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Abstract
In Conspiracy Santa, a variant of Secret Santa, a group of people offer each other Christmas
gifts, where each member of the group receives a gift from the other members of the group. To
that end, the members of the group form conspiracies, to decide on appropriate gifts, and usually
divide the cost of the gift among all participants of the conspiracy. This requires to settle the
shared expenses per conspiracy, so Conspiracy Santa can actually be seen as an aggregation of
several shared expenses problems.

First, we show that the problem of finding a minimal number of transaction when settling
shared expenses is NP-complete. Still, there exists good greedy approximations. Second, we
present a greedy distributed secure solution to Conspiracy Santa. This solution allows a group
of people to share the expenses for the gifts in such a way that no participant will learn the price
of his gift, but at the same time notably reduces the number of transactions with respect to a
naive aggregation. Furthermore, our solution does not require a trusted third party, and can
either be implemented physically (the participants are in the same room and exchange money)
or, virtually, using a cryptocurrency.
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1 Introduction

Secret Santa is a Christmas tradition, where members of a group are randomly assigned to
another person, to whom they have to offer a gift. The identity of the person offering the
present is usually secret, as well as the price of the present.

In Conspiracy Santa, a variant of Secret Santa, for each participant, the other members
of the group collude and jointly decide on an appropriate gift. The gift is then usually
bought by one of the colluding participants, and the expenses are shared among the colluding
participants.

In this setting, the price of the gift must remain secret and, potentially, also who bought
the present. At the same time, sharing the expenses usually results in numerous transactions.
Existing results in the literature aim at minimizing the number of transactions, but they
assume that all expenses are public, that all participants are honest, and that communications
are safe. Our goal is to propose a secure Conspiracy Santa algorithm for cryptographers that
do not want to disclose the prices.

1.1 Contributions
We provide the following contributions:

We show that the general problem of finding a solution with a minimal number of
transactions when sharing expenses is NP-complete.
We provide a secure protocol for Conspiracy Santa. The algorithm ensures that no
participant learns the price of his gift, nor who bought it. Moreover, the algorithm
reduces the number of transactions necessary compared to a naive solution (although the
solution in general is not optimal, as this could leak information).
Our secure algorithm is entirely distributed and does not require any trusted third party.
To also realize the payments in a distributed fashion, a secure peer-to-peer cryptocurrency
can be used. We also discuss a physical payment solution, using envelopes and bank
notes.

Our algorithm can also be used in the case where expenses are shared within multiple
groups. There, some people belong to several of these groups and the goal is to reduce the
number of transactions while still ensuring privacy: all participants only learn about the
expenses of their groups, not the other groups. One can also see this problem as a variant of
the dining cryptographers [7]. However, instead of respecting the cryptographers’ right to
anonymously invite everybody, we here want to respect the cryptographers’ right to privately
share expenses of multiple diners with different groups.

1.2 Outline
The remainder of the paper is structured as follows: in Section 2, we analyze the complexity
of the general problem of sharing expenses. In Section 3, we present our protocol to solve
the problem of privately sharing expenses in Conspiracy Santa, in a peer-to-peer setting. We
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also discuss further applications of our solution, and how to realize the anonymous payments
required by the algorithm. We then conclude in Section 4.

2 The Shared Expenses Problem and its Complexity

Before analyzing the Conspiracy Santa problem in more detail, we now discuss the more
general problem of settling shared expenses with a minimal number of transactions. This
problem frequently arises, for example when a group of security researchers attends a FUN
conference and wants to share common expenses such as taxis, restaurants etc. Reducing
the overall number of transactions might then reduce the overall currency exchange fees paid
by the researchers.

In such a case, each participant covers some of the common expenses, and in the end
of the conference, some transactions are necessary to ensure that all participants payed the
same amount. Note for this first example, there are no privacy constraints, as all amounts
are public.

I Example 1. Alice, Bob, and Carole attended FUN’16. The first night, Alice payed the
restaurant for 155 e, and Bob the drinks at the bar for 52 e. The second day Carole payed
the restaurant and drinks for a total of 213 e.

