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Abstract

In the context of aeronautics, automotive and construction applications, the design of light
multilayer plates with optimized vibroacoustical damping and isolation performances re-
mains a major industrial challenge and a hot topic of research. This paper focuses on the
vibrational behavior of three-layered sandwich composite plates in a broad-band frequency
range. Several aspects are studied through measurement techniques and analytical mod-
elling of a steel/polymer/steel plate sandwich system. A contactless measurement of the
velocity field of plates using a scanning laser vibrometer is performed, from which the
equivalent single layer complex rigidity (apparent bending stiffness and apparent damp-
ing) in the mid/high frequency ranges is estimated. The results are combined with low/mid
frequency estimations obtained with a high-resolution modal analysis method so that the
frequency dependent equivalent Young’s modulus and equivalent loss factor of the com-
posite plate are identified for the whole [40 Hz-20 kHz] frequency band. The results are in
very good agreement with an equivalent single layer analytical modelling based on wave
propagation analysis (model of Guyader). The comparison with this model allows identi-
fying the frequency dependent complex modulus of the polymer core layer through inverse
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resolution. Dynamical mechanical analysis measurements are also performed on the poly-
mer layer alone and compared with the values obtained through the inverse method. Again,
a good agreement between these two estimations over the broad-band frequency range
demonstrates the validity of the approach.

Key words: Determination of viscoelastic material properties; Prediction/measurement
comparisons; Hybrid sandwich panels; Equivalent plate model; Apparent bending
stiffness and apparent loss factor; DMA/vibratory comparisons

1 Introduction

The combined high stiffness and light weight of sandwich composites make them
increasingly used by today’s transportation and construction industries for exam-
ple. In this context, the design of light multilayer plates with optimized damping
and isolation performances, for given frequency bands, remains a major industrial
challenge and a hot topic of research. Thus, this article concerns the vibrational
behavior of such lightweight composite plates in a broad-band frequency range.

Three analytical and four experimental vibroacoustics methods identifying the equiv-
alent complex bending stiffness (or flexural rigidity) and equivalent loss factor of a
three-layered plate are compared. These equivalent parameters, also known in the
literature as apparent stiffness and apparent loss factor (see for example the studies
from Nilsson [1] or Backström [2]), are of course frequency dependent. The pur-
pose of this work is then to identify them up to the high-frequency domain where
most of the experimental methods meet their limits in terms of precision and res-
olution (frequency or spatially). Several techniques are reported in the literature to
handle such limitations, in particular wave number fitting approaches (see for ex-
ample the work of Berthaut et al. [3] on ribbed structures and the one of Cherif et
al. [4] on composite panels with honey comb core), image source methodologies
(see for example the method of Cuenca et al. for estimating material properties of
plates [5,6]) or the recently proposed Virtual Fields Method combined with Laser
Doppler Vibrometry or optical deflectometry by Berry et. al. [7,8]. Here we made
the choice to compare four experimental approaches: traditional modal analysis [9],
high-resolution modal analysis [10], CFAT methodology that uses a corrected finite
differences scheme [11], and a wave correlation technique comprising an image
source model that uses Hankel’s functions [12].

∗ corresponding author
Email addresses: kerem.ege@insa-lyon.fr (Kerem Ege),

bert.roozen@kuleuven.be (N.B. Roozen),
quentin.leclere@insa-lyon.fr (Quentin Leclère),
renaud.rinaldi@insa-lyon.fr (Renaud G. Rinaldi).

2



Concerning the comparison with predictions, different approaches exist to model
the vibrational behavior of multilayer plates (see for example a synthesis done by
Carrera [13] or more recently the work of Shorter [14], Manconi and Mace [15], and
Ghinet and Atalla [16], for thick composite laminated panels). Here three models
are presented, compared and discussed in the first part of the manuscript - a) model
of Guyader (traveling wave approach) [17,18] b) model of Ross, Kerwin and Un-
gar (strain energy) [19,20,21] c) Lamb waves model [22]. The plate under study (a
steel/polymer/steel sandwich system) is then presented, and the experimental pro-
tocols and assessment procedures of the four experimental techniques considered
are detailed in section 3. Using traditional modal analysis in the low frequency do-
main and finite-element model (FEM) calculations, the frequency dependent equiv-
alent Young’s modulus (derived from the equivalent bending stiffness) is identified
up to 800 Hz. Then, a high-resolution modal analysis method allows identifying
equivalent loss factor as function of frequency up to 2.5-3 kHz where modal over-
lap is high. Using two different methodologies (CFAT methodology and Hankel’s
functions image source model), contactless measurements of the velocity field ex-
tend the identification of the frequency dependent complex Young’s modulus up to
the very high frequency domain (20 kHz) and confirm both previous modal anal-
yses estimations. Measurements and predictions are then compared and discussed
in section 4. The article ends with the identification of the polymer core complex
modulus that is finally compared with DMA measurements/extrapolations.

The chosen analytical and experimental methods do not limit this work to a bench-
mark study but rather aims at the discussion of measurement approaches that cover
a wide frequency range. These measurements are validated with predictions, focus-
ing on damping identification which is not straightforward in cases of high modal
overlaps. Hence - extending a previous oral contribution [23] where only prelimi-
nary experimental results were given without theoretical discussions and fair com-
parisons - the principal novelties of this work can be summarized as follows:

• comparing for a given three-layered plate experimental modal analyses tech-
niques (in the low/mid-frequency domains) to wave number fitting approaches
(up to very high frequencies) with a focus on accurate damping characterisation
• obtaining - over the whole [40 Hz-20 kHz] frequency range - overlapping ex-

perimental results in good agreement with an equivalent single layer plate model
with frequency dependent apparent bending stiffness and damping
• using modelling predictions to identify through an inverse vibratory problem

the missing mechanical properties of a given layer (here the polymeric core
complex Young’s modulus) and confirming this results with DMA measure-
ments/extrapolations.
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2 Equivalent single layer modelling

In this section three analytical modelling of multilayer are presented, compared
and discussed on two examples of sandwich plates. Only main principles of the
methods are recalled in this first section; more details on each of the techniques are
given in appendices and corresponding cited references.

2.1 Model of Guyader

The first analytical approach considered is the model developed by Guyader et
al. [17,18] which determines at a given frequency the equivalent complex flexu-
ral rigidity (or bending stiffness) D∗eq(f) = Deq(f) (1 + jηeq(f)) of a multilayer
viscoelastic plate in the standard Love-Kirchhoff thin plate theory. The analytical
method is based on the travelling wave approach applied to a simplified multilayer
model. The bending, membrane and shear effects of each layers are considered and
continuity conditions on displacement and shear stresses at each layer interface
are used to obtain the equation of motion of the multilayer plate field expressed
as a function of the first layer field. Hence the method determines for a given fre-
quency of calculation the equivalent single layer plate complex bending stiffness
under Love-Kirchhoff thin plate theory in order to exhibit the same transverse dis-
placement that the multilayer plate. Details on the analytical derivation of this first
approach considered here can be found in [17,18]. Note that some typing errors in
the appendix of [17] have been corrected in the reimplementation of the model that
was used in this paper.

