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A third Strang lemma for schemes in fully discrete formulation

Daniele A. Di Pietro∗ Jérôme Droniou†

April 29, 2018

Abstract

In this work, we present an abstract error analysis framework for the approximation of linear
partial differential equation (PDE) problems in weak formulation. We consider approximation
methods in fully discrete formulation, where the discrete and continuous spaces are possibly
not embedded in a common space. A proper notion of consistency is designed, and, under a
classical inf–sup condition, it is shown to bound the approximation error. This error estimate
result is in the spirit of Strang’s first and second lemmas, but applicable in situations not covered
by these lemmas (because of a fully discrete approximation space). An improved estimate is also
established in a weaker norm, using the Aubin–Nitsche trick.

We then apply these abstract estimates to an anisotropic heterogeneous diffusion model and
two classical families of schemes for this model: Virtual Element and Finite Volume methods.
For each of these methods, we show that the abstract results yield new error estimates with a
precise and mild dependency on the local anisotropy ratio. A key intermediate step to derive
such estimates for Virtual Element Methods is proving optimal approximation properties of the
oblique elliptic projector in weighted Sobolev seminorms. This is a result whose interest goes
beyond the specific model and methods considered here. We also obtain, to our knowledge,
the first clear notion of consistency for Finite Volume methods, which leads to a generic error
estimate involving the fluxes and valid for a wide range of Finite Volume schemes. An important
application is the first error estimate for Multi-Point Flux Approximation L and G methods.

Keywords. Strang lemma, Consistency, Error estimate, Aubin-Nitsche trick, Virtual Element
Methods, Finite Volume methods, oblique elliptic projector.

AMS subject classification. 65N08, 65N12, 65N15, 65N30.

1 Introduction

The second Strang lemma [3838] is probably the most famous error estimate result for Finite Element
Methods, and is used as a starting point for the analysis of non-conforming methods in many reference
textbooks; see, e.g., [1313, 3232]. In recent years, it has been generalised to novel technologies including,
e.g., Discontinuous Galerkin (DG) [2020, Section 1.3] and Virtual Element methods (VEM) [1212,
Theorem 2]. In a nutshell, given Hilbert spaces V and Vh, a bilinear form a(·, ·) (resp. ah(·, ·)) and
a linear form `(·) (resp. `h(·)) defined on V (resp. Vh), and considering the continuous and discrete
problems

Find u ∈ V such that a(u, v) = `(v) ∀v ∈ V

∗Institut Montpelliérain Alexander Grothendieck, Univ. Montpellier, CNRS (France),
daniele.di-pietro@umontpellier.frdaniele.di-pietro@umontpellier.fr

†School of Mathematical Sciences, Monash University, Melbourne (Australia), jerome.droniou@monash.edujerome.droniou@monash.edu

1

mailto:daniele.di-pietro@umontpellier.fr
mailto:jerome.droniou@monash.edu


and
Find uh ∈ Vh such that ah(uh, vh) = `h(vh) ∀vh ∈ Vh, (1)

the second Strang lemma provides, under boundedness and inf–sup conditions on ah, an bound on a
proper norm of u − uh in terms of quantities measuring the approximation properties of V by Vh and
the consistency of the discrete problem.

This result has two major constraints:

(i) V and Vh must be subspaces of a common space of functions, to ensure that the sum V + Vh is
well defined,

(ii) ah(·, ·) must be extended to V + Vh, such that its restriction to V is consistent with a(·, ·) in an
appropriate way.

The first constraint is not an issue for Finite Element, DG methods or VEM, whose natural un-
knowns are functions, but it is not satisfed by a number of other methods such as Hybrid-High
Order [2121], Mimetic Finite Differences [88], cell- and face-centred Finite Volume methods (such as
Hybrid-Mimetic Mixed methods [2525, 2828, 3333]), etc. Even though, in some of these methods, some
components of vectors in Vh represent functions on the mesh cells, other components can represent
unknowns/functions on the mesh faces, at the mesh vertices, etc.

Even for methods that clearly satisfy (i), the second constraint can raise some challenges. For
example, in DG methods, the extension of ah can often be made only in V∗ + Vh, where V∗ is a strict
subspace of V ; see, e.g., [2020, Section 1.3.3]. Possible ways of circumventing the difficulties linked
to the insufficient regularity of the exact solution have been proposed, e.g., in [3535] (trimmed error
estimates) and, more recently, in [3131] (mollified error estimates). Other difficulties may be inherent
to the approach used to construct the discretisation. In VEM, the discrete bilinear form ah(·, ·)
often contains contributions defined in an algebraic way that make its extension to V not obvious;
the Strang-like estimate of [1212] circumvents this question of extension of ah(·, ·), at the expense of
additional terms, by extending instead the continuous form a(·, ·) to V +Vh. Another example can be
found in the family of cell-centered Finite Volume methods [33, 2424, 3030, 3434]: even if the unknowns can
be considered, in these methods, as piecewise constant functions on the mesh, and their formulation
can be written as (11), the resulting bilinear form ah(·, ·) is written in a fully discrete form that makes
its extension to a space of functions, and the subsequent analysis, more involved.

In this work, we propose a new error analysis framework, for problems written in weak (Petrov–
Galerkin) form, that is free from the two constraints mentioned above. The main idea is to estimate a
discrete approximation error Ihu − uh, where Ih : V → Vh is a well chosen interpolant of functions
onto the discrete space. With this definition of the approximation error, the exact solution u need not
be plugged into the discrete bilinear form to write the error equation. Instead, its role is played by
Ihu. The discrete approximation error can then be estimated solely in terms of the (discrete) norm
in Vh under a stability assumption on ah (an inf–sup condition) and in terms of only one consistency
measure involving Ihu, ah and `h; see Theorem 1010 below. As a by-product, our analysis provides
a clear definition of such a consistency for a wide range of methods, including many for which this
notion was never clearly highlighted. The abstract error estimate also enables us to write, in this
generic setting, the well-known principle in finite differences:

stability + consistency =⇒ convergence. (2)

In Theorem 1313 below we also establish, under a consistency assumption of the solution to the
continuous dual problem, an estimate in a weaker norm than that of V , which mimics classical
improved error estimates (e.g., in L2 norm when the energy space of the problem is H1) for Finite
Elements, DG, etc.
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The abstract analysis framework is then used to derive error estimates for a variety of methods
for the discretisation of a variable diffusion problem. The first application is to conforming and non-
conforming VEM, for which we derive a novel quasi-optimal unified energy error estimate where
the dependence on the diffusion field is accurately tracked; see Theorem 1818 below. This estimate
reveals that the multiplicative constant in the right-hand side is independent of the heterogeneity of
the diffusion field, but depends on the square root of the (local) anisotropy ratio, a behaviour already
documented for Hybrid High-Order (HHO) methods; see, e.g., [1919, 2222]. A unified L2 error estimate
covering both conforming and non-conforming VEM is provided in Theorem 2020. A crucial tool
in the VEM error estimates are optimal approximation properties of the oblique elliptic projector.
These estimates, whose interest goes beyond the specific method and application considered here, are
established in Section 3.2.13.2.1, using classical polynomial approximation results from [1111].

In the second application, we consider finite volume (FV) methods, both cell-centred and cell- and
face-centred. The notion of consistency for such methods has been discussed in various references
(see e.g. [3434, Section 2.1] or [2424, Remark 1.3]), but never directly related to error estimates. We
show that the abstract analysis framework yields such estimates in terms of the consistency error
purely based on the fluxes. As in the case of VEM, this error estimate is established in a diffusion-
dependent discrete norm, which enables us to explicitly track the local dependencies with respect to
the diffusion tensor. As an important application, we obtain the first error estimate for Multi-Point
Flux Approximation L and G methods.

The rest of the paper is organised as follows. In Section 22 we present the abstract analysis
framework. The main error estimates are stated in Theorem 1010 (energy norm) and 1313 (weaker norm).
Applications of the abstract analysis framework to VEM and FV methods are considered in Section
33. Finally, some conclusions are drawn in Section 44.

2 Abstract analysis framework

2.1 Setting

We consider here a setting where the continuous and discrete problem are both written under varia-
tional formulations. For the continuous problem, we take

• A Hilbert space H,

• A continuous bilinear form a : H × H → R,

• A continuous linear form ` : H → R.

The problem we aim at approximating is

Find u ∈ H such that a(u, v) = `(v) ∀v ∈ H. (3)

In what follows, problem (33) is named the continuous problem in reference to the fact that the space
H is usually infinite dimensional.

Remark 1 (Existence of a continuous solution). We assume the existence of a solution to problem
(33); this existence follows for example from the Lax-Milgram or Babuška lemmas if a is coercive or
satisfies an inf–sup condition.

Our approximation is written in fully discrete Petrov–Galerkin form, using trial and test spaces
that are possibly different from each other, and not necessarily spaces of functions. In particular, they
are not necessarily embedded in any natural space in which H is also embedded. We consider thus
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• Two vector spaces Xh and Yh, with respective norms ‖·‖Xh
and ‖·‖Yh .

• A bilinear form ah : Xh × Yh → R.

• A linear form `h : Yh → R.

Remark 2 (Discrete spaces). The spaces Xh and Yh are always finite-dimensional in applications,
but this is not required in our analysis. The index h represents a discretisation parameter (e.g., the
meshsize) which characterises these spaces, and such that convergence of the method (in a sense to
be made precise) is expected when h → 0. Likewise, the continuity of ah or `h is not directly used,
but is always verified in practice, and of course usually required to ensure the existence of a solution.

The approximation of problem (33) is

Find uh ∈ Xh such that ah(uh, vh) = `h(vh) ∀vh ∈ Yh . (4)

In what follows, (44) is named the discrete problem, in reference to the fact that the spaces Xh and
Yh are usually finite dimensional. We intend to compare the solutions to (33) and (44) by estimating
uh − Ihu, where Ihu is an element of Xh representative of the solution u to (33); see Remark 99.

Remark 3 (Equivalent Galerkin formulation). When the spaces Xh andYh are finite-dimensional, their
dimensions must coincide in order for the discrete problem (44) to be well-posed. In this case, there
exists an isomorphism Ih : Xh → Yh, and an equivalent Galerkin formulation can be written based
on the linear and bilinear forms ˜̀

h : Xh → R and ãh : Xh × Xh → R such that ˜̀h(vh) = `h(Ihvh) and
ãh(uh, vh) = ah(uh,Ihvh) for all uh, vh ∈ Xh.

2.2 Error estimate in energy norm

We now describe a notion of stability of ah that yields a bound on the solutions to (44)

Definition 4 (Inf–sup stability). The bilinear form ah is inf–sup stable for (‖·‖Xh
, ‖·‖Yh ) if

∃γ > 0 such that γ‖uh ‖Xh
≤ sup

vh ∈Yh\{0}

ah(uh, vh)
‖vh ‖Yh

∀uh ∈ Xh . (5)

Remark 5 (Uniform inf–sup stability). In practice, one typically requires that the real number γ
is independent of discretization parameters such as the meshsize. Hence, condition (55) should be
verified uniformly with respect to h. This is needed to have optimal error estimates.

