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Molecules with two electronic energy levels: coupling between the
molecules in the solid state via the optical and acoustic phonon

branches

Jamil A. Nasser
Laboratoire d’Ingénierie des Systémes de Versailles (LISV),
EA 4048, CNRS, Université de Versailles Saint Quentin,

45, avenue des FEtats-Unis, 78085 Versailles, France and

In the adiabatic approximation the values of the spring constants of the springs
contained in a molecule depend on its electronic state. We consider molecules with
two electronic energy levels separated by A. For a crystal of such molecules, the
phonon branches depend therefore on the electronic states of the molecules. One can
ask if that dependence does not introduce a coupling between the molecules via the
optical and the acoustic branches.

It is known that for a one-dimensional chain of N identical diatomic molecules
there are two phonon branches, an optical branch and an acoustic one. In this study
we introduce in the hamiltonian of the chain two assumptions: i) each molecule has
two electronic energy levels separated by A and the spring constant of the spring
contained in the molecule has a value which depends on its electronic state; ii) the
spring constant of the spring which links two molecules nearest neighbours has a
value which depends on the electronic states of both molecules linked.

One can show that phonons create on each molecule a field-like which favours the
excited level and create between two molecules nearest neighbours an exchange-like
interaction which can be ferro-like, antiferro-like and which can be equal to zero. For
some values of T" and A the chain can display a first order phase transition with the
presence of a thermal hysteresis loop. The phase transition takes place between the
phase where all the molecules are in the fundamental level and that where they are
in the excited one.

PACS 63.20.Kr Phonon-electron and phonon-phonon interactions- 63.50.+x Vi-

brational states in disordered systems- 64.60.-i General studies of phase transitions



I. INTRODUCTION

In the adiabatic approximation the values of the spring constants of the springs contained
in a molecule depend on its electronic state. We consider molecules with two electronic
energy levels separated by A, which is of the order of 300K. Such molecules can be found
in various complexes of transition metal ions[1]. We therefore can assume that the values of
the spring constants of the springs contained in one molecule are not the same in both levels.
Consequently, in the solid state, for a crystal of N identical molecules, the phonon branches
depend on the electronic states of the molecules, that is on n.;, the fraction of molecules
in the excited level. One can ask if that dependence does not introduce a coupling between
the molecules via the optical and the acoustic branches. It seems clear that the optical
branches which do not display a dispersion cannot contribute to such a coupling. Indeed,
they correspond to springs well localized inside the molecules. In this study we consider the
case of an optical branch which displays dispersion and the case of an acoustic branch.

The study of the thermal variation of n., gives informations on the presence or not of a
coupling. If there is not a coupling, the distance between the two energy levels is constant
and the thermal variation of n., is well known. For the following, we call (a) and (b) the
fondamental and the excited electronic levels, respectivement. So, n., is replaced by n;,. The
levels (a) and (b) are obtained by quantum mechanics calculations.

It is known that for a one-dimensional chain of N identical diatomic molecules there are
two phonon branches, an optical branch and an acoustic one. Those results are obtained with
the following assumptions: the molecules axes are parallel to the chain, the chain is periodic
at the equilibrium, the atoms displacements from their equilibrim positions are longitudinal,
along the chain , there is a spring between the two atoms of a molecule and one between
two molecules nearest neighbours.

In this article, we study the previous linear chain with the following supplementary as-
sumptions:

i) each molecule has two electronic energy levels separated by A and the spring constant
of the spring contained in the molecule has a value which depends on its electronic state.
This value is k& when the molecule is in the (a) level and k when it is in the (b) level .

ii) the spring constant of the spring which links two molecules nearest neighbours has

three values: A when they are both in the (a) level , ¥ when they are both in the (b) level



and g when they are not in the same electronic level.

Ronayne et al. [2] have studied the frequency values of the normal modes of vibration of
the complex [Fe(phen)y (NC'S),] which has two electronic energy levels. They found that the
majority of the frequency values are lower in the excited level than in the fundamental one.
Studying the heat capacity of a crystal of this molecule, Sorai and Seki [3] have concluded
that the excitation of phonons is much easier when the crystal is in the (b) phase than when
it is in the (a) phase . In the thermodynamic (b) phase ( resp. (a)) all the molecules ( or
the majority of them) are in the (b) level (resp. (a)).

