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Abstract

We present the derivation of a nonlinear weakly dispersive formula to recon-

struct, from pressure measurements, the surface elevation of nonlinear waves

propagating in shallow water. The formula is simple and easy to use as it is

local in time and only involves first and second order time derivatives of the

measured pressure. This novel approach is evaluated on laboratory and field

data of shoaling waves near the breaking point. Unlike linear methods, the

nonlinear formula is able to reproduce at the individual wave scale the peaked

and skewed shape of nonlinear waves close to the breaking point. Improvements

in the frequency domain are also observed as the new method is able to accu-

rately predict surface wave elevation spectra over four harmonics. The nonlinear

weakly dispersive formula derived in this paper represents an economic and easy
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to use alternative to direct wave elevation measurement methods (e.g. acoustic

surface tracking and LiDAR scanning)..

Keywords: surface wave, measurements, nonlinear, weakly dispersive,

nonhydrostatic, shallow water, LiDAR, Acoustic Surface Tracking

1. Introduction

Near-bottom-mounted pressure sensors have long been used for measuring

surface wave in the nearshore. However, the relationship between bottom pres-

sure and sea surface elevation is not straightforward. This relationship is com-

monly assumed to be given by linear wave theory, the so-called transfer function5

method (e.g. Bishop and Donelan [4] and Tsai et al. [28]). The validity of this

linear reconstruction has been extensively studied in field conditions for waves

propagating in relatively shallow water [14, 11, 7, 12]. Although discrepancies

were greater close to the break point, Guza and Thornton [12] found a good

agreement in and outside the surf zone between sea surface elevation spectra10

derived from pressure data and from direct elevation measurements. Errors in

both total variance and energy density in a particular frequency band were less

than 20%. In a more controlled environment, Bishop and Donelan [4] estimated

that using linear wave theory was leading to error of about 5% of the wave

height; uncertainty in the deployment of in situ instruments and the data it-15

self was thought to be responsible for the varying error estimates found in the

literature. Following these seminal studies, the linear reconstruction method

has become the main approach for characterizing shallow-water surface-wave

elevation in field conditions.

This approach is commonly used for determining bulk wave parameters such20

as the significant wave height Hs, but it has also served as a basis for studying

nonlinear wave interactions in the field (e.g. Elgar and Guza [9], Elgar et al.

[10], Senechal et al. [26], Henderson et al. [13]). However, we know that wave

nonlinearities can be strong in the shoaling zone, especially in the region close

to the onset of breaking, and thus the use of a linear theory to reconstruct25
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wave elevation can be questioned. For instance, Bonneton and Lannes [6] and

Martins et al. [19] have shown that the linear reconstruction fails to describe

the peaky and skewed shape of nonlinear waves, and lead to an underestimation

of the individual wave height by up to 30% just prior the breaking point [19].

Such measurement errors are problematic for many coastal applications, such as30

studies on wave overtopping and submersion which require accurate measure-

ments of the highest wave crests. Furthermore, a correct description of wave

asymmetry and skewness is of paramount importance for understanding sedi-

ment dynamics (e.g. Dubarbier et al. [8]). Finally, an accurate description of

the wave elevation field is also crucial for the validation of the new generation of35

fully-nonlinear phase-resolving wave models (e.g. Zijlema et al. [30], Bonneton

et al. [5] or Shi et al. [27]).

Even if some methods are now available for a direct measurement of the

surface elevation, such as acoustic surface tracking [3] or LiDAR scanning [18],

pressures sensors remain a very useful tool for coastal wave applications. In-40

deed, they are cheap, robust, not sensitive to air bubbles or turbidity, and easy

to deploy since they do not require the presence of nearshore infrastructure, as

it can be the case for LiDAR technology [e.g., see 21]. Bonneton and Lannes

[6] recently derived a method which allows a fully dispersive nonlinear recon-

struction of the surface elevation from pressure measurements. Comparisons45

with numerical Euler solutions and laboratory data showed that this nonlinear

method provides much better results than the classical linear approach. It gives

an accurate prediction of the maximum elevation and, contrary to the nonlin-

ear heuristic method proposed by Oliveras et al. [24], it accurately reproduces

the skewed shape of nonlinear dispersive wave fields. However, this method re-50

quires, like the classical linear transfer approach [4, 28] and the heuristic method

[24, 29], the use of a frequency cutoff which becomes a limiting factor for the

reconstruction of strongly nonlinear waves. In the present paper we derive a

nonlinear weakly-dispersive method which allows an accurate reconstruction of

nonlinear waves in shallow water, especially just prior to breaking.55
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Figure 1: Sketch of the Cartesian coordinate system: x is the horizontal axis along which

waves propagate and z points vertically upwards, with z = 0 being the mean water level and

z = −h0 the distance to the bottom. The wave amplitude is noted a and δm represents the

distance to the bottom at which the pressure is measured.

