = V (γ(t)), where V (p) := dF∗p(du(p)), (38)

for all p ∈ Ω. We use the integration scheme10 γ(t + δ) ≈ γ(t) + δV
(
γ(t) + 1

2δV (γ(t))
)
, often

called the modified Euler method, the midpoint rule, or the Runge-Kutta-2 method. The time-
step δ > 0 is locally adjusted so that |δV (γ(t))| equals a fraction of the gridscale, by default
h/4. The stopping criterion involves, for robustness, a safety radius around the seed points.

The main difficulty for implementing this method lies in the (approximate) evaluation of
the geodesic flow direction V (p). For instance, naively approximating the gradient du(p) using
centered finite differences often yields unstable results. Instead, we use an upwind approximation
of V (p), derived from the numerical scheme, namely

V (p) ≈ Ṽ (p) := h−1
∑

1≤i≤I
αi (U(p)− U(p− hėi))+ ėi. (39)

Let us formally justify this expression. On the one hand one has

dHp(du(p)) = 2F∗p(du(p)) dF∗p(du(p)) = 2V (p),

where we used first the identity Hp(p̂) = F∗p(p̂)2, and second the eikonal equation F∗p(du(p)) =

1. Recalling that Hp(p̂) =
∑I

i=1 αi〈p̂, ėi〉2+ (left), and using a first order Taylor expansion
(right), one obtains on the other hand

dHp(p̂) = 2
∑

1≤i≤I
αi〈p̂, ėi〉+ėi, dpH(du(p)) ≈ 2h−1

∑
1≤i≤I

αi (u(p)− u(p− hėi))+ ėi.

Substituting the PDE solution u with its numerical approximation U , one obtains (39) as an-
nounced. It is well known that the geodesics on a manifold move at constant speed, a property
which in our context reads Fp(V (p)) = 1 (under some differentiability assumptions), and can
be derived from (38, right) and Legendre-Fenchel duality. The following proposition, never pub-
lished elsewhere, further motivates (39) by establishing a discrete counterpart of this property.
It is stated in more formal and abstract terms, and proved, in Appendix §C.

Proposition 3.1. Under the assumptions of our discretization, one has Fp(Ṽ (p)) ≤ 1 for
any p ∈ X. In addition, equality holds if U coincides with an affine function over the stencil
{p} ∪ {p− hėi}1≤i≤I .

10The ODE is in fact solved backwards in time, but we omit this detail here so as to alleviate notations.
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The HFM library sets Ṽ (p) = 0 on boundary points p ∈ ∂X, and extends Ṽ to the continuous
domain Ω ⊃ X ∪ ∂X by bilinear interpolation. Outlier points, inside walls or attached to
inconsistently large11 values of U , are for robustness excluded from the interpolation.

3.2.2 Diffuse geodesics and reverse algorithmic differentiation.

Our second backtracking method is based on the following principle. Consider a smooth field
ζ : Ω→ R, that should be regarded as a perturbation of the front speed. Define uε : Ω→]−∞,∞]
for any sufficiently small ε ∈ R by

∀p ∈ Ω, F∗p(duε(p)) = 1 + εξ(p), ∀p ∈ ∂Ω, uε(p) = σ(p).

Note that u0 = u is the solution to the original unperturbed shorted path problem. Under suit-
able assumptions, the front arrival time uε(p∗) at a point of interest p∗ ∈ Ω can be differentiated
w.r.t. the parameter ε, and denoting by γ∗ the minimal geodesic associated with u0(p∗) one has
at first order

uε(p∗) = u0(p∗) + ε

∫ 1

0
Fγ∗(t)(γ̇∗(t)) ξ(γ∗(t)) dt+ o(ε).

This derivation follows from the envelope theorem, see [BCPS10]. Our second geodesic back-
tracking method takes advantage of a discrete counterpart of this property. Consider the discrete
solution Uε : X t ∂X →]−∞,∞] to

∀p ∈ X, HUε(p) = (1 + εξ(p))2, ∀p ∈ ∂X, Uε(p) = σ(p).

Generically, Uε is differentiable w.r.t. the parameter ε, and one has at first order

Uε(p∗) = U(p∗) + ε
∑
q∈X

ρ(q)ξ(q) + o(ε),

for some coefficients ρ : X → R. The assumption underlying our second backtracking method is
that the bulk of the coefficients ρ is supported along the minimal geodesic γ∗ of the continuous
problem. We use sensitivity analysis by reverse accumulation to compute ρ, see §3.3. This
diffuse support is summarized into a unique path using an averaging procedure. However, path
extraction is restarted if the support of ρ is spread over an excessively large domain. This
happens if e.g. there is no uniqueness of the minimal geodesic, in which case the support of ρ is
split into several components, which is detected using an ad-hoc criterion, see Figure 14 (right).
The computation of the weights ρ is described in the following subsection.

3.3 Sensitivity analysis

Sensitivity analysis is a generic name for (semi-)automatic (meta-)programming techniques
aimed at computing the first order differential of a function defined algorithmically as the com-
position of several elementary functions. This approach combines the formal differentiation of
the elementary functions, with the numerical propagation of the so-called sensitivities, using
the composition rules for derivatives. Denoting by F : Rm → Rn and p ∈ Rm the given map
and point of interest, the objective is to evaluate the Jacobian matrix dFp of size m × n. In-
terestingly, sensitivity analysis comes in two flavors, which time and space complexities differ.

11Such inconsistent values typically arise when the front arrival times u are discontinuous in the domain interior
Ω, with e.g. the Dubins model.
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They are referred to as forward and reverse, and are mostly adequate when m � n and when
m� n respectively.

The HFM library implements sensitivity analysis “by hand”, since this is particularly sim-
ple and efficient for the addressed problem, instead of relying on meta-programming automatic
differentiation techniques [GW08]. Our approach allows enhancements in performance and con-
venience, but also has a few limitations: differentiation is only possible w.r.t. certain parameters,
and some variants of the numerical scheme are unsupported (i.e. slightly inexact results will be
obtained with the second order accurate method, or using time-dependent parameter fields).

To our knowledge, previous literature only considered forward differentiation of isotropic
fast marching [BCPS10]. Our contribution is thus two fold: we generalize these previous works
to anisotropic fast marching, and we implement reverse sensitivity analysis for the first time in
this context. The algorithms presented in this subsection are used in [MD17] to solve two player
zero-sum games, where the first player places a surveillance system and the second player wants
to visit a target undetected.

3.3.1 Inputs and outputs of the differentiation methods

The Hamiltonian appearing in the eikonal equation is represented internally in the HFM software
in a sum of squares form (32), involving weights and offsets, denoted by αi(p) ≥ 0 and ėi(p) ∈ Zd,
where p ∈ X and 1 ≤ i ≤ I. Our differentiation techniques assume that the offsets remain
constant, but that the weights are proportional to (the inverse square of) one or several12 user
provided cost functions c(p, l), 1 ≤ l ≤ L, which themselves are subject to a linear perturbation
εξ(p, l). See the discussion (37) on the shared stencil data structure. We also assume a linear
perturbation εζ(q) of the boundary conditions σ(q), q ∈ ∂X. Summarizing, the perturbed cost
functions and boundary conditions read

cε(p, l) := c(p, l) + εξ(p, l), σε(q) := σ(q) + εζ(q), (40)

for all p ∈ X, all q ∈ ∂X, and all 1 ≤ l ≤ L. Following (37), the weights of the perturbed
Hamiltonian read αεi (p) = αi(p)cε(p, li(p))−2. We assume that the discretized problem solution
Uε is indeed differentiable at the parameter ε = 0.

Forward mode. The procedure input consists of two fields ξ : X×J1, LK→ R and ζ : ∂X → R.
The output is the first order derivative µ = U ′0, which obeys for all p ∈ X ∪ ∂X

Uε(p) = U0(p) + εµ(p) + o(ε).