Following those results we assume that
kE>k (1)

and

A>u>v (2)

The case where the values k and k are equal while the values A\, ;1 and v verify relation
(2) looks like the case studied by Nasser [4] who has found a coupling between the molecules.
So, one of aims of this study is to see if there is a coupling when the values A, p and v are
equal while the values k and k verify relation (1).

The present study has never been done before.

The free energy of an harmonic oscillator is

F =kgT1In(2 sinh(ﬁ%) (3)

1

T and kp is the Boltzmann constant. It is clear that a decrease in w,

where [ =
the oscillator frequency value, at constant temperature lows the value of the free energy.
From this result, one can say that the assumptions done in relations (1) and (2) imply that
phonons favour the (b) level . It is clear that the electronic parameter A favours the (a)
level . So, there is a competition between the phonons and the electronic interactions. This
competition can lead to a first order phase transition. It is worth to emphasize that the
lattice vibrations of the crystal have to be studied by using quantum statistical mechanics|5].

In Section 2 we present the chain hamiltonian and the variational method used to study

it. In Section 3 we give the results obtained by numerical calculations and the last Section

is devoted to the conclusion.



II. THEORETICAL STUDY
A. The Model and the Chain Hamiltonian

Let us consider a linear chain of N identical molecules each having two atoms A and
B. The molecules are numbered along the chain from left to right. The ith molecule is
called A;B;, i = 1 to N. The axes of the molecules are parallel to the chain. At equilibrium
the distance between A; and B; is d; and that between B; and A;,; is ds. So the chain is

periodic with the period d given by
d=dy +ds (4)

The atoms A; and B; are linked by a spring with spring constant k;, and the atoms B; and
A;11 are linked by a spring with spring constant e;;1;. When these atoms are displaced
longitudinally along the chain from they equilibrium positions by an amount u; for the atoms
A; and w; for the atoms B; the potential energy of the chain is
1 2 1 2
E, = Z 5’@ (u; —w;)” + Z —€iit1 (Wip1 — w;) (5)

A 4 2
i=1,..N i=1,..N

where the sum is over the N molecules. We assume periodic conditions.

The vibrations hamiltonian of the chain is
H,, =E.+ E, (6)

where E. is the total kinetic energy of the chain.

Now we introduce the following assumptions:

i) each molecule has two electronic energy levels : a fundamental level, called (a), with
a degeneracy equal to the unit and an excited one, called (b), with a degeneracy equal to
r. The separation between both levels is called A. So, the electronic hamiltonian of the

molecule 7, can be written
A
He = 501' (7)

where &; is a fictitious spin associated to the molecule i which has two eigenvalues +1, the
eigenvalue —1 (resp.+1) corresponding to the electronic level (a) ( resp. (b)). For the chain,

the electronic hamiltonian is given by

m=Y 54 ®



ii) we assume that the spring constant k; has the value & when the molecule A;B; is in
the (a) level and the value k when it is in the (b) level. This assumption can be written

_k+%+%—kd
T 2 7

k; 9)

iii) we assume that the spring constant e;;;; is equal to A when the molecules A;B; and
A;11B;y1 are both in the (a) level, to v when they are both in the (b) level and to u when
they are not in the same level. Those assumptions can be written

A+2u+v v—A __ AN—2u+v .
€iit1 = f + 1 (0i+0i+1)++0i0i+1 (10)

The chain hamiltonian is

H=H, + H,y, (11)

B. Phonons-molecules interactions

By inserting equations (9) and (10) in the right hand of equation (5) the chain potential

energy can be decomposed into three terms

E,= Vot Vi+ Vs (12)
with -
Lk +k LA+ 2+ v
Vo = | 33 (u; —w;)? + Z SR (Ui — w;)? (13)
i=1,..N i=1,..N
1k—k " 1y — A R
Vi = = (u; — w;)* G + T (i — w;)? (Gi + Gir) (14)
. 2 2 4 2 4
i=1,..N i=1,..N
1A—2u+v R
Vo = §TM (Uit1 — wi)2 0i0i41 (15)
i=1..N