Once this equivalent rigidity D∗eq(f) at a given frequency f has been computed,
the equivalent homogeneous material properties - density ρeq, Poisson’s ratio νeq,
Young’s modulus Eeq(f) and loss factor ηeq(f) - of the multilayer are obtained as
follow:

ρeq =

∑
i hiρi∑
i hi

(1)

νeq =

∑
i hiνi∑
i hi

(2)

Eeq(f) = <
(
D∗eq(f)

) 12(1− ν2eq)

h3
(3)

ηeq(f) =
=
(
D∗eq(f)

)
<
(
D∗eq(f)

) (4)

where h =
∑
hi is the total thickness of the composite panel and the subscripts ”eq”

and ”i” refer to the equivalent homogenized parameters of the multilayer and the
ith layer, respectively. Naturally the equivalent homogeneous Young’s modulus and
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the equivalent homogeneous loss factor depend on the frequency f .

Ultimately, the only parameters needed for the equivalent single layer modelling are
thicknesses hi, densities ρi and viscoelastic characteristics (Young’s modulus Ei,
loss factor ηi, Poisson’s ratio νi) of each layer. For the steel/polymer/steel plate that
will be studied in section 3 and 4, the material properties for steel as known from
the literature were used. The density of the polymer layer was measured, while
the Young’s modulus and loss factor of this layer was fitted on the measurement
data (see paragraph 4.1).

2.2 Model of Ross, Kerwin and Ungar

The second model considered make several simplifying assumptions compared to
Guyader’s approach. The model was originally due to Ross, Kerwin and Ungar
[19], which was accompanied by publications of Kerwin [20] and Ungar [21]. This
model will be denoted here by the RKU model (as commonly done in the literature,
in [24] for example). The framework considers the dynamics of a constrained layer
system being composed of three layers ; a simplified energetic approach (based on
the dissipation of power through shear motion of the damping layer) is developed
to estimate the equivalent complex flexural rigidity of the structure. Under several
assumptions (thin and soft interlayer thus effectively only accounting for shear ; no
shear deformation of the skin or membrane effects) this simplified model relates the
shear strain of the damping layer to the transverse motion (bending waves) of the
three-layer. The theory of Ross, Kerwin and Ungar is briefly outlined in Appendix
A.

2.3 Lamb waves model

In the field of ultrasonic non-destructive testing, the Lamb waves are extensively
used (see for instance [25], [26]). The modelling of Lamb waves is a classical topic,
which was addressed in the standard text by Viktorov [22], dating back to the sev-
enties of the previous century. Lamb waves model is exact in that no assumption
are made with respect to the frequency range in which it is valid. In that sense the
Lamb waves model differs from models that use a low frequency approximation
of bending waves (it is worth pointing out that this approximation applies to both
Guyader and RKU model). This exactness of Lamb waves model is relevant for
the present study, since it allows the verification of the validity of the two previous
models up to high frequencies. The theory of Viktorov, in which each layer is mod-
eled individually by means of a Lamb waves model, is briefly outlined in Appendix
B.
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2.4 Analytical comparison and discussion

Two hybrid sandwich composite panels, often depicted as constrained-layer damp-
ing sandwich plates in the literature, are considered in this section for analytical
comparison. Both are constituted of three homogeneous isotropic layers (two metal
face sheets and a polymer core):

• one three-layered system with steel skin layers and with a thin and soft flexural
polymer interlayer (hypotheses of RKU model) called SOFT plate
• one steel/polymer/steel plate with a stiffer polymer interlayer called SPS plate

The input parameters of each layers of the plates are summarized in Table 1.

A sample of the SPS plate will be experimentally studied in section 3. Standard val-
ues for the material properties of the steel skin layers have been selected. The thick-
nesses of the layers have been measured and the density of the polymer core deter-
mined from weight and dimensions measurements. The complex Young’s modulus
of the polymer core has been chosen here in agreement with the vibratory iden-
tifications and DMA measurements (presented in the last part of the manuscript).
Concerning the values taken for the SOFT plate for this analytical comparison part,
they have been chosen so that the assumptions made on the RKU model are being
met that is [20], [21]:

• the Young’s modulus of layer 2 is taken to be small relative to that of layers 1
and 3
• the bending stiffness of layer 3 is small with respect to the bending stiffness of

layer 1: E3h
3
3 � E1h

3
1

To this end we chose here for this SOFT plate a Young’s modulus of the core ten
times softer than for SPS case.

The predictions of the three models are compared in figure 1 and figure 2 for the
SOFT and SPS plates respectively; relevant analytical results are also gathered in
table 2. Asymptotic values at low and high frequencies have been added to the
figures (horizontal dashed lines) using equation A.9 and A.10 for the equivalent
rigidity and A.11 and A.12 for the equivalent loss factor. The frequency for which
the optimum shearing of the dissipative core layers occurs (shear parameter equal
to Xopt in the RKU model (see equation A.13) is also added to the figures (verti-
cal red dashed line), together with the maximum damping factor frequency in the
model of Guyader (vertical blue dashed line).

The frequency evolution of the equivalent rigidity and loss factor is typical for such
constrained-layer damping sandwich plates (see for example the studies reported
by Nilsson [1] or Backström [2]), that is:
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SOFT plate layer 1 (steel) layer 2 (polymer) layer 3 (steel)

Thickness h [m] 0.8× 10−3 0.4× 10−3 0.1× 10−3

Young’s modulus E [GPa] 210 0.03 210

Density ρ [kg.m−3] 7800 580 7800

Poisson’s ratio ν [-] 0.33 0.33 0.33

Loss factor η [-] - 0.06 -

SPS plate layer 1 (steel) layer 2 (polymer) layer 3 (steel)

Thickness h [m] 0.18× 10−3 0.69× 10−3 0.18× 10−3

Young’s modulus E [GPa] 210 0.3 210

Density ρ [kg.m−3] 7800 580 7800

Poisson’s ratio ν [-] 0.33 0.33 0.33

Loss factor η [-] 0.005 0.03 0.005
Table 1
Dimensions and material properties of the individual layers for the two constrained-layer
damping sandwich plates chosen for analytical comparison.
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Figure 1. Comparison of the three models for the thin and soft flexural polymer interlayer
"SOFT" plate - Equivalent rigidity Deq(f) (top) ; Equivalent loss factor ηeq (bottom). Low-
and high-frequency asymptotic values are added in horizontal dashed lines, and maximum
damping frequency is added in vertical dashed lines for both RKU model and Guyader’s
model.

• for the equivalent rigidity: a constant value (high rigidity) at low frequency de-
creasing gradually to a lower asymptotic value at very high frequencies.
• for the equivalent loss factor: small damping at low- and very high-frequencies

(close to the metallic skin loss factor value), and high damping for a limited
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Figure 2. Comparison of the three models for the steel-polymer-steel "SPS" plate - Equiva-
lent rigidityDeq(f) at top and middle (zoom in high-frequency) ; Equivalent loss factor ηeq
at bottom. Low- and high-frequency asymptotic values are added in horizontal dashed lines,
and maximum damping frequency is added in vertical dashed lines for both RKU model
and Guyader’s model.

frequency range where the shearing effect of the high-damped constrained core
layer is maximum.