Reverse mode. The procedure input is a point p∗ ∈ X ∪ ∂X, and the output consists of two
families of weights ρ : X × J1, LK→ R and π : ∂X → R such that one has at first order, for any
perturbation fields ξ and ζ

Uε(p∗) = U0(p∗) + ε

( ∑
p∈X, l∈J1,LK

ρ(p, l)ξ(p, l) +
∑
q∈∂X

π(q)ζ(q)

)
+ o(ε).

One may also request the Taylor expansion of a weighted sum of front arrival times,
∑

p∈X∪∂X φ(p)Uε(p)
for some given φ : X ∪ ∂X → R, instead of a single value Uε(p∗).

12L = 1 for isotropic or curvature penalized models, but L = d for diagonal models, see §2.2.
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3.3.2 Algorithmic strategy

In order to describe the application of sensitivity analysis to discretized eikonal equations, we
introduce slightly modified notations. The perturbed Hamiltonian is rewritten as

Hεp(ṗ) ≈ h−2
∑

q∈V(p)

exp (−2αε(p,q)) 〈p− q, ṗ〉2+, (41)

where ε ∈ R is a small parameter. This description is made equivalent to (32, left) by introducing
the discretization stencils V(p) := {p − hėi(p); 1 ≤ i ≤ I} (see (34) for boundary conditions
and obstacles), and defining αε(p,q) := −1

2 lnαεi (p) when q = p − hėi(p). Denote by Uε :
X ∪ ∂X → R the unique solution to the perturbed and discretized eikonal PDE

∀p ∈ X, h−2
∑

q∈V(p)

exp(−2αε(p,q))(Uε(p)− Uε(q))2
+ = 1, ∀p ∈ ∂X, Uε(p) = σε(p). (42)

Our objective is to relate the first order Taylor expansions of the boundary conditions σε, weights
αε, and solution Uε. Before we begin, let us mention that the simplified numerical scheme
(32) considered in this section makes Uε differentiable, but that it is only almost everywhere
differentiable in the general case (17). That is because a ∈ R 7→ max{0, a}2 is everywhere
differentiable, but not (a, b) ∈ R2 → max{a, b}2.

For all p ∈ ∂X, the boundary condition (42, right) yields the simple relation

U ′ε(p) = σ′ε(p)

where the prime denotes differentiation w.r.t. the parameter ε. For interior points p ∈ X, we
obtain differentiating (42, left) that∑

q∈V(p)

ωε(p,q)
(
U ′ε(p)− U ′ε(q)− (Uε(p)− Uε(q))α′ε(p,q)

)
= 0,

where ωε(p,q) := exp(−2αε(p,q))(Uε(p)− Uε(q))+. Note, crucially, that ωε(p,q) > 0 requires
Uε(p) > Uε(q). This property directly comes from the causality of the PDE discretization (42,
left), i.e. the fact that it only involves positive parts of finite differences. Thanks to this, U ′ε(p)
can be expressed in terms of those U ′ε(q) associated to points q ∈ V(p) reached by the front
propagation strictly earlier than p. More precisely

U ′ε(p) =
∑

q∈V(p)

ωε(p,q)
(
U ′ε(q) + (Uε(p)− Uε(q))α′ε(p,q)

)
, (43)

where ωε(p,q) := ωε(p,q)/
∑

q∈V(p) ωε(p,q), for any p ∈ X and any q ∈ V(p).

Let us reformulate this procedure in linear algebra terms. Let µ := (U ′0(pn))Nn=1 collect
the derivatives of the solution, where the points of X ∪ ∂X are sorted by increasing values
U0(p1) ≤ · · · ≤ U0(pN ). We regard the perturbations ξ and ζ, of the cost functions and the
boundary conditions, as column vectors. Thus ζ collects the values (σ′0(p))p∈∂X , and ξ is linearly

related to (α′0(p,q))p∈Xq∈V(p). Therefore (43) at the parameter ε = 0 can be rewritten in the form

µ = Lµ+Aξ +Bζ,

where L is a strictly upper triangular matrix (in view of (43) and recalling that ωε(p,q) > 0
requires Uε(p) > Uε(q)), and A and B are known matrices. Forward automatic differentiation
computes µ := (Id−L)−1(Aξ + Bζ), given ξ and ζ. Reverse automatic differentiation is the
adjoint procedure, computing ρ := φ(Id−L)−1A and π := φ(Id−L)−1B, given φ : X ∪ ∂X →
R. The triangular structure of Id−L is of course leveraged for fast inversion, by recursive
substitution, and actually the matrices A, B and L are never explicitly assembled by the HFM
software.
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4 Numerical experiments

This section is devoted to numerical experiments, which are reproducible using the series of
notebooks that come alongside this publication. Part of these are Jupyter notebooks written
in the Python R© language13, while others are designed for the Mathematica R© software14. The
original source code15 also features additional examples.

We illustrate the different metric models introduced in §2, such as isotropic, Riemannian, or
non-holonomic metrics, as well as the algorithmic techniques presented in §3, such as forward
and reverse automatic differentiation.

The numerical examples discussed in this section were designed with the intent to illustrate
the functionalities of the HFM library. In contrast, section §5 shifts the focus from algorithmics
to modeling, and involves examples and test cases coming from applications.

4.1 Base functionalities, with an isotropic metric

This paragraph serves as an introduction to using the HFM library, on a problem involving
a basic Isotropic metric, and that could thus be addressed using a variety of other software
packages. Features more specific to our software are considered in the next subsections. We
address here a two-dimensional shortest path problem involving an isotropic metric on a domain
Ω ⊂ R2, with the following value function

u(p) := min
γ(1)=p
γ(0)∈∂Ω

σ(γ(0)) +

∫ 1

0
c(γ(t))‖γ′(t)‖dt (44)

Such optimization problems are specified to the HFM library using a dictionary, which entries are
in this paper denoted by key:value. The exact syntax for constructing such an object depends
in practice on the language used for interfacing, e.g. Python, Matlab R© or Mathematica R©.
This dictionnary is then fed to the adequate executable, for instance MatlabHFM Isotropic2,
where the prefix denotes the external interface (“Matlab” could be replaced with “Python”,
“Mathematica”, or “File” for the the stand-alone file based executable), and the suffix denotes
the metric model, here an isotropic metric on a two-dimensional domain, as decided for (44).

The next step is to define a cartesian grid, in our example of size 2n×n where n = 100, and
a box domain Ω0 = [−1, 1]× [0, 1], enclosing the PDE domain Ω, and containing the seed points
where finite boundary conditions are imposed, and possibly some obstacles. For that purpose we
provide the keys dims:(2n, n), origin:(−1, 0) (the bottom left corner), and gridscale:h, where
h := 1/n. A few adjustments to this construction might unfortunately be necessary, depending
on the visualization software, see the technical discussion in §D.

We next introduce some starting points for the front propagation, by e.g. the key pair
seeds:[(−0.5, 0.3), (0.5, 0.8)], and some boundary conditions at these points, e.g. seedVal-
ues:[0,0.5]. We also need to define the cost function, e.g. the constant cost:1, and opt in
or out of the second order enhancement to the fast marching method, e.g. sndOrder:1. At this
point, we have gathered enough data to run the fast marching algorithm, but the HFM library
must also be instructed what to export in return. We here choose to request minimal geodesics
towards a family of points, e.g. tips:[(0,0.6),(-0.9,0.5),(0.8,0.8)], as well as the numerical solu-
tion U to the eikonal equation and the upwind geodesic flow vector field (39), as specified by

13github.com/Mirebeau/HFM_Python_Notebooks
14github.com/Mirebeau/HFM_Mathematica_Notebooks
15github.com/Mirebeau/HamiltonFastMarching
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the key pairs exportValues:1 and exportGeodesicFlow:1. The outputs of this program are
illustrated on Figure 10.