1. Zeeman-like interaction

The energy term V; corresponds to a Zeemann-like interaction. The fields-like acting on

the spin o; are

1k—k
Rimot = 5 9 (Uz - wz‘)Q (16)
and
lv—A
Nitar = 51 (i1 — w;)? + (u; — wi—1)2> (17)



Both fields-like depend on the time, on the temperature and they are not uniform. They
have the same sign and favour the (b) level, that is 3; = +1, because the coefficients (k — k)
and (v — \) are negative (here the Zeemann-like term is written h;o;).

The field-like h;,,,; comes from the spring contained in the molecule 7. But the parameter
(u; — wi)2 depends on the molecules 7 — 1, ¢ and ¢ + 1. The field-like h;;,,; comes the springs

which link the molecule 7 with the molecules 7 & 1.

2. Exchange-like interaction

The term V5 corresponds to an exchange-like interaction. The exchange- like constant is

1A—2u+v
Jiiv1 = §+ (Uz‘+1 - wi>2 (18)

This interaction comes from the spring which links the molecules ¢ and ¢ 4 1. It depends on

the time, on the temperature and it is not uniform. The exchange-like constant is equal to

zero when
A+v
= 19
p=— (19)
It corresponds to an antiferro-like parameter when
A=2u+v>0 (20)

Indeed, in that case, the exchange-like interaction favours the situation where two molecules
nearest neighbors are not in the same electronic state (0,6;.1 = —1).

The exchange-like parameter is a ferro-like one when
A=2p+rv <0 (21)

Indeed, in that case, the exchange-like interaction favours the situation where two molecules
nearest neighbors are in the same electronic state (6,0;11 = 1).
In this study the three previous parameters are replaced by parameters which do not

depend on time and which are uniform.



C. Variational Method: Effective Parameters
1. Self-Consistent Equation

We apply now a variational method [6] and to this end we introduce three parameters,
h, K and E. The first one h describes an uniform, effective field, the second one K is
an effective spring constant that replaces the spring constants k; and the last one F is an
effective spring constant that replaces the spring constants e; ;1. Those K and E do not

depend on the electronic states of the molecules. The variational hamiltonian Hy is
Hy = Hosp (h) + Hop, (K, E) (22)
The spin hamiltonian Hy,, (h) is

H()sp (h) = Z —h 0/-\1 (23)
i=1,.N

With this spin hamiltonian all the fictitious spins ; have the same mean value m given by

_ —exp(~Bh) +rexp (Bh)

exp (—fSh) + rexp (Bh) (24)

Equation (24) is called self-consistent equation. The free energy related to Hos, (h) is
Fosp = —NkpT In 25, (25)

where the partition function zp, is given by
20sp = €xp (= Bh) + 7 exp (3h) (26)
The phonon hamiltonian Hy,, (K, E) is given by
Hopy (K, E) = B, + Ey (K, E) (27)
where

Ey (K, E) = Z %K (Uz - wi)2 + Z %E (Ui+1 - wi)2 (28)

i=1,.N i=1,.N
The hamiltonian Hyy, (K, E), is the phonon hamiltonian of a linear chain of N identical

diatomic molecules, A;B; with i = 1,.., N. The atoms A; and B; are linked by a spring with



spring constant K and two molecules nearest neighbors are linked by a spring with spring

constant F. It is known that there are two dispersion relations
W =Wy (7)

W=W2(7)

which correspond to the optical branch and to the acoustic branch of the chain. In the
previous relation the vector ¢ is the phonon wave vector. The previous dispersion relations
are given in the Appendix.