For the equivalent rigidity, the three models give very similar results up to the high
frequencies (around 10 kHz for SOFT plate in figure 1, and 100 kHz for SPS
plate in figure 2). Up to these frequencies, the model of Guyader and the Lamb
waves model are perfectly matching whereas the RKU model tends to overesti-
mate slightly the rigidity on the transition zone (governed by shearing of the con-
strained layer). At higher frequencies, the equivalent rigidity computed with the
Lamb waves model falls quickly tending to zero whereas the two other models ig-
nore the through-thickness deformation of the multilayer giving results that tend to
the asymptotic value (sum of the flexural rigidities of the structural components as
if they were not interconnected). It is worth recalling that the Lamb waves model
is exact in that it does not make an assumption with respect to the frequency range
in which it is valid. This rapid drop of rigidity occurring at very high frequency is
due to the change of wave type in the multilayer, in particular the appearance of
breathing modes (out-of-phase flexural motion of the skins of the multilayer). At
high frequencies, the wavelength of the bending waves becomes comparable to the
thickness of the plate, resulting in physical waves that cannot be represented by
the RKU model or Guyader’s model (because of the assumptions made for these
approaches). The frequency fS0 of this first breathing resonance (often called sym-
metric S0-mode resonance in the literature) can be easily estimated considering two
equivalent masses m1 and m3 attached by an equivalent spring of stiffness k2, that
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is:

fS0 =
1

2π

√√√√k2(m1 +m3)

m1m3

=
1

2π

√√√√E2

h2

ρ1h1 + ρ3h3

ρ1h1 ρ3h3
(5)

For the SOFT plate fS0 ≈ 52.3 kHz which corresponds precisely to the zone where
equivalent rigidity of the multilayer begins to vanish (see figure 1). For the SPS
plate, the first breathing mode appears at a much higher frequency (125.3 kHz) ;
again, the equivalent rigidity falls when frequency reaches these breathing modes
(see the zoomed portion above 100 kHz at the middle of figure 2).

Focusing on the equivalent loss factor, the three models also give similar results
for frequencies lower than the first breathing mode frequency. The low- and high-
frequency asymptotic values of the equivalent loss factor are well predicted with a
very important increase of damping on the optimum-shearing zone. As for the rigid-
ity, the model of Guyader and the Lamb waves model give exactly the same values
throughout the whole frequency band (before the change of wave type) whereas
the simplified RKU model predictions are not comparable to the two other mod-
els in the transition zone: the equivalent loss factor is underestimated. Indeed, as
presented in appendix A, the RKU model is a simplified model giving only rough
trends as long as it considers only the dissipation through shear motion of the damp-
ing layer 2 neglecting for example shear deformation of the skin or membrane ef-
fects, on the contrary of more complex models such as the one of Guyader or the
exact Lamb waves model). As it could have been predicted, it is worth noticing that
these underestimations of loss factor and overestimation of rigidity are less severe
when RKU hypotheses are being met (which is the case for the SOFT plate with a
much lower Young’s modulus of layer 2 ; results shown in figure 1), than for the
other multilayer example (SPS plate, figure 2). Finally the increase of equivalent
damping computed by the Lamb waves model in the very high frequency domain
is due here again to through-thickness deformation when out-of-phase skin motion
exists; we will not comment further on the very high frequency behavior as long
as it is not the purpose of this article (we will focus in the rest of our study on
frequencies lower than the symmetric S0-mode resonance). If needed one can refer
for example to Shorter’s article [14] for improved study of the different wave types
of viscoelastic laminates.

To sum up this theoretical part, the analytical comparisons clearly show the ben-
efits of using the model developed by Guyader for three-layered plates and for
frequency where no out-of-phase flexural motion of the skins exists. Furthermore
the Guyader’s model needs about 0.5 seconds of computation time on a standard
computer to compute the solution for the SPS plate for example, whilst the Lamb
waves model needs hours due to the inefficient searching for a vanishing determi-
nant as function of both frequency and (complex) wavenumber (thus searching in
a 3D space). Guyader’s model is much more efficient, whilst its accuracy in the
frequency range below the S0-mode resonance is equally good in comparison with
the Lamb waves model. The RKU model is also quasi instantaneous such as the
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SOFT plate SPS plate

Asymptotic low-frequency equivalent Young’s modulus [GPa] 122.7 150.4

Asymptotic high-frequency equivalent Young’s modulus [GPa] 49.0 2.1

Maximum loss factor ηeq [-]
(Guyader’s model and Lamb waves model)

0.015 0.041

Maximum loss factor ηeq [-]
(RKU model)

0.014 0.025

Maximum damping frequency [Hz]
(Guyader’s model and Lamb waves model)

503.0 8022.0

Maximum damping frequency [Hz]
(RKU model)

566.3 9002.9

First breathing mode frequency fS0 [Hz] 52.3×103 125.3×103

Table 2
Relevant analytical results obtained for SOFT and SPS plates.

model of Guyader but overestimates the equivalent rigidity and underestimates the
equivalent damping as seen previously. Hence the model of Guyader will be further
considered for comparison with experimental measurements performed on the SPS
plate over the [0-20 kHz] frequency domain.

3 Experimental characterization of material properties

Four experimental procedures have been used to estimate the material properties of
a 300×400×1.05 mm3 SPS multilayer plate sample. The SPS plate is presented in
Figure 3. The layer thicknesses reported (and also listed in Table 1) correspond to
average values determined using optical microscope images of the plate’s cross sec-
tion. Also, sheets of the polymer layer alone were available (see Figure 3b left) so
that its density could be determined by measuring and weighting large specimens.
Before presenting the results and comparing them to the analytical predictions, we
detail the assessment procedures (theories and experimental setups).

3.1 Wide frequency band behavior

A typical frequency response (Acceleration/Force) for the SPS plate obtained from
impact hammer excitation (see section 3.2.1 for the experimental protocol) is pre-
sented in Figure 4 (for the frequency band [0−3] kHz]). The low frequency domain
is characterized by distinct resonance peaks and the strong modal character of the

10



Figure 3. (a) Schematic illustration of the three-layered sandwich plate under study. (b)
Optical microscope observation of the through-thickness cross sections of real samples:
left - polymer core layer; right - SPS sandwich composite.
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Figure 4. Typical frequency responses "Acceleration/Force" (Fourier spectrum) for the SPS
plate, obtained by impact-hammer excitation (see section 3.2.1 for the experimental proto-
col).

vibratory behavior (here up to around 700 − 800 Hz). The modal analysis and the
identification of the Young’s modulus in low frequency domain will be presented
in section 3.2.1. When the frequency increases, the traditional modal identification
methods cannot be used anymore: the damping increases, resonances are thus less
pronounced, the modes overlap so that the frequency-response tends to a smooth
curve. The ESPRIT [27,10] algorithm will be used to identify modal loss factor
for this mid-frequency domain in section 3.2.2. Finally in the high-frequency do-
main (here above 2.5 kHz), the vibration can be described as a diffuse wavefield
and modal approaches are unsuitable. Thus, the estimation of the complex Young’s
modulus for wide frequency band will be achieved using two methodologies (up to
20 kHz): CFAT (section 3.2.3) and Hankel (section 3.2.4).

11



3.2 Assessment procedures (theories and experimental setups)

3.2.1 Modal analysis

To begin, a modal analysis of the plate is performed in order to estimate the first
modal frequencies, loss factors and mode shapes. A pseudo-impulse force is ap-
plied by means of a small impact hammer (P.C.B. Piezotronics 086E80) on a rect-
angular mesh of 9 × 11 points spanning the whole 300 × 400 mm2 surface of the
plate. The mesh is regularly spaced, resulting in spacings between two consecutive
points of 37.5 mm along the width x and of 40 mm along the length y.. Boundary
conditions are kept as close as possible to free-free, by suspending the plate from
one of its corner (with rubber bands passing through a tiny hole). The accelera-
tion is measured with a lightweight accelerometer (P.C.B. Piezotronics M353B18)
fixed on another corner of the plate. Under the chosen boundary conditions, this lo-
cation is not on any of the nodal lines for the low frequency band considered here.
A multi-degree-of-freedom curve fitting method (Rational Fraction Polynomial-Z)
is used to estimate modal frequencies, loss factors and mode shapes. In parallel
with the experimental modal analysis, a finite-element model (FEM) calculation of
the normal modes of an equivalent single layer plate of same dimensions has been
conducted with MSC NASTRAN software (see next paragraph for explanations on
the choice of the Young’s modulus of the equivalent numerical plate). Four-noded
isoparametric flat plate elements of 1 mm2 size have been chosen. The modal fre-
quency convergence criterion has been used to select this element size ensuring far
enough points per wavelength (more than 100) up to 800 Hz.