The total sum is then 155 + 52 + 213 = 420 e, meaning 140 e per person. This means
that Alice payed 140 − 155 = −15 e too much, Bob needs to pay 140 − 52 = 88 e more,
and Carole has to receive 140− 213 = −73 e. In this case, the optimal solution uses two
transactions: Bob gives 15 e to Alice, and 73 e to Carole.

There are numerous applications implementing solutions to this problem (e.g., [3, 4, 5]), but
it is unclear how they compute the transactions. Moreover, in these applications all expenses
are public, making them unsuitable for Conspiracy Santa.

David Vávra wrote a master’s thesis [12] about a similar smartphone application that
allows to settle expenses within group. He discusses a greedy approximation algorithm (see
below), and conjectures that the problem is NP-complete, but without giving a formal proof.

We start by formally defining the problem.

IDefinition 2. Shared Expenses Problem (SEP). Given a multiset of valuesK = {k1, . . . , kn}
such that

∑n
i=1 ki = 0 (where a positive ki means that participant i has to pay money, and

a negative ki means that i has to be reimbursed), is there a way to do all reimbursements
using (strictly) less than n− 1 transactions?

Note that there is always a solution using n−1 transactions using a greedy approach: given the
values in K = {k1, . . . , kn}, let i be the index of the maximum value of K (i = arg maxi(ki))
and let j be the index of the minimum value of K (j = arg minj(kj)), we use one transaction
between i and j such that after the transaction either the participant i or j ends up at 0.
I.e., if |ki| − |kj | > 0, then the participant j ends up at 0, otherwise the participant i ends
up at 0. By then recursively applying the same procedure on the remaining n− 1 values, we
can do all reimbursements. Overall, this greedy solution uses n− 1 transactions in the worst
case.

It is easy to see that SEP ∈ NP : guess a list of (less than n− 1) transactions, and verify
for each participant that in the end there are no debts or credits left.

We show that SEP is NP-complete, for this we use a reduction from the Subset Sum
Problem [10] which can be seen as a special case of the well known knapsack problem [9].

FUN 2018
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I Definition 3. Subset Sum Problem (SSP) Given a multiset of values K = {k1, . . . , kn}, is
there a subset K ′ ⊆ K such that

∑
k′∈K′ k

′ = 0?

The Subset Sum Problem is known to be NP-complete (see, e.g., [8]).

I Theorem 4. The Shared Expenses Problem is NP-complete.

Proof. Consider the following reduction algorithm:
Given a Subset Sum Problem (SSP) instance, i.e., a multiset of values K = {k1, . . . , kn},

compute s =
∑
k∈K k. If s = 0, return yes, otherwise let K ′ = K ∪ {−s} and return the

answer of an oracle for the Shared Expenses Problem for K ′.
It is easy to see that the reduction is polynomial, as computing the sum is in O(n).
We now need to show that the reduction is correct. We consider the two following cases:

Suppose the answer to the SSP is yes, then there is a subsetK ′′ ⊆ K such that
∑
k∈K′′ k =

0. If K ′′ = K, then the check in the reduction is true, and the algorithm returns yes. If
K ′′ 6= K, then we can balance the expenses in the sets K ′′ and K ′ \K ′′ independently
using the greedy algorithm explained above. This results in |K ′′| − 1 and |K ′| − |K ′′| − 1
transactions respectively, for a total of |K ′| − |K ′′| − 1 + |K ′′| − 1 = |K ′| − 2 < |K ′| − 1
transactions. Thus there is a way to do all reimbursements using strictly less than |K ′|−1
transactions, hence the answer will be yes.
Suppose the answer to the SSP is no, then there is no subset K ′′ ⊆ K such that∑
k∈K′′ k = 0. This means that there is no subset K3 ⊆ K ′ such that the expenses within

this set can be balanced independently of the other expenses. To see this, suppose it were
possible to balance the expenses in K3 independently, then we must have

∑
k∈K3

k = 0,
contradicting the hypothesis that there is no such subset (note that w.l.o.g. K3 ⊆ K, if
it contains the added value one can simply choose K ′ \K3).
Hence any way of balancing the expenses has to involve all n participants, but building
a connected graph with n nodes requires at least n− 1 edges. Thus there cannot be a
solution with less than n− 1 transactions, and the oracle will answer no.