With the hamiltonian Ho,, (K, E), the mean values ((u; — wi)2> and ((uir1 — wi)2>, cal-
culated with the matrix density of Hy,, (K, E), are independent on ¢ and are equal to

((u; — wi)2>0 and ((u41 — wi)2>0, respectively. We have

2 hw ()R O
{(u; —w;)*), = NE_} coth 3 éq )58_;; (29)
and
2 <« hw (7¢') h O
(st = ), = 3 coth 4L 2 0 (30)

where }'is the sum over the two phonon branches and g—; and g—g are the partial derivatives
7

versus K and F, respectively, of the dispersion relations w; (¢’) and ws (7). The expressions

of the partial derivatives are given in the Appendix. The free energy related to Ho,, (K, E)

is

Fopn = kTS In (2 sinth 5@) (31)

The free energy associated to the variational Hamiltonian Hj is
F0:F05p+F0ph (32)

At the first order perturbation calculation,

k+k k—k
K =
5 T ™m (33)
A2u+v v—A A=2pu+v ,
E = 2 4
1 g " 1 (34)

and



A
h:—5+mm (35)
with
hph - h'phmol + hphlat (36)
where
1k—k )
hphmol = éT <(uz - wz) >0 (37)
and
A—v AN=2u+v
Nphiat = 2T ) (i — wi)?), (38)
4 4
The crystal free energy corresponding to the approximation done in this study, is
A
F=F+N §+h m (39)
The (b) level fraction is given by
1
m=—" (40)

It increases from 0 to 1 when the parameter m varies from —1 to 1.

The sound velocity of longitudinal waves is

KFE 1
Vi=b 41
K+ Emg+mp (41)

2. Discussion

i) We have verified that the value of the spring constant F is always positive. It
decreases from A to v when m increases from —1 to 1.

ii) From relation (28), the thermal mean value of the potential energy E,q (K, F) is
given by

(B (K, E))y= Y %K<(ui —w))+ S %E<(ui+1 ), (42)

i=1,..N i=1,.N
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By inserting equations (29) and (30) in equation (42), we can verify the virial theorem
1
(B (K. E))y = 5 (Hopn (K, E)), (13)
iii) In relation (38) the exchange-like interaction is studied as a mean field approxi-
mation. This study method could be improved for a 1D system by using the transfert matrix
method, if it is possible. In the antiferro-like case it could be interesting to introduce two
sublattices.

We assume for relation (38) that the exchange-like interaction is small compared to the

Zeemann-like interaction, that is
IAN=2u+v|<<A—v (44)

where |\ — 2u + v| is the absolute value of the parameter A — 2 + v. With this condition
the parameter hppq is always positive.
iiii) It is worth to notice that, in the expression of the uniform field A, the electronic

term —A is negative while the phonon term h,, is positive.

III. NUMERICAL STUDY

The numerical study consists essentially in solving the self-consistent equation. For that,

it interesting to use reduced parameters.

A. Reduced Parameters

We take \ as the unit of elastic force constant and 7wy, (A) as the unit of energy with

wnr (V) = 24/ m (45)

The value of Awy, (M) is roughly estimated to 1000K or 695cm ™! [5].

We introduce the following reduced parameters: the
reduced temperature
kgT
t= ———— 46
s (N) (46)
the reduced electronic energy gap
A
0= ——— (47)

hwnr (M)
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the elastic force constants ratios

v
= — 48
0=t (45)
k
nt = — 49
zint = - (49)
and
k
= — 50
=3 (50)
From condition (1)
0<uzint <1 (51)
and from condition (2)
0<x<1 (52)
It is interesting to introduce the parameter y by the relation
A4 A—0
= 53
5 TS (53)

The value p varies from v to A when y varies from —1 to +1. For y = 0 the exchange-like
parameter ( see V3) is equal to zero. It is an antiferro-like parameter when y < 0 and a
ferro-like one when y > 0.

Using relation (53) we have
A=2u+v=—-yA—v) (54)

So condition (44) can be written

A —=2p+v|

eyl << (55)

B. Values of the Ratio mp/m4

We assume that m4 + mp, the mass of the molecule, is 500g mol~![7]. So, the ratio
mp/my is near 0.002 if the atom B is an Hydrogen atom, and to 0.02 if the atom B is a
Carbone or a Nitrogen one.