Remark 6 (Coercivity). The inf–sup stability is of course satisfied if Xh = Yh and ah is coercive in
the sense that ah(vh, vh) ≥ γ‖vh ‖2Xh

for all vh ∈ Xh, where γ does not depend on vh.

We next prove an a priori bound on the discrete solution. To this end, we recall that, if Z is a
Banach space with norm ‖·‖Z , the dual norm of a linear form µ : Z → R is classically defined by

‖µ‖Z? = sup
z∈Z\{0}

|µ(z)|
‖z‖Z

. (6)

Proposition 7 (A priori bound on the discrete solution). If ah is inf–sup stable in the sense of
Definition 44, mh : Yh → R is linear, and wh satisfies

ah(wh, vh) = mh(vh) ∀vh ∈ Yh,

then
‖wh ‖Xh

≤ γ−1‖mh ‖Y?
h
.
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Proof. Take vh ∈ Yh\{0} and write, by definition of ‖·‖Y?
h
,

ah(wh, vh)

‖vh ‖Yh
=

mh(vh)

‖vh ‖Yh
≤ ‖mh ‖Y?

h
.

The proof is completed by taking the supremum over such vh and using (55). �

We then define the key notion of consistency which, in combination with the inf–sup stability,
provides the estimate on uh − Ihu in the Xh norm.

Definition 8 (Consistency error and consistency). Let u be the solution to the continuous problem
(33) and take Ihu ∈ Xh. The variational consistency error is the linear form Eh(u; ·) : Yh → R defined
by

Eh(u; ·) = `h(·) − ah(Ihu, ·). (7)

Let now a family (Xh, ah, `h)h→0 of spaces and forms be given, and consider the corresponding family
of discrete problems (44). We say that consistency holds if

‖Eh(u; ·)‖Y?
h
→ 0 as h→ 0.

Remark 9 (Choice of Ihu). No particular property is required here on Ihu; it could actually be any
element of Xh. However, for the estimates that follow to be meaningful, it is expected that Ihu is
computed from u, not necessarily in a linear way but such that information on Ihu encodes meaningful
information on u itself.

The first main result of the paper, an estimate on ‖uh − Ihu‖Xh
, is stated in the following theorem.

As explained in the introduction, this theorem can be considered as a “third Strang lemma”. In
passing, it also shows that (22) holds.

Theorem 10 (Abstract error estimate and convergence in energy norm). Assume that ah is inf–sup
stable in the sense of Definition 44. Let u be a solution to (33), Ihu ∈ Xh, and recall the definition (77)
of the variational consistency error Eh(u; ·). If uh is a solution to (44) then

‖uh − Ihu‖Xh
≤ γ−1‖Eh(u; ·)‖Y?

h
. (8)

As a consequence, letting a family (Xh, ah, `h)h→0 of spaces and forms be given, if consistency holds,
then we have convergence in the following sense:

‖uh − Ihu‖Xh
→ 0 as h→ 0.

Proof. For any vh ∈ Yh, the scheme (44) yields

ah(uh − Ihu, vh) = ah(uh, vh) − ah(Ihu, vh) = `h(vh) − ah(Ihu, vh).

Recalling the definition of the consistency error, we then infer that the error uh − Ihu can be charac-
terised as the solution to the following error equation:

ah(uh − Ihu, vh) = Eh(u; vh) ∀vh ∈ Yh . (9)

The proof is completed by applying Proposition 77 to mh = Eh(u; ·) and wh = uh − Ihu. �
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Remark 11 (Quasi-optimality of the error estimate). Let

‖ah ‖Xh×Yh B sup
wh ∈Xh\{0},vh ∈Yh\{0}

|ah(wh, vh)|

‖wh ‖Xh
‖vh ‖Yh

be the standard norm of the bilinear form ah. The error equation (99) shows that

‖Eh(u; ·)‖Y?
h
≤ ‖ah ‖Xh×Yh ‖uh − Ihu‖Xh

.

Hence, if ‖ah ‖Xh×Yh (and γ, see Remark 55) remains bounded with respect to h as h → 0, which
is always the case in practice, the estimate (88) is quasi-optimal in the sense that, for some C not
depending on h, it holds that

C−1‖Eh(u; ·)‖Y?
h
≤ ‖uh − Ihu‖Xh

≤ C‖Eh(u; ·)‖Y?
h
.

2.3 Improved error estimate in a weaker norm

Assume now that H is continuously embedded in a Banach space L, with norm denoted by ‖ · ‖L , and
that there exists a linear reconstruction operator

rh : Xh → L. (10)

If rh is continuous, with norm bounded above by C, then (88) readily gives

‖rh(uh − Ihu)‖L ≤ Cγ−1‖Eh(u; ·)‖Y?
h
. (11)

Our aim here is to improve this estimate by using an Aubin–Nitsche trick. To this purpose, we assume
that, for all g ∈ L? (the space of continuous linear forms L → R), there exists a solution to the
continuous dual problem:

Find zg ∈ H such that a(w, zg) = g(w) ∀w ∈ H. (12)

Definition 12 (Dual consistency error). UnderAssumption (1010), let g ∈ L?, zg be a solution to the dual
problem (1212), and Jhzg ∈ Yh. The dual consistency error of zg is the linear form Ed

h
(zg; ·) : Xh → R

defined by
Ed
h(zg; ·) = g ◦ rh − ah(·, Jhzg). (13)

Theorem 13 (Improved estimate in L-norm). Assume (1010) and that the dual problem (1212) has a
solution zg for any g ∈ L?. Let BL? = {g ∈ L? : ‖g‖L? ≤ 1} be the unit ball in L?. Let u and uh be
the solutions to (33) and (44), respectively, and take Ihu ∈ Xh and, for g ∈ BL? , Jhzg ∈ Yh. Then,

‖rh(uh − Ihu)‖L ≤ ‖uh − Ihu‖Xh
sup

g∈BL?

‖Ed
h(zg; ·)‖X?

h
+ sup
g∈BL?

Eh(u; Jhzg). (14)

Remark 14 (Primal-dual consistency error). The quantity Eh(u; Jhzg) = `h(Jhzg) − ah(Ihu, Jhzg) is
a measure of consistency of the discrete primal problem (44) that also involves the solution zg to the
continuous dual problem (1212). For this reason, we will call Eh(u; Jhzg) the primal-dual consistency
error.

Proof. Let g ∈ BL? . By definition (1313) of Ed
h
(zg; ·), it holds for any wh ∈ Xh,

g(rhwh) = E
d
h(zg;wh) + ah(wh, Jhzg).
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Letting wh = uh − Ihu and recalling the error equation (99), this gives

g(rh(uh − Ihu)) = Ed
h(zg; uh − Ihu) + Eh(u; Jhzg).

Taking the supremum over g ∈ BL? , and recalling that supg∈BL?
g(w) = ‖w‖L for all w ∈ L, we infer

‖rh(uh − Ihu)‖L ≤ sup
g∈BL?

Ed
h(zg; uh − Ihu) + sup

g∈BL?

Eh(u; Jhzg). (15)

To conclude, recall the definition (66) of the dual norm to write

Ed
h(zg; uh − Ihu) ≤ ‖uh − Ihu‖Xh

‖Ed
h(zg; ·)‖X?

h
. �

Remark 15 (Alternative L-error bound). The estimate (1515) appears slightly sharper than (1414). In
the statement of Theorem 1313, however, we have preferred a formulation which emphasises a general
property of the dual consistency error Ed

h
(zg; ·) rather than its evaluation at a specific argument;

indeed, unlike Eh(u; Jhzg) (see Section 2.4.32.4.3), it does not seem possible in general to have a better
bound on Ed

h
(zg; uh − Ihu) than the one provided by ‖uh − Ihu‖Xh

‖Ed
h
(zg; ·)‖X?

h
.

2.4 Comments

A few comments are in order.

2.4.1 Recovering continuous estimates

For a number of methods, the interpolation operator Ih is naturally defined as part of the method,
and there exists some continuous linear reconstruction operator Rh : Xh → E , where E is a space of
functions (which might or might not be a subspace of H).

For example, in conforming FE methods, Ih is the nodal interpolant and Rh the reconstruction
of functions in the FE space from their nodal values. In HHO or non-conforming VEM methods, Ih
corresponds to L2 projections on local (face- and cell-) polynomial spaces, and Rh is a local potential
reconstruction related to the elliptic projector; alternatively, in the VEM setting, Rhvh can give the
unique (but not explicitly known) function in the VEM space that has the degrees of freedom encoded
in the vector vh.

If the norm of Rh is bounded by C, the energy estimate (88) gives

‖Rhuh − Rh Ihuh ‖E ≤ Cγ−1‖Eh(u; ·)‖Y?
h
.

The triangle inequality then leads to the following continuous estimate between the reconstructed
function Rhuh and the solution u to the continuous problem:

‖Rhuh − u‖E ≤ Cγ−1‖Eh(u; ·)‖Y?
h
+ ‖Rh Ihuh − u‖E .

The last term is usually estimated by means of approximation properties of the space Xh and of the
operators Ih and Rh attached to the scheme (they do not depend on the continuous equation (33) or its
discretisation (44)). Hence, even though Theorem 1010 states an estimate in a purely discrete setting,
from this a continuous estimate can often be easily recovered.
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2.4.2 Link between primal, dual and primal-dual consistency errors

If the discrete bilinear form ah is symmetric (which requires Xh = Yh) and `h = ` ◦ rh, then the primal
and dual consistency errors are identical, and thus estimating ‖Ed

h
(zg; ·)‖X?

h
in (1414) does not require

any additional work than the one done for estimating ‖Eh(u; ·)‖X?
h
in (88).

Even if ah is not symmetric or `h , ` ◦ rh, the dual problem (1212) often has a similar structure
as the primal problem, with different parameters; this is expected to be reflected in Ed

h
(zg; ·), which

might simply be Eh(zg; ·) with different parameters. In this case, the estimate done on the primal
consistency error might directly apply, with easy substitutions, to the dual consistency error. For
example, the dual problem to the advection–diffusion–reaction model

− ∇·(K∇u) + ∇·(βu) + µu = f in Ω, u = 0 on ∂Ω, (16)

is the same problem with β replaced with −β and µ replaced with µ + ∇·β.
Estimating ‖Eh(u; ·)‖Y?

h
in (88) requires to estimate Eh(u; vh) for all vh ∈ Yh. Some of the steps

performed in this estimate can often be directly used to estimate the primal-dual consistency error
Eh(u; Jhz) in (1414). One simply need to be cautious and draw on the additional information available
in this latter term: the primal consistency error is not tested on an arbitrary vh ∈ Yh, but on the specific
vector Jhzg; taking advantage of that specificity can lead to improved rates of convergence (see next
section). This idea is illustrated in the proof of Theorem 2020 below.

We also notice that, when multiple terms are present as in problem (1616), the consistency error
involves one component per term, and these components can be estimated independently. The benefit
is twofold: on the one hand, proceeding this way simplifies the analysis; on the other hand, it makes
it possible to re-use the consistency results proved individually for each operator.

2.4.3 Integer and fractional rates of convergence

Under some regularity assumptions on the solution u, it is possible to obtain rates of convergence
for the quantity ‖Eh(u; ·)‖Y?

h
that appears in the right-hand side of the energy error estimate (88).