J

3 Cryptographer’s Conspiracy Santa

Consider now the problem of organizing Conspiracy Santa, where no participant shall learn
the price of his gift. Obviously we cannot simply apply, e.g., the greedy algorithm explained
above on all the expenses, as this would imply that everybody learns all the prices.

More formally, an instance of Conspiracy Santa with n participant consists of n shared
expenses problem (sub-SEP), each with n− 1 participants and with non-empty intersections
of the participants. In each sub-SEP, the n− 1 participants freely discuss, decide on a gift,
its value vi and who pays it; then agree that their share for this gift is vi/(n− 1). Overall
the share of each participant j is ∑n

i=1,i6=j vi

n− 1 .

A participants balance pj is this share minus the values of the gifts she bought.
A simple solution would be to use a trusted third party, but most cryptographers are

paranoid and do not like trusted third parties. A distributed solution would be to settle
the expenses for each gift within the associated conspiracy group individually, but this then
results in n instances of the problem, with n− 2 transactions each (assuming that only one
person bought the gift), for a total of n× (n− 2) transactions.
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Moreover, the problem becomes more complex if several groups with non-empty in-
tersections want to minimize transactions all together while preserving the inter-group
privacy.

I Example 5. Example 1 continued. For the same conference, FUN’16, Alice, Bob and Dan
shared a taxi from the airport and Bob paid for a total of 60e, that is 20e per person. There
are two possibilities. Either Alice and Dan make two new transactions to reimburse Bob.
Or, to minimize the overall number of transactions, they aggregate both accounts, i.e. those
from Example 1 with those of the taxi ride. That is [−15, 88,−73, 0] + [20,−40, 0, 20] =
[5, 48,−73, 20]. Overall Alice thus gives 5 e to Carole, Bob reduces his debt to Carole to only
48e and Dan gives 20 e to Carole. The security issue, in this second case, is that maybe
Alice and Bob did not want Dan to know that they were having lunch with Carole, nor that
they had a debt of more than 20 e, etc.

In the next part we present our solution for the generalization of Conspiracy Santa as the
aggregation of several shared expenses problems with non-empty intersections between the
participants. This solution uses 3n transactions, preserves privacy, and does not require a
trusted third party.

3.1 A Distributed Solution using Cryptocurrencies

We suppose that all participants know a fixed upper bound B for the value of any gift.
Apart from the setup, the protocol has 3 rounds, each one with n transactions, and one
initialization phase.

Initialization Phase

In the setup phase, the participants learn the price of the gifts in which they participate and
can therefore compute their overall balance, pi. They also setup several anonymous addresses
in a given public transaction cryptocurrency like Bitcoin [1], ZCash [6] or Monero [2].

Finally the participants create one anonymous address which is used as a piggy bank.
They all have access to the secret key associated to that piggy bank address. For instance,
they can exchange encrypted emails to share this secret key. Protocol 1 presents the details
of this setup phase.

First Round

The idea is that the participants will round their debts or credits so that the different amounts
become indistinguishable. For this, the participants perform transactions to adjust their
balance to either 0, B or a negative multiple of B. The first participant randomly selects an
initial value between 1 and B e, and sends it to the second participant. This transaction is
realized via any private payment channel between the two participants (physical payment,
bank transfer, cryptocurrency payment, . . . , as long as no other participant learns the
transferred amount). Then the second participant adds his balance to the received amount
modulo B, and forwards the money (up to B, or such that its credit becomes a multiple of
B) to the next participant, and so on. The last participant also adds his balance and sends
the resulting amount to the first participant. In the end, all participants obtain a balance
of a multiple of B, and the random amount chosen by the first participant has hidden the
exact amounts. The details are described in Protocol 2.

