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Abstract
A numerical magneto-thermo-hydrodynamic (MTHD) model coupled with an inverse optimization

method is developed for the identification of heat flux parameters for the Gas Tungsten Arc Welding
(GTAW) process. The MTHD model is based on the four conservation equations of mass, momentum
(Navier-Stokes equations), energy (heat transfer) and electric potential. The stated MTHD includes the
force term due to magnetic field in the momentum equation (Lorentz force). The transport phenomena
and the heat transfer from the electrical arc plasma to the weld pool determine the weld penetration and
the weld pool shape. In the current study an attempt has been made to replace the argon electrical arc
plasma  effect  with  a  heat  flux  modelled  by  a  Gaussian  function  on  the  anode  surface.  The  major
parameters that influence the formation of weld pool shape were identified using a parametric study and
are  welding  efficiency  and  base  radius  of  the  Gaussian  distribution.  A  multivariable  optimization
algorithm based on Levenberg-Marquardt Method is used for the inverse problem. It is concluded that
algorithm developed were able to predict the reference numerical model and demonstrated the stability
and robustness of the algorithm using a noised input data.

Nomenclature
Aγ Surface tension gradient 

constant (N/m/K)
Bθ(r,z) Azimuthal magnetic field (T)

fliq Liquid fraction IS(t) Welding intensity (A)
J=(Jr,Jz) Current density vector (A/m2) QJ Joule heating source (W/m3)
r,z Spatial variables (m) Rg Gas constant (J/kg/mol/K)
S(p) Objective function T Temperature (K)
V=(u,w) Velocity vector (m/s) γ(T,aS) Surface tension coefficient (N/m)
γm Surface tension coefficient for 

pure metal (N/m)
µ0 Magnetic constant (T.m/A) 

σE Electric resistivity (Ω/m) τARC Arc shear stress (N/m)
φ(r,z,t) Gaussian heat flux (W/m2) ϕ(r,z) Electric potential (V)
ΔH0 Standard heat of adsorption 

(J/kg/mol)
ΔHf Latent heat of fusion (J/kg)

Introduction
Gas Tungsten Arc Welding (GTAW) is a joining process that involves the phase change of materials.

This process is widely used in many engineering applications where excellent joint quality is required
such as aerospace, automotive, nuclear, petro-chemical and ship building industries. Many researchers
carried  out tremendous amount  of  work in  understanding the basic phenomena occurring  in the arc
welding process [1-6].

Simulation tools based on finite element method are very useful in the prediction of temperature and
velocity fields in fusion zone. Owing to the growing needs of automation and better weld quality control
there have been several attempts to model the actual welding phenomena by considering all the physics
involved in the weld pool [6]. All these models require the specification of net thermal input from the
welding arc to the work piece along with its spatial distribution. The research on welding heat source
models dates back 1940s and Rosenthal [7] first proposed a mathematical model of the moving heat
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source under the assumptions quasi-stationary state and concentrated point heating in the 3D analysis. In
the late 1960s, Pavelic et al. [8] suggested a circular disc heat source model with Gaussian distribution of
heat flux on the surface of work piece. Goldak et al. [9] further developed a double ellipsoidal power
density distribution of heat source model below the welding arc, which can accurately simulate different
type of  welding  processes  with shallow and deep  penetration.  These  heat  source  models  and some
simplified models  have  been  widely used in  welding simulation for  prediction of  temperature  field,
distortion and the residual stresses [10]. In the current study to simulate the heat flux from the arc we
used  the  Gaussian  heat  distribution  because  of  the  consideration  that  less  heat  flux  penetration  is
involved in arc welding process than the high power density welding processes(EBW and LBW), where
the double ellipsoidal model can capture the flux penetration effectively.