Typically, for second order elliptic problems, one will assume that u ∈ Hr (Ω) ∩ H1
0 (Ω) and establish

that
‖Eh(u; ·)‖Y?

h
≤ Chω(r)‖u‖Hr (Ω), (17)

where ω(r) is an appropriate power depending on r and on the considered scheme. This estimate is
usually easier to establish for integer r , but once this is done it also holds for fractional r , by basic
interpolation result on the mapping u 7→ Eh(u; ·) ∈ Y?

h
. The same considerations holds for the dual

consistency error.
Let us now examine the improved L-error estimate (1414) and consider, for example, elliptic

problems. Under optimal elliptic regularity assumptions, it is expected that zg ∈ H2(Ω). This
regularity result will translate into a specific rate of convergence of ‖Ed

h
(zg; ·)‖X?

h
, say O(h). The first

term in (1414) is then one (or more) orders of magnitude less that ‖uh − Ihu‖Xh
. The regularity of zg

also translates into constraints on the vector Jhzg, which cannot vary as freely as any vh ∈ Yh; because
of that, it is expected that the primal-dual consistency error Eh(u; Jhzg) is also one or more orders of
magnitude less that ‖Ed

h
(zg; ·)‖X?

h
. Hence, the right-hand side of (1414) should convergence at a faster

rate than the right-hand side of (88) as h → 0, showing that Theorem 1313 is indeed an improvement
over the basic estimate (1111) coming from Theorem 1010.

2.4.4 Range of applications

Let us explicitly remark that, even though we only consider, for questions of length, second order
elliptic problems in Section 33, the framework and estimates described in this section cover a wide
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range of equations and schemes. For example, elliptic equations of order four, such as the ones
encountered in the theory of thin plates, also fit into the setting of Section 2.12.1. Several popular
numerical tricks are also covered by the present framework, such as the weak enforcement (à la
Nitsche) of boundary conditions in the discrete formulation (44).

Finally, we also note that, even though this is the classical example we might have in mind for
second order elliptic problems, the space L in Section (2.32.3) does not need to be L2(Ω). It could for
example be Hs(Ω) for some s ∈ (0, 1), leading to optimal rates of convergence in Hs norm instead of
L2 norm.

3 Applications

In this section we showcase applications of the discrete analysis framework to a variety of numerical
methods.

3.1 Setting

For the sake of simplicity, we focus on a pure diffusion model problem. Denote byΩ ⊂ Rd, d ≥ 1, an
open bounded connected polytopal domain with boundary ∂Ω. In what follows, for any measured set
X , we denote by (·, ·)X the usual inner product of L2(X) or L2(X)d according to the context, by ‖·‖X
the corresponding norm, and we adopt the convention that the subscript is omitted whenever X = Ω.

Let K : Ω→ Rd×d denote a symmetric, uniformly elliptic diffusion field, which we additionally
assume piecewise constant on a finite partition PΩ = {Ωi : 1 ≤ i ≤ NΩ} of Ω into polytopes. For a
given source term f : Ω→ R, our model problem reads: Find u : Ω→ R such that

− ∇·(K∇u) = f in Ω, u = 0 on ∂Ω. (18)

Assuming f ∈ L2(Ω), a weak formulation of this problem is: Find u ∈ H1
0 (Ω) such that

aK (u, v) B (K∇u,∇v) = ( f , v) ∀v ∈ H1
0 (Ω). (19)

We denote by Mh = (Th, Fh) a mesh of the domain, where Th collects the mesh elements, or
cells, and Fh = F i

h
∪ F b

h
the hyperplanar mesh faces, with F i

h
and F b

h
denoting, respectively, the sets

of internal and boundary faces. For any mesh element T ∈ Th, hT is the diameter of T and FT is the
set of faces that lie on its boundary ∂T . Symmetrically, for any mesh face F ∈ Fh, we denote by hF
the diameter of F and by TF the set collecting the one (if F is a boundary face) or two (if F is an
internal face) mesh elements that share F. For any T ∈ Th and any F ∈ FT , nTF is the unit vector
normal to F and pointing out of T .

The meshes we consider are always part of a regular family (Mh)h∈H in the sense of [2323,
Definition 3.3]. Unless otherwise specified, the notation a . b means a ≤ Cb with constant C
possibly depending on the regularity factor of that family, but not depending on K or h and, for local
inequalities, on the mesh element or face. Additional regularity assumptions on the meshes depend
on the considered method and will be given when necessary. We however always assume that the
mesh is compliant with the partition PΩ, i.e., for all T ∈ Th, there exists a unique Ωi, 1 ≤ i ≤ NΩ,
such that T ∈ Ωi. For all T ∈ Th, we denote by KT B K |T the constant value of K inside T and we let

αT B
λT
λT

(20)

where λT and λT denote, respectively, the smallest and largest eigenvalues of KT .

9



For a given integer l ≥ 0 and X mesh element or face, we denote by Pl(X) the space spanned by the
restriction to X of d-variate polynomials of total degree ≤ l. The L2-projector π0, l

X : L2(X) → Pl(X)
is defined by: For all w ∈ L2(X), π0, l

X w is the unique element in Pl(X) such that (π0, l
X w, q)X = (w, q)X

for all q ∈ Pl(X). In the discussion, we will need the following approximation results, which are a
special case of [1515, Lemmas 3.4 and 3.6] (see also [1616] for more general results on projector on local
polynomial spaces): Let an integer s ∈ {0, . . . , l + 1} be given. Then, for any mesh element T ∈ Th,
any function v ∈ Hs(T), and any exponent m ∈ {0, . . . , s}, it holds that

|v − π0, l
T v |Hm(T ) . hs−m

T |v |H s (T ). (21)

Moreover, if s ≥ 1 and m ≤ s − 1,

|v − π0, l
T v |Hm(FT ) . h

s−m− 1
2

T |v |H s (T ), (22)

where Hm(FT ) B
{
v ∈ L2(∂T) : v |F ∈ Hm(F) for all F ∈ FT

}
is the broken Sobolev space on FT

and |·|Hm(FT ) the corresponding broken seminorm.
The space of broken polynomials of total degree ≤ l on Th is denoted by Pl(Th), i.e.,

Pl(Th) B
{
v ∈ L2(Ω) : v |T ∈ P

l(T) ∀T ∈ Th
}
.

For a given exponent s ∈ N, we define the broken Sobolev space

Hs(Th) B
{
v ∈ L2(Ω) : v |T ∈ Hs(T) ∀T ∈ Th

}
.

On H1(Th) we define the broken gradient operator ∇h such that, for all v ∈ H1(Th), (∇hv) |T B ∇v |T .

3.2 Virtual Element Methods

The first application we consider is to VEM. The main novelty of this section is the derivation of a
unified energy error estimate for both conforming and non-conforming VEM where the dependence
on the diffusion field is accurately tracked. Our results show full robustness with respect to the
heterogeneity of the diffusion field, and a mild dependence on the square root of the local anisotropy
ratio.

3.2.1 The oblique elliptic projector

Like several other arbitrary-order discretisation methods for problem (1919) (such as HHO [2121], Weak
Galerkin [3939] methods, and Mimetic Finite Differences [3636]), VEM are based on local projectors
which possibly embed a dependence on the diffusion field inside T . Let k ≥ 1 be a natural number.
Fixing T ∈ Th, we focus here on VEM formulations based on the (oblique) elliptic projector π1,k

K ,T :
H1(T) → Pk(T) defined by: For v ∈ H1(T),

(KT∇π1,k
K ,T v,∇w)T = (KT∇v,∇w)T ∀w ∈ Pk(T), (23a)∫

T

π1,k
K ,T v =

∫
T

v. (23b)

By the Riesz representation theorem in ∇Pk(T), (23a23a) defines a unique element of ∇Pk(T), and the
closure equation (23b23b) fixes the corresponding π1,k

K ,T v ∈ P
k(T). It can be easily checked that π1,k

K ,T
is a projector, i.e., it is linear and idempotent. As a result, it maps polynomials of total degree ≤ k
onto themselves. Optimal approximation properties for π1,k

K ,T in diffusion-dependent seminorms are
studied in the following theorem, where the dependence of the multiplicative constants on the local
diffusion tensor KT is carefully tracked.
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Theorem 16 (Approximation properties of the oblique elliptic projector in diffusion-weighted semi-
norms). Assume the setting described in Section 3.13.1. For a given polynomial degree k ≥ 0, let an
integer s ∈ {1, . . . , k +1} be given. Then, recalling the definition (2323) of the oblique elliptic projector,
for all v ∈ Hs(T) and all m ∈ {0, . . . , s − 1},

|K
1
2
T∇(v − π

1,k
K ,T v)|Hm(T )d . λ

1
2
T hs−m−1

T |v |H s (T ). (24)

If, additionally, m ≤ s − 2 (which enforces s ≥ 2), then

h
1
2
T |K

1
2
T∇(v − π

1,k
K ,T v)|Hm(FT )

d . λ
1
2
T hs−m−1

T |v |H s (T ), (25)

where Hm(FT )
d is the broken Sobolev space on FT defined component-wise as in (2222), |·|Hm(FT )

d is
the corresponding seminorm, and the hidden constant has the same dependencies as in (2424).

Proof. We consider the following representation of v:

v = Qsv + Rsv, (26)

where Qsv ∈ Ps−1(T) ⊂ Pk(T) is the averaged Taylor polynomial, while the remainder Rsv satisfies,
for all r ∈ {0, . . . , s} (cf. [1111, Lemma 4.3.8]),

|Rsv |Hr (T ) . hs−r
T |v |H s (T ). (27)

We next notice that, using the definition (2323) of the oblique elliptic projector, it holds for any
φ ∈ H1(T),

‖K
1
2
T∇π

1,k
K ,Tφ‖T ≤ ‖K

1
2
T∇φ‖T , (28)

as can be inferred selecting w = π1,k
K ,Tφ as a function test in (23a23a) and using the Cauchy–Schwarz

inequality. Taking the projection of (2626), and using the fact that π1,k
K ,T maps polynomials of total

degree ≤ k onto themselves to write π1,k
K ,TQsv = Qsv, it is inferred that π1,k

K ,T v = Qsv + π1,k
K ,T (R

sv).
Subtracting this equation from (2626), we obtain v − π1,k

K ,T v = Rsv − π1,k
K ,T (R

sv). Applying the operator
K1/2

T ∇ to this expression, passing to the seminorm, and using the triangle inequality, we arrive at

|K
1
2
T∇(v − π

1,k
K ,T v)|Hm(T )d ≤ |K

1
2
T∇Rsv |Hm(T )d + |K

1
2
T∇π

1,k
K ,T (R

sv)|Hm(T )d C T1 + T2. (29)

For the first term, it is readily inferred that T1 . λ
1
2
T |R

sv |Hm+1(T ) which, combined with (2727) for
r = m + 1, gives

T1 . λ
1
2
T hs−m−1

T |v |H s (T ). (30)

For the second term, on the other hand, we can proceed as follows:

T2 . h−mT ‖K
1
2
T∇(π

1,k
K ,T Rsv)‖T . h−mT ‖K

1
2
T∇Rsv‖T . λ

1
2
T h−mT |R

sv |H1(T ) . λ
1
2
T hs−m−1

T |v |H s (T ), (31)

where we have used the local inverse Sobolev embeddings of [1515, Remark A.2] in the first bound,
(2828) with φ = Rsv in the second bound, the definition of the H1-seminorm in the third bound, and
(2727) with r = 1 to conclude. Plugging (3030) and (3131) into (2929), (2424) follows. To prove (2525), it suffices
to combine (2424) with a local continuous trace inequality (see [2020, Lemma 1.49], where a slightly
different notion of face is used which, however, does not affect the final result). �
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3.2.2 An abstract Virtual Element Method

To define a VEM scheme, one first needs to choose a finite dimensional subspace Vk
h
⊂ H1(Th) that

locally contains polynomials and satisfies some continuity requirements:

Pk(T) ⊂ Vk
T B

{
(vh) |T : vh ∈ Vk

h

} ∀T ∈ Th, (32)

and, for all vh ∈ Vk
h
,

π0,k−1
F (vh) |T + π

0,k−1
F (vh) |T ′ = 0 ∀F ∈ F i

h with TF = {T,T ′}. (33)

A subspace Xh = Vk
h,0 of Vk

h
is then considered to account for the homogeneous Dirichlet boundary

conditions, and such that (at least) the following condition holds: For all vh ∈ Vk
h,0,

π0,k−1
F vh = 0 ∀F ∈ F b

h . (34)

Different choices of spaces lead to different methods, such as conforming [77] or non-conforming [55]
VEM. Our analysis here does not require a complete description of the space Vk

h,0. We merely need
the two following properties of the interpolant Ih : H1

0 (Ω) ∩ C(Ω) → Vk
h,0:

(I1) Locality and boundedness. For all T ∈ Th, there is a linear mapping IT : H1(T) ∩ C(T) → Vk
T

such that (Ihw) |T = IT (w |T ) for all w ∈ H1
0 (Ω) ∩ C(Ω), and

‖K
1
2
T∇(ITφ)‖T . λ

1
2
T ‖∇φ‖T ∀φ ∈ H1(T) ∩ C(T). (35)

(I2) Preservation of polynomials. For all T ∈ Th and v ∈ Pk(T), IT v = v.

Remark 17 (On the DOFs for VEM). The degrees of freedom (DOFs) of the VEM, that is the
unisolvent family of linear forms (λi)i∈I on Vk

h,0, must be chosen to enable the computation of the
oblique elliptic projector (2323) for functions in Vk

h,0. Given (23b23b), this means, in particular, that these
DOFs should enable the computation, for all T ∈ Th, of π0,0

T on Vk
h,0. In the case k = 1, we therefore

implicitly consider enhanced VEM spaces [1212]. Otherwise, the closure equation (23b23b) should be
modified, see e.g. [1010].

Let Vk
h,0 be a chosen VEM space, and

l = 0 if k = 1, l ∈ {0, 1} if k = 2, l = k − 2 if k ≥ 3.

We assume that the DOFs of Vk
h,0 enable the computation of (π0,l

T )T ∈Th on Vk
h,0 (in the cases k = 1

or (k, l) = (2, 1), this supposes using enhanced spaces). A VEM scheme for (1919) is then obtained by
writing (44) with

`h(vh) =
∑
T ∈Th

( f , π0,l
T vh)T ∀vh ∈ Vk

h,0 (36)

and

ah(vh,wh) =
∑
T ∈Th

aT (vh,wh) ∀vh,wh ∈ Vk
h,0,

where aT (vh,wh) = (KT∇π1,k
K ,T vh,∇π

1,k
K ,Twh)T + sT

(
(I − π1,k

K ,T )vh, (I − π
1,k
K ,T )wh

)
.

(37)

Here, sT is a symmetric positive semi-definite bilinear form on Vk
T (computable from the degrees of

freedom) such that

(KT∇w,∇w)T . sT (w,w) . (KT∇w,∇w)T ∀w ∈ Vk
T such that π1,k

K ,Tw = 0. (38)
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The definition of ah implies that if ah(vh, vh) = 0 then vh is constant in each cell, and (3333)–(3434)
then show that vh = 0. Hence, ah is symmetric positive definite on Vk

h,0. The norm considered on
Xh = Vk

h,0 is the one induced by ah, that is,

‖vh ‖Xh
B

√
ah(vh, vh) ∀vh ∈ Xh . (39)

3.2.3 Error estimate in energy norm

With this setting in place, Theorems 1010 and 1313 yield the following estimates.

Theorem 18 (Energy estimates for VEM schemes). Let 1 ≤ r ≤ k and assume that the solution
u ∈ H1

0 (Ω) ∩ C(Ω) to (1919) belongs to Hr+1(Th). Let uh be the solution of the VEM scheme (that is,
(44) with the choices (3636) and (3737)). Then the following estimates hold:

‖uh − Ihu‖Xh
.

( ∑
T ∈Th

αTλT h2r
T |u|

2
Hr+1(T )

) 1
2

(40)

and

‖K
1
2 (∇hπ

1,k
K ,h

uh − ∇u)‖ .

( ∑
T ∈Th

αTλT h2r
T |u|

2
Hr+1(T )

) 1
2

, (41)

where π1,k
K ,h

is the patched elliptic projector such that, for all T ∈ Th and w ∈ H1(Th), (π1,k
K ,h

w) |T B

π1,k
K ,T (w |T ).

Proof. By choice of the norm on Vk
h,0, the bilinear form ah is coercive with constant 1. Hence, (4040)

follows from (88) (with γ = 1) if we estimate the norm of the consistency error appropriately. Since
f = −∇·(K∇u) we have, for all vh ∈ Vk

h,0,

Eh(u; vh) =
∑
T ∈Th

(−∇·(KT∇u), π0,l
T vh)T −

∑
T ∈Th

(KT∇π1,k
K ,T Ihu,∇π1,k

K ,T vh)T

−
∑
T ∈Th

sT
(
(I − π1,k

K ,T )Ihu, (I − π1,k
K ,T )vh

)
=

∑
T ∈Th

(−∇·(KT∇u), π0,l
T vh)T −

∑
T ∈Th

(KT∇π1,k
K ,Tu,∇π1,k

K ,T vh)T

−
∑
T ∈Th

(KT∇π1,k
K ,T (Ihu − u),∇π1,k

K ,T vh)T −
∑
T ∈Th

sT
(
(I − π1,k

K ,T )Ihu, (I − π1,k
K ,T )vh

)
=: T1 + T2 + T3 + T4. (42)

(i) Term T1 + T2. Performing element-wise integrations-by-parts, we write

T1 =
∑
T ∈Th

(KT∇u,∇π0,l
T vh)T −

∑
T ∈Th

∑
F ∈FT

(KT∇u·nTF, π
0,l
T vh)F

=
∑
T ∈Th

(KT∇u,∇π0,l
T vh)T −

∑
T ∈Th

∑
F ∈FT

(KT∇u·nTF, π
0,l
T vh − π

0,k−1
F vh)F, (43)
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where the introduction of the term π0,k−1
F vh is justified by the conservativity property KT∇u·nTF +

KT ′∇u·nT ′F = 0 for all F ∈ F i
h
with TF = {T,T ′}, and the continuity property and boundary

conditions expressed by (3333)–(3434). Setting T2 =
∑

T ∈Th T2,T , we write

T2,T = − (KT∇π1,k
K ,Tu,∇vh)T

= (∇·(KT∇π1,k
K ,Tu), π0,l

T vh)T −
∑
F ∈FT

(KT∇π1,k
K ,Tu·nTF, π

0,k−1
F vh)F

= − (KT∇u,∇π0,l
T vh)T −

∑
F ∈FT

(KT∇π1,k
K ,Tu·nTF, π

0,k−1
F vh − π

0,l
T vh)F, (44)

where the first line follows from the definition (23a23a) of the oblique elliptic projector with v =

vh and w = π1,k
K ,Tu, the second line is obtained by performing an integration-by-parts and using

∇·(KT∇π1,k
K ,Tu) ∈ Pl(T) (since l ≥ k − 2) and KT∇π1,k

K ,Tu·nTF ∈ P
k−1(F) to replace vh by its

projections on local element- and face-polynomial spaces, and the third line is a consequence of
another integration-by-parts and of the definition (23a23a) of the oblique elliptic projector which, applied
to v = u and w = π0,l

T vh (note that l ≤ k), gives (KT∇π1,k
K ,Tu,∇π0,l

T vh)T = (KT∇u,∇π0,l
T vh)T . Hence,

summing (4444) over T ∈ Th and gathering with (4343) yields

T1 + T2 =
∑
T ∈Th

∑
F ∈FT

(KT (∇π1,k
K ,Tu − ∇u)·nTF, π

0,l
T vh − π

0,k−1
F vh)F .

We then estimate T1 + T2 by using the Cauchy–Schwarz inequality:

|T1 + T2 | ≤
∑
T ∈Th

∑
F ∈FT

‖K
1
2
T (∇π

1,k
K ,Tu − ∇u)‖Fλ

1
2
T ‖π

0,k−1
F (π0,l

T vh − (vh) |T )‖F (45)

.
∑
T ∈Th

λ
1
2
T h

r− 1
2

T |u|Hr+1(T )λ
1
2
T ‖π

0,l
T vh − (vh) |T ‖F (46)

.
∑
T ∈Th

λ
1
2
T h

r− 1
2

T |u|Hr+1(T )λ
1
2
T h

1
2
T ‖∇vh ‖T ,

where we have used l ≤ k − 1 together with the linearity and idempotency of π0,k−1
F in the first

line to write π0,l
T vh − π

0,k−1
F vh = π0,l

T vh − π
0,k−1
F (vh) |T = π0,k−1

F (π0,l
T vh − (vh) |T ), we passed to the

second line by using the trace approximation properties (2525) of π1,k
K ,T (with s = r + 1 and m = 0) and

the L2(F)-boundedness property of π0,k−1
F , and we concluded by invoking the trace approximation

property (2222) of π0,l
T with m = 0 and s = 1. Recalling the definition (2020) of αT , we have

λ
1
2
T ‖∇vh ‖T ≤ λ

1
2
Tλ
− 1

2
T ‖K

1
2
T∇vh ‖T = α

1
2
T ‖K

1
2
T∇vh ‖T . α

1
2
T aT (vh, vh)

1
2 , (47)

where the last inequality is obtained introducing ±K
1
2
T∇π

1,k
K ,T vh into the norm, using the triangle

inequality, invoking the property (3838) of sT with wh = vh − π
1,k
K ,T vh, and recalling the definition (3737)

of aT . Thus, using a Cauchy–Schwarz inequality on the sum over T ∈ Th and recalling the definition
(3939) of ‖·‖Xh

, we conclude that

|T1 + T2 | .