FUN 2018
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Protocol 1 SEP broadcast setup
Require: An upper bound B on the value of any gift;
Require: All expenses.
Ensure: Each participant learns his balance pi.
Ensure: Each participant creates 1 or several anonymous currency addresses.
Ensure: A shared anonymous currency address.
1: One anonymous currency address is created and the associated secret key is shared

among all participants.
2: for each exchange group do
3: for each payment within the group do
4: broadcast the amount paid to all members of the group;
5: end for
6: for each participant in the group do
7: Sum all the paid amounts of all the participants;
8: Divide by the number of participants in the group;
9: This produces the in-group share by participant.
10: end for
11: end for
12: for each overall participant do
13: Add up all in-group shares;
14: Subtract all own expenses to get pi;
15: if pi < 0 then
16: Create bpi

B c anonymous currency addresses.
17: end if
18: end for

Second Round

The second and third rounds of the protocol require anonymous payments, for which we use
anonymous cryptocurrency addresses. These two rounds are presented in Protocol 3. In the
second round, every participant makes one public transaction of B e to the piggy bank.

Third Round

Each creditor recovers their assets via bpi

B c public transactions of B e from the piggy bank.
Note that if a participant needs to withdraw more than B e he needs to perform several
transactions. To ensure anonymity, he needs to use a different anonymous address for each
transaction. In the end, the account is empty and the number of transactions corresponds
exactly to the number of initial transactions used to credit the piggy bank’s account.

I Theorem 6. For n participants, Protocols 1, 2, 3 are correct and require 3n transactions.

Proof. Including the piggy bank, all the transactions are among participants, therefore the
sum of all the debts and credits is invariant and zero. There remains to prove that in the
end of the protocol all the debts and credits are also zero. The value of any gift is bounded
by B, thus any initial debt for any gift is at most B/(n− 1). As participants participate to
at most n− 1 gifts, the largest debt is thus lower than B e. Then, during the first round,
all participants, except P1, round their credits or debts to multiples of B. But then, by
the invariant, after the first round, the debt or credit of P1 must also be a multiple of B.
Furthermore, any debtor will thus either be at zero after the first round or at a debt of
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Protocol 2 Secure rounding to multiple of the bound
Require: An upper bound B on the value of any gift;
Require: Each one of n participants knows his balance pi;
Require:

∑n
i=1 pi = 0.

Ensure: Each one of n participants has a new balance pi, either 0, B or a negative multiple
of B;

Ensure:
∑n
i=1 pi = 0;

Ensure: Each transaction is between 1 and B e;
Ensure: The protocol is zero-knowledge.
1: P1: t1

$←− [1..B] uniformly sampled at random;
2: P1: p1 = p1 − t1;
3: P1 sends t1 e to P2; . Random transaction 1..B on a secure channel
4: P2: p2 = p2 + t1;
5: for i = 2 to n− 1 do
6: Pi: ti = pi mod B;
7: Pi: if ti = 0 then ti = ti +B; end if . 1 ≤ ti ≤ B
8: Pi: pi = pi − ti;
9: Pi sends ti e to Pi+1; . Random transaction 1..B on a secure channel
10: Pi+1: pi+1 = pi+1 + ti;
11: end for
12: Pn: tn = pn mod B;
13: Pn: if tn = 0 then tn = tn +B; end if . 1 ≤ tn ≤ B
14: Pn: pn = pn − tn;
15: Pn sends tn e to P1; . Random transaction 1..B on a secure channel
16: P1: p1 = p1 + tn;

exactly B e. After the second round any debtor will then be either at zero or at a credit
of exactly B e. Thus after the second round only the piggy bank has a debt. Since the
piggy bank received exactly nB e, exactly n transactions of B e will make it zero and the
invariant ensures that, after the third round, all the creditors must be zero too. J

I Remarks. It is important to use a cryptocurrency such as Bitcoin, Monero or ZCash in
order to hide both the issuer and the receiver of each transaction in the third round. This
ensures that nobody can identify the users.