Examples of experimental and numerical mode shapes comparisons are given in
Figure 5, where numerical mode shapes are extracted on the 99 experimental mesh
points. The Modal Assurance Criterion [9] (called ’MAC’) is used here to compare
the two sets of results. It calculates to what extent a given mode shape fits another
one. More precisely, it consists in calculating the spatial correlation between the
two functions, as follow:

MAC
(
φexp
(m,n), φ

num
(p,q)

)
=

∣∣∣φexpT

(m,n)φ
num
(p,q)

∣∣∣2(
φexpT

(m,n)φ
exp
(m,n)

) (
φnumT

(p,q)φ
num
(p,q)

) (6)

where φexp
(m,n) is the experimental mode shape of the (m,n) plate mode and φnum

(p,q) is
the numerical mode shape of the (p, q) plate mode (extracted on the experimental
mesh points). If a linear dependence exists between the two functions (identical
mode shapes), the MAC value will be near to one. If they are linearly independent
(mode shapes differ), the MAC value will be small, close to zero.

As presented in Figure 5, the MAC values are close to 100% for the first low-
frequency modes and generally decreases with the modal orders. Indeed, values
are directly dependent on the experimental mesh size compared to the wavelength.
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(a) f(0,2) = 47.9 Hz ; MAC = 97% ;
E48 Hz = 162 GPa

(b) f(1,3) = 165.7 Hz ; MAC = 85% ;
E166 Hz = 136 GPa

(c) f(2,3) = 276.9 Hz ; MAC = 57% ;
E277 Hz = 140 GPa

(d) f(2,4) = 385.9 Hz ; MAC = 66% ;
E386 Hz = 128 GPa

(e) f(3,4) = 535.5 Hz ; MAC = 57% ;
E536 Hz = 120 GPa

(f) f(4,4) = 718 Hz ; MAC = 44% ;
E718 Hz = 110 GPa

Figure 5. Comparisons of six experimental (left figure) and numerical (right figure) mode
shapes of the SPS plate in the low-frequency domain (numerical mode shapes are ex-
tracted on the experimental mesh). For each mode, the MAC value and identified equivalent
Young’s modulus (by matching FEM estimation to measured modal frequency) are given
in caption.

In this study, with a 4 cm distance between two consecutive excitation points, the
modal identification has been successfully obtained up to 800 Hz, with MAC gen-
erally higher than 60%. Thanks to this experimental/numerical comparison, a first
equivalent Young’s modulus estimation of the three-layered SPS plate has been
conducted as follow: for each identified mode, the numerical Young’s modulus is
adjusted so that the numerical modal frequency fits the corresponding experimental
one, all other parameters remaining constant (dimensions, thickness and density of
the equivalent FEM plate are fixed to the measured values; the Poisson’s ratio ν
is arbitrarily set to 0.34). The identified frequency dependent equivalent Young’s
moduli Eeq are presented in Figure 12 with corresponding MAC values: red points
(•) for estimations with highest MAC close to 100%, green circles (◦) for MAC
around 70%, and blue asterisks (∗) for MAC lower than 60%. The equivalent loss
factors ηeq estimated from the modal analysis are presented in Figure 13 in red
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circles (◦). Discussion on these results is done in section 4.

3.2.2 High-resolution modal analysis (ESPRIT algorithm)

In order to identify the equivalent loss factors of the multilayer plate at higher fre-
quencies, a second approach is used. It consists on a high-resolution modal analysis
technique [10] based on ESPRIT algorithm [27] . This high-resolution method as-
sumes that the signal s(t) is a sum of complex exponentials x(t) (the modal signal
to be determined) and white noise β(t):

s(t) = x(t) + β(t) =
K∑
k=1

ake−αktej(2fkt+φk) + β(t) =
K∑
k=1

bkz
t
k + β(t) (7)

where K is the number of complex exponentials, bk = akejφk are the complex am-
plitudes (with ak and φk the modal amplitudes and phases at the point of interest),
and zk = e−αkej2πfk the complex poles (with fk the modal frequencies in Hz and
αk the modal damping factors in s−1). For exponentially damped sinusoids (the
signal model considered here), the rotational invariance property of the signal sub-
space (or modal subspace) is used to estimate the modal parameters (see Roy et
al. [27] for mathematical developments). Modal frequencies and modal damping
factors are first derived from the complex poles zk (eigenvalues of the spectral ma-
trix [10]) and complex amplitudes bk are then recovered by means of a least square
method. The modal damping factor αk (also called modal decay constant in s−1),
the modal decay time τk (in s) and the modal loss factor ηk (dimensionless) are
related as follows:

αk =
1

τk
=
ηkωk

2
, ηk =

∆fk,−3dB

fk
=

αk

πfk
(8)

where ωk is the modal angular frequency (in rad.s−1) and ∆fk,−3dB the half-power
modal bandwidth. The dimensions of both modal and noise subspaces must be
chosen a priori and the quality of the estimation depends significantly on a proper
choice for these parameters. The best choice for the dimension of the modal sub-
space is the number of complex exponentials actually present in the signal. This
number (K) is twice the number of real decaying sinusoids (modes). Prior to the
modal analysis itself, an estimate of this number is obtained by means of the ES-
TER (ESTimation ERror) technique [28] which consists in minimizing the error on
the rotational invariance property of the signal subspace spanned by the sinusoids.
The block diagram in Figure 6 describes the three main steps of the high-resolution
method: (a) reconstruction of the acceleration impulse response γimp (using the
measured acceleration γmeas and the measured force fmeas), (b) signal conditioning
(including band-pass filtering and downsampling) as proposed by Laroche [29], (c)
order detection, and (d) determination of modal parameters. More details on the
different steps of the method are given in Ege et al. [10], where the method is vali-

14



αk

gFilter

Data acquisition and normalisation

Time-
reversal

Band-pass
filter

Frequency-
shift

Down-
sampling

Signal conditioning

Time-
reversal s(t)

s(t) ESTER ESPRIT

Order detection and determination of modal parameters

bk

fk

ϕk

ak

zk

γimp(t)

γimp(t)
γmeas(t)

fmeas(t)

K̃

Figure 6. Block diagram of the high-resolution modal analysis method (see Ege et al. [10]
for details).

dated on measured and synthesized signals for frequency domain where the Fourier
transform meets its limits (due to high modal overlap or poor signal-to-noise ratio).
Recently, the method has been also successfully applied on an orthotropic ribbed
plate [30], bilayer plates [31], or plate-cavity system [[32],[33]].