( ∑
T ∈Th

αTλT h2r
T |u|

2
Hr+1(T )

) 1
2

‖vh ‖Xh
. (48)
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(ii) Term T3. Apply (3535) with φ = u − π1,k
K ,Tu, which satisfies ITφ = ITu − π1,k

K ,Tu by the linearity of
IT together with (I2), to write

‖K
1
2
T∇(ITu − π1,k

K ,Tu)‖T . λ
1
2
T ‖∇(u − π

1,k
K ,Tu)‖T . (49)

A triangle inequality (introducing±K
1
2
T∇π

1,k
K ,Tu into the left-hand side) followed by (4949), the definition

(2020) of αT , and the approximation properties (2424) of π1,k
K ,T with s = r + 1 and m = 0 yield

‖K
1
2
T∇(ITu − u)‖T ≤ ‖K

1
2
T∇(ITu − π1,k

K ,Tu)‖T + ‖K
1
2
T∇(π

1,k
K ,Tu − u)‖T

. λ
1
2
T ‖∇(u − π

1,k
K ,Tu)‖T . α

1
2
T ‖K

1
2
T∇(u − π

1,k
K ,Tu)‖T . α

1
2
T λ

1
2
T hrT |u|Hr+1(T ). (50)

Applying the boundedness property (2828) of π1,k
K ,T to φ = ITu − u and using (5050) then leads to

‖K
1
2
T∇π

1,k
K ,T (ITu − u)‖T . α

1
2
T λ

1
2
T hrT |u|Hr+1(T ). (51)

Using the Cauchy–Schwarz inequality, (5151) along with (2828) for φ = vh, again a Cauchy–Schwarz
inequality this time on the sum over T ∈ Th, and (4747) followed by the definition (3939) of the norm
‖·‖Xh

, we finally infer for the third term

|T3 | ≤
∑
T ∈Th

‖K
1
2
T∇π

1,k
K ,T (Ihu − u)‖T ‖K

1
2
T∇π

1,k
K ,T vh ‖T

.
∑
T ∈Th

α
1
2
T λ

1
2
T hrT |u|Hr+1(T )‖K

1
2
T∇vh ‖T .

( ∑
T ∈Th

αTλT h2r
T |u|

2
Hr+1(T )

) 1
2

‖vh ‖Xh
.

(52)

(iii) Term T4. We have���sT (
(I − π1,k

K ,T )Ihu, (I − π1,k
K ,T )vh

)���
. sT

(
(I − π1,k

K ,T )Ihu, (I − π1,k
K ,T )Ihu

) 1
2
sT

(
(I − π1,k

K ,T )vh, (I − π
1,k
K ,T )vh

) 1
2

. ‖K
1
2
T (∇(I − π

1,k
K ,T )Ihu)‖T ‖K

1
2
T∇(vh − π

1,k
K ,T vh)‖T (53)

. ‖K
1
2
T (∇(I − π

1,k
K ,T )Ihu)‖T ‖K

1
2
T∇vh ‖T , (54)

where the first line follows from a Cauchy–Schwarz inequality, the second line is a consequence
of (3838), and the third line is obtaind using the boundedness property (2828) of π1,k

K ,T . Introducing

±K
1
2
T∇(u − π

1,k
K ,Tu) into the norm and using triangle inequalities, the first factor in the right-hand side

of (5454) is estimated by

‖K
1
2
T∇(ITu − π1,k

K ,T ITu)‖T ≤ ‖K
1
2
T∇(ITu − u)‖T + ‖K

1
2
T∇(u − π

1,k
K ,Tu)‖T + ‖K

1
2
T∇π

1,k
K ,T (u − ITu)‖T

. α
1
2
T λ

1
2
T hrT |u|Hr+1(T ), (55)

where the conclusion follows from (5050), the approximation properties (2424) of π1,k
K ,T , and (5151). Plugging

this estimate into (5454), summing over T ∈ Th, using a Cauchy–Schwarz inequality on the sum over
T ∈ Th, and invoking (4747) together with the definition (3939) of ‖·‖Xh

, this yields

|T4 | .

( ∑
T ∈Th

αTλT h2r
T |u|

2
Hr+1(T )

) 1
2

‖vh ‖Xh
. (56)
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(iv) Conclusion. Plugging (4848), (5252), and (5656) into (4242) shows that ‖Eh(u; ·)‖X?
h
is bounded (up to a

multiplicative constant) by the right-hand side of (4040), which concludes the proof of this inequality.
To establish (4141), we notice that, by definitions (3939) of the norm on Vk

h,0 and (3737) of ah,

‖K
1
2 (∇hπ

1,k
K ,Tuh − ∇hπ

1,k
K ,T Ihu)‖ ≤ ‖uh − Ihu‖Xh

.

( ∑
T ∈Th

αTλT h2r
T |u|

2
Hr+1(T )

) 1
2

.

The estimate (4141) follows by introducing ±K
1
2 ∇h(π

1,k
K ,h

Ihu − π1,k
K ,h

u) in its left-hand side, and by
invoking (5151) and the optimal approximation properties (2424) of the oblique elliptic projector, in a
similar way as in (5555). �

Remark 19 (Unified analysis of conforming and non-conforming VEM). A unified analysis of con-
forming and non-conforming VEM based on an adaptation of the second Strang lemma has been
recently proposed in [1212] in the context of more general second-order elliptic problems.

A first difference with the present work is that, therein, the error is measured as u − uh, the
difference between the continuous and the virtual solutions. Thus, compared to Theorem 1010, several
additional terms have to be estimated in order to deduce an order of convergence from [1212, Theorem
2]. These measure, in an appropriate way: the approximation properties of the virtual space Vk

h,0,
those of the broken polynomial space Pk(Th), and the nonconformity of the method.

A second difference with respect to the present work is that the dependence of the constants on
the problem data is not specifically tracked. In the context of HHO methods, error estimates robust
with respect to the problem data for second-order elliptic problems similar to the ones considered in
[1212] have been recently proposed in [1717]; for a study of the links between HHO and non-conforming
VEM we refer the reader to [99, 1414, 1818].

3.2.4 Improved error estimate in the L2 norm

Theorem20 (L2 estimates forVEMschemes). Under the hypotheses of Theorem1818, assumemoreover
that k ≥ 2, that l = 1 if k = 2, that elliptic regularity holds for (1818), and that

π0,k−2
T ITφ = π

0,k−2
T φ ∀T ∈ Th , ∀φ ∈ H1(T). (57)

Then, it holds that
‖π1,k

K ,h
uh − u‖ . hr+1 |u|Hr+1(Th ), (58)

where the multiplicative constant additionally depends on K .

Remark 21 (Assumption (5757)). Assumption (5757) holds for both conforming and non-conforming
VEM methods, as the moments of degree k − 2 in the cells are part of the DOFs of the methods, and
ITφ is defined as the element of Vk

T that has the same DOFs as φ.

Remark 22 (Dependency on the diffusion field in L2 estimates). Elliptic regularity for problem (1818)
is only known if Ω is convex and K is Lipschitz continuous. Combined with the assumption that K
is piecewise constant, this imposes K constant over the entire domain, which means that we can treat
anisotropic but not heterogeneous diffusion. For this reason, we make no attempt whatsoever to track
the dependence on the diffusion field in the L2 error estimate.
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Proof. The elliptic regularity shows that, for all g ∈ L2(Ω), zg ∈ H2(Ω) and ‖zg‖H2(Ω) . ‖g‖.
Estimate (5858) therefore follows from (4040) and Theorem 1313, with the choice rh B π1,k

K ,h
, if we can

prove that (with, as in the theorem, hidden constants in . possibly depending on K )

‖Ed
h(zg; ·)‖X?

h
. h‖zg‖H2(Ω) (59)

|Eh(u; Ihzg)| . hr+1 |u|Hr+1(Th )‖zg‖H2(Ω). (60)

(i) Dual consistency. With our choice of rh, we have Ed
h
(zg; vh) = (g, π1,k

K ,h
vh) − ah(vh, Ihzg). Since

ah is symmetric, we see that Ed
h
(zg; vh) is equal to Eh(zg; vh) in which the source term ( f , π0,l

h
vh)

has been replaced with (g, π1,k
K ,h

vh). The estimate obtained in the proof of Theorem 1818 on the primal
consistency error can therefore be used, with r = 1 and zg ∈ H2(Ω) ⊂ H1+r (Th) instead of u, and
yields (5959), provided we examine the impact of changing π0,l

h
vh into π1,k

K ,h
vh.

The main difference between these two polynomials is that π1,k
K ,h

vh is a polynomial of degree
≤ k, whereas π0,l

h
vh is a polynomial of degree l ≤ k − 1. An inspection of the estimate of the

primal consistency error shows that the only place where we used π0,l
h
vh ∈ P

k−1(Th) is in (4545), when
estimating ‖π0,l

T vh − π
0,k−1
F vh ‖F . Here, we therefore have to establish that, for F ∈ FT ,

‖π1,k
K ,T vh − π

0,k−1
F vh ‖F . h

1
2
T ‖∇vh ‖T . (61)

We introduce ±π0,k−1
T vh and write

‖π1,k
K ,T vh − π

0,k−1
F vh ‖F . ‖π

1,k
K ,T vh − π

0,k−1
T vh ‖F + ‖π

0,k−1
T vh − π

0,k−1
F vh ‖F

. h
− 1

2
T ‖π

1,k
K ,T vh − π

0,k−1
T vh ‖T + h

1
2
T ‖∇vh ‖T , (62)

where the first line is a triangle inequality, and the second line follows from a discrete trace inequality
in Pk(T) (which can be proved along the lines of [2020, Lemma 1.46]) together with the arguments
deployed after (4545). By (23b23b) and since π0,k−1

T vh has the same average value over T as vh, we have
π1,k
K ,T vh − π

0,k−1
T vh = π1,k

K ,T vh − π
0,k−1
T vh − π

0,0
T (π

1,k
K ,T vh − π

0,k−1
T vh). The approximation properties

(2121) of π0,0
T with s = 1, m = 0 and v = π1,k

K ,T vh − π
0,k−1
T vh then yield

‖π1,k
K ,T vh − π

0,k−1
T vh ‖T . hT ‖∇(π1,k

K ,T vh − π
0,k−1
T vh)‖T . hT ‖∇vh ‖T ,

where we have used the boundedness (2828) of π1,k
K ,T , and the estimate ‖∇π0,k−1

T vh ‖T . ‖∇vh ‖T (which
follows from (2121) with s = m = 1). Estimate (6161) is then a consequence of (6262).

(ii) Primal-dual consistency. Following the discussion in Section 2.4.22.4.2, we re-visit the estimates on
T1, . . . ,T4 in the proof of Theorem 1818, and show that an additional O(h) factor can be obtained when
vh = Ihzg.