The inverse modeling of welding heat  transfer involves finding the parameters such as heat flux,
material property, liquid/solid interface; … from the knowledge of the thermal histories and/or weld pool
size (with macrographs) [11-14]. Many of the welding variables such as welding current, voltage, speed,
and material properties are known with some reasonable degree accuracy. In contrast for the arc welding
such as Tungsten Inert Gas welding(TIG), the parameters such as arc efficiency, arc radius, the effective
thermal conductivity and the effective viscosity of the molten metal cannot always assigned easily [11-
13].  In the current study an attempt has been made to develop a modeling procedure using the 2D-
axisymmetric numerical model to calculate the optimum values of some of the unknown variables that
mentioned  above.  The  optimization  algorithm  used  for  the  parameter  estimation  was  Levenberg-
Marquardt Method (LMM). The Levenberg-Marquardt technique is widely used for the estimation of
optimum  single  values  of  several  unknown  parameters  and  involves  optimization  of  variables  by
nonlinear least square technique [15].

1. Formulation of direct problem
1.1 Mathematical Model
The computational  model  for  the  current  study  is  limited  to  the  anode.  The multi-physics  problem
comprises of electromagnetism, fluid flow and heat transfer as shown in figure 1. The molten weld pool
and the different forces considered for the current study is also represented in Figure 1.

Figure 1: Schematic of transport phenomena occuring in the GTA Welding process 

The following major assumptions were made:
1. Static  TIG welding  (the  arc  is  stationary)  is  carried  out  and  the  2D-axisymmetric  model  is

assumed.
2. Molten metal flow in the weld pool is considered as laminar and incompressible due to the small

size of the weld pool.
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3. Buoyancy force is taken into account using the Boussinesq approximation [16], and the latent
heat of fusion is taken into account.

4. The surface tension coefficient is dependent on both temperature and sulfur content of the alloy
using the Sahoo et al. [17] relationship.

5. A flat weld pool surface is considered.
6. A spatially  distributed  heat  flux,  current  and  arc  drag  force  falling  on  the  free  surface  are

Gaussian characteristics.

Based  on  the  above  assumptions,  the  classical  incompressible  Navier-Stokes  equations  for  a
Newtonian viscous fluid must be considered to get the velocity, pressure and temperature fields.
Mass conservation:    
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Energy conservation:
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Where p is pressure,  µ is viscosity and Su represents the body forces in the weld pool, it is the sum of
buoyancy force and Lorentz force it can be expressed as:
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where J is the current density, B is the azimuthal magnetic flux density. The gravity force is the sum of
inertia force and buoyancy force [16], g is gravity constant, Tref is the reference temperature taken as the
solidus temperature of the alloy.
In equation (3), cp

eq is the equivalent specific heat, which is introduced to take into account of the latent
heat of fusion  ΔHf and  fL is the liquid fraction, assumed to vary linearly with the temperature in the
mushy zone expressed as follows equation (6). ST is the volume heat production and is equal to the Joules
heating due to the flow of current.
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The flow of current  through the weld pool will  give rise to the electromagnetic  force.  The velocity
distribution of the weld pool is affected by these forces.  For the calculation of these electromagnetic
forces, the following set of equation is adopted in the current study [5].

Current continuity equation
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Ohm’s Law
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Ampere circumfluence law
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Where, σE is electrical conductivity, ɸ electrical potential,  jr and  jz are radial and axial current density
respectively, Bθ self-induced magnetic field intensity and µ0 = 4π ×10-7H/m the permeability of vacuum.

1.2 Computational domain and boundary conditions
The computational model used for the finite element analysis was modified to investigate the transient,
two-dimensional  heat  and  fluid  flow  problem  for  the  static  TIG  welding.  Figure  2  shows  the
computational domain used for the numerical study.

Figure 2: Computational domain for the finite element problem

The geometry includes two sub domains such as a solid domain (ABCFE) and a fluid domain (DEF).
The electromagnetic and energy equations were solved in both domains, but the momentum and mass
conservation equations were solved only in the fluid domain because the fluid flow takes place only
within the fusion region and also to reduce the computational time. A finer mesh size is adopted for the
fluid domain and in particular the top surface (DF) where the high gradient occurs [16]. The different
boundary conditions for electromagnetic field, temperature and velocity are given in Table 1.