The good reduced parameter to use for studying the self-consistent equation is

R
SR - 56
p mA+mB ( )
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where mp is the reduced mass (see Appendix). The parameter p is nearly equal to the
ratio mpg/ma. In the following, we have studied both cases p = 0.002 and p = 0.02. The

parameter p varies but the molecular mass is constant.

C. Study of the Self-Consistent Equation

We fix the values of all the model parameters and we look for the values m which satisfy
equation (24). For each solution of value m, we can calculate the free energy, the (b) level
fraction and the chain sound velocity by using relations (39), (40) and (41), respectively.

The self-consistent equation leads to either one or else three solutions. When there is
only one solution, the chain is in the (b) phase if the value of n, is near the unit and in the
(a) phase if this value is near zero.

When there are three solutions, the values of the free energy of the three solutions must
be compared. The thermodynamic stable solution is the one with the lowest associated free
energy. When the values of the free energy of two solutions are equal both solutions are
stable and the chain shows a first order phase transition. In that case, the third solution
corresponds to an unstable state. When there are three solutions, the value of ¢ is the value
of the transition temperature and that of ¢ is the value of § at the transition.

The two solutions which correspond to the same free energy are not equal. Let us call
my the higher value and m, the other. The discontinuity in m at the transition is defined
by Am = my — m,. It is known that the magnitude of this discontinuity decreases as the
transition temperature increases and that it disappears at the critical temperature to. We
have used this property for finding the values of the critical point coordinates. In fact it is
difficult to obtain near the critical point, the three solutions of the self-consistent equation.
In this study, we consider that the critical point is reached when the discontinuity in m is
lower than 0.210. So, the values of d¢ and t- obtained in this study are somewhat smaller
than the exact values.

We have studied for different values of the model parameters the phase diagram of the
chain, the thermal variation of the (b) level fraction and that of the chain sound velocity.

For each solution, we have calculated numerically the ratio % where dF is the variation

of the free energy associated to dm, a small variation of m. We have verified that this ratio
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is positive for all the solutions except the one previously called unstable solution.
We recall that, in the theory of the first order phase transition, the unstable solution

plays role in the thermal hysteresis loop which appears around the transition temperature.

D. Results

In this study the lenght of the chain is N = 2000 and the degeneracy of the excited level

isr =>.

1. Case \=p=v.

In that case the field-like A,pie: and the exchange-like interaction are equal to zero. Only
the field-like h,pme created by the springs contained in the molecules plays role. This case
has never been studied before.

Relation (37) can be written

1 — xint)

hphmol = /\g( 5 ((u; — wi)2>0 (57)

From relation (57) the field-like A pmo depends on the parameters xint and z, and also
on the mean value <(uZ - wi)2> o- This mean value depends on the spring constants £ and
K which depend on all the model parameters.

The chain phase diagram for xint = 0.4 is shown in Figure 1. The coordinates of the
points of Figure 1 are the chain transition temperature and the value of § at the transition.
The (b) phase - (a) phase coexistence curve is ended by the critical point C' with the coor-
dinates (d¢,tc). Its slope is positive in agreement with the Clapeyron equation [4]. The (a)
phase is stable in the region above the coexistence curve and the (b) phase is stable below
it.

The experimental study of the first order phase transitions and that of the related effects
cannot be done if the value of the critical temperature is too small. For this reason we have
studied the variations of the reduced critical temperature with the model parameters. The
variations of to with xint is shown in Figure 2. For p = 0.002 the atom B is an Hydrogen
atom, for p = 0.02 it is a Carbone or a Nitrogen one. As shown in Figure 2, the to value
increases when zint decreases and it is divided by nearly 2.4 when the mass of the atom B

is multiplied by 10.
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The variations of t¢ with the parameter z is shown Figure 3. In this Figure xint = 0.4.
The value of the ratio % is near 0.09 for p = 0.002 and near 0.03 for p = 0.02. In previous
ratio, At¢ is the variation of ¢ for the variation Az of z.