Let us start with the estimate (4646) on T1 + T2. Recalling that (vh) |T = IT zg, introducing
±(π0,l

T zg − zg) into the norm, and using a triangle inequality, we can write

‖π0,l
T vh − (vh) |T ‖F ≤ ‖π

0,l
T (IT zg − zg) − (IT zg − zg)‖F + ‖π

0,l
T zg − zg‖F

. h
1
2
T |IT zg − zg |H1(T ) + h

3
2
T |zg |H2(T ),

where the last line follows by applying (2222) with, for the first term, v = IT zg − zg, s = 1 ≤ l + 1
and m = 0 and, for the second term, v = zg, s = 2 ≤ l + 1 and m = 0. Invoking then (5050) with zg
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instead of u and r = 1, we infer ‖π0,l
T vh − vh ‖F . h

3
2
T |zg |H2(T ). Plugged in (4646), this yields, thanks to

a Cauchy–Schwarz inequality on the sum over T ∈ Th,

|T1 + T2 | .
∑
T ∈Th

hr+1
T |u|Hr+1(T ) |zg |H2(T ) ≤ hr+1 |u|Hr+1(Th ) |zg |H2(Ω). (63)

The term T4 is estimated starting from (5353). Each term in the right-hand side of this estimate can
be estimated by using (5555) on u for the first factor, and with zg instead of u and r = 1 for the second
factor. Summing the resulting estimates over T ∈ Th and using a Cauchy–Schwarz inequality on the
sum over T ∈ Th shows that

|T4 | .
∑
T ∈Th

hrT |u|Hr+1(T )hT |zg |H2(T ) ≤ hr+1 |u|Hr+1(Th ) |zg |H2(Ω). (64)

We now turn to T3. Coming back to its definition in (4242), we have T3 =
∑

T ∈Th T3,T with

T3,T = − (KT∇(ITu − u),∇π1,k
K ,T IT zg)T

= (ITu − u,∇·(KT∇π1,k
K ,T IT zg))T −

∑
F ∈FT

(ITu − u, KT∇π1,k
K ,T IT zg·nTF )F

= (π0,k−2
T (ITu − u),∇·(KT∇π1,k

K ,T IT zg))T −
∑
F ∈FT

(π0,k−1
F (ITu − u), KT∇π1,k

K ,T IT zg·nTF )F,

where we have used the definition (23a23a) of π1,k
K ,T (ITu − u) with w = π1,k

K ,T IT zg in the first line,
an integration by parts in the second line, and the fact that ∇·(KT∇π1,k

K ,T IT zg) ∈ Pk−2(T) and
KT∇π1,k

K ,T IT zg·nTF ∈ P
k−1(F) to introduce the L2-projections of ITu − u in the third line. By

Assumption (5757), the first term in the right-hand side vanishes, and thus

T3 = −
∑
T ∈Th

∑
F ∈FT

(π0,k−1
F (ITu − u), KT∇(π1,k

K ,T IT zg − zg)·nTF )F,

where we have used the continuity property (3333) and the boundary condition (3434) on the functions in
Vk
h,0, together with the continuity of the normal component of the flux K∇zg, to subtract∑

T ∈Th

∑
F ∈FT

(π0,k−1
F (ITu − u), KT∇zg·nTF )T = 0.

A Cauchy–Schwarz inequality then gives

|T3 | ≤
∑
T ∈Th

∑
F ∈FT

‖π0,k−1
F (ITu − u)‖F ‖KT∇(π1,k

K ,T IT zg − zg)·nTF ‖F . (65)

We next bound the factors inside the summation. Assumption (5757) shows that π0,0
T (ITu − u) = 0 and

thus, by (2222) with s = 1 and m = 0, we have for the first factor

‖π0,k−1
F (ITu − u)‖F ≤ ‖ITu − u‖F = ‖(ITu − u) − π0,0

T (ITu − u)‖F

. h
1
2
T ‖∇(ITu − u)‖T . h

1
2+r

T |u|Hr+1(T ), (66)

the conclusion following from (5050). Introducing ±KT∇π1,k
K ,T zg and using a triangle inequality, we

get for the second factor

‖KT∇(π1,k
K ,T IT zg − zg)·nTF ‖F . ‖∇π1,k

K ,T (IT zg − zg)‖F + ‖∇(π1,k
K ,T zg − zg)‖F

. h
− 1

2
T ‖∇π

1,k
K ,T (IT zg − zg)‖T + h

1
2
T |zg |H2(T ) . h

1
2
T |zg |H2(T ), (67)
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where we have used a discrete trace inequality in Pk−1(T) and (2525) (with v = zg, s = 2 ≤ k + 1 and
m = 0) to pass to the second line, and we have concluded by invoking (5151) with zg instead of u and
r = 1. Plugging (6767) and (6666) into (6565), we obtain

|T3 | .
∑
T ∈Th

h
r+ 1

2
T |u|Hr+1(T )h

1
2
T |zg |H2(T ) . hr+1 |u|Hr+1(Th ) |zg |H2(Ω).

Together with (6363) and (6464), this establishes (6060) and concludes the proof. �

Remark 23 (Simplifications). The proofs of Theorems 1818 and 2020 have been made in a unified setting
that covers both conforming and non-conforming VEM. Simplifications are possible when those
methods are considered individually.

For non-conforming VEM [55], significant simplifications stem from the following preservation
properties of the interpolant: for all T ∈ Th and φ ∈ H1(T),

π0,k−2
T ITφ = π

0,k−2
T φ and π0,k−1

F ITφ = π
0,k−1
F φ ∀F ∈ FT .

Performing integrations-by-parts on the definition (23a23a) of π1,k
K ,T , it can easily be seen that these

properties imply π1,k
K ,T ITφ = π

1,k
K ,Tφ. As a consequence, the term T3 entirely vanishes, and a few other

estimates are shorter (e.g., (5555) is a direct consequence of (4949) and (2424), etc.). Note that T3 is by far
the most troublesome term to estimate in the proof of Theorem 2020.

In the context of conforming VEM, on the other hand, a slightly simpler argument can be invoked
working in a more standard setting corresponding to the classical first Strang lemma; see, e.g., [1010,
Lemma 3.11]. In this case, the source term for the dual problem is the error u − uh measured as the
difference between the continuous and virtual solutions.

We close this remark by noticing that, unlike [1212, Theorem 6] and [1010, Theorem 3.14], our
L2-error estimate stems from an application of the abstract result of Theorem 1313, which is not
problem-specific.
Remark 24 (The lowest-order case). As is often the case with mixed and non-conforming methods
for diffusion equations on generic grids, L2 error estimates for the lowest degree(s) require specific
work and, possibly, additional regularity on the source term; see, e.g., [1919, 2121] for primal and mixed
HHO methods, [55, 66] for conforming and non-conforming VEM, [99, Remark 8.5] for further insight
into this topic, and [3636, Section 2.7] for a fix in the context of high-order Mimetic Finite Difference
methods. In Theorem 1313, additional work would be required on the primal-dual consistency error.
The details can be evinced from the above references, and are omitted here for the sake of brevity.

3.3 Finite Volume methods

The second application of the abstract analysis framework of Section 22 considered here is to Finite
Volume (FV) methods. In this context, several novelties are present. First of all, the analysis is carried
out under general assumptions on the numerical fluxes, which enables the simultaneous treatment
of several (cell-centred or cell- and face-centred) schemes. Second, we provide a clear definition of
consistency also for FV schemes for which this notion hadn’t been clearly highlighted in the literature.
Third, to the best of our knowledge, we write the first error estimates, for FV methods, in which the
dependency on the diffusion field is finely tracked.

3.3.1 General theory

The discrete unknowns of Finite Volume methods are usually values at points. We consider here
methods with cell- and face-unknowns (see Section 3.3.33.3.3 for cell-centred methods). A meshMh =
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(Th, Fh) being chosen, we therefore take one point xT in each cell T ∈ Th and one point xF on each
face F ∈ Fh; note that these points may not be the centres of mass of the corresponding geometrical
objects, and may need to satisfy specific geometric properties. The (d − 1)-dimensional measure of
a face F ∈ Fh is denoted by |F | and, if T ∈ TF , dTF is the orthogonal distance between xT and F.

The space of unknowns is

Xh B
{
vh = ((vT )T ∈Th, (vF )F ∈Fh ) : vT ∈ R ∀T ∈ Th, vF ∈ R ∀F ∈ F i

h, vF = 0 ∀F ∈ F b
h

}
,

which is equipped with the following discrete equivalent of the H1
0 -norm:

‖vh ‖1,Th B

( ∑
T ∈Th

λT |vh |
2
1,T

) 1
2

with |vh |
2
1,T B

∑
F ∈FT

|F |dTF

(
vT − vF

dTF

)2
, (68)

(see, e.g., [2727, Section 7.1] – note that, contrary to this reference, we explicitly account for the
diffusion coefficient here). For u ∈ C(Ω) with u |∂Ω = 0, an interpolant Ihu ∈ Xh is defined by setting

Ihu =
(
(u(xT ))T ∈Th, (u(xF ))F ∈Fh

)
.

Note that, in dimensions ≤ 3, the solution u to (1919) is (Hölder) continuous on Ω [3737].
FV methods are characterised by flux conservativity and balance equations. Following the pre-

sentation in [2424], a generic FV method for (1818) is written: Find uh ∈ Xh such that

FT,F (uh) +FT ′F (uh) = 0 ∀F ∈ F i
h with TF = {T,T ′}, (69a)∑

F ∈FT

FT,F (uh) =
∫
T

f ∀T ∈ Th . (69b)

Here, for T ∈ Th and F ∈ FT , FT,F : Xh → R is a linear numerical flux such that FT,F (Ihu)
approximates −

∫
F
K∇u·nTF .

The following general estimate is a direct consequence of Theorem 1010.

Theorem 25 (Energy estimate for FV methods). Assume that the fluxes (FT,F )T ∈Th, F ∈FT satisfy the
following coercivity property, for some γ > 0: For all vh ∈ Xh,∑

T ∈Th

∑
F ∈FT

FT,F (vh)(vT − vF ) ≥ γ‖vh ‖
2
1,Th . (70)

Then, if the solution u to (1919) belongs to C(Ω)∩H2(Th), denoting by uh the solution to the FV scheme
(6969), it holds

‖uh − Ihu‖1,Th ≤ γ
−1

( ∑
T ∈Th

λ−1
T

∑
F ∈FT

dTF

|F |

[∫
F

KT∇u |T ·nTF +FT,F (Ihu)
]2

) 1
2

. (71)

Remark 26 (Consistency of the fluxes). Estimate (7171) highlights the following well-known fact (see
[3434, Example 3.1] or [2424, Remark 1.3]): in FV methods, the appropriate consistency is that of the
fluxes, not of the discrete second order differential operator as in Finite Difference methods .

Proof. We first recast problem (6969) under a discrete weak form. For an arbitrary vector vh =

((vT )T ∈Th, (vF )F ∈Fh ) ∈ Xh, notice first that, by the flux conservativity (69a69a) and the boundary
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condition on vh, ∑
T ∈Th

∑
F ∈FT

FT,F (uh)vF =
∑

F ∈Fi
h
, TF={T,T ′ }

(
FT,F (uh) +FT ′F (uh)

)
vF

+
∑

F ∈Fb
h
, TF={T }

FT,F (uh)vF = 0,
(72)

where the first equality comes from a re-arrangement of the sum over the faces. Hence, multiplying
(69b69b) by vT , summing over T ∈ Th and using the above relation, we see that uh satisfies∑

T ∈Th

∑
F ∈FT

FT,F (uh)(vT − vF )︸                                ︷︷                                ︸
ah (uh,vh )

=
∑
T ∈Th

∫
T

f vT︸         ︷︷         ︸
`h (vh )

∀vh ∈ Xh . (73)

This problem has the form (44) with Xh = Yh. The coercivity assumption (7070) shows that ah is coercive
on Xh, with coercivity constant γ. Hence, Theorem 1010 yields

‖uh − Ihu‖1,Th ≤ γ
−1‖Eh(Ihu; ·)‖X?

h
. (74)

To estimate the primal consistency error, notice first that the relation f = −∇·(K∇u) and the
divergence formula in each cell give

`h(vh) =
∑
T ∈Th

(∫
T

−∇·(K∇u)
)
vT = −

∑
T ∈Th

∑
F ∈FT

(∫
F

KT∇u |T ·nTF

)
vT

= −
∑
T ∈Th

∑
F ∈FT

(∫
F

KT∇u |T ·nTF

)
(vT − vF )

where we have used (7272) withFT,F (uh) replaced with
∫
F
KT∇u |T ·nTF (these exact fluxes also satisfy

the conservativity relation (69a69a) since ∇·(K∇u) ∈ L2(Ω)). Hence,

Eh(Ihu; vh) = −
∑
T ∈Th

∑
F ∈FT

[∫
F

KT∇u |T ·nTF +FT,F (Ihu)
]
(vT − vF ).