In order to enrich the problem, we introduce some obstacles in the domain and a position
dependent cost function. They are specified using the key pairs walls:arrBool and cost:arrFloat
(replacing the former cost:1), where arrBool and arrFloat are arrays of boolean and of positive
floating point values, sized according to discretization grid. See Figure 11.

The front propagation can be stopped early in many applications, for instance as soon as the
geodesic(s) of interest can be backtracked, saving substantial computation time: often up to 80%
in applications to tubular structure segmentation, see §4.5 . Fortunately, the single pass nature
of the fast marching algorithm makes it particularly simple to define and implement termination
criteria. Recall that the points of the discretization grid are successively “accepted”, and the
corresponding values frozen, in the order U(pσ(1)) ≤ · · · ≤ U(pσ(n)) of increasing values of the
numerical solution U . We may instruct the HFM library to stop the front propagation when all
or any of a set of points are accepted, which is enough for geodesic backtracking, using the keys
stopWhenAllAccepted or stopWhenAnyAccepted respectively. See Figure 12 (left). One
may also put a threshold on the number of accepted points, or on the values of the solution U .

Several side products may be computed simultaneously while the fast marching algorithm is
running, for use within additional stopping criteria and/or for being returned to the user. For
instance, the computation of the Voronoi diagram associated with the different seeds is trig-
gered by assigning labels of them, with e.g. the pair seedFlags:[0,1]. See Figure 12. Identical
labels may be assigned to several seeds, in which case the regions are merged. Optionally, front
propagation can be stopped when the Voronoi regions meet, using VoronoiStoppingCrite-
rion:‘RegionsMeeting’. In that case the minimal geodesic from the seeds of the meeting regions
is returned, in the form of two halves joining at the regions meeting point. Another side product
of interest is the Euclidean length of the minimal geodesics, see Figure 12 (right).

The use of a time dependent cost function c = c(p, t), giving rise to the eikonal equation
c(p, u(p))‖∇u(p)‖ = 1, is illustrated on Figure 13. We use an explicit scheme, which is simpler
than [VZ13] but introduces an O(h2) overall error in the solution (expected to be dominated
by the discretization error, since the numerical scheme used is at best second order). Other
classical models implemented in the HFM library are also illustrated on Figure 13, namely two
and three dimensional, isotropic and diagonal metrics, corresponding to the executables ending
with ‘Isotropic3’, ‘Diagonal2’, or ‘Diagonal3’. Finally, we recall that features presented in this
subsection are transversal and applicable to any minimal path model implemented in the HFM
library.

4.2 Automatic differentiation

Automatic, or algorithmic, differentiation, is a meta-programming technique for evaluating the
Jacobian of a numerical function. We refer to §3.3 for details on these methods, and only recall
here their basic intent. Denote by u = F (c, σ) the mapping which associates the numerical PDE
solution u to the numerical cost function c and boundary conditions σ. Denote by J be the
Jacobian matrix of F at some fixed input (c, σ), assuming it is indeed differentiable there. The
matrix J is usually non-sparse and excessively large. Fortunately, the technique of forward (resp.
backward) differentiation lets us evaluate at a very reasonable cost any matrix-vector product
µ = J · (ξ, ζ) with the Jacobian (resp. (ρ, π) = JT · φ with its adjoint).

In the context of the fast marching algorithm, the first reported uses of forward and backward
differentiation respectively appear in [BCPS10] and [MD17]. For simplicity, these functionalities
are illustrated here in the context of isotropic metrics, but they are applicable to all the minimal
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path models implemented in the HFM library, including those featuring dimension lifting and
curvature penalization techniques [MD17].

Forward differentiation is used in Figure 14 to compute the first order perturbation in the
distance map u, constructed in §4.1, subject to a given perturbation of the input cost function
(left), or of the boundary conditions (center). Conversely, backward differentiation yields the
sensitivity of a specific pointwise value u(p∗) to arbitrary modifications in the cost and bound-
ary conditions, which reveals the support of the minimal geodesic(s), as discussed §3.2.2 and
illustrated in Figure 14 (right).

We next present an optimization problem in which one aims to maximize the distance be-
tween two points p0 and p1, by adjusting the cost function c : Ω→]0,∞[ of an isotropic metric.
See [BC10, MD17] for problems of similar nature, some of them more complex. The cost func-
tion is constrained by upper and lower bounds, and subject to an integral penalty term, all
determined by positive constants α, β, γ. The problem, which turns our to be convex, reads as
follows:

max
α≤c≤β

min
γ(0)=p0

γ(1)=p1

∫ 1

0
c(γ(t))‖γ′(t)‖dt− γ

∫
Ω
c(x)dx. (45)

We use the same domain and obstacles as in the previous section, on a 100 × 200 cartesian
grid, but switch to the differentiable discretization scheme (20) for isotropic eikonal PDEs.
The optimization is solved in approximately 20 seconds using the LBFGS algorithm16. For
comparison, solving similar instances reportedly took hours in [BCPS10]. The lower complexity
of our implementation mainly comes from the use of backward differentiation, instead of forward
differentiation in [BCPS10]. The optimal cost function c for (45) has several interesting features.
For instance it creates “barriers” in the space between close obstacles. Another peculiarity is
the fact that there are uncountably many distinct paths of minimal cost, w.r.t. c, joining the
endpoints p0 and p1. See Figure 15.

4.3 Riemannian metrics

Riemannian metrics are the most widely occurring class of non-isotropic metrics in applications.
Extending the fast marching algorithm to this context is a non-trivial task, which has been
the subject of a continued line of research since the 2000’s. Many of the proposed approaches
have significant drawbacks, such as the use of excessively large stencils [KS98, SV01, AM11],
the pre-condition that the condition number of the metric tensors be mild [JBT+08], or the fact
that they give up on the causality property [BR06].

The author has introduced efficient and specific techniques for discretizing Riemannian
eikonal PDEs on cartesian grids. Two flavors were developed, in the semi-Lagrangian and
Eulerian framework respectively, referred to as17 the FM-LBR and FM-VR1. They are intro-
duced in [Mir14] and [Mir17a] respectively, with open source code distribution and reproducible
experiments in [Mir15] and the present manuscript respectively. For those readers who may hes-
itate between the two approaches, let us say that the FM-VR1 is faster, especially in dimension
3, and more accurate if the second order enhancement of the numerical scheme is activated, but
slightly less accurate otherwise, see [Mir17a] for a more in-depth comparison. From a practical
point of view, the FM-VR1 code is more feature packed, and has interfaces to more scripting
languages, while the FM-LBR is tightly integrated within the Insight ToolKit (ITK R©) library.

16It turns out empirically that the LBFGS algorithm still works with the classical non-differentiable scheme
(19), although it requires twice as many iterations to reach the same accuracy.

17Fast-Marching using Lattice Basis Reduction, and Fast-Marching using Voronoi’s First Reduction
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We repeat in this subsection the numerical experiments presented in [Mir14, Mir17a], which
can now be easily reproduced using the provided Python and Mathematica R© notebooks. The
test cases are all synthetic, but are inspired from problems arising in geometry processing, seismic
imaging and tubular segmentation. In practice, instructing the HFM software to numerically
solve a Riemmanian eikonal equation is done by selecting the appropriate executable, ending
with ‘Riemann2’ or ‘Riemann3’, depending on the dimension18, and providing the key-value pair
metric:arrTensors, where “arrTensors” is an array containing the Riemannian metric tensors.
(Alternatively, the inverse tensors may be supplied as dualMetric:arrTensors.)

A series of two dimensional test cases, considered in [SV01, Mir14, Mir17a], are described
below. Level sets of each example are displayed in Figure 17. We recall that the condition number
of a symmetric tensor is defined by Cond(M) :=

√
‖M‖‖M−1‖. The numerical techniques

implemented in the HFM library are primarily intended Riemannian metrics which tensors have
condition number . 10, although more degenerate instances are often handled successfully.