The equivalent loss factors of the three-layered SPS plate were accurately estimated
using the method described above. The experimental protocol is similar to the pre-
vious section. The time signal s(t) analyzed with ESPRIT algorithm corresponds
to an excitation made in the vicinity of the accelerometer near one of the corner of
the plate. A typical bank-filtering analysis of s(t) is given in Figure 7 where results
are plotted for one narrow subband of the mid-frequency domain with four identi-
fied modes. Equivalent loss factors have been estimated up to 2.6 kHz. Results are
plotted in blue points (•) on Figure 13.
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Figure 7. Typical bank-filtering analysis of an impulse response of the SPS plate between
1060 and 1180 Hz. (a) —: Fourier spectrum of the impulse response; – · –: amplitude re-
sponse of a narrow-band filter. ◦ marks: estimated modal amplitudes and modal frequen-
cies. (b) • marks: measured loss factors ηk for the four real modes (the number of complex
exponentials K = 8 (= 2 × 4) is estimated with ESTER criterion). (c) • marks: Energy
of each components.
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3.2.3 CFAT methodology

3.2.3.1 Theory The third procedure used to estimate the material properties of
the multilayer plate is based upon CFAT methodology [11]. The FAT [34] (Force
Analysis Technique) has been published about 20 years ago. The aim of this inverse
approach is to recover excitation fields applied on a structure from vibration mea-
surements and from an analytical form of its equation of motion. Typically, for thin
homogeneous plates, the following equation is used at the angular frequency ω:

D∇4[w(x, y)]− ρhω2w(x, y) = p(x, y) (9)

whereD =
E(1 + jη)h3

12(1− ν2)
is the complex rigidity of the plate and ρh its mass per unit

area (that are both known a priori), w(x, y) and p(x, y) are the displacement and
load fields, respectively. The displacement w(x, y) is measured on a regular sam-
pling mesh (sampling step δ), and its fourth order spatial derivative is estimated
using a corrected finite differences scheme CFAT [35], allowing the estimation of
the load field from other quantities. The approach has been recently extended to ap-
plication cases for which the structural parameters D and ρh are unknown [36,11].
In these cases, the standard method is applied to areas of the structure that are a
priori known to be free of excitation. Equation 9 is thus used with p(x, y) = 0:

D

ρh
=
ω2w(x, y)

∇̃4(x, y)
, (10)

where ∇̃4(x, y) is an estimation at point (x, y) of the bilaplacian of the displace-
ment field using a corrected finite differences approach [11]. Equation (10) gives
an estimation of the parameter at the position (x, y). If it is assumed to be spatially
constant (as it is the case here), the parameter can be estimated jointly for all posi-
tions of a measurement grid using a Least Squares estimator (see [11] for details).
The finite difference scheme used to estimate ∇4[w(x, y)] is based on 13 measure-
ment points including the central point where the parameter is estimated. The step
of the scheme (noted ∆) has been shown to give optimal results when lying in the
range [λN/4, λN/2], with λN the natural flexural wavelength [37], but for practical
reasons has also to match the measurement grid. It is possible, using decimation,
to choose a scheme step equal to a multiple of the grid step (∆ = nδ, n ∈ N) , or
even a multiple of the grid step ×

√
2 (∆ = nδ

√
2, n ∈ N, using a π/4 rotation

of the scheme) as described in [37]. The scale factor, equal to the ratio between
the scheme and grid steps ∆/δ, is thus chosen between a set of discrete values
{1; 1.4; 2; 2.8; 3; 4; 4.24...}, and this choice is guided at each frequency by the nat-
ural flexural wavelength of the structure. This operation is quite simple for the
standard use of CFAT because the flexural wavelength is a priori known. However,
when using CFAT to identify the structural parameters, the flexural wavelength is
unknown. A possibility is to estimate D/ρh for various scale factors, and to ana-
lyze results with the knowledge that consecutive scale factors should give correct

17



results in overlapping frequency ranges. Alternatively, the natural wavelength can
be first roughly estimated using 2D FFT for instance, and then used to select the
scale factor to be used in CFAT.

Finally, the Young’s modulus and loss factor can be obtained as follows:

E = <
(
D

ρh

)
12ρh(1− ν2)

h3
, η =

=
(
D

ρh

)

<
(
D

ρh

) (11)

The mass per unit area ρh and the thickness h are measured using static metrology
systems (weighing machine and caliper) and the Poisson’s ratio is arbitrarily taken
from standard values.

When applied to homogeneous plates, the resulting Young’s modulus is expected to
be constant in the frequency range of validity of the CFAT method. When applied
to composite panels, Equation (9) can still be used if the vibrational behavior of
the plate is assumed to be governed by flexural waves. However, the structure be-
ing composed of several layers of materials with different moduli, the relationship
between the rigidityD and Young’s modulus is not valid anymore. A Young’s mod-
ulus can still be estimated using Equation (11), but it corresponds to the Young’s
modulus of an equivalent homogeneous plate of same thickness and mass per unit
area, that would have exhibited the same vibrational displacement field at one given
frequency. This Young’s modulus, called the equivalent Young’s modulus, is not ex-
pected to be independent of the frequency anymore.

3.2.3.2 Experimental implementation The SPS plate is freely suspended to
a frame, and a shaker (driven by a white noise generator) is fixed at an arbitrary
position on one edge of the plate (see figure 8). The velocity field of a part of the
plate, free of any excitation, is measured using a scanning laser vibrometer. The
scanning area is 11 x 11.6 cm, with a step of about 2.9mm (that is to say a total of
1560 measurement points).

The normalized measured velocity field is drawn in figure 9 for few discrete fre-
quencies. It is clear qualitatively that the wavelength decreases when the frequency
increases, as expected. This trend is investigated quantitatively in the following
using the CFAT procedure.

Measurements are processed as described in section 3.2.3.1. The D/(ρh) parame-
ters obtained for few scale factors are drawn in Fig. 10. As expected, results using
different scale factors are overlapping over the frequency ranges, in which the esti-
mation is thought reliable.
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(a) (b)

Figure 8. Measurement set-up for the wave based characterization methodologies (CFAT
and Hankel). (a) Laser vibrometer and plate. (b) Plate hanging on thin wires, excited by
mini shaker. The black line on the plate indicates the measurement area.

Figure 9. Normalized velocity fields measured at 2(left), 4(center) and 8(right) kHz. The
scanning area is 11×11.6 cm.
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Figure 10. Real part of D/(ρh) estimated using CFAT with different scale factors ∆/δ.

A refined approach is implemented in order to obtain a single estimator at each
frequency. The natural wavenumber kN is roughly estimated using a standard max-
imization of the 2D FFT of the vibration field at one given frequency. The opera-
tion is repeated for all frequencies, and a regression is applied in order to obtain a
smooth curve of the natural wavenumber as a function of the frequency. The regres-
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sion is obtained by fitting the cloud of points in the frequency-wavenumber plane
on a curve with the following shape

kN(f) = α
√
f + βf

where α and β are obtained in the least squares sense. The cloud of points resulting
from the 2DFFT maximization at each frequency, as well as the regression curve
are drawn in Fig. 11a (left). The regression curve of kN is then used to determine the
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Figure 11. Rough estimation of kN and resulting selection of the scale factor used for CFAT.
(a) 2DFFT-based estimation of kN (red dots) and fitted regression (black line). (b) Selected
scale factor (top), and ratio between λN and ∆ (bottom).

scale factor, so as to ensure [λN/4 < ∆ < λN/2]. Practically speaking, the choosen
scale factor is the closest one to λN/3 (see Fig. 11b, right).

Finally, considering for the SPS plate ρh = 3.21 kg.m−2 and h = 1.05 mm, the
Young’s modulus and loss factor estimated using Eq. (11) are added on figure 12
and 13.