A Cauchy–Schwarz inequality and the definition (6868) of the norm on Xh shows that ‖Eh(Ihu; ·)‖X?
h
is

bounded above by the bracketed term in the right-hand side of (7171). Plugging into (7474) this bound of
the primal consistency error concludes the proof. �

3.3.2 Stable and linearly exact fluxes

The estimate (7171) enables us to identify simple local properties on the fluxes, under which an O(h)
energy estimate can be established: local dependency, linear exactness and boudedness. Similar
properties were proposed in [2626], but without the concept of local dependency, which is essential for
establishing a proper error estimate. Additionally, the analysis in [2626] was only sketched, and did not
track the dependency of the estimates on the diffusion tensor K .

In this section, for T ∈ Th we let XT B
{
v = (vT , (vF )F ∈FT ) : vT ∈ R , vF ∈ R ∀F ∈ FT

}
be

the local space of unknowns and, for φ ∈ C(T), ITφ = (φ(xT ), (φ(xF ))F ∈FT ) ∈ XT defines the local
interpolant of φ.

Theorem 27 (Energy error estimate for linearly exact FV methods). Assume that the family of
numerical fluxes (FT,F )T ∈Th, F ∈FT satisfies the coercivity property (7070), as well as the following
properties:
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(i) Local dependency and linear exactness. For all vh ∈ Xh, T ∈ Th and F ∈ FT , FT,F (vh)
depends only on the values (vT , (vF )F ∈FT ) ∈ XT , and if L is an affine function on T then
FT,F (IT L) = −

∫
F
KT∇L·nTF .

(ii) Boundedness. There is Cb ≥ 0 such that, for all T ∈ Th and v ∈ XT ,∑
F ∈FT

dTF

|F |
|FT,F (v)|

2 ≤ Cbλ
2
T |v |

2
1,T . (75)

Let
θ ≥ max

T ∈Th

(
max
F ∈FT

hT
dTF
+ Card(FT )

)
.

Then, if the solution u to (1919) belongs to C(Ω) ∩ H2(Th), denoting by uh the solution of (6969),

‖uh − Ihu‖1,Th . γ
−1

( ∑
T ∈Th

αTλT h2
T |u|

2
H2(T )

) 1
2

, (76)

with hidden constant independent on K and h, but depending on θ and Cb.

Proof. Fix T ∈ Th and notice that, by definition of θ and [2727, Lemma B.1], there is a ball of radius
& hT such that T is star-shaped with respect to all points in this ball. Hence, [2727, Lemma 7.61] yields
the existence of a linear function LT such that, setting RT = u |T − LT ,

sup
T

|RT | . h
2− d

2
T |u|H2(T ) and ‖∇RT ‖T . hT |u|H2(T ). (77)

Subtracting LT and using the linear exactness of the fluxes, we have

TTF B

����∫
F

KT∇u |T ·nTF +FT,F (ITu |T )
���� = ����∫

F

KT∇RT ·nTF +FT,F (IT RT )

����
≤ λT

∫
F

|∇RT | + |FT,F (IT RT )|.

Hence, by boundedness of the fluxes,∑
F ∈FT

dTF

|F |
T

2
TF ≤ 2λ

2
T

∑
F ∈FT

dTF |F |
(

1
|F |

∫
F

|∇RT |

)2
+ 2Cbλ

2
T |IT RT |

2
1,T =: T(1)T + T

(2)
T .

The definition of TTF and Theorem 2525 show that

‖uh − Ihu‖1,Th ≤ γ
−1

( ∑
T ∈Th

λ−1
T (T

(1)
T + T

(2)
T )

) 1
2

. (78)

To estimate T(1)T , we apply [2727, Lemma B.6] to |∇RT | ∈ H1(T) to see that(
1
|F |

∫
F

|∇RT |

)2
.

(
1
|T |

∫
T

|∇RT |

)2
+

hT
|F |
|RT |

2
H2(T )

.

Since LT is linear, |RT |H2(T ) = |u − LT |H2(T ) = |u|H2(T ). Hence, the Jensen inequality on the first
term in the right-hand side and (7777) yield(

1
|F |

∫
F

|∇RT |

)2
.

(
h2
T

|T |
+

hT
|F |

)
|u|2

H2(T )
.
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Plugging this bound into the definition of T(1)T , using dTF ≤ hT , and using
∑

F ∈FT dTF |F | = d |T |
(see [2727, Lemma B.2]), we infer

T
(1)
T . λ

2
T h2

T |u|
2
H2(T )

. (79)

For T(2)T , we recall the definition of |·|1,T , use the first bound in (7777), and the estimates 1
dTF
≤ θ

hT
and

|F | . hd−1
T to write

T
(2)
T . λ

2
T

∑
F ∈FT

|F |
dTF
(|RT (xT )|

2 + |RT (xF )|
2) . λ

2
T h2

T |u|
2
H2(T )

.

Using this estimate together with (7979) into (7878) concludes the proof. �

We now give two classical examples of FV methods that satisfy the coercivity, linear exactness
and stability properties, and to which Theorem 2727 thus applies. Error estimates for these two methods
can be found in the literature (see e.g. [2828, 3434]) but, to our best knowledge, contrary to (7676), none of
the currently available estimate has explicit dependency on the local anisotropy ratio and diffusion
magnitude.

Example 28 (Two-Point Flux Approximation (TPFA) method). The TPFA scheme [3434] requires
meshes with a specific geometric property: the points (xT )T ∈Th and (xF )F ∈Fh must be chosen such
that, for any T ∈ Th and F ∈ FT , xT xF is parallel to KT nTF . The fluxes are then defined by: for
vh ∈ Xh,

FT,F (vh) = |F | |KT nTF |
vT − vF

|xT − xF |
. (80)

The assumption on the points show that xF − xT = αTFKT nTF with αTF > 0 (because KT

is symmetric positive definite and (xF − xT )·nTF > 0). Taking the norm on both sides yields
αTF =

|xT−xF |

|KT nTF |
. Hence, if L is a linear function,

L(xT ) − L(xF ) = ∇L·(xT − xF ) = −
|xT − xF |

|KT nTF |
∇L·KT nTF

and thus FT,F (IT L) = −|F |KT∇L·nTF , showing that the flux is linearly exact. Fixing Cb ≥

maxT ∈Th maxF ∈FT
d2
TF

|xT−xF |
2 , the boundedness property (7575) is a straightforward consequence of

(8080). Since |KT nTF | ≥ λT , the coercivity (7070) also easily follows from (8080), provided that γ > 0 is
chosen such that γ ≤ minT ∈Th minF ∈FT

dTF

|xT−xF |
.

Example 29 (Mixed Finite Volume (MFV) method). The MFV method is the FV presentation of
the Hybrid Mimetic Mixed (HMM) method [2828]. Here, (xT )T ∈Th can be any points in the cells,
but (xF )F ∈Fh = (xF )F ∈Fh are taken as the centers of mass of the faces. To construct the MFV
method [2525, 2828], we start by reconstructing, from known fluxes, a local gradient. For T ∈ Th, if
fT = (fTF )F ∈FT is a family of real numbers (representing fluxes through the faces of T), define the
following discrete gradient and boundary residuals:

GT (fT ) B −
1
|T |

K−1
T

∑
F ∈FT

fTF (xF − xT ),

RTF (fT ) B fTF + |F |KTGT (fT )·nTF ∀F ∈ FT .

Then, fixing a symmetric positive definite matrix BT = (BTFF′)F,F′∈FT ∈ R
FT×FT , the MFV fluxes

(FT,F (vh))F ∈FT are defined, for vh ∈ Xh, as the unique solution of the following problem

∀fT = (fTF )F ∈FT ∈ R
FT ,

|T |KTGT (FT,F (vh))·GT (fT ) +
∑

F,F′∈FT

BTFF′RTF (FT,F (vh))RTF (fT ) =
∑
F ∈FT

(vT − vF )fTF . (81)
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Assume that L is a linear map and that vh = IhL. Let gT = (−|F |KT∇L·nTF )F ∈FT be the exact
fluxes of L. The divergence theorem shows that GT (gT ) = ∇L and thus RTF (gT ) = 0. Moreover, for
all fT ∈ RFT , ∑

F ∈FT

(vT − vF )fTF =
∑
F ∈FT

∇L·(xT − xF )fTF = ∇L·|T |KTGT (fT ).

Hence, (8181) holds with (gTF )F ∈FT instead of (FT,F (vh))F ∈FT , which shows that these two families of
fluxes are equal, and thus that the fluxes are linearly exact. The stability and coercivity of the method
follow easily from (8181), under natural assumption on the matrices BT , see [2828, Section 4.1] or [2727,
Chapter 13].

Remark 30 (L2 estimates and super-convergence). Define rh : Xh → L2(Ω) by (rhvh) |T = vT for all
vh ∈ Xh and T ∈ Th. A discrete Poincaré inequality [2727, Remark B.16] yields ‖rhvh ‖ ≤ C‖vh ‖1,Th ,
with C depending only on η ≥ maxF ∈Fi

h
, TF={T,T ′ }

(
dTF

dT ′F
+

dT ′F
dTF

)
. Hence, (7171) and (7676) directly

give estimates on ‖rhuh − uTh ‖, where uTh = rh Ihu is the piecewise constant function defined by
(uTh ) |T = u(xT ) for all T ∈ Th.

One can naturally wonder whether Theorem 1313 could yield better error estimates on this L2-norm.
The answer is no in general. Numerical test 2 in [2929] shows that, for the MFV scheme, the L2-norm
error can, in some cases, converge at the same rate as the discrete energy error (that is, O(h)). Actually,
for the MFV and TPFA schemes at least, the super-convergence properties in L2-norm seem to be
related to the proximity, locally and on average, of the interpolation points (xT )T ∈Th and the centers
of mass of the cells [2929, Theorem 5.3].

3.3.3 Cell-centred methods, application to Multi-Point Flux Approximations

The theory in Section 3.3.13.3.1 can easily be adapted to purely cell-centred methods. For such methods,
the space of unknowns is

Xc
h B P

0(Th) =
{
vh = (vT )T ∈Th : vT ∈ R

}
,

with discrete H1
0 norm defined by

‖vh ‖1,Th,c B
©­«

∑
F ∈Fh

λF |F |dF

(
vT − vT ′

dF

)2ª®¬
1
2

,

with the notations

∀F ∈ F i
h

: λF = min(λT , λT ′) and dF = dTF + dT ′F , where {T,T ′} = TF,
∀F ∈ F b

h
: λF = λT , dF = dTF and vT ′ = 0, where {T} = TF .