Table 1: Estimated parameters for the IHTP solved with ideal input data.
Boundary Temperature (T) Electric potential (ɸ) Velocity (u, v)
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Where jn(r), qn(r) and τa are respectively the current density, heat flux and arc drag force acting at the top
surface  of  the  work  piece  and  assumed  as  Gaussian  distributions.  The  Gaussian  current  density
distribution parameter is calculated from an emperical equation obtained from [18]; rJ  = 0.5342.I 0.2684.
where rJ is in millimiter and I is in amper. The Gaussian heat input was defined by the arc power and the
Gaussian heat distribution parameters. For the current study, the instantaneous power calculated as the
product of simultaneous current  and voltage samples from the experimental  data.  The parameters  of
Gaussian distributions are the heat distribution factor d = 0.5 (for GTAW), the efficiency η = 0.68 and
the base radius  rH is  taken as 3 mm for a current  wI  of 150 A and an arc length of 2.4 mm (or

VU w 4.10 ) [16]. Also h is the convective heat transfer coefficient, ε is the emissivity, σ is Stefan-
Boltzmann constant and T0 the ambient temperature.
The temperature dependent surface tension gradient for binary iron-sulfur system, where sulfur is the
surface active element, is obtained from the Sahoo et al. [17] relationship.
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The constants used in the equations are given in Table 2.

Table 2: Material properties used for the MTHD simulation
Symbol Material Property Value

As Activity of sulphur 0.003 wt%

ks Thermal conductivity of solid 26 W/mK

kl Thermal conductivity of liquid 20 W/mK

cps Specific heat of solid 486 J/kgK

cpl Specific heat of liquid 650 J/kgK

ρs Density of solid 7500 kg/m3

ρl Density of liquid 6350 kg/m3

µ Dynamic viscosity 2.5 × 10-3 kgm-1s-1

β0 Volumetric expansion coefficient 1 × 10-4 K-1

Ts Solidus temperature 1673 K

Tl Liquidus Temperature 1723K

1.3 Numerical Results 
Comsol Multiphysics© is  used to solve the MTHD problem. This finite  element  software  solves the
coupled partial differential equations governing the physical phenomenon. In the current problem the
electromagnetic field is first solved and the Lorentz force is calculated for the fluid domain. The Lorentz
force  will  be given as  an input to solve the Navier-Stokes equations.  Finally  the solution gives  the
electromagnetic, velocity and temperature fields in the domain. A finer mesh size is used in the fluid
domain (about 100 µm) and a very fine mesh (about 50 µm) is used on the top boundary where the high
gradient occurs. A fixed grid numerical method is used in the model to track the liquid/solid interface. In
this method, the computational mesh is generated only once, and the liquid/solid interface is located
using the liquid fraction  fL(T) [16]. The time-dependent solver is used. The simulation duration is 6 s.
The initial temperature was 293K. The mesh grid is made of triangular finite element using a 2nd order
polynomial  for  temperature  and velocity and 1st order  polynomial  for  pressure.  This leads to  11574
degrees of freedom. The step time is chosen by the software with a maximum value set to 0.05s. A time
dependent solver using the generalized alpha method was employed (default solver for fluid mechanics).
The computation time was about 30mn on windows® 7 64bits desktop computer with 4 microprocessors
(2GHz) and 4 GB memory.

Figure 3: Solution of the forward problem; a: Surface temperature distribution and the contour plot
b:weld pool region and the distribution of velocity
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Figure 3 shows the temperature and velocity distribution in the work piece by considering all the driving
forces. These results were obtained for an arc current of 150A and arc length of 2.4 mm. The shape of
weld pool concluded that the combined effect of arc drag and Marangoni driven flow dominated in the
liquid convection resulted in a wider and shallow weld pool shape. The maximum velocity in the weld
pool is obtained as 76.34 cm/s.  