2. Nonlinear weakly-dispersive reconstruction formula

In this section we derive a formula working in the time domain, which allows

the elevation reconstruction of nonlinear shallow water waves from pressure

measurements. This formula is an approximate expression, in the shallow water

regime, of the fully dispersive formula derived in [6]. The derivation presented60

in this section is much simpler and straightforward compared to the general

fully dispersive derivation.

We consider that the wave field is locally close to a two-dimensional wave

field. We choose Cartesian coordinates (x, z), where x is the horizontal axis

along which waves propagate and z the upward vertical coordinate. We denote65

z = ζ(x, t) the elevation of the free surface above the still water level z = 0,

and by z = −h0 the constant bottom elevation (see Figure 1). The water depth

h can be expressed as h(x, t) = h0 + ζ(x, t). The pressure Pm is measured

at a distance δm above the bottom, Pm = P|z=−h0+δm
, where P (x, z, t) is the

pressure field.70

The fluid motion is governed by the free-surface incompressible irrotational

Euler equations; if the flow is irrotational, as it is assumed here, it is conve-
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nient to work with a velocity potential instead of the velocity field, and with

Bernoulli’s equation instead of Euler equations. If φ denotes the velocity poten-

tial, these equations can be recast in the form:

∂2xφ+ ∂2zφ = 0

∂tφ+ gz +
1

2
|∂xφ|2 + 1

2
|∂zφ|2 = −1

ρ
(P − Patm),

where ρ is the water density, g the gravity and Patm the (constant) atmospheric

pressure. These equations are complemented by boundary conditions. At the

bottom we have

∂zφ = 0 on z = −h0; (1)

at the surface, we have the classical kinematic equation on ζ,

∂tζ = ∂zφ− ∂xζ · ∂xφ on z = ζ, (2)

and the pressure continuity,

P = Patm on z = ζ. (3)

Three main length scales are involved in this problem: the characteristic

horizontal length L (L = 1/k, where k is the typical wave number), the ampli-

tude a of the wave, and the depth at rest h0. The problem is then controlled

by two dimensionless parameters:

ε =
a

h0
, μ =

h20
L2

= (h0k)
2

where ε is a nonlinearity parameter while μ is the shallowness parameter. The

different variables and functions involved in this problem can be put in dimen-

sionless form using the relations

x′ =
x

L
, z′ =

z

h0
, δ′m =

δm
h0
, t′ =

√
gh0
L

t,

ζ′ =
ζ

a
, h′ =

h

h0
= 1 + εζ′, φ′ =

h0

aL
√
gh0

φ, P ′ =
P

ρgh0
,

where the primes are used to denote dimensionless quantities.

Omitting the primes for the sake of clarity, the vertical momentum equation, in
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dimensionless form, writes

εΓ = −1− ∂zP,

where Γ = ∂tw + εu∂xw + ε
μw∂zw is the vertical acceleration, u = ∂xφ the

horizontal velocity and w = ∂zφ the vertical velocity. Integrating this equation

over z we get

ζ = ζH −
∫ εζ

−1+δm

Γdz (4)

where ζH is the dimensionless hydrostatic reconstruction

ζH =
1

ε
(Pm − Patm − 1 + δm). (5)

The formula (4) is exact but involves quantities that cannot be expressed in

terms of the measured pressure Pm. Our goal is to derive approximate formulas75

that can be expressed as a function of Pm, or equivalently ζH. Following [16],

we shall perform an asymptotic expansion of (4) in terms of the shallowness

parameter μ.