The interpolant of a continuous function u is Ic
h

u B (u(xT ))T ∈Th ∈ Xc
h
. To write a cell-centred FV

method, linear fluxes Fc
T,F : Xc

h
→ R are first chosen such that

F
c
T,F +F

c
T ′F = 0 on Xc

h
, ∀F ∈ F i

h with TF = {T,T ′}. (82)

Then the FV scheme reads: Find uh ∈ Xc
h
such that∑

F ∈FT

F
c
T,F (uh) =

∫
T

f ∀T ∈ Th . (83)

The following result is the equivalent for cell-centred methods of Theorem 2525.
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Theorem 31 (Energy estimate for cell-centred FVmethods). Assume that the fluxes (Fc
T,F )T ∈Th, F ∈FT

satisfy the following coercivity property, for some γ > 0: For all vh ∈ Xc
h
,∑

F ∈Fi
h
, TF={T,T ′ }

F
c
T,F (vh)(vT − vT ′) +

∑
F ∈Fb

h
, TF={T }

F
c
T,F (vh)vT ≥ γ‖vh ‖

2
1,Th,c . (84)

Then, if the solution u to (1919) belongs to C(Ω)∩H2(Th), denoting by uh the solution to the FV scheme
(8383), it holds

‖uh − Ichu‖1,Th,c ≤ γ
−1 ©­«

∑
F ∈Fh

λ−1
F

dF
|F |

[∫
F

KT∇u |T ·nTF +F
c
T,F (I

c
hu)

]2ª®¬
1
2

(85)

where, for F ∈ Fh, T is an arbitrary cell in TF .

Proof. For all vh ∈ Xc
h
, gathering the sum by faces and using the flux conservativity (8282) shows that

`h(vh) B
∑
T ∈Th

∫
T

f vT =
∑
T ∈Th

∑
F ∈FT

F
c
T,F (uh)vT

=
∑

F ∈Fi
h
, TF={T,T ′ }

F
c
T,F (uh)vT +F

c
T ′F (uh)vT ′ +

∑
F ∈Fb

h
, TF={T }

F
c
T,F (uh)vT

=
∑

F ∈Fi
h
, TF={T,T ′ }

F
c
T,F (uh)(vT − vT ′) +

∑
F ∈Fb

h
, TF={T }

F
c
T,F (uh)vT

=: ah(uh, vh).

Hence, the cell-centred Finite Volume scheme (8383) has been recast in the framework of Section 22.
The error estimate (8585) then follows Theorem 1010, in a similar way as the error estimate (7171) for cell-
and face-centred schemes. �

As for cell- and face-centred FV methods, we could deduce from this theorem an error estimate
for schemes with local, bounded and linearly exact fluxes. However, some important FV methods
are not linearly exact if the diffusion tensor K is discontinuous. This is the case, for example, of
Multi-Point Flux Approximation (MPFA) methods [11, 22, 3030]. To properly account for the diffusion
jump, the fluxes are constructed to be exact on interpolants of piecewise linear functions that have
continuous fluxes (and, thus, usually discontinuous gradients to compensate for the discontinuity of
the diffusion tensor involved in the fluxes). Theorem 3131 however still yields energy error estimate for
such methods. To illustrate this, we consider here the case of two Multi-Point Flux Approximation
methods: the MPFA-L and MPFA-G methods.

Let us first briefly present these two schemes (see [33, 44] for the details). Here, (xT )T ∈Th are still
free points in the cells, but (xF )F ∈Fh are the centers of mass of the faces. A group of faces is any set
of d faces that belong to the same cell and share the same vertex, see Fig. 11. For each such group G
we fix a cell TG whose boundary contains all the faces in G; in most cases there is actually only one
such cell, but for some non-convex cells there might situations with two possible choices for TG – in
which case we arbitrarily fix one choice (see Fig. 11, right).

The fluxes of vh ∈ Xc
h
are constructed via the notion of group gradients. For a given group

of faces G, let TG be the set of cells that have at least one face in G. The group gradients{
(∇Dvh)G,FT : T ∈ TG , F ∈ FT ∩ G

}
⊂ Rd are constructed by imposing the continuity of values

and fluxes on all faces F ∈ G of the piecewise linear functions having these gradients in each
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TG
F F

TG

Figure 1: Two examples of groups of face (in bold) containing one particular face F. Left: unique
choice for TG; right: two possible choices for TG , one has been arbitrarily made.

corresponding cells, and taking the values (vT )T ∈TG at (xT )T ∈TG . Additionally, for the cell TG pre-
viously selected, it is imposed that all group gradients are independent of the corresponding faces:
(∇Dvh)G,FTG

= (∇Dvh)G,F
′

TG
for all F, F ′ ∈ FT ∩ G. We denote by (∇Dvh)GTG the common value of

all these group gradients associated with TG , and it can be proved that this vector is a solution of the
following linear system:

AG(∇Dvh)GTG = BG(vh), (86)

where AG ∈ R
d×d is defined row-wise by

AG =


(
KT nTF ·nTF

dT ,F
(xT − xTG ) + KTG nTGF + KT nTF

) t
F ∈G∩Fi

h(
KTG

nTGF ·nTGF

dTG ,F
(xF − xTG )

) t
F ∈G∩Fb

h

 ,
with T the cell on the other side of TG with respect to F, and BG(v) ∈ Rd is defined as

BG(vh) =


(
KT nTF ·nTF

dT,F
(vT − vTG )

)
F ∈G∩Fi

h(
KTG nTGF ·nTGF

dTG,F
(−vTG )

)
F ∈G∩Fb

h


.

For a given face F, we denote by GF the set of groups G containing F and such thatAG is invertible
(it is assumed that GF , ∅ for all F ∈ Fh). The numerical fluxes are then defined as a convex
combination of the fluxes corresponding to the group gradients: for T ∈ Th, F ∈ FT and vh ∈ Xc

h
,

F
c
T,F (vh) B

∑
G∈GF

θGFF
c,G
T,F (vh) with F

c,G
T,F (vh) B −|F |KT (∇Dvh)G,FT ·nTF, (87)

where (θGF )G∈GF are the coefficients of the convex combination. The L-scheme corresponds to
the case where, for each face, this convex combination has only one non-zero coefficient, chosen
to maximise the monotony properties of the scheme. The G-scheme corresponds to a choice of
coefficients that maximise the coercivity properties of the resulting scheme.

We now show that Theorem 3131 yields the following error estimate. This estimate seems to
be the first one for the MPFA-L and MPFA-G methods in the case of discontinuous permeability
tensors; all previous estimates available in the literature have been derived under the assumption that
K ∈ C1(Ω)d×d, see [2424] and reference therein.
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Theorem 32 (Error estimate for the MPFA-L/G methods). Let η be such that

η ≥ max
T ∈Th, F ∈FT

hT
dTF

, η ≥ max
F ∈Fi

h
, TF={T,T ′ }

dTF

dT ′F
and η ≥ max

F ∈Fh

∑
G∈GF

θGF |A
−1
G |,

where |A−1
G | is the induced Euclidean norm of A−1

G . Assume that the solution u to (1919) belongs
to C(Ω) and that u |Ωi

∈ C2(Ωi) for each i ∈ {1, . . . , NΩ}. Assume that the fluxes (8787) satisfy the
coercivity property (7070) and let uh be the solution to the MPFA-L/G scheme (that is, (8383) with these
fluxes). Then

‖uh − Ichu‖1,Th,c . γ
−1‖u‖C2 h,

where ‖u‖C2 B maxi=1,...,NΩ ‖u‖C2(Ωi )
and the hidden constant in . depends only on Ω, η and K .

Remark 33 (About the coercivity). In general, the coercivity of MPFA methods is not known, and
numerical tests indicate that it might actually fail for MPFA-O scheme on some very distorted meshes
[2424, Section 3.3]. However, for the MPFA-L/G schemes, an indicator can be designed that only
requires to compute the eigenvalues of small systems, and that provides a sufficient condition for the
coercivity of the methods [44, Lemma 3.4].

Proof. [44, Lemma 3.3] shows that, for all T ∈ Th, F ∈ FT and G ∈ GF , |(∇D Ic
h

u)G,FT − ∇u(xT )| .
‖u‖C2(1 + |A−1

G |)h (in this lemma, the quantity ‖u‖C2 does not explicitly appear but is hidden in a
constant ‘C5’; the proof however clearly shows that this constant depends linearly on ‖u‖C2). By C2

regularity of u in the sub-domain Ωi that contains T , we infer that

sup
x∈F
|(∇D Ichu)G,FT − ∇u(x)| . ‖u‖C2(1 + |A−1

G |)h.

Hence, ����−|F |KT (∇D Ichu)G,FT ·nTF +

∫
F

KT∇u |T ·nTF

���� . |F |‖u‖C2(1 + |A−1
G |)h.

Taking the convex combination weighted by (θGF )G∈GF of this inequality and recalling the definition
of η and (8787), we infer that ����Fc

T,F (I
c
hu) +

∫
F

KT∇u |T ·nTF

���� . |F |‖u‖C2 h.

The proof is completed by plugging this estimate into (8585) and by noticing that dF |F | . |T | + |T ′ |
if F ∈ F i

h
with TF = {T,T ′}, and dF |F | . |T | if F ∈ F b

h
with TF = {T}, so that

∑
F ∈Fh dF |F | .∑

T ∈Th |T | = |Ω|. �

4 Conclusion

We developed an abstract analysis framework, in the spirit of Strang’s second lemma, for approx-
imations of linear PDEs in weak form. Contrary to Strang’s lemma, the approximations can be
written in fully discrete form, with test and trial spaces that are not spaces of functions – and thus not
manipulable together with the continuous test and trial spaces. The framework identifies a general
consistency error that bounds, under an inf–sup condition, the discrete norm of the difference be-
tween the approximation solution and an interpolant of the continuous solution. We also established
improved estimates in a weaker norm, using the Aubin–Nitsche trick.

This abstract framework was applied to two popular families of numerical methods for diffusion
equations: conforming and non-conforming VEM, and cell-centred or cell- and face-centred Finite
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Volume methods. For each of these methods, we obtained energy error estimates that accurately
track the local dependencies on the diffusion tensor, through local anisotropy ratios and diffusion
magnitude. In both cases, such estimates seem to be entirely new. Optimal L2 error estimates were
also established for VEM in a unified setting.

To analyse the VEM schemes for the anisotropic diffusion model, optimal approximation proper-
ties of the oblique elliptic projector on local polynomial spaces were established. These properties
are of general interest to several high-order methods for diffusion equations on polytopal meshes.

The range of models and numerical techniques covered by the analysis framework goes beyond
the examples above. Actually, an inspection of error bounds in some previous works show that they
are based on estimations of terms that are (components of) the consistency error of our abstract
setting. For example, in [1717, Theorem 10], robust error estimates for the HHO method applied
to an advection–diffusion–reaction model are established by bounding terms T1, T2 and T3 that
respectively correspond to the consistency errors of the diffusion component of the model, of the
advection–reaction component, and of the weakly enforced (à la Nitsche) boundary conditions. The
analysis in [1717] was however carried out in an ad-hoc setting, and not identified as part of a wider
theory as done in this paper.
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