Note that when using Bitcoin, users can potentially be tracked if the addresses are used
for other transactions. Using Monero or Zcash can offer more privacy since the exchanged
amount can also be anonymized. Moreover, to avoid leaking the fact that some persons need
to withdraw Be multiple times, and are thus doing multiple transaction at the same time,
all the withdrawals should be synchronized. If exact synchronization is difficult to achieve,
one can decide on a common time interval, e.g., an hour, and all the transactions have to be
done at random time points during this interval, independently, whether they are executed
from the same or a different participant.

I Example 7. We now have a look at the algorithm for our example with Alice, Bob, Carole
and Dan. As in Example 5, the initial balance vector is [5, 48,−73, 20]. They decide on an
upper bound of B = 50 e (note that to provably ensure exactly 3n = 12 transactions they
should take an upper bound larger than any expense, that is larger than 213 e, but 50 is
sufficient for our example here). For the first round, Alice randomly selects 1 ≤ t1 = 12 ≤ 50

FUN 2018
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Protocol 3 Peer-to-peer secure debt resolution
Require: An upper bound B on the value of any gift;
Require: n participants each with a balance pi, either 0, B or a negative multiple of B.
Ensure: All balances are zero;
Ensure: The protocol is zero-knowledge.
1: parfor i = 1 to n do . Everybody sends B to the piggy bank
2: Pi: pi -=B;
3: Pi sends B e to the shared anonymous address; . Public transaction of B
4: end parfor
5: parfor i = 1 to n do
6: if pi < 0 then . Creditors recover their assets
7: parfor j = 1 to −pi

B do
8: Pi makes the shared anonymous address pay Be to one of his own anonymous

addresses; . Public transaction of B
9: end parfor
10: Pi: pi = 0.
11: end if
12: end parfor

and makes a first private transaction of t1 = 12 e to Bob. Bob then makes a private
transaction of t2 = 12 + 48 mod 50 = 10 e to Carole; Carole makes a private transaction
of t3 = 10 − 73 mod 50 = 37 e to Dan; who makes a private transaction of t4 = 37 + 20
mod 50 = 7 e to Alice. All these transactions are represented in Figure 1. The balance vector
is thus now [0, 50,−100, 50], because for instance Bob had a balance of 48 e, received 12 e
from Alice and sends 10 e to Carole, hence his new balance is 48+12−10 = 50 e. Everybody
sends 50 e to the piggy bank address, so that the balance vector becomes [−50, 0,−150, 0].
Finally there are four 50 e transactions, one to an address controlled by Alice and three to
(different) addresses controlled by Carole. These two last rounds are illustrated in Figure 2.
Note that we have exactly n = 4 transactions per round.

A: 5 B: 48

C: -73D: 20

t1 = 12

12 e

12 + 48 = 10 mod 50

10− 73 = 37 mod 50

37 + 20 = 7 mod 50

Figure 1 First round of Example 7.
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A: 0 B: 50

C: -100D: 50

Piggy Bank

50 e 50 e

50 e50 e

A: -50 B: 0

C: -150D: 0

Piggy Bank
50 e

50 e

50 e

50 e

Figure 2 On the left: second round of Example 7. On the right: third round of Example 7.
Dotted arrows represent anonymous transactions, in particular Carole uses three different anonymous
addresses.

3.2 Security Proof
We now provide a formal security proof for our protocol. We use the standard multi-party
computations definition of security against semi-honest adversaries [11]. We consider semi-
honest adversaries in the sense that the entities run honestly the protocols, but they try to
exploit all intermediate information that they have received during the protocol.

We start by formally defining the indistinguishability and the view of an entity.