The thermal variation of n, is shown in Figure 4. For curve (1), k = k. So the field-like
hphmot is equal to zero and the effective field h is equal to —A. There is not an interaction
between molecules. From Eq.(24), we deduce that m = 0 when ¢ In(r) = ¢. In that case ny
is equal to 0.5. With » = 5 and § = 1.445, the (b) level fraction is equal to 0.5 for ¢ = 0.9,
as shown in Figure 4. For curves (2) and (3), k = 0.4 k. So the field-like hphmol i DOt equal
to zero and it is the same in the curves (2) and (3). The presence or not of a discontinuity
depends on the value of § compared to the critical value 6o = 1.454. In curve (2) the value
of ¢ being lower than ¢, there is a discontinuity; in curve (3) this value being higher than
dc, there is not a discontinuity.

The thermal variation of the sound velocity is shown in Figure 5. The sound velocity
varies when the spring constants F and K vary. The discontinuity of the sound velocity in
the curve (2) corresponds to that of n;, in the curve (2) of Figure 4. As shown in Figure 5,
the value of the sound velocity is the same for the three curves at 0K. This result is due to
the fact that, at 0K, all the molecules of the chain are in the fundamental level for the three
curves, and consequently, the values of the spring constants £’ and K are the same for the
three curves.

The (b) level fraction and the sound velocity display an hysteresis loop around the tran-
sition temperature. The hysteresis loop of the sound velocity is shown in Figure 6. In this
Figure, heating the chain from the (a) phase, its temperature increases and it passes succes-
sively in the different states of the (a) phase which are stable. At the transition temperature
value, t;, the chain stays in the (a) phase which is now metastable. It can stay in this phase
up to the temperature value ¢,, at which it is forced to pass in the (b) phase which is the
stable one. In fact, the chain can pass in the stable phase at any temperature comprised

between ¢, and t,,. Cooling the chain from the (b) phase we find similar behaviour.

2. Case hppmpt # 0 and hppiar # 0
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In that case the field-like created by phonons is the sum of the two field-like hppmo and

hphlat .

Using the reduced parameters and relation (54) in relation (38) the field-like A pqr can

be written
A 2
Pphtat = 1 (1—2) (L4+y m) (w1 —wi)), (58)

This field-like depends on the parameters x, y and on the mean value <(ui+1 — w,-)2> o
This mean value depends on all the model parameters.

We have verified that the value of the critical temperature due to both fields-like is
higher than the sum of the values due to each field-like. For example: for (A = p = v;
z =1, p = 0.002, zint = 0.4) the value of the critical temperature is tc (mol) = 0.07175.
This value est due to the field-like hppme alone. For (2 = 0.6,y =0; z =1, p = 0.002,
xint = 1) the value of the critical temperature is ¢ (lat) = 0.02758. This value est due to
the field-like h,pe alone. For (z=0.6, y =0; z = 1, p = 0.002, zint = 0.4 ) both field-like
are different of zero and the value of the chain critical temperature is 0.22067. This value is
higher than the sum t¢ (mol) + te (lat) = 0.09933. We can say that the presence of the two
fields-like amplifies the value of the chain critical temperature.

The role of the parameter y is shown in Figure 7. The coordinates (¢, t¢) of the critical

point vary with the value of y.

IV. CONCLUSIONS

In this study we have considered two kinds of springs: the springs which link the atoms
A; and B; of the molecule A;B;, i = 1,..N, and the springs which link two molecules first
neighbours along the chain. We have first studied the case where only the spring constants
of the springs contained in the molecules depend on the electronic state of the molecules.
We have shown that, in this case, phonons create on each molecule a field-like which favours
the excited level, or (b) level. The competition between this field-like and the electronic
parameter A, which favours the fundamental level, or (a) level, leads, for some values of
T and A, to a first order phase transition. This result is important because it is certainly
possible to identify in a molecule which springs contained in the molecule can contribute, in

the solid state, to the coupling.
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We have also studied, in this case, the variations of the critical temperature value with
the model parameters. This study is necessary because the first order phase transition and
the related effects cannot be observed if the value of the critical temperature is too small.
One interesting result is that the value of the critical temperature is three time higher when
the atom B is an Hydrogen atom than when it is a Carbon or Nitrogen one. This result
leads to think that hydrogen bonds can play role in the coupling between the molecules in
the solid state.

We have then added the assumption that the spring constants of the springs which link
two molecules first neighbours depend on the electronic states of both molecules linked. In
that case, phonons create un new field-like which also favours the (b) level and also create
an exchange-like interaction between molecules first neighbours. The interesting result is
that the presence of both fields-like increases a lot the critical temperature value.

Some studies [5, 8, 9] have been done with the assumption that only the spring constants
of the springs which link two molecules first neighbours depend on the electronic states of
both molecules linked. In those studies the authors have to take small values, near 0.2, for
the ratio % in order to have a critical temperature value not too small. We recall that A is
the value of the spring constant when both linked molecules are in the (a) level and v is this
value when they are both in the (b) level. We think that the same studies could be done
with higher value for the ratio ; if both fields-like are introduced in the model.

Some molecules which have two electronic energy levels are organised around an iron II
ion in an octahedral environment. The value of the spin total of the 3d electrons is S = 0
for the fundamental level and S = 2 for the excited one. When the molecule passes from
the fundamental level to the excited one the value of its spin changes. For this reason it
is called a spin conversion molecule. A crystal of N identical spin conversion molecules
is called a spin conversion compound. For some spin conversion compounds, the thermal
variation of the fraction of molecules in the excited level displays an hysteresis loop which
means that there is a coupling between the molecules in the solid state. Many models have
been proposed for the origin of this coupling[10 — 14, 4]. We propose the present model
which has three characteristics: it is founded on the adiabatic approximation which is a well
admitted approximation, experimental studies and DFT calculations show that the values
of the spring constants of the springs contained in the molecule vary with its electronic

state [2, 15 — 17 ] and the exchange-like interaction allows to reproduce many experimental
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results obtained on spin conversion compounds|8, 9].

V. APPENDIX
A. Phonon dispersion relations

We consider consider a chain of 2N atoms with N units cell but with two atoms in each
cell so there are 2V atoms. At the equilibrium the period of the translational symmetry is b.
For two atoms per cell we find two dispersion curves. The acoustic branch has a frequency
equal to zero when the wave vector ¢ is equal to zero, while the optic branch has a finite
frequency for this value of ¢ . The atoms are displaced longitudinally along the chain from
their equilibrium positions.

The dispersion relation for the optic branch is

, K+E K+E\®> 4KE _,qb
w,, = + — sin” —
P ZmR 2mR

and that for the acoustic branch is

, K+E \/(K+E)2 AKE ,qb
w? = - — sin® —

ac 2m R 2m R
In the above relations, mp is the reduced mass

mamp
mpr—=——
ma + mpg

Using the periodic conditions the wave vector ¢ verifies the relation

2
qb = Nyph N

with
N .
npyp, = 0, £1,£2, .., > when N is even
When ¢ — 0, the above relations become

w? :K+E+O(q2)

op m R

where O (¢?) is a function of ¢* and
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, KE 1

~ b2 = V2a2
“ac K+ Emy+mp 1 + 4

where V; is the sound velocity.

When K > FE, the dispersion relations become

and

So, the acoustic frequency values are those of a linear chain of atoms with the masse

ma+mp.

B. Partial derivatives of w

We introduce a by

w=a

with
K+ F
a=ST2 Ve
ZmR
and
(K +E)Y 4KE _ ,qb
c= s — sin® —
dmsy, mampg 2
So we have
ow 1 da
0K  2wOK
and
dw 1 da
OF  2wOE
with
da 1 1 (2(K+E) 4E | 5, qb
— = + — sin® —
OK  2mp  2./c 4m? mamp 2
and
Jda 1 1 (2(K+E) 4K | 5 qb
— = — sin® —
OE  2mp  2./c 4m3, mamp

In the above relations, the symbol + must be replaced by + for the frequency values of

the optical branch and by — for those of the acoustic one.
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dw 1 (1 1 (2K+E) 4E _,qb
— = + — sin® —
OK 2w \2mp — 2/c 4m?, mamp 2
dw 1 [ 1 1 (2(K+E) 4K  ,qb
—_— = — + — sin® —
OF 2w \2mp ~ 2/c 4m? mamp 2

Keywords: Phase