3.2.4 Material parameter fit by means of a Hankel’s functions image source model

The fourth procedure to estimate the equivalent material properties of the multi-
layer plate is a wave correlation technique comprising an image source model that
uses Hankel’s functions, as described in [12]. The model describes the dynamics
of an equivalent plate of finite dimensions with homogeneous material properties.
Searching for an optimum fit of this image source model on to the measurement
data, the equivalent material properties of the multilayer plate are obtained.

In more details, for a homogeneous plate with infinite lateral dimensions, the Green’s
function G∞ is given by:

G∞ (x− x0, y − y0) =
1

8k2f D

(
H

(1)
0 (kfr)−H(1)

0 (jkfr)
)

(12)
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where H(1)
0 is the cylindrical Hankel’s function of the first kind of order 0, x and

y are the coordinates on the plate, x0 and y0 are the coordinates of the point of
excitation, r = ‖(x−x0, y−y0)‖ is the source-to-receiver distance, kf is the flexural
wave number defined by kf = (ω2ρh/D)1/4,D is the dynamic flexural rigidity defined
by D = Eh3/(12

(
1− ν2

)
), E is Young’s modulus, ρ the density, h the thickness of the

plate, ν Poisson’s ratio and ω denotes the exciting angular frequency.

The Green’s function of a finite plate can be approximated by means of the image
source method, summing up the responses of the individual sources. Provided that
frequency and/or damping of the plate are high enough, a limited number of image
sources suffices to describe the dynamic response of the finite plate, including the
reflected wave fields from its edges. This makes this technique especially suited for
frequencies with a high modal density and a reasonable amount of damping.

The (complex valued) image source strengths are estimated from a fit on the ex-
perimental data, using informations regarding the positions of the image sources
(which follow from the geometry of the plate and the point of excitation). Assum-
ing that N image sources are sufficient the response w̃ of the finite plate can then
be written as:

w̃(x, y, ω) =
N∑
n=1

αn(ω)G∞n(x, y) (13)

where αn is the strength of each image source and G∞n the Green’s function of the
n’th image source. This equation can be written in matrix notation as:

w̃ = Φα (14)

where w̃ is a vector containing the projected displacements at each measurement
point, Φ is a matrix containing the vectors of the image source Green’s functions,
G∞n, and α is a vector containing the contribution strengths αn(ω). The optimum
values for vector α are found solving the following minimization problem:

α = argmin(‖w −Φα‖2 + λ2‖α‖2), (15)

where w are the measured displacements and λ is a regularization parameter, giving
the following solution for α:

α = Φ+λw = (Φ∗Φ + λ2I)−1Φ∗w. (16)

In the present paper, a Bayesian regularization is used (see [12] for details). The
source strengths (in amplitude and phase) of the image sources are thus estimated
by projecting the measured complex response of the plate onto the image source
model. The method is applicable to an arbitrary boundary condition of the plate.

Varying both the real and the imaginary parts of the complex flexural wave number
kf in the image source model (cfr. Eq. 12), an optimum value of kf is sought for
which the error between the predicted response and the measured response is mini-
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mal. From the optimum complex flexural wave number kf as function of frequency,
the (complex) dynamic flexural rigidity D can be estimated from D = ω2ρh/k4f . The
loss factor can be estimated from η = =(k4f )/<(k4f ). The results obtained using this
wave correlation technique comprising an image source model that uses 8 Hankel’s
functions are shown in figure 12 for the equivalent Young’s modulus, and in fig-
ure 13 for the equivalent loss factor. Note that the experimental protocol and the
measurement dataset are the same as for CFAT (see beginning of section 3.2.3.2).
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Figure 12. Equivalent Young’s modulus Eeq function of the frequency for the steel-poly-
mer-steel (SPS) plate.
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4 Comparing experimental and analytical results

In this last section, we compare the experimental results to the analytical predic-
tions allowing the identification of the polymer core complex modulus. Finally the
article ends with the comparison of these identified polymer characteristics with
DMA measurements/extrapolations based on the time-temperature superposition
principle.

4.1 Equivalent complex modulus of the three-layer and polymer core character-
istics identification

The frequency dependent equivalent Young’s modulus and equivalent loss factor
have been analytically predicted for the SPS plate using the aforementioned single
layer plate model of Guyader. In our study, the major unknowns are the polymer
core layer Young’s modulus Epoly and loss factor ηpoly ; indeed the thicknesses of
the layers have been measured, the density has been determined from weight and
dimensions measurements, and the Poisson’s ratio ν is arbitrarily set to 0.34. For
the steel skin layers, standard values for the material properties have been selected
with a constant value of 10−3 for the skins loss factors η1 and η3 in agreement with
measurements done on a homogeneous steel plate from the same manufacturer.
Thus, a fitting process has been conducted to identify the polymer core mechanical
properties needed to converge to the sandwich experimental estimations. Figures 12
and 13 display the equivalent Young’s modulus and the equivalent loss factor re-
spectively as a function of the frequency. Each figures gather the results from the
different experimental estimations - modal analysis, ESPRIT algorithm (loss fac-
tor estimations), CFAT and Hankel’s functions - and the analytical predictions with
identified sets of parameters for the polymer core Young’s modulus Epoly and loss
factor ηpoly.

The identification of these two quantities Epoly and ηpoly in model of Guyader re-
quires two steps. The fitting process consists in identifying first Epoly by converg-
ing to measured equivalent Young’s modulus, using the two velocity field mea-
surements in particular (CFAT estimations and Hankel’s functions) that cover the
frequency range from approximately 1 kHz up to 20 kHz. Figure 12 evidences
that this value is about Epoly = 250 MPa for frequencies between [100 Hz −
1 kHz] and tends to Epoly = 300 MPa for higher frequencies(see the solid and
dashed black curves). With Epoly estimated, ηpoly is then fitted by comparing the
predicted/measured equivalent loss factors. This value has been identified around
ηpoly = 5% (see the solid black curve on Figure 13). With these identified poly-
mer core mechanical properties, the predicted and experimental estimations of the
multilayer equivalent parameters are in very good agreement, with overlapping es-
timations, both for Young’s modulus than loss factor up to very high frequencies.
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It is worth noticing that such experimental results especially for loss factor estima-
tions done from low frequency up to 20 kHz are rare in the literature.

For the equivalent Young’s modulus Eeq the tendency is particularly well predicted
by the model (see discussion on section 2.4). The value is close to 150 GPa in
the low-frequency domain and decreases to around 6 GPa at 20 kHz tending to an
asymptotic value (see Figure 12). For the equivalent loss factor ηeq (Figure 13), re-
sults are also very satisfying, even if the discrepancies in the low frequency domain
are higher than for the real part estimation. These discrepancies for the first modes
could have for origin the hanging system, or the accelerometer cable, through which
a part of the vibratory energy can escape, leading to an overestimation of the damp-
ing. Nevertheless, taking apart these fluctuations for the first modes, the experimen-
tal loss factor frequency evolution on the whole frequency band matches well the
equivalent single layer modelling predictions. In the low frequency part, the damp-
ing is small and close to the metal losses (around 0.2%), then regularly increases
with frequency, reaching high values (ηeq = 6%) for the frequency band 6-10 kHz,
before decreasing to around 5% at 20 kHz. Here again, the increasing of shearing
of the dissipative polymer core layer is responsible for this large increase of damp-
ing. Such results show the benefits of using sandwich three-layer for vibroacoustics
applications in terms of high-damping properties for given frequency domains.