I Definition 8 (Indistinguishability). Let η be a security parameter and Xη and Yη two
distributions. We say that Xη and Yη are indistinguishable, denoted Xη ≡ Yη, if for every
probabilistic distinguisher D we have:

Pr[x← Xη : 1← D(x)]− Pr[y ← Yη : 1← D(y)] = 0

I Definition 9 (view). Let π(I) be an n-parties protocol for the entities (Pi)1≤i≤n using
inputs I = (Ii)1≤i≤n. The view of a party Pi(Ii) (where 1 ≤ i ≤ n) during an execution of π,
denoted viewπ(I)(Pi(Ii)), is the set of all values sent and received by Pi during the protocol.

To prove that a party P learns nothing during execution of the protocol, we show that P
can run a simulator algorithm that simulates the protocol, such that P (or any polynomially
bounded algorithm) is not able to differentiate an execution of the simulator and an execution
of the real protocol. The idea is the following: since the entity P is able to generate his
view using the simulator without the secret inputs of other entities, P cannot extract any
information from his view during the protocol. This notion is formalized in Definition 10.

I Definition 10 (Security with respect to semi-honest behavior). Let π(I) be an n-parties
protocol between the entites (Pi)1≤i≤n using inputs I = (Ii)1≤i≤n. We say that π is secure
in the presence of semi-honest adversaries if for each Pi (where 1 ≤ i ≤ n) there exists a
protocol Simi(Ii) where Pi interacts with a polynomial time algorithm Si(Ii) such that:

viewSimi(Ii)(Pi(Ii)) ≡ viewπ(I)(Pi(Ii))

I Theorem 11. Our conspiracy santa protocol is secure with respect to semi-honest behavior.

Proof. We denote our protocol by SCSn(I) (for Secure Conspiracy Santa). For all 1 ≤ i ≤ n,
each entity Pi has the input Ii = (n,B, pi), where I = (Ii)1≤i≤n. For all 1 ≤ i ≤ n, we show
how to build the protocol Simi such that:

viewSimi(Ii)(Pi(Ii)) ≡ viewSCSn(I)(Pi(Ii))

FUN 2018
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Simulator 4 Algorithm S1 of the protocol Sim1(I1).
Require: S1 knows I1 = (n,B, p1)
1: S1 receives t1 e from P1;
2: if 0 ≤ (p1 − t1) then
3: S1 sends (B − (p1 − t1)) e to P1;
4: else if (p1 − t1) < 0 then
5: S1 sends (B − ((t1 − p1) mod B)) e to P1;
6: end if
7: for j = 1 to n− 1 do
8: S1 sends B e to the shared anonymous address;
9: end for
10: if 0 ≤ (p1 − t1) then
11: x = n;
12: else if (p1 − t1) < 0 then
13: x = n+ (p1−t1)−((t1−p1) mod B)

B ;
14: end if
15: for j = 1 to x do
16: S1 makes the shared anonymous address pay B e to an anonymous address;
17: end for

Simulator 5 Algorithm Si of the protocol Simi(Ii), where 1 < i ≤ n.
Require: Si knows I1 = (n,B, pi)
1: ti−1

$←− [1..B] ;
2: Si sends ti−1 e to Pi;
3: Si receives ti e from Pi;
4: for j = 1 to n− 1 do
5: Si sends B e to the shared anonymous address;
6: end for
7: x = n+ pi+ti−1−ti−B

B ;
8: for j = 1 to x do
9: Si makes the shared anonymous address pay B e to an anonymous address;
10: end for

Sim1 is given in Simulator 4, and Simi for 1 < i ≤ n is given in Simulator 5.
We first show that the view of P1 in the real protocol SCSn is the same as in the protocol

Sim1:

At Instruction 1 of Simulator 4, S1 receives t1 e from P1 such that 1 ≤ t1 ≤ B, as at
Instruction 3 of Protocol 2.
At Instruction 15 of Protocol 2, Pn sends tn e to P1 such that:

1 ≤ tn ≤ B
The balance of P1 is a multiple of B.