The velocity potential φ is given at second order by

φ = ψ − μ

2

(
(z + 1)2 − h2

)
∂2xψ +O(μ2), (6)

with ψ = φ|z=εζ
. From this equation we can deduce that

u = U +O(μ)

w = −μ(z + 1)∂xU +O(μ2),

where U is the depth-averaged horizontal velocity. Using these relations Eq. (4)

becomes

ζ = ζH − μ

2
(h2 − δ2m)

(
∂2xζ + 2ε

(
∂xU

)2)
+O(μ2). (7)

From the linearized water waves equations in shallow water, we know that ∂2t ζ−
∂2xζ = O(ε, μ), and the above formula therefore yields

∂2xζH = ∂2t ζH +O(ε, μ). (8)

For weakly nonlinear waves (ε = O(μ)) we deduce a linear shallow water

reconstruction formula from (7) and (8),

ζSL = ζH − μ

2
(1− δ2m)∂2t ζH, (9)
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which is valid up to terms of order O(εμ, μ2).80

For moderately nonlinear waves (ε = O(μ)1/2) the O(εμ) terms cannot be

neglected, and we therefore seek a higher order correction of (9) under the form

ζSNL = ζSL + εμC,

where the corrector term C is chosen in such a way that Eq. (7) is satisfied up

to O(μ2) terms if ζ is replaced by ζSNL. This yields the condition

−μ
2
(1− δ2m)(∂2t ζH − ∂2xζH) + εμC = −εμ

(
ζ∂2xζ + (1 − δ2m)

(
∂xU

)2)
+O(μ2)

From the mass conservation equation ∂tζ + ∂x(hU) = 0, we deduce that ∂xU =

−∂tζ +O(ε) which, together with (8) yields

∂2t ζH − ∂2xζH =
2ε

1− δ2m

(
C + ∂t

(
ζ∂tζ

)− δ2m
(
∂tζ

)2)
+O(μ).

The O(ε) terms gathers the quadratic interactions of the wave field. Since

at order O(ε, μ), the waves are governed by a linear wave equation with speed

1, these quadratic terms are either the product of co-propagating or counter-

propagating waves and therefore of the form

∂2t ζH − ∂2xζH = ε
(
F (x− t) +G(x+ t) + F(x− t)G(x + t)

)
+O(μ),

for some functions F and G that depend quadratically on ζ and some functions

F and G that depend linearly on ζ.

The only possibility that does not create secular growth for ζH is if the right-

hand-side is equal to zero (see for instance [15] or Lemma 7.20 in [17]). This

corresponds to

C = −∂t
(
ζ∂tζ

)
+ δ2m

(
∂tζ

)2
.

Since ζ = ζSL+O(μ), we therefore obtain the following nonlinear shallow water

reconstruction formula

ζSNL = ζSL − εμ
(
∂t
(
ζSL∂tζSL

)− δ2m
(
∂tζSL

)2)
, (10)

which is valid up to O(μ2) terms for moderately nonlinear waves. A generaliza-

tion of this formula in presence of a background current is given in [6].
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The reconstruction formula (10) has been derived under the assumption of a

locally flat bottom. We can easily extend this approach by taking into account

a slowly varying bathymetry. The bottom is given by z = −h0 + b(x), where

b is a slowly varying function of x. The nonlinear reconstruction becomes in

dimensionless form

ζ = ζSNL +
√
μσb∂xb∂xζ +O(μ2, μσb),

where σb is the characteristic slope of the bathymetry at the measurement loca-

tion. For unidirectional traveling waves the nonlinear reconstruction simplifies

to the form which follows

ζ = ζSNL −√
μσb∂xb∂tζSNL +O(μ2, μσb).

The parameter
√
μσb being very small for many coastal applications, as those85

discussed in section 3, we neglect throughout the paper the bottom contribution.

In variables with dimension the reconstruction formulas (5), (9) and (10)

become

ζH =
Pm − Patm

ρg
− h0 + δm (11)

ζSL = ζH − h0
2g

(1− (δm/h0)
2)∂2t ζH (12)

ζSNL = ζSL − 1

g

(
∂t
(
ζSL∂tζSL

)− (δm/h0)
2
(
∂tζSL

)2)
. (13)

Contrary to fully dispersive reconstructions (see [6]) these formulas can be

applied locally in time and do not necessarily require Fourier transforms (see90

Appendix A). The ability of these formulas to reconstruct shallow water waves

was first assessed by [6] from comparison with solitary wave solutions computed

from the Euler equations. In the next section the validation is extended to

nonlinear shallow water waves propagating on gently sloping bottoms.