1. (Geometry processing inspired) We compute the distance from the origin on a two-dimensional
manifold, embedded in R3 and defined by the following height map, where x, y ∈ [−1, 1]2

z(x, y) := (3/4) sin(3πx) sin(3πy).

The Riemannian metric is given by M(x, y) = I +∇z(x, y)∇z(x, y)T , and has condition
number . 6. See Figures 16 and 17. A particularity of this test case is that the eigenvectors
of the metric are quite often almost aligned with the coordinate axes. We thus rotate them
by π

6 , in a second test case, to show that our numerical method is not sensitive to this
bias, contrary to several others, see the discussion in [Mir14].

2. (Seismic imaging inspired) We consider the distance-to-origin problem for the metric ten-
sor M(x, y) with eigenvalue 0.8−2 associated with the eigenvector (1, π2 cos(4πx)), and
eigenvalue 0.2−2 associated with a perpendicular eigenvector, on the domain [−1, 1]2. The
condition number of the Riemannian metric is thus bounded by 4.

3. (Tubular segmentation inspired) We illustrate the robustness of our numerical scheme by
choosing a Riemannian metric which is both discontinuous and extremely anisotropic.
More precisely, the metric is isotropic euclidean sufficiently far from a predefined curve, in
this case a spiral, and close to the curve it is highly anistropic with eigenvalues (1, 100−2).
The tangent to the curve is the eigenvector corresponding to the small eigenvalue.

Three dimensional counterparts of the “seismic imaging” and “tubular segmentation” in-
spired test cases are also presented in Figure 16 (right), and in the Python notebooks.

4.4 Planar curvature penalization

An important innovation of the HFM library is the ability to find planar curves globally min-
imizing an energy involving their curvature. For that purpose, the problem is lifted in the
configuration space R2 × S1 of positions and orientations, following an idea introduced in
[PKP09]. A suitable non-holonomic metric is then introduced on this set, as proposed in
[BDMS15, CMC16b] for the Reeds-Shepp and Euler-Mumford models. Lastly, a specific general-
ization of the fast marching method is required for efficiently solving these problems numerically,
see [SBD+15, DMMP16], and [Mir17a, Mir17b] which are at the foundation of our software.

The HFM library implements four curvature penalized path models, whose distinctive fea-
tures are listed below. See §1.2 and §2.4 for a formal definition.

18The current numerical implementations is indeed limited to dimensions 2 and 3.
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• The classical Reeds-Shepp sub-Riemannian model, encodes the motion constraints of a
wheelchair, which is able to move both forward and backward. Distinctive feature: the
trajectories feature cusps, at places where the vehicle changes from forward to reverse gear.

• The Reeds-Shepp forward variant is mathematically similar, except that the vehicle cannot
go backwards. Distinctive feature: the trajectories feature in-place rotations, in particular
at their endpoints and around obstacles.

• The Euler-Mumford elastica model describes the rest position of an elastic bar19. Distinc-
tive feature: the trajectories are smooth, and “feel natural”.

• The Dubins car model has a bounded turning radius. Distinctive feature: the optimal
trajectories are concatenations of straight lines and of arcs of circle.

These models are illustrated on Figure 18 in the special case of a constant cost function c ≡ 1.
On Figure 19 we consider both a position dependent cost function c = c(x), which is a common
case in applications, and an orientation dependent cost function c = c(θ), which in particular
is suitable for modeling a sailboat. The exectuable ending with ‘ReedsShepp2’, ‘ReedsShepp-
Forward2’, ‘Elastica2’ or ‘Dubins2’ must be selected to solve these instances. The parameter ξ,
homogeneous to a radius and modulating the intensity of curvature penalization see (9), must
be assigned a value, such as xi:1. The cost function is set with the pair cost:arr where ‘arr’ is
either a constant, a one-dimensional array if c = c(θ), a two-dimensional array if c = c(x), or a
three dimensional array in the general case where c = c(x, θ), of suitable dimensions.

The HFM software also implements generalizations of the above four models, in which the
curvature penalization parameter may vary over the domain ξ = ξ(x, θ), and an additional term
κ = κ(x, θ), homogeneous to a curvature, introduces some asymmetry in the treatment of right
and left turns. See (10) and Figure 20.

Computational efficiency is an important aspect of numerical techniques for minimal path
extraction, which severely constrains their range of applications (response times of different or-
ders of magnitude are required for e.g. real time control of a dynamical system, convenient
interaction with a human within an image processing software, or offline data processing).
On Figure 7, we compare the accuracy and execution time of four numerical methods for the
classical Reeds-Shepp model, extending the work [SBD+15]. Are displayed: the HFM library
with (red) or without (blue) second order enhancement, the semi-Lagrangian FM-LBR im-
plementation (yellow) [SBD+15], and a non-causal scheme solved using an iterative numerical
method (green)[BDMS15]. A cartesian grid of size (4n, 4n, 2n) is used to discretize the domain
[−2π, 2π]2 × S1, and the cost function is set constant c ≡ 1. The exact solution to the eikonal
equation, computed using a geodesic shooting method, is used for reference.

The first three compared numerical methods involve a relaxation parameter, here set to the
default value ε = 0.1. Therefore one could expect the numerical error to plateau at sufficiently
high grid scales n. However this phenomenon is not observed in our experiment, which only
shows straight lines in log-log scale. This suggests that the discretization error introduced by
the relaxation is not a limiting factor for our numerical scheme, at reasonable grid sizes.

At a given image resolution n, the most accurate numerical method is the FM-VR1 scheme
with second order enhancement, which is implemented in the HFM library. The (slow) itera-
tive method comes next, and is best among the first order schemes, followed by the FM-LBR
scheme, and finally (a bit disappointingly) the first order instantiation of the FM-VR1. Given a

19Assuming that the cost function c is constant.
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Figure 7: Comparison of the resolution/accuracy (left) and accuracy/computation time (right)
compromise of several numerical methods for the eikonal equation of the Reeds-Shepp model.
Log-log scale. In both figures we compare an iterative approach (green), the FM-LBR (yel-
low), the FM-VR1 implemented in the HFM-library (blue), and the same with second order
enhancement (red). The latter turns out to be the most efficient, see §4.4 for a discussion.

computation time budget, the FM-VR1 with second order enhancement offers the best accuracy.
The first order FM-VR1 comes second, compensating its lower accuracy resolution-wise w.r.t.
the alternative methods by its much better complexity. The FM-LBR comes third, and the
non-causal iterative method comes last due to its much longer computation times, which are
superlinear w.r.t. the number of grid points.

4.5 Reeds-Shepp models in R3 × S2

The HFM library can extract three dimensional curves globally minimizing a curvature de-
pendent energy. For that purpose, the curves are lifted in the five dimensional configuration
space R3 × S2, and the second order path energy functional is rewritten in terms of a suitable
non-holonomic metric, similarly to the planar case albeit in higher dimension. Numerically, an
adequate eikonal PDE is solved, after what the optimal curves are backtracked. Incidentally, the
workflow that we just described involves numerically solving a non-linear PDE with degenerate
anisotropy on a five dimensional manifold with non-trivial topology, which may look like a fairly
challenging problem. Convincing results are nevertheless obtained in our examples, which run
within 5s to 40s on a standard laptop.

Three minimal path models are considered in this section, which are higher dimensional
generalizations and variants of the Reeds-Shepp model. The original sub-Riemannian model
distinguishes itself by the presence of cusps, where the path orientation is reversed. The forward-
only variant lacks cusps, but often features in place rotations, in particular at the minimal path
endpoints, see [DMMP16] for a discussion. Finally, a dual variant favors paths which may be
non-smooth, but are embedded in smooth manifolds. It can be related with torsion penalization,
rather than curvature penalization, see [Mir17a]. See also [SUKG13] for a distinct attempt to
implement genuine torsion penalization. Note that the three dimensional analogues of the Euler-
Mumford and Dubins models, considered in the planar case §4.4, are not implemented in the
HFM library at the time of writing.