We show that these two conditions hold in the simulator. At Instruction 2 of Protocol 2,
the balance of P1 is (p1 − t1).
1. If the balance is positive, then 0 ≤ (p1 − t1) < B and S1 sends B − (p1 − t1) e to P1.

We then have:
1 ≤ B − (p1 − t1) ≤ B
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The balance of P1 is B − (p1 − t1) + (p1 − t1) = B which is multiple of B.
2. If the balance is negative, then S1 sends (B − ((t1 − p1) mod B)) e to P1. We then

have:
1 ≤ B − ((t1 − p1) mod B) ≤ B
The balance of P1 is: B − ((t1 − p1) mod B) + (p1 − t1) = B +

⌊
p1−t1
B

⌋
· B =(⌊

p1−t1
B

⌋
+ 1
)
·B, which is a multiple of B.

At Instruction 8 of Simulator 4, S1 sends B e to the shared anonymous address (n− 1)
times, and P1 sends B e to the shared anonymous address 1 time, so together they send
B e n times to the shared anonymous address, as at Instruction 3 of Protocol 3.
At Instruction 8 of Protocol 3, the users make the shared anonymous address pay B e to
n anonymous addresses. At Instruction 16 of Simulator 4, the balance of P1 is:

0 if 0 ≤ (p1 − t1) (because P1 had B e and sent B e to the shared address).
Otherwise, the balance of P1 is B − ((t1 − p1) mod B) + (p1 − t1)− B = ((t1 − p1)
mod B) + (p1 − t1). Hence P1 receives B e from the shared anonymous address∣∣∣ ((t1−p1) mod B)+(p1−t1)

B

∣∣∣ times, and S1 receives B e from the shared anonymous

address n+ ((t1−p1) mod B)+(p1−t1)
B times. We note that ((t1−p1) mod B)+(p1−t1) ≤

0 because (p1− t1) ≤ 0 and ((t1− p1) mod B) ≤ −(p1− t1). Finally, P1 and S1 make
the shared anonymous address pay B e to n anonymous addresses because:

n+ ((t1 − p1) mod B) + (p1 − t1)
B

+
∣∣∣∣ ((t1 − p1) mod B) + (p1 − t1)

B

∣∣∣∣ = n

Finally, we deduce that the view of P1 in the real protocol SCSn is the the same as in the
simulator Sim1:

viewSim1(I1)(P1(I1)) ≡ viewSCSn(I)(P1(I1))

We then show that the view of Pi in the real protocol SCSn is the same as in the protocol
Sim1 for any 1 ≤ i ≤ n:

At instruction 3 and 9 of Protocol 2, each user Pi receives ti−1 e from Pi−1 for any
1 ≤ i ≤ n such that 1 ≤ ti−1 ≤ B. We note that each ti−1 depends on the value t1
chosen by P1. Moreover, t1 comes form a uniform distribution and acts as a one-time
pad on the values ti−1, i.e., it randomizes ti−1 such that Pi cannot distinguish whether
ti−1 was correctly generated or comes from the uniform distribution on {1, . . . , B}. At
instruction 1 of Simulator 5, Si chooses ti−1 at random in the uniform distribution on
{1, . . . , B} and sends ti−1 to Pi.
At Instruction 3 of Simulator 5, Si receives ti e from Pi such that 1 ≤ t1 ≤ B, like at
Instruction 9 of Protocol 2.
At Instruction 5 of Simulator 5, Si sends B e to the shared anonymous address (n− 1)
times, and Pi sends B e to the shared anonymous address 1 time, so together they send
B e n times to the shared anonymous address, as at Instruction 3 of Protocol 3.
At Instruction 8 of Protocol 3, the users make the shared anonymous address pay B e to n
anonymous addresses. At Instruction 9 of Simulator 5, the balance of Pi is pi+ti−1−ti−B.
Hence Pi receives B e from the shared anonymous address