It is worth precising here that for the whole frequency domain of interest, the thin
plate equivalent to the multilayer under study vibrates in the subsonic regime. In
other terms, in the frequency range [40 Hz-20 kHz], the equivalent flexural wave-
lengths are always much shorter than the acoustic wavelengths: the coincidence

frequency of the equivalent (homogeneous) plate fc,eq =
c2air

2π

√
ρeqh

Deq
(with cair the

speed of sound in air) is systematically more than 10 kHz higher than the frequency
of interest. Hence there cannot be efficient coupling between flexural waves in the
multilayer and waves in air in this frequency range: the added damping due to ra-
diation is neglected.

4.2 Comparison of the estimated complex Young’s modulus of the polymer with
DMA measurements

With the aim of evaluating the validity of our inverse method to identify the polymer
core properties, the low frequency viscoelastic properties of the polymer layer was
directly measured using Dynamic Mechanical Analysis (DMA). In details, polymer
rectangular stripes (10 mm wide and 60 mm long) were prepared and loaded in
tension under forced periodic strain with a GABO Eplexor DMA apparatus (see
Figure 14). Three frequencies (0.2, 1 and 5 Hz) and temperatures encompassing
room temperature (240 K - 380 K) were tested. The imposed displacement and
measured force signals give access to the complex modulus E∗:
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Figure 14. GABO Explexor DMA apparatus with tensile grips (with zoom-in from left to
right).

E∗ = E ′ + jE” = E ′(1 + jη) (17)

with E ′ and E” the storage and dissipative moduli respectively. It is worth noting
that E ′ corresponds to the Young’s modulus and is also denoted E in this paper.
Also, η will be further referred as tan δ and corresponds to the loss factor.

Both E ′ and tan δ are displayed in Figure 15 and a strong temperature and fre-
quency dependencies can be observed: the modulus is seen to decrease as the tem-
perature increases. Conversely, for a given temperature, the modulus increases as
the testing frequency increases. More specifically, the isochronal curves seem to
simply shift towards higher temperature as the frequency increases, suggesting that
the polymeric material can be considered as thermosimple so that time-temperature
equivalence principle does apply. Thus, the mastercurve was built following the
method proposed by Blachot et al. [38]. The method was implemented in a Matlab
routine and the prediction of the polymer complex modulus can be obtained for a
wide range of frequencies that cannot be tested experimentally. This is evidenced
in Figure 16, where the predicted Young’s modulus for frequencies ranging from
10−5 Hz to 1010 Hz are displayed.

The DMA extrapolations can then be used to read the frequency dependence of
the Young’s modulus at room temperature (296 K). Focusing on the high frequen-
cies values, the polymer modulus Epoly is found to be about 250 MPa at 100 Hz,
273 MPa at 1 kHz, and 294 MPa at 10 kHz (see red dashed curve on Figure 17). It
is worth noticing that these predictions accurately match the values identified based
on the vibratory approach depicted in the previous section.

Similar conclusions can be drawn on the loss factor (see blue dashed curve on
figure 17). The high frequencies values gives a polymer loss factor of about 6.5%
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Figure 15. Experimental Young’s modulus and loss factor of the polymer core layer as a
function of temperature.

Figure 16. Measured and predicted Young’s modulus of the polymer core versus temper-
ature for varying frequencies. The predictions are obtained based on the time-temperature
superposition principle.

at 1 kHz and about 5% at 10 kHz. These values match here again the loss factor
estimated through vibratory approached for SPS case (5%, on figure 13). Hence, the
accuracy of both estimations is very satisfying for this very high frequency domain,
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Figure 17. Predicted Young’s modulus and loss factor of the polymer core versus frequency
at ambient temperature (296 K).

and demonstrates the validity of the wide-band inverse methodology developed.
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5 Conclusions

This paper is focused on the vibrational behavior of sandwich composite plates.
Frequency dependent equivalent Young’s modulus and equivalent loss factor of a
steel-polymer-steel sandwich system are estimated in a broad-band frequency range
using different experimental methods. The results are in very good agreement with
an equivalent single layer analytical modelling (model of Guyader) based on wave
propagation analysis. The comparison with this theoretical approach allows the
identification of the frequency dependent complex modulus of the polymer core
layer through inverse resolution that matches DMA measurements/predictions per-
formed on the polymer material alone.

There are several perspectives and applications to this work. With the approach pre-
sented, optimization of multilayer plates for vibroacoustics applications, with opti-
mized damping properties for given frequency domains, may be easily performed if
the precise knowledge of the frequency evolution of the complex modulus of each
layer is known. In this respect, an interesting perspective could be to use a recently
developed UV irradiation selective technique of Room Temperature Vulcanization
silicone elastomeric membrane to achieve spatial patterning of the in-plane vis-
coelastic properties of the polymeric core of sandwich structure [39] in order to
design optimized structured plate.

It could be also challenging for such multilayer systems to experimentally explore
frequencies higher than 20 kHz, using for example a Nd:YAG pump laser (see a
recent work done on that subject up to 50 kHz [40]) or ultrasound exciters; other
types of waves would be excited and it still remains very difficult to identify them
precisely (in particular the dissipation associated to them) and compare the mea-
surements with predictions (such as the Lamb waves model presented in this work).

Next to that, using the concept of an equivalent plate with frequency dependent
material properties representing the dynamics of a sandwich plate system allows
a computationally more efficient way to model numerically (for instance using fi-
nite element modelling) the structural response of complex structures made from
these sandwich plate systems. Indeed, this study shows that without complex com-
posites theories or 3D elements, a relatively simple (2D) Love-Kirchhoff thin plate
theory with a frequency dependent equivalent (or apparent) complex modulus may
be sufficient for frequency bands where no through-thickness deformation of the
multilayer exists.
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A The model of Ross, Kerwin and Ungar

In what follows below is a brief summary of the simplified model of the dynam-
ics of a constrained layer system being composed of three layers (initially written
for beams) developed by Ross, Kerwin and Ungar [19], [20], [21], [24]. Only final
expressions are given here (for the plate case); the whole derivations are exposed
in the cited articles. The notations used here below are the one introduced by Un-
gar [21], also reported in Beranek’s book [41].

The thicknesses h1, h2, h3 and the dimension H31 of the three-layered plate are
indicated in Figure A.1. The complex Young’s modulus of layer i is denoted by
E∗i = Ei(1 + j ηi), where ηi is the loss factor of layer i (i = 1, 2, 3). The complex

shear modulus of the second (visco-elastic) layer is denoted by G∗2 =
E∗2(1 + j η2)

2(1 + ν2)
.

h1

h2

h3

H31

Figure A.1. Three-layered constrained layer plate.

A.1 Equivalent complex flexural rigidity

The RKU model gives an expression for the equivalent complex flexural rigidity
D∗ of the three-layer as:

D∗eq = (D∗1 +D∗3)

(
1 +

X∗Y ∗

1 +X∗

)
(A.1)
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where

D∗1 =
E∗1h

3
1

12(1− ν21)
(A.2)

D∗3 =
E∗3h

3
3

12(1− ν23)
(A.3)

X∗ =
G∗2S

∗

k2H2

(A.4)

Y ∗ =
12H2

31

S∗(E∗1h
3
1 + E∗3h

3
3)

(A.5)

S∗ =
1

E∗1h1
+

1

E∗3h3
(A.6)

Hence D∗eq depends only on the complex flexural rigidities D∗1 and D∗3 of layer 1
and 3, and on two dimensionless parameters introduced by Ungar [21]: X∗ called
shear parameter (function of the wavenumber k) and Y ∗ called structural geometric
parameter. To use the terms of Ungar [41], this shear parameter X is a measure of
how well the viscoelastic layer (layer 2) couples the flexural motions of the two
structural components (layer 1 and 3).