3. Applications to laboratory and field data95

To assess the ability of the formulas derived in the preceding section we use

laboratory and field data corresponding to weakly dispersive waves (μ ≤ 0.28)
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propagating in the shoaling zone close to the breaking point. Such test cases,

which are associated with strong nonlinearities (i.e. large ε), represent highly

demanding cases for surface wave reconstruction.100

The reconstructed elevation is obtained from pressure signals measured un-

der waves and then compared to direct elevation measurements. The applica-

tion of formulas (12) and (13) requires to compute first and second order time

derivatives of the measured pressure Pm, or equivalently ζH. To compute these

derivatives, it is recommended to filter the measurement noise, either using a105

local filter (e.g. moving average filter) or a spectral filter. In the present study

we use a low-pass spectral filter with a cut-off frequency fc. Linear and nonlin-

ear fully dispersive reconstructions (e.g. [4, 12, 6, 29]) also require introducing

a cut-off frequency. However, it is worth noting that this fully-dispersive cut-off

is much more restrictive (i.e. much lower fc used) than that required for the110

present weakly dispersive reconstructions. Indeed, the frequency cut-off used

in fully dispersive reconstructions is not fixed by the level of noise in the mea-

surements but by the level of wave nonlinearity and the error originating from

the use of the linear dispersion relation for the estimation of the nonhydrostatic

correction factor cosh(kh0).115

In order to accurately compute the time derivatives involved in equations

(12) and (13) we have chosen to use a Fourier transform method. The use

of a local time discretization approach for solving the time derivatives is also

discussed in appendix A. For the shallow water applications presented in this

paper, the shallow water linear reconstruction (12) gives performance at least120

as good as those given by the fully dispersive linear reconstruction (the classical

so-called transfer function formula, see [4]). For that reason, we do not present

linear transfer function reconstruction in the following validations.

3.1. Monochromatic waves

We first use experimental data from the A7-mono test obtained during the125

BARDEXII set of experiments [22], performed at prototype-scale in the Delta

flume, Vollenhove, The Netherlands. Martins et al. [19] used pressure and sur-
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face elevation data obtained from a LiDAR scanner from this test to validate the

simulated wave transformation across the wave flume. Although the datasets

are described in Martins et al. [19], some basic information are reminded here.130

Second-order monochromatic Stokes waves (T = 12.1 s, H = 0.68m) were

generated in the experimental flume. The pressure was measured just before

the break point, with a sampling frequency of 20Hz. The pressure sensor was

situated at a distance δm = 0.33m above the bottom. For this wave test, the still

water depth was h0 = 1.17m, the characteristic bottom slope was σb = 0.041135

and the values of the dimensionless parameters were μ = 0.032 and ε = 0.65. It

is worth noting that the pressure data was obtained close to the breaking point

[19], where nonlinearities are the strongest and close to a crest antinode, due to

the strong reflection experienced during the test.

The LiDAR scanner consisted of a LMS511 SiCK eye-safe (λ = 905nm)140

2D scanner deployed 3.9m above the still water level, a meter landward of the

pressure transducer. Unlike the pressure transducer, the scanner directly detects

the surface by capturing back the light beam scattered at the surface by the

presence of ripples/roughness or air bubbles in case of breaking. The LiDAR

data were collected at 37.5Hz, and only the data at the pressure transducer145

location is used. For this specific experiment the LiDAR measurement accuracy

was about 0.02m. The reader is referred to Martins et al. [18, 19] for more

details on the scanner data processing.

Figure 2 presents a comparison, over four wave periods, between recon-

structed wave elevation and direct LiDAR measurements. We can see that in

this shallow water regime the linear reconstruction (12) brings little improve-

ment in comparison with the hydrostatic formula (11) and strongly underesti-

mates the crest elevation. A wave by wave analysis shows that the root mean

square (RMS) error for the wave height estimated from the linear reconstruction

reaches 28% (see also [19]). By contrast, the nonlinear formula (13) gives much

better results. In particular, we can see in Figure 3 that the peaked and skewed

shape of the wave is much better described by the nonlinear formulation Eq.