∣∣∣pi+ti−1−ti−B
B

∣∣∣ times, and
Si receives B e from the shared anonymous address n+ pi+ti−1−ti−B

B times. We note
that pi + ti−1 − ti − B ≤ 0; indeed, we have ti = (pi + ti−1) mod B (Instruction 6 of
Protocol 2). Since pi ≤ B and ti−1 ≤ B, then we have (pi + ti−1)− ti ≤ B, so we have
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pi + ti−1 − ti −B ≤ 0. Finally, Pi and Si make the shared anonymous address pay B e
to n anonymous addresses because:

n+ pi + ti−1 − ti −B
B

+
∣∣∣∣pi + ti−1 − ti −B

B

∣∣∣∣ = n

Finally, to conclude the proof, we deduce that for all 1 ≤ i ≤ n the view of Pi in the real
protocol SCSn is the the same as in the simulator Simi:

viewSimi(Ii)(Pi(Ii)) ≡ viewSCSn(I)(Pi(Ii)). J

3.3 Physical Variant
If one does not wish to use cryptocurrencies, one can use the following physical variant of
the protocol. In the first round each participant needs to transfer some money to another
participant using a private channel. A simple physical solution is that they meet and perform
the transfer face to face, while ensuring that nobody spies on them. For the second round,
the balance of all participants is a multiple of B e. During the first part of this algorithm,
everyone puts an envelope containing B e onto a stack that is in a secure room. By secure
room, we mean a place where no other participants can spy what is going on inside. In the
second part all participants enter this secure room one after the other and do the following
according to their balance:

If the balance is 0 then the participant does nothing.
If the balance is a multiple k of B e, the participant takes k envelopes from the top of
the stack, opens them and collects the corresponding k ∗B e. Then he places, in each of
the now empty k envelopes, a piece of paper that have the same shape and weight as a
the B e. These envelopes are placed under the stack of envelopes.

This method allows everyone to collect his money without revealing to the other ones how
much they have taken.

We show that this protocol is secure with respect to semi-honest behavior. For this, we
physically simulate the protocol for any participant. We first note that the first round of the
protocol is the same as Protocol 2, so this round can be simulated exactly as in the proof of
Theorem 11. We simulate the second round for any participant as follows. During the first
part of the algorithm, the simulator enters n− 1 times the secure room and puts an envelope
containing B e onto the stack. When it is his turn, the participant enters the room and
puts an envelope containing B e onto the stack. Finally, there are n envelopes containing
B e on a stack. In the second part the simulator enters the room n − 1 times and does
nothing. When it is his turn, the participant enters the room and takes k envelopes from the
top of the stack, opens them and collects the corresponding k ∗B e as in the real protocol,
where 0 ≤ k ≤ n. Since each of the n envelopes contains B e, the simulation works for any
0 ≤ k ≤ n.

We deduce that the view of the participant during the simulation is the same as during the
real protocol, which implies that our physical protocol is secure with respect to semi-honest
behavior.
I Remark. This physical protocol mimics exactly the solution using cryptocurrencies. One
advantage, though, of the physical world is that it is easier to perform transactions with 0 e.
Therefore there exists a simpler solution for the second round, where creditors do not have
to give B e in advance: if the participant is in debt he puts an envelope containing B e
onto the stack, otherwise he puts an envelope containing a piece of paper under the stack.
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The first and third rounds are not modified, and the simulator for the security proof is
not modified either.

4 Conclusion

In this paper we showed that the Shared Expenses Problem (SEP) is NP-complete. Moreover,
we devised a privacy-preserving protocol to share expenses in a Conspiracy Santa setting
where members of a group offer each other gifts.

Our protocol ensures that no participant learns the price of his gift, while reducing the
number of transactions compared to a naive solution, and not relying on a trusted third
party. We formally prove the security of our protocol and propose two variants, one relying
on cryptocurrencies for anonymous payments, the other one using physical means, such as
envelopes, to achieve anonymous payments.

Our protocol can also be used to share expenses among different groups with non-empty
intersections, while still ensuring that each participant only learns the expenses of his group(s).
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