The non-holonomic metrics considered involve a data-driven cost function c : R3×S2 →]0,∞[,
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Figure 8: Left: Discretization of the unit sphere S2, using 24× 12 points, used for the presented
numerical experiments in R3×S2. The next three pictures show the sets {ẋ ∈ R3;Fε(0,n)(ẋ, 0) ≤
1}, with the relaxation parameter ε = 0.2 and for several orientations n ∈ S2, where F is
successively the metric of the Reeds-Shepp model (needles), of the forward variant (half needles),
and of the dual variant (plates).

a parameter ξ > 0 homogeneous to a radius of curvature, and in our case a relaxation parameter20

ε > 0. For any point (x,n) ∈ R3×S2, and any tangent vector (ẋ, ṅ), the metric associated with
the Reeds-Shepp model, the forward variant, and the dual variant, respectively read

Fε(x,n)(ẋ, ṅ)2 = c(x,n)2
(
〈n, ẋ〉2 + ε−2‖n× ẋ‖2 + ξ2‖ṅ‖2

)
,

Fε,+(x,n)(ẋ, ṅ)2 = c(x,n)2
(
〈n, ẋ〉2+ + ε−2〈n, ẋ〉2− + ε−2‖n× ẋ‖2 + ξ2‖ṅ‖2

)
,

Fε,×(x,n)(ẋ, ṅ)2 = c(x,n)2
(
ε−2〈n, ẋ〉2 + ‖n× ẋ‖2 + ξ2‖ṅ‖2

)
.

We denoted by n × ẋ the cross product of the three dimensional vectors n ∈ S2 and ẋ ∈ R3.
In the limit as ε → 0, the angular orientation n and the physical velocity ẋ are respectively
constrained to be collinear, positively collinear, and orthogonal if the path cost remains bounded,
due to ε−2 penalization terms.

Our implementation relies on a parametrization of the sphere S2 using two Euler angles
θ ∈ [0, π] and φ ∈ [0, 2π], with appropriate boundary conditions:

n(θ, φ) := (cos θ, sin θ cosφ, sin θ sinφ).

The Reeds-Shepp model and the dual variant, but not the forward variant, also make sense if
n belongs to the projective orientation space P2 = S2/{−1, 1}, which is parametrized as above
except that θ ∈ [0, π/2] only. The same angular spacing hφ = 2π/nφ is used for discretizing the
angles θ and φ, hence the cartesian grid devoted to the angular S2 (resp. P2) space has dimension
(nφ/2, nφ) (resp. (nφ/4, nφ)). See Figure 8.

The HFM library executables ending with ‘ReedsShepp3’ or ‘ReedsSheppForward3’ must be
selected to solve these problems. In the case of the Reeds-Shepp model, the projective angular
space is imposed by the key-value pair projective:1, and the dual model is activated by dual:1.
The curvature penalization and the relaxation parameter need to be set, e.g. xi:1 and eps:0.2. In
the examples presented, the discretization grid size is defined as dims:[60, 40, 25, nθ, 24], where
nθ = 6 for the projective angular space P2, and nθ = 12 in the case of S2, see Figure 8. The
cost function is specified by cost:arr, where arr is either a constant, a two-dimensional array

20The formula numerically implemented in the HFM library is intermediate between the original singular model
(ε = 0) and the relaxed model (with the given ε > 0), in the spirit of Proposition 2.3.

30



(c = c(n)), a three dimensional array (c = c(x)), or a five-dimensional array (c = c(x,n)), of
suitable dimensions.

A test case inspired by tubular structure segmentation is presented in Figure 21. The cost
function is small in the neighborhood of two curves, which respectively have low curvature and
low torsion, and is large elsewhere. The common endpoints of the curves are respectively used as
the seed of the front propagation, and the tip from which to backtrack a geodesic. The minimal
paths selected by the Reeds-Shepp and the Reeds-Shepp dual model go along the low curvature
and low torsion curve respectively, as was expected and desired. A second test case, inspired
by motion planning, is displayed on Figure 22. The backtracked curves are in that case smooth
and with well distributed curvature, up to the occasional and expected singularities: cusps for
the Reeds-Shepp model, and in-place rotations for the forward variant. Computation times21

are respectively around 5s and 40s in the tubular segmentation and motion planning related
experiments, despite the similar grid sizes, because the front propagation can be aborted earlier
in the first case.

5 Selected applications

In this section, we present selected applications of the HFM library. The difference with the
numerical experiments discussed the previous section lies in the intent and focus: modeling
aspects are more emphasized here, and the datasets come from other application fields (although
some are synthetical), instead of being specifically designed so as to illustrate the functionalities
of the HFM library.

5.1 An interpretation of Poggendorff’s visual illusions

We present two visual illusions due to Poggendorff, and their explanation according to the work
[FMCS17]. This research builds on the works [Pet03, BZSF97], which have shown that the first
layer V1 of the visual cortex could be regarded as a biological implementation of the manifold
R2 × P1, equipped with the sub-Riemannian structure defining the Reeds-Shepp model.

Consider an image displaying a curve ending at a point x∗ ∈ R2 with tangent orientation θ∗,
and a curve starting at another point x∗ with tangent orientation θ∗. Under some conditions, a
human presented with this image will associate the two curves and infer a connection between
them [DBRS13]. In everyday experience, a similar phenomenon helps us guess the shape of
objects which boundary is partially occluded. The curve reconstructed by the visual system
is, according to the works cited above, the (planar projection of the) minimal path joining
the oriented endpoints p∗ := (x∗, θ∗) and p∗ := (x∗, θ∗) w.r.t. the Reeds-Shepp model. The
parameter ξ, which determines the amount of curvature penalization in this model, depends on
the scale at which the image is displayed, and is adjusted by hand in our experiments. The
cost function is chosen constant c ≡ 1 in our experiments, although a more complex data-driven
construction is considered in the original work [FMCS17].

Assume now that several endpoints (x∗i , θ
∗
i )i∈I are present in the image, instead of a single

one. Then the visual system infers a curve joining the source point (x∗, θ∗) to the closest
endpoint, again w.r.t. the distance defined by the Reeds-Shepp model, a process called perceptual
grouping [BCP17]. The images created by Poggendorff put this physiological process in evidence
by displaying a partially occluded straight line or circle. To the eye, the true endpoints of the
geometrical figure seem bizarrely misaligned, and we would like to move one slightly along

21On a 2.7GHz processor using a single core.
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the boundary of the occluded region, see Figure 23. This is a visual illusion, highlighting the
difference between (a) the Reeds-Shepp geodesic toward the closest point across the occluded
region (with the correct orientation), and (b) the continuation by a straight segment or an arc
of circle that would be “logical” in the presented image.

5.2 Motion planning

We illustrate on Figure 24 a two dimensional motion planning problem, namely finding the
optimal path towards the exit of a building22. The Isotropic, Reeds-Shepp, Reeds-Shepp forward,
Elastica and Dubins models are compared, and their distinctive features are clearly visible, see
§4.4.

The authors readily acknowledge that shortest paths (w.r.t. any reasonable metric) are a
quite questionable approximation of natural paths, in view of the potential tradeoffs with safety,
comfort or computational effort. For instance, the optimal computed trajectories are tangent to
the wall corners, which would be hazardous in practice in case someone comes in the opposite
direction, and anticipate obstacles before they come in the line of sight. Paths closer to e.g.
natural pedestrian motion are obtained by penalizing motion close to the walls, see again Figure
24. See [CV17] and references therein on the topic of pedestrian crowd motion models based on
eikonal equations. Optimal paths also do make sense in other motion planning contexts: if one
is playing a race, or is trying to avoid a surveillance system [MD17].