2. Inverse Heat Transfer Problem (IHTP)
Inverse heat transfer problems are known to be ill posed [15] in contrast to the direct heat transfer

problems which are well posed. In this latter, the solution exists, the solution is unique and the solution is
stable to small changes in the input data. To deal with these difficulties the inverse problem is usually
solved as an optimization problem with regularization. The final goal of the optimization problem for the
current study is to determine the uncertain parameters that used in the heat source distribution. Several
inverse  techniques  were  used  in  the  past  to  solve  the  welding  optimization  problem:  Levenberg-
Marquardt [11, 13], gold section [12] and gradient conjugate with adjoint method [14]. For the present
study a damped least square optimization technique named Levenberg-Marquardt method is used. It is a
combination of Gauss Newton algorithm and steepest decent technique [15]. 

2.1 Levenberg Marquardt Algorithm

The  Levenberg-Marquardt  method  has  been  widely  used  in  various  inverse  heat  transfer
problems [11, 13]. It involves the minimization of an objective function which depicts the difference
between the computed and measured values.
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Where Yi are the measured temperatures,  Ti the calculated temperatures and Γi and Di are the measured
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Where  pJ  is the sensitivity matrix which is defined as the transpose of the term
  ppTi  /

.
The elements of the sensitivity matrix are called the sensitivity coefficients. The sensitivity coefficient is
thus defined as the first derivative of the estimated temperature with respect to the unknown parameters

 21,, BB RRp  . λk  is positive scalar which is introduced to alleviate that matrix 0JJ T
 is ill-

conditioned near the initial guess used for the unknown parameters.  Ωk is a diagonal matrix. The term
λkΩk damps  oscillations  and  instabilities  due  to  the  ill-conditioned  character  of  the  problem.  This
damping parameter is large at the beginning of the iterative procedure (and the method is like the steepest
descent method) then it decreases when the procedure advances to the solution (and the method tends to
the Gauss method). W is a diagonal matrix where the diagonal elements are given by the inverse of the
standard deviation of the measurement errors.

The  Levenberg-Marquardt  algorithm  is  presented  in  figure  4.  We  chose  an  initial  set  of

parameters  21
0 ,, BB RRp  and an initial value for the damping parameter λ0=0.001. The iteration

number is initialized (k=0).
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Figure 4: the Levenberg-Marquardt method for the parameter estimation.

The keystone of  the  Levenberg-Marquardt  method resides  in  the sensitivity  matrix  coefficients.
These sensitivity coefficients must be linearly independent or the problem is over-parameterized. The
next paragraph will deal with the analysis of these sensitivity coefficients in order to verify the relevance
of the measured data for solving our inverse heat transfer problem.

3. Numerical inverse analysis and discussion

3.1 Definition of the Parameter to estimate

The arc plasma effect on the work piece is modelled with the Gaussian heat distribution ϕ(r, t),
which include the instantaneous current and voltage data (Uw, Iw) from the experimental measurement
and is represented as follows;
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The investigated parameters  are  the GTAW efficiency  η and Gaussian radius  RB as  they are  the

parameters of the heat flux that are unknown. They parameters affect the temperature field along the
simulation and the weld pool growth. Moreover, we propose that the Gaussian radius RB varies linearly
with regards to the time variable t, and is given as follows: 
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In order to represents the “transient” radius of the arc plasma at the ignition of the electrical arc. Finally

the vector p  is equal to 
 ft

B
t
B RRp ,, 0

 hence 3 unknown parameters to estimate. 
In this work, a numerical differentiation based on a forward difference scheme has been used [15] in
order to calculate the required coefficients of the sensitivity matrix.