(13) than by the linear one Eq. (12). In order to quantify the wave asymmetry
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ζH, eq. (11) ζSL, eq. (12) ζSNL, eq. (13) ζLiDAR

Sk 0.98 1.12 1.46 1.45

Sk error 32.2 % 22.5 % 0.7 %

Table 1: Sea surface skewness. Comparison between reconstructed elevation and direct LiDAR

elevation measurements.

with respect to the horizontal axis we have computed the skewness parameter:

Sk =
〈(ζ − 〈ζ〉)3〉

〈(ζ − 〈ζ〉)2〉3/2 ,

where 〈.〉 is the time-averaging operator. Table 1 shows that the linear recon-

struction strongly underestimates, by 22.5%, the wave skewness. By contrast150

the skewness is very well reproduced by the nonlinear reconstruction with an

error, for this specific test case, smaller than 1%. The nonlinear formula also

improves the evaluation of the wave crest elevation (RMS error of 17%), but

less significantly compared with the skewness.

The skewness parameter is related to the velocity skewness at the bed (see155

e.g. Rocha et al. [25]) which, along with the wave asymmetry, can be used to

compute the sediment transport rate (e.g. Abreu et al. [1]). The wave high or-

der harmonics also contribute to the acceleration effects that can promote bed

motion (e.g. Berni et al. [2]). This underlines the need to accurately character-

ize wave non-linearities for predicting sediment transport and morphodynamics160

(e.g. Dubarbier et al. [8]).

3.2. Bichromatic waves

In this section, the ability of our shallow water formulas to reconstruct non-

linear waves is assessed with respect to a bichromatic wave field propagating

over a gently sloping (1/20) movable bed. The small-scale experimental set-up165

is described in Michallet et al. [23] and references therein. The two frequencies

composing the wave-board motion were f1 = 0.5515 Hz and f2 = 0.6250 Hz,

and the amplitude of the two wave components were identical with a value of

0.03 m. Water elevation and bottom pressure were synchronously measured (at

11
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Figure 2: Surface elevation reconstruction of monochromatic waves. A7-mono test obtained

during BARDEXII, h0 = 1.17 m, Tp = 12.1 s and δm = 0.33 m. Dimensionless cut-off fre-

quency Tpfc = 20. black line: direct LiDAR measurement of ζ ; dashed black line: hydrostatic

reconstruction ζH, Eq. (11); green line: ζSL, Eq. (12); magenta line: ζSNL, Eq. (13).
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Figure 3: Surface elevation reconstruction of monochromatic waves. Zoom over one period

of A7-mono test obtained during BARDEXII, h0 = 1.17 m, Tp = 12.1 s and δm = 0.33

m. Dimensionless cut-off frequency Tpfc = 20. black line: direct LiDAR measurement of ζ ;

dashed black line: hydrostatic reconstruction ζH, Eq. (11); green line: ζSL, Eq. (12); magenta

line: ζSNL, Eq. (13).
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128 Hz) in the shoaling zone, just prior to wave breaking. The surface eleva-170

tion was monitored with a capacitive wave gauge. Its accuracy was estimated

to be of approximately 1 mm from comparison with high-speed video record-

ings. The pressure sensor was located at the bed. The still water depth at the

measurement location was h0 = 0.185 m, the characteristic bottom slope was

σb = 0.08 and the values of the dimensionless parameters were μ = 0.28 and,175

for the highest wave of the group, ε = 0.37.

Figure 4 presents a comparison between shallow water reconstructions and

direct elevation measurements. The nonlinear formula (13) significantly im-

proves the elevation reconstruction compared with the linear formula (12), es-

pecially for the highest waves. The prediction is slightly poorer at the wave180

crests in the second half of the wave packet. It was observed that the erosion

depth and the mobile sediment layer thickness were enhanced after the high-

est wave. Further investigations would be needed to confirm how the sediment

dynamics might contribute to damp high frequencies at the sensor location.

Figure 5 shows a comparison between the measured surface elevation energy185

density spectrum and the spectra obtained from reconstruction formulas. We

can see that the linear (12) and nonlinear (13) reconstructions properly de-

scribe the elevation energy around the first (i.e. fundamental) harmonic. For

higher harmonics, the agreement between the linear reconstruction (12) and di-

rect measurements significantly decreases. Figure 5 shows that the linear theory190

underestimates the energy around the 4th harmonic by more than one order of

magnitude. By contrast, our nonlinear formula (13) accurately predicts the wave

spectrum over the four harmonics. This result demonstrates that a nonlinear

approach is essential for nonlinear wave reconstruction.