5.3 Tubular structure segmentation

Tubular structure segmentation in medical images is one of the main applications intended for the
HFM library. Early versions, and related software of the first author, are used for that purpose
in [CCM14, SBD+15, CMC16a, DMMP16, CMC16b, MDS+17, BCP17]. Vessel extraction in
images of the retina is illustrated in Figure 25, using two popular models involving respectively
radius and orientation lifting. Let us briefly recall the principles underlying this approach.

Consider an image, e.g. in grayscale and represented by a function I : U → [0, 1], displaying
a family of possibly overlaid tubular structures. Segmentation methods based on minimal paths
attempt to extract the centerlines of these tubular structures as geodesics w.r.t. a suitable
metric, joining endpoints which are either prescribed by the user or automatically detected
by another method. They are frequently combined with dimension lifting techniques: a cost
function c : U ×A→]0,∞[ is defined over the product of the image domain U with an abstract
parameter space A. In practice, the latter often represents a range of radii A = [r,R], of
grayscale intensities A = [0, 1], or of angular orientations A = S1, see e.g. [LY07, PKP09]. The
local cost c(x, a) is data-driven and built during a preliminary filtering of the input image, see
e.g. [DFGtHR07]. The quantity c(x, a) should be small iff a tubular structure having feature a
is likely present at the position x in the image.

The purpose of dimension lifting is two-fold. First: robustly extract the additional feature
of interest, in addition to the vessel centerline, for applications in medical diagnostic. Vessel
radius and curvature, inferred from orientation in the latter case, are particularly important in
this respect. Second: disentangle the overlaid tubular structures, by cleanly separating them in
three dimensional space. This helps avoid or reduce the “shortcut” and “leak” type artifacts,
which often plague minimal path methods for tubular structure extraction. Figure 25 illustrates
radius lifting, combined with an isotropic metric model, and orientation lifting, combined with
the Reeds-Shepp model.

22The experiment uses a partial map of Museum Georges Pompidou in Paris
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Figure 9: Visualization of the ISBI dataset from different viewpoints. The two left-most images
show the full dataset, the other four images show a selection of the bundles. The black lines
inside these bundles indicate the geodesics obtained with fast marching.

5.4 Segmentation in 3D DMRI data

We illustrate three dimensional tubular structure segmentation in (simulated) dMRI data. This
medical imaging technique measures diffusivity at each point x ∈ R3, and in each direction
n ∈ S2. The input data is therefore intrinsically defined over the configuration space R3 × S2,
in contrast with §5.3 where dimension lifting was an artificially introduced image processing
technique.

We use a digital phantom dataset that was constructed, using the dMRI simulation method
[CDD+14], for the ISBI 2013 reconstruction challenge, where it was used as a benchmark for
tracking methods [DCRD+14]. The dataset itself consists of a fairly challenging configuration
of 27 simulated white matter bundles, inside a spherical volume. The entire volume has a size
of 50 × 50 × 50 voxels. In the same volume, there are three spherical regions with isotropic
diffusion.

We use a constrained spherical deconvolution approach [TCC07] to estimate from the raw
simulated dMRI data a fiber orientation distribution (FOD), that in each voxel indicates the
probability of having a fiber in that direction. The density of this FOD is denoted by f :
R3 × S2 → R+. Then following the approach in [DMMP16], we use the FOD to construct the
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cost function as follows: for any p = (x,n) ∈ R3 × S2

c(p) =

(
1 + σ

∣∣∣∣ f(p)

||f ||∞

∣∣∣∣p)−1

, σ, p ≥ 1. (46)

The parameter σ influences how strongly the data should affect the optimal path, and the
exponent p influences how ‘sharp’ the FOD profiles are. As a proof-of-concept experiment on
this dataset, we consider the case where the seed point and end point of a bundle are given and
we compute the shortest path connecting the two. The path should then at least stay inside
the bundle. We use the Reeds-Shepp forward model, with parameters parameters σ = 3, p = 1,
ξ = 0.5, ε = 0.1, nθ = 10 and nφ = 20, resulting in 200 points in the discretization of the sphere.
The geodesics (in black) stay in almost all cases entirely inside the volume of the corresponding
bundle, as is displayed in Fig. 9.

6 Conclusion

In this paper, we introduced the Hamiltonian Fast Marching (HFM) library, a state-of-the-art
software for global path optimization with respect to non-isotropic metrics. Our numerical meth-
ods apply in particular to Riemannian metrics in dimensions two and three, possibly strongly
anisotropic, using an adaptive discretization scheme based on lattice geometry techniques. We
also globally optimize second order energies depending on the path curvature, by introducing a
dimension lifted space equipped with a non-holonomic metric, suitably relaxed in the implemen-
tation. The classical models due to Reeds-Shepp, Euler-Mumford, and Dubins, are implemented,
as well as numerous generalizations and variants which all have specific qualitative properties
and use cases. A number of transversal methods are provided, such as backward algorithmic
differentiation which is novel in this context. This software is provided in the form of a unified,
optimized, and open source c++ code, with convenient interfaces for several major scripting
languages.

The HFM library has already found several applications in the study of visual illusions,
motion planning, and image segmentation. We hope that this publication, and the series of
introductory notebooks that are provided alongside, will help popularize these techniques and
their present and future applications. The HFM library is part of an ongoing research effort and
will continue to evolve. Considered additions include higher dimensional Riemannian metrics
and a better enforcement of non-holonomy constraints.

A Dual metric for curvature penalization

This appendix is devoted to formally deriving the expression of the dual metric associated with
the Reeds-Shepp forward, Euler-Mumford, and Dubins model. It is announced in §1.2 and §2.4.
We use a unified and systematic presentation that easily generalizes to e.g. the asymmetric
variants (10), or the higher dimensional instantiations. See [Mir17b] for another approach.

For notational simplicity, let us fix a point (x, θ) ∈ R2 × S1 of the configuration space of
these models, and denote F := F(x,θ), c := c(x, θ) and n := (cos θ, sin θ). Our first step is to
justify the semi-explicit dual metric expression (8, right). Indeed, one has

F ∗(x̂, θ̂) = sup
(ẋ,θ̇)6=0

〈x̂, ẋ〉+ θ̂θ̇

F (ẋ, θ̇)
= sup

(ẋ,θ̇)6=0
ẋ≥0

〈x̂, ẋn〉+ θ̂θ̇

F (ẋn, θ̇)
= sup

θ̇∈R

〈x̂,n〉+ θ̂θ̇

c C(θ̇)
=
f(〈x̂,n〉, θ̂)

c
.
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We used successively (i) the definition (4) of the dual metric, (ii) the fact that F (ẋ, θ̇) = ∞
unless the physical velocity is a non-negative multiple of the current orientation n, (iii) the
1-homogeneity of F , allowing to assume23 that ẋ = 1, and its explicit expression (8, left), and
(iv) the definition (28) of the function f .

Our next objective is to compute the supremum, denoted f(x̂, θ̂), of

θ̇ ∈ R 7→ (x̂+ θ̂θ̇)/C(θ̇). (47)

For that purpose we recall the specific instantiations CRS, CEM and CD of the cost function C
penalizing curvature, see (9). For notational simplicity, and up to rescaling θ̇, we assume ξ = 1.

CRS(θ̇) =

√
1 + θ̇2, CEM(θ̇) = 1 + θ̇2, CD(θ̇) =

{
1 if θ̇ ≤ 1,

∞ else.

In the Dubins case, the map (47) is linear on the interval [−1, 1], and vanishes elsewhere, hence
the maximum is f(x̂, θ̂) := max{x̂− θ̂, x̂+ θ̂, 0}. In the Reeds-Shepp and Euler-Mumford cases,
the supremum of (47) is attained either as θ̇ → ±∞, or for a finite value θ̇ ∈ R obeying the
optimality condition

θ̂C(θ̇) = (x̂+ θ̂θ̇)C′(θ̇). (48)

For the Reeds-Shepp curvature cost, observing that CRS(θ̇)′ = θ̇/
√

1 + θ̇2 we obtain

θ̂

√
1 + θ̇2 = (x̂+ θ̂θ̇)

θ̇√
1 + θ̇2

⇔ θ̂(1 + θ̇2) = (x̂+ θ̂θ̇)θ̇ ⇔ θ̂ = x̂θ̇.