3.2 Numerical Inverse Analysis with ideal data

First,  the  IHTP is  solved  with  ideal  input  data  in  order  to  check  that  the  inverse  program
converges towards the given set of parameters with a good accuracy. The ideal input data are obtained by
solving first the direct problem (equations (1) to (9)) with the following values: η=0.68, RB1=2.7 mm &
RB2=3.2 mm. This simulation gives us ideal (or reference) data about time evolution of both temperature
and weld pool radius. These data are called “ideal” as there is no measurement error. The initial values



4th Inverse Problems, Design and Optimization Symposium (IPDO-2013)
Albi, France, June 26-28, 2013

used for the three parameters are: η=0.2, RB1=20 mm & RB2=20 mm at the first iteration of the IHTP. The
positions of the thermal sensors were chosen on the back side at radii 4mm (sensor 1) and 8mm (sensor
2).

Figure 5: Estimated efficiency along the iteration 
process.

Figure 6: Estimated Gaussian radius Rb1 along the
iteration process.

Figure  5,  6  and  7  shows  the  estimated  parameters  along  the  iterative  process.  The  three
parameters are perfectly estimated at the final iteration 8. The final values are reported in table 3. The
error on the three estimated parameters is below 0.08%. The residual error is due to numerical noise.
Figure 8 presents the evolution of the objective function along the iterative process. The initial value of
the objective function was 1.9x107 and decreased in 8 iterations to the final value of 17.67 which is quite
close to zero as expected.

Figure 7: Estimated Gaussian radius Rb2 along the
iteration process.

Figure  8: Evolution  of  the  objective  function
along the iteration process

Table 3: Estimated parameters for the IHTP solved with ideal input data.
Parameters Exact value estimated % error

η 0.68 0.6799 0.015

RB1 (mm) 2.7 2.68 0.08

RB2 (mm) 3.2 3.1 0.086

3.3 Numerical Inverse Analysis with noised input data

The goal of this numerical work is to evaluate the ability of the inverse algorithm to estimate the
three unknown parameters with regards to measurement errors.  Two sorts of measurement errors are
investigated: the first is due to the thermocouple itself and the acquisition device while the second is due
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to the thermocouples position inaccuracy. For the first case, a random measurement error is added to the
reference temperature with a maximum standard deviation σ(t) of 5% of the actual  temperature (e.g:
ǀσ(t)ǀ≤5%×TREF(t) so the new inputs for the IHTP were: TNOISE(t)=TREF(t)+σ(t)). An inaccuracy of ±0.5mm
is assumed on the thermocouple position for  the second case.   So the reference  data were  made at
r=3.7mm and  r=8.3mm for sensors 1 and 2 respectively. The IHTP was solved by assuming that the
sensors position was 6mm and 8mm. The final results are presented in table 4.

Table 4: Parameters estimated for the three studied cases of error.

Parameters
Exact values

Case 1 (at 9th iteration) Case 2 (at 9th iteration)

Estimated Error (%) Estimated Error (%)

η 0.68 0.683 ≤0.44 0.73 ≤7.4
RB1 (mm) 2.5 2.538 ≤1.5 2.623 ≤4.9
RB2 (mm) 3.5 3.438 ≤1.78 4.028 ≤15.1

Heat flux integral 1.425x105 1.434x105 ≤0.63 1.386x105 ≤2.7
Final objective

funciton
35481.3 10836.8

Both studied cases converged to a limit value for the objective function. The final objective function for
case 1 is 3 three more important than the one for case 2. The same number of thermocouples and time
steps are used in these two studies. Parameters estimated with errors on thermocouple position seemed to
lead  to  good  results  according  to  the  objective  function.  Indeed,  the  value  of  the  three  estimated
parameter are really far than the one expected: η=0.68, RB1=2.7 mm & RB2=3.2 mm. the biggest error is
made on the estimation of RB2  with 15% error followed on GTAW efficiency with 7.4% error. A small
error on thermocouple position within ±0.5mm leads to wrong estimates. The integral of the heat flux
over the space and time interval was computed for both cases. The heat flux integral is below 3% error
for the second case despite the estimated parameters.  For measurement  errors  due to the acquisition
chain, the three parameters are very well estimated as well as the heat  flux integral despite the final
objective function value. In this case,  the Levenberg-Marquardt  filtered the noised on input data and
finally led to a good estimation of the parameters.