3.3. Field data195

The data was collected during a field campaign performed on April 13-14

2017, at La Salie beach, situated on the southern part of the French Atlantic

coast. Several instruments were deployed at low tide to characterize the shal-

low water wave field: a stereophotogrammetry system, a Nortek Signature 1000

14
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Figure 4: Surface elevation reconstruction of bichromatic waves, f1 = 0.5515 Hz, f2 = 0.6250

Hz (Tm =
(

f1+f2
2

)−1
), h0 = 0.185 m and δm = 0. Dimensionless cut-off frequency Tmfc =

4.5. black line: direct measurement of ζ; dashed black line: hydrostatic reconstruction ζH,

Eq. (11); green line: ζSL, Eq. (12); magenta line: ζSNL, Eq. (13).
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Figure 5: Surface elevation energy density spectra, E(f), as a function of the dimensionless

frequency Tmf , for bichromatic waves, f1 = 0.5515 Hz, f2 = 0.6250 Hz (Tm =
(

f1+f2
2

)−1
),

h0 = 0.185 m and δm = 0. Dimensionless cut-off frequency Tmfc = 4.5. black line: direct

measurement of ζ; grey line: hydrostatic reconstruction ζH, Eq. (11); green line: ζSL, Eq.

(12); magenta line: ζSNL, Eq. (13).
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kHz current profiler, a Nortek Aquadopp current meter and pressure transducers200

(Ocean Sensor Systems). At the deployment location the characteristic bottom

slope was σb = 0.015. In the present paper we focus only on one 10-min data set

(see Figure 6) corresponding to nonlinear shallow water waves. Together with

bottom pressure measurements (10 Hz sampling rate), a direct measurement of

the surface elevation was obtained from the vertical beam of the Signature 1000205

kHz (8 Hz sampling rate). The video recording shows that the highest waves

were breaking just shoreward of the sensors. Martins et al. [20] recently com-

pared surface elevation measurements from LiDAR and a Signature 1000 kHz

in the Garonne River during a non-breaking undular tidal bore event. Despite

the high-turbidity environment, the acoustic sensor performed extremely well210

in tracking the free surface and estimating individual wave heights (RMS error

of 0.05m).

The wave conditions at the water depth h̄ = 2.25m were characterized by

a significant wave height of 0.70m, with a peak period of 11.1 s (μ = 0.075);

large-amplitude wave groups were also observed (see Figure 6). The maximum215

wave height in these wave groups is 1.4 m, which corresponds to a nonlinearity

parameter ε of 0.31. Figure 7 shows that the linear reconstruction (12) gives

good results for the lowest waves of the wave group but strongly underestimates

the elevation at the crest of the highest waves. On the other hand, our nonlinear

formula (13) gives excellent results even for the highest waves. A zoom around220

the highest wave of the wave group observed in Figure 7 is presented in Figure

8. We can see in this figure that the linear reconstruction fails to predict the

maximum elevation and above all the skewed shape of this nonlinear wave.

By contrast, these wave properties are very well reproduced by the nonlinear

reconstruction (13). The measured surface elevation energy density spectrum225

and the spectra obtained from reconstruction formulas are compared in Figure

9. In agreement with observations for laboratory bichromatic waves (see Figure

5) we can see that a nonlinear method is required to properly reconstruct the

surface elevation spectrum, especially for the highest harmonics.
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Figure 6: Reconstruction of water depth time series of waves observed in the field. Cut-off

frequency fc = 1 Hz, h̄ = 2.25m, δm = 0.69m. dot: direct acoustic measurement of h;

magenta line: hSNL = h̄+ ζSNL, Eq. (13).
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Figure 7: Reconstruction of water depth time series of a group of waves observed in the field.