Thus ẋ = θ̂/x̂, provided x̂ 6= 0, and therefore f(x̂, θ̂) = (x̂ + θ̂ θ̂x̂)/

√
1 + ( θ̂x̂)2 =

√
x̂2 + θ̂2 as

announced (since θ → ±∞ is sub-optimal). In addition f(0, θ̂) = supθ̇∈R θ̂θ̇/
√

1 + θ̇2 = |x̂|, in

the limit θ̇ → sign(θ̂)∞, hence the previous expression still holds in the case x̂ = 0.
For the Euler-Mumford curvature cost, observing that CEM(θ̇)′ = 2θ̇ we rewrite (48) as

θ̂(1 + θ̇2) = (x̂+ θ̂θ̇)2θ̇ ⇔ θ̇2 + 2θ̇
x̂

θ̂
− 1 = 0 ⇔ θ̇ = θ̇± = − x̂

θ̂
±

√
1 + (

x̂

θ̂
)2, (49)

assuming θ̂ 6= 0. Inserting these roots in (47) we obtain

x̂+ θ̂θ̇±

CEM(θ̇±)
=

θ̂

CEM(θ̇±)′
=

θ̂

2θ̇±
=
−θ̂θ̂∓

2
=
x̂∓

√
x̂2 + θ̂2

2
, (50)

where we used successively (i) the identity (48) defining the roots, (ii) the expression CEM(θ̇)′ =
2θ̇, (iii) the fact that θ̇+θ̇− = −1, which follows from (49, center) and (iv) the explicit expression

of θ̇±. Choosing “+” sign in (50, right) yields the largest value, hence f(x̂, θ̂) = (x̂+
√
x̂2 + θ̂2)/2

(since θ → ±∞ is sub-optimal). In the limit case θ̂ = 0, this expression becomes f(x̂, 0) =
(x̂+ |x̂|)/2, which is still correct, and is attained for θ̇ = 0 if x̂ > 0, and as θ̇ →∞ otherwise.

23We need not consider the case ẋ = 0, since F was extended to the line {(0, θ̇); θ̇ ∈ R} by its lower semi
continuous envelope.
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B Selling’s algorithm

Our discretization of Riemannian eikonal equations strongly relies on a particular decomposition
of positive definite tensors, see Proposition 2.2. In this Appendix, we describe its algorithmic
computation in dimension d ∈ {2, 3}, as it is implemented in the HFM library. For that purpose,
we need to introduce a few concepts from lattice geometry.

Definition B.1. A superbase of Zd is a (d+1)-tuple (e0, · · · , ed) ∈ (Zd)d+1 such that | det(e1, · · · ,
ed)| = 1 and e0 + · · ·+ ed = 0.

Any superbase can be used to decompose any 2-tensor D, as follows

D = −
∑

0≤i<j≤d
〈ei, Dej〉vij ⊗ vij , (51)

where vij := e⊥k in dimension d = 2 and with {i, j, k} = {0, 1, 2}, and vij := ek × el in
dimension d = 3 and with {i, j, k, l} = {0, 1, 2, 3}. See Lemma 4.4 in [Mir17b] for a proof. We
are interested in non-negative tensor decompositions (23), which in the case of (51) is equivalent
to a geometrical property of the superbase.

Definition B.2. A superbase (e0, · · · , ed) of Zd is said D-obtuse, where D ∈ S++(Rd), iff
〈Mei, ej〉 ≤ 0 for all 0 ≤ i < j ≤ d.

In dimension d ∈ {2, 3}, Algorithm 2 due to Selling [Sel74] takes a positive definite tensor D
as input, and outputs a D-obtuse superbase.

Algorithm 2 Selling’s algorithm [Sel74]

Input: A positive definite tensor D ∈ S++(Rd), an arbitrary superbase b = (e0, · · · , ed).
Output: A D-obtuse superbase.
While there exists 0 ≤ i < j ≤ d such that 〈ei, Dej〉 > 0 do

If d = 2 then b← (−ei, ej , ei − ej),
If d = 3 then b← (−ei, ej , ek + ei, el + ei).

Termination guarantee. Consider the energy E(e0, · · · , ed), defined by
∑2

i=0 ‖ei‖2D in di-
mension d = 2 and by

∑3
i=0 ‖ei‖2D + 1

2

∑
i<j ‖ei + ej‖2D in dimension d = 3. This quantity

decreases by 4〈ei∗ , Dej∗〉 > 0 at each iteration, where i∗ and j∗ are the indices appearing in the
While condition, as can easily be checked by expressing the present and next superbase energy
in terms of the scalar products (〈ei, ej〉)di,j=0. Since there exists only finitely many superbases
which energy E is below any given bound, the algorithm must terminate.

C Norm of the geodesic flow

This section is devoted to the proof of Proposition 3.1. Our first step is to rewrite the announced
result in a more abstract framework, keeping only the minimal assumptions.

Proposition C.1. Let I ≥ 1 and let H : RI → [0,∞[ be convex and positively 2-homogeneous.
Let E be a finite dimensional vector space, and let ė1, · · · , ėI ∈ E. Let H : E∗ → [0,∞[ and
F : E→ [0,∞] be defined by

H(p̂) := H(〈p̂, ė1〉, · · · , 〈p̂, ėI〉),
1

2
F(ṗ)2 := sup

p̂∈E∗
〈p̂, ṗ〉 − 1

2
H(p̂). (52)
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Consider δ = (δ1, · · · , δn) ∈ Rn, and assume that H(δ) = 1 and that H is differentiable at δ.
Then denoting

v̇ :=
1

2

∑
1≤i≤I

∂iH(δ)ėi, (53)

one has F(v̇) ≤ 1. In addition, equality holds if there exists v̂ ∈ E∗ such that δi = 〈v̂, ėi〉 for all
1 ≤ i ≤ I.

Before turning to the proof, we make the connection with Proposition C.1, which assumptions
are scattered over the paper. The assumptions of positivity, convexity, and two homogeneity of
the function H, and the equality (52) (left) follow from the general expression (13) (understood,
obviously, with an = sign, instead of the informal ≈). The element δ ∈ Rn gathers the finite
differences δi = U(p)−U(p− hėi) of the map U in Proposition C.1, and the identity H(δ) = 1
expresses that U is a solution to the discretized PDE (33) (left). Finally, the vector v̇ defined by
(53) generalizes the expression (39) which is limited to Hamiltonians of the specific form (32).

Proof of Proposition C.1. The result follows from a rather direct computation, presented below.
Before that, we observe that (52, right, rhs) is always non-negative, by choosing p̂ = 0 and
observing that H(0) = 0 by homogeneity, hence the function F is well defined. Let p̂ ∈ E∗ be
arbitrary, and let α = (〈p̂, ėi〉)Ii=1 ∈ RI . Then one has

2〈p̂, v̇〉 − H(p̂) =
∑

1≤i≤I
∂iH(δ)〈p̂, ėi〉 −H(〈p̂, ė1〉, · · · , 〈p̂, ėI〉)

= 〈dH(δ), α〉 −H(α)

= 〈dH(δ), α− δ〉+ 2H(δ)−H(α)

≤ H(α)−H(δ) + 2H(δ)−H(α) (54)

= H(δ) = 1.

We use in each line successively: (i) definitions (52, left) and (53), of v̇ and H, (ii) the definition
of α ∈ Rn, (iii) Euler’s identity 〈dH(δ), δ〉 = 2H(δ) which follows from the 2-homogeneity of H,
(iv) the convexity inequality 〈dH(δ), α− δ〉 ≤ H(α)−H(δ), (v) the assumption H(δ) = 1.