3.4 Discussion

Three numerical cases were studied previously:
1. resolution of the IHTP with “ideal” data (without any measurement error in the input data);
2. resolution of  the IHTP with “realistic”  data (including only measurement  errors  due  to  the

acquisition chain);
3. Resolution of the IHTP with “ideal” data but the thermocouple position was known with certain

accuracy.

The case with ideal input data demonstrated that the developed inverse problem was able to estimate the
three parameters with an excellent accuracy. The residual objective function is close to zero (17.7) in
comparison to its initial value about 1.9x107. This residual is assumed due to the numerical error of the
FEM software. The GTAW efficiency parameter is the first to be estimated correctly after 5 iterations,
figure 5, while it takes to 7/8 iterations for the Gaussian radii to be estimated correctly, figure 6 and 7.
Indeed, the temperature field is very sensitive to the GTAW efficiency parameter. A small change in this
parameter generates important changes in the temperature field and weld pool dimensions.
The two other cases studied the effect of two kinds of error on the estimation of the parameters. The error
due to the acquisition chain, about 5% of the reference temperature, was a realistic error. This error led
finally to a very good estimation of the parameters. Actually, the Levenberg-Marquardt technique has
filtered off the perturbation added on the reference data. It converged toward the right parameters with
accuracy below 2% on Gaussian radii and below 0.5% on GTAW efficiency. The Levenberg-Marquardt
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is quite robust to such measurement noise if it is random and distributed with a normal law. Such noise
measurement does not prevent any estimation of the three parameters. This conclusion does not mean
that the error due to the acquisition chain can be neglected. Conversely, small errors on the thermocouple
position  (within  ±0.5mm  as  the  thermocouple  size  is  0.5mm)  leads  to  wrong  values  for  the  three
parameters.  In the studied case,  GTAW efficiency  is overestimated as  the input data was calculated
closer to the centre (3.7mm) while the temperature was computed at 4mm in the IHTP. The second
Gaussian radius was also wrongly estimated: 4mm instead of 3.2mm. This probably due to the error on
the position of the second thermocouple: the IHTP used 8mm while it was 8.3mm for obtaining the input
data. The energy is spread over a large area. Despite these wrong estimated values, the method leads to a
fair estimation of the heat flux integral with an error below 3%.
Finally, reasonable measurement noise due to the acquisition chain does not prevent the estimation of the
three  parameters  while  errors  on  thermocouple  position  prevent  any  accurate  estimation  of  these
parameters but it gives a fair idea of the energy absorbed by the work piece during a static GTA welding
spot.  The  stated  IHTP  can  be  solved  with  experimental  data  as  the  method  is  robust  to  noise
measurement. A great care must be done on the position of the thermocouple in order to get a good
estimation of the three parameters.

4. Conclusion
A GTAW modelling was established in order to describe a stationary GTA welding experiment. This

modelling includes coupling and simultaneous solution of electric potential, heat transfer and Navier-
Stokes equations. In this paper, an inverse heat transfer problem has been stated in order to estimate heat
flux parameters. The parameter estimation was carried out for several numerical test cases: ideal input
data (without any measurement errors) and more realistic input data (including two sorts of errors). The
temperature  measurement  were  made  on  the  disc  backside  as  the  topside  is  almost  impossible  to
instrument due to the severe electric and radiating conditions of the arc welding process. The inverse
thermo convective model developed was able to get back the parameters with reasonable accuracy for the
ideal test case and the test case including noise measurement in the input data. For the third test case, the
errors were supposed on the sensor position. This case led to wrong estimated parameters but provided a
good knowledge of the heat absorbed into the work-piece. The Levenberg-Marquardt technique is robust
to measurement errors as it filters off the noise in the input data. The thermocouple must be positioned
carefully as the result of the IHTP depends strongly on the accuracy of their position. The experimental
data will be shortly used for solving the inverse heat transfer problem.
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