Cut-off frequency fc = 1 Hz, h̄ = 2.25m, δm = 0.69m. dot: direct acoustic measurement of

h ; green line: hSL = h̄+ ζSL, Eq. (12); magenta line: hSNL = h̄+ ζSNL, Eq. (13).
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Figure 8: Reconstruction of the highest wave observed in a wave group. Cut-off frequency

fc = 1 Hz, h̄ = 2.25m, δm = 0.69m. dot: direct acoustic measurement of h ; dashed black

line: hydrostatic reconstruction ζH, Eq. (11); green line: hSL = h̄ + ζSL, Eq. (12); magenta

line: hSNL = h̄+ ζSNL, Eq. (13).
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Figure 9: Surface elevation energy density spectra, E(f), of waves observed in the field. The

spectra have been smoothed with a moving average over a window of 1/60 Hz. black line:

direct measurement of ζ; grey line: hydrostatic reconstruction ζH, Eq. (11); green line: ζSL,

Eq. (12); magenta line: ζSNL, Eq. (13).
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4. Conclusion230

We have derived a nonlinear weakly dispersive formula (Eq. (13)) to recon-

struct, from pressure measurements, the surface elevation of nonlinear waves

propagating in shallow water. This simple and easy to use formula is local in

time, only involving first and second order time derivatives of the measured pres-

sure Pm, or equivalently ζH. Contrary to fully dispersive reconstruction formulas235

it does not necessarily require Fourier transform. The ability of this formula to

reconstruct surface elevation has been assessed from laboratory and field exper-

iments of weakly dispersive waves (μ ≤ 0.28) propagating in the shoaling zone

just prior to breaking. Despite the strong nonlinearities naturally found close to

the breaking point, and even in the presence of strong wave reflection (Section240

3.1), the novel method was found to perform very well.

We have shown that the nonlinear formula (13) provides much better re-

constructed surface elevation than linear methods. Our nonlinear reconstruc-

tion is able to accurately reproduce the peaked and skewed shape of nonlinear

waves prior to breaking. Although the linear reconstruction method properly245

describes the surface elevation energy density around the fundamental harmonic,

it strongly underestimates the energy density for the higher harmonics. In con-

trast, the nonlinear weakly dispersive reconstruction (13) accurately predicts

the surface wave elevation spectrum over four harmonics. This demonstrates

that a nonlinear approach is essential for nonlinear wave reconstruction in the250

shoaling zone and especially near the breaking point. However, the derivation

of our nonlinear formula (Eq. (13)) is based on a shallowness assumption. For

nonlinear waves propagating in intermediate water depth a fully dispersive non-

linear reconstruction is required (see Bonneton and Lannes [6]).

An accurate description of surface wave elevation is crucial for many coastal255

applications, such as wave-induced sediment transport or overtopping and sub-

mersion associated with extreme waves. In this context, the application of

nonlinear reconstruction methods on pressure data represent an economic and

easy to use alternative to direct wave elevation measurement methods, such as

22



acoustic surface tracking or LiDAR scanning that can be hard to deploy in some260

circumstances.
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Appendix A. Local time discretization method for the surface recon-

struction275

In contrast to fully dispersive reconstructions, the weakly dispersive methods

derived in the present paper are local in time and thus do not necessarily require

the use of Fourier transforms. However, to accurately compute time derivatives

and to easily filter out the measurement noise we have used Fourier transforms

in this paper (see section 3). When the measured pressure time series is too280

short for a Fourier analysis a local time discretization method is required. The

time derivatives involved in equations (12) and (13) can be computed, at order

O(Δt2), as follows

∂tα|n =
αn+1 − αn−1

2Δt

∂2t α|n =
αn+1 − 2αn + αn−1

Δt2
(A.1)

∂t
(
α∂tα

)|n =
αn+1(αn+2 − αn)− αn−1(αn − αn−2)

4Δt2
,
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where αn denotes the discrete value of a flow variable α(t) at t = nΔt and

Δt is the measurement time step. This method properly reconstructs the wave285

field (see figure A.10), except that the measurement noise induces some spurious

oscillations (see green line). This drawback is easily overcome (see blue line in

figure A.10) by applying a moving average filter to the pressure measurements.

The local method gives similar results than the Fourier one, except at the wave

crest where the Fourier method is more accurate.290
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Figure A.10: Reconstruction of waves observed at La Salie beach (see section 3.3). h̄ =

2.25m, δm = 0.69m. dot: direct acoustic measurement of h; dashed black line: hydrostatic

reconstruction ζH, Eq. (11); magenta line: hSNL = h̄ + ζSNL, Eq. (13) computed with a

Fourier transform; green line: hSNL = h̄ + ζSNL, Eq. (13) computed with the local method

(A.1), without measurement noise filtering; blue line: hSNL = h̄ + ζSNL, Eq. (13) computed

with the local method (A.1),with a moving average filter of ζH over 0.5 s.
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