The real part of D∗eq is the equivalent flexural rigidity of the 3-layered system (from

which the equivalent Young’s modulus E = <
(
D∗eq

) 12(1− ν2eq)

h3
can be derived

knowing the total thickness h = h1 + h2 + h3 and equivalent Poisson’s ratio νeq =∑
i
hiνi∑
i
hi

of the multilayer), whilst the effective loss factor can be calculated by

ηeq =
=
(
D∗eq

)
<
(
D∗eq

) (A.7)

Note finally thatDeq is of course function of the flexural wavenumber k through the
shear parameter X . Hence the correspondent frequency f (for plotting Deq(f) fig-
ure 12 and ηeq(f) figure 13 in particular) is given using the dispersion relation of the
Love-Kirchhoff theory for the equivalent plate of total thickness h and equivalent
density ρeq =

∑
i
hiρi∑
i
hi

by

f =
1

2π

√√√√Deqk
4

ρeqh
(A.8)
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A.2 Asymptotic values for equivalent bending stiffness and equivalent loss factor

Asymptotic values of the equivalent flexural rigidity can be derived from equa-
tion A.1 for low and high frequencies. For small f , the wavenumber tends to
zero, and X = <(X∗) tends to infinity: the three-layered panel exhibits a rigidity
DLF = <(D∗LF) equal to the flexural rigidity of a panel with rigidly interconnected
structural components 1 and 3. For high frequencies instead, the wavenumber tends
to infinity, and X tends to zero: the equivalent rigidity DHF = <(D∗HF) is simply
the sum of the flexural rigidities of the structural components (as if they were not
interconnected). These expressions are given here:

Deq,HF =
E1h

3
1

12(1− ν21)
+

E3h
3
3

12(1− ν23)
(A.9)

Deq,LF = Deq,HF(1 + Y ) =

(
E1h

3
1

12(1− ν21)
+

E3h
3
3

12(1− ν23)

)
(1 + Y ) (A.10)

Similarly to previous paragraph, and assuming small loss factors η1 and η3, the
asymptotic values of the equivalent loss factor of the three-layer (ηeq = =

(
D∗

eq
)
/<

(
D∗

eq
))

can be derived:

ηeq,HF ≈
η1
E1h

3
1

1− ν21
+ η3

E3h
3
3

1− ν23
E1h

3
1

1− ν21
+

E3h
3
3

1− ν23

(A.11)

ηeq,LF ≈ ηeq,HF +
=(Y ∗)

1 + <(Y ∗)
) (A.12)

Finally, note that the maximum value of ηeq is obtained for an optimal value of the
shear parameter X depending only on the geometrical parameter Y and the loss
factor of the layer 2. This optimum shearing of the dissipative core layer occurs
under model of RKU for [41]:

Xopt =
1√

(1 + Y )(1 + η22)
(A.13)

B The Lamb waves model

The Lamb waves model, originally due to H. Lamb, 1917 [H. Lamb, On waves in an
elastic plate, Proc. Roy. Soc. (London), Ser. A, 93:1124, 1917], is well described in
a text book by Viktorov [22]. The Lamb waves model is used in this paper to model
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a three-layered plate to compute the dispersion relationships of the plate. Each layer
is modeled individually by means of the Lamb waves theory for infinite plates. The
three-layered plate is considered to be in vacuum. The coordinate system (x, z) and
thicknesses of each layer, hi, i = 1...3 ,are shown in Figure B.1.

h1

h2

h3

xy

z

Figure B.1. Two-dimensional multilayer plate configuration.

The Lamb waves are described by two potentials φi and ψi for the longitudinal and
transversal wave components, respectively, for each layer i, i = 1...3, satisfying the
wave equations

∂2φi
∂x2

+
∂2φi
∂z2

+ k2L,iφ = 0 and
∂2ψi
∂x2

+
∂2ψi
∂z2

+ k2T,iψ = 0 (B.1)

where kL,i = ω/cL,i and kT,i = ω/cT,i are the longitudinal and transverse wave
numbers of each plate i, respectively, and where cL,i =

√
(λi + 2µi)/ρi and cT,i =√

µi/ρi are the longitudinal and transverse propagation speeds of each plate i, re-
spectively. Furthermore, λi and µi are the Lamé parameters of layer i, and ρi is
the density of layer i, and ω is the angular frequency. The displacement field of
the particle displacements ux,i and uz,i in x and z directions, respectively, may be
represented in terms of the potentials as

ux,i =
∂φi
∂x
− ∂ψi

∂z
and uz,i =

∂φi
∂z

+
∂ψi
∂x

(B.2)

The mechanical stresses in each layer i can be represented in terms of the displace-
ments as

σxx,i = ρi

{(
c2L,i − 2c2T,i

) ∂uz,i
∂z

+ c2L,i
∂ux,i
∂x

}
(B.3)

σzz,i = ρi

{(
c2L,i − 2c2T,i

) ∂ux,i
∂x

+ c2L,i
∂uz,i
∂z

}
(B.4)

σzx,i = ρic
2
T,i

(
∂ux,i
∂z

+
∂uz,i
∂x

)
(B.5)

Solutions of the wave equation B.1 for each layer are seeked using the following
potentials
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φi =
(
Aie−(k

2−ω2/c2L,i)z +Bie(k
2−ω2/c2L,i)z

)
ej(ωt−kx) (B.6)

ψi =
(
Cie−(k

2−ω2/c2T,i)z +Die(k
2−ω2/c2T,i)z

)
ej(ωt−kx) (B.7)

where k is the wavenumber of the mechanical wave running through the multi-
layer plate and Ai, Bi, Ci, Di, i = 1...3 are the unknown amplitudes of the wave
components. A system of equations can be set up using the following boundary
conditions.

Continuity of displacements at the interfaces of the layers:

ux,1|z=h1 = uz,2|z=h1 and ux,2|z=h1+h2 = uz,3|z=h1+h2 (B.8)
uz,1|z=h1 = uz,2|z=h1 and uz,2|z=h1+h2 = uz,3|z=h1+h2 (B.9)

Continuity of stresses at the interfaces of the layers:

σzz,1|z=h1 = σzz,2|z=h1 and σzz,2|z=h1+h2 = σzz,3|z=h1+h2 (B.10)
σzx,1|z=h1 = σzz,2|z=h1 and σzx,2|z=h1+h2 = σzz,3|z=h1+h2 (B.11)

Stress in normal direction is zero at the outer surfaces of the multilayer (the multi-
layer plate is assumed to be in vacuum):

σzz,1|z=0 = 0 and σzz,3|z=h1+h2+h3 = 0 (B.12)
σzx,1|z=0 = 0 and σzx,3|z=h1+h2+h3 = 0 (B.13)

For a three-layered plate a system of 3 × 4 = 12 equations and 12 unknowns am-
plitudes can be set up. In order to find non-trivial solutions the determinant of the
resulting matrix is set to zero. The search for vanishing determinant is done numer-
ically, for each angular frequency ω, resulting in a frequency dependent dispersion
relation between k and ω.
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