Taking the supremum of p̂ ∈ E∗ we obtain F(v̇)2 ≤ 1, thus F(v̇) ≤ 1 as announced. Finally,
under the additional assumption, one can test against the co-vector p̂ := v̂, so that α = δ. In
that case (54) becomes an equality and therefore F∗(v̇)2 ≥ 1, thus F∗(v̇) = 1 as announced.

D Axes ordering and pixel area

Software visualization packages have introduced an unfortunately large number of incompatible
ways to display a two or three dimensional array of values. In this appendix, we discuss the
conventions chosen in the HFM library, and how to interface with other common tools.

We assume that the HFM library is provided with the following parameters: dims:(n1, · · · , nd)
the size of the discretization grid, origin:(p1, · · · , pd) the bottom left corner of the domain, and
gridscale:h the length of a pixel side. This defines a box-shaped domain, which we split in an
a.e. disjoint family of cubes.

Ω =
∏

1≤i≤d
[pi, pi + hni] =

⋃
0≤m<n

(p + hm + hC)

On the r.h.s. we denoted p := (p1, · · · , pd), n := (n1, · · · , nd), and introduced the unit cube
C = [0, 1]d. The inequality m < n is understood componentwise, a.k.a. mi < ni for all 1 ≤ i ≤ d,

37



Figure 10: Left: distance map u(p) := min{|p − p1|, σ2 + |p − p2|}, where p1 = (−0.5, 0.3),
p2 = (0.5, 0.8) and σ2 = 0.5, numerically computed using isotropic fast marching with second
order enhancement. Center: geodesic flow V (x) := ∇u(x) obtained numerically using (39).
Right: verification that |∇V (x)| = 1, at all points of differentiability.

Figure 11: Distance map obtained using isotropic fast marching (left), in the presence of obstacles
(center), and of a non-constant cost function (right, level sets shown).

and the notation q + hC means that the cube C is rescaled by the factor h and then translated
by the vector q.

An array of suitable dimensions U :
∏d
i=1J0, niJ→ R defines a piecewise constant function

u : Ω→ R on the cube partition. Thus u|Km
:= U(m) on each Km := p+hm+hC, 0 ≤m < n.

Pixel area. The HFM library assumes, as shown above and in dimension two for simplicity,
that the “pixel” of coordinates (i, j) occupies the square with corners (i, j)h and (i+ 1, j + 1)h.
However, some visualization software use define the “pixel” of index (i, j) as the square of side h
centered at (i, j)h or at (i+1, j+1)h. This raises (minor) issues when geodesic paths are overlaid
on images, and can be adjusted for by shifting the origin by (−0.5,−0.5)h or (0.5, 0.5)h.

Array ordering. When displaying the data contained in a two or three-dimensional array,
some software choose to assign the array indices (i, j, k) to the coordinate axes (X,Y, Z) in a
transposed manner: i→ Y, j → X, k → Z. In addition, the array may be internally stored in
row-major or column-major format. The arrayOrdering field accounts for these specificities,
and must be set to ‘RowMajor’ (default value) for Python Mayavi R©, ‘YXZ RowMajor’ for
Python PyPlot, or‘ YXZ ColumnMajor’ for Matlab R©.

E Figures
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Figure 12: Left: Front propagation stopped when all geodesics tips are accepted, which is
enough for backtracking. Center: Voronoi regions associated with the two seeds. Right: The
Euclidean length l(p) of the minimal path from each point p ∈ Ω, shown here, can be computed
simultaneously with the distance map u(p). It is used as a stopping criterion in this experiment.

Figure 13: Distance map associated with, respectively: a time dependent cost function (left), a
three dimensional isotropic metric (center), or a diagonal metric (right).

Figure 14: Left: First order term µ in the Taylor expansion uε = u0 + εµ+ o(ε) of the distance
map associated with the perturbed cost cε = c0 + εχx<0. Center: Likewise, for a perturbation
of the boundary condition σ2,ε = σ2 + ε at the seed p2 = (0.5, 0.8). Right: Sensitivity φ,
with respect to the cost function, of the distance map u(p∗) at a point p∗. The support of φ
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Figure 15: Left: Cost function maximizing the distance between the seed (−0.7, 0.7) and tip
p∗ = (0.8, 0.4), subject to bound constraints and a mean penalty, see (45). Center: Sensitivity
of u(p∗) w.r.t. the cost function, at the optimum. Right: Distance map u from the seed,
backtracked geodesics from the tip p∗ and nearby pixels, at the optimum.

Figure 16: Left: Minimal geodesics on a parametrized surface in R3. Center: Top view of the
same geodesics. Right: Level sets of the front, for a test case inspired by three dimensional
tubular structure segmentation.
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Figure 17: Level sets of the four 2D anisotropic Riemannian examples described in §4.3.
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Figure 18: From top to bottom: Reeds-Shepp, Reeds-Shepp forward, Euler-Mumford elastica,
and Dubins car models. Left: Control sets, i.e. unit balls of the local metric. Center: Minimal
paths in R2 × S1. Right: Planar projection of the minimal paths.
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Figure 19: Left: Euler-Mumford elastica paths with a cost function c = c(x) depending only
on the physical position x ∈ R2 (smaller cost in the upper part). Center: Polar plot of a cost
function c = c(θ), related with sailboat navigation, depending only on the orientation θ ∈ S1.
Center: Minimal paths for the Reeds-Shepp forward model with the later cost function. The
paths tack, as an actual sailboat would do, instead of going straight against the wind.

Figure 20: Minimal paths for variants of the Dubins car. Left: The car has a position dependent
turning radius ξ = ξ(x) = 1 + χy<1/2, smaller in the upper part of the domain. Right: The car
has a distinct radius of curvature on the right and left.

Figure 21: Left: Level set of the cost function, depending on the physical position only c = c(x),
and which is small in the neighborhood of two curves, with respectively low torsion and low
curvature. Center: The minimal path backtracked with the Reeds-Shepp model on R3 × S2

follows the low curvature curve. Right: The minimal path backtracked with the Reeds-Shepp
dual model follows the low torsion curve. A point γ(t) = (x(t),n(t)) of the backtracked path is
represented by an arrow with origin x(t) and direction n(t).
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Figure 22: Left: Motion planning with the three-dimensional Reeds-Shepp model, with configu-
ration space R3×S2. Note the cusps, where the vehicle orientation is reversed. Center: Likewise,
but with the Reeds-Shepp forward variant. Right: orientations for the forward model, note the
in place rotations at some of the path endpoints.

Figure 23: Left: Consider a seed point p in the configuration space M := R2 × S1, and a family
of tips q1, · · · ,qn ∈ M. According to the Petitot Citti-Sarti model, the visual cortex V 1 will
infer a connection between the seed and the closest tip w.r.t. the sub-Riemannian Reeds-Shepp
model (with parameter ξ to be determined). Center and right: This principle explains two visual
illusions due to Poggendorff, where the two parts of an occluded straight line or circle appear
to mismatch.
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Figure 24: Optimal paths coming from various models. The green point is the source, the
white points are endpoints, black parts indicate the walls and the color indicates the distance
(if necessary minimized over orientation). Top row, left to right: isotropic, isotropic with cost
based on Gaussian blurred image, Reeds-Shepp model. Bottom row, left to right: Forward-only
Reeds-Shepp model, Dubins’s model, Euler-Mumford elastica model.
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Figure 25: Vessel segmentation in an image of the retina, using two dimension lifting techniques.
Top: In a radius-lifted model, a preliminary image filtering is used to detect vessels of small
(left) and large (center) scale. The backtracked path contains information about the vessel radii
(right). Bottom: In an orientation lifted model, a preliminary image filtering detects vessel
bits of different orientations (left and center). Vessel extraction using the Reeds-Shepp model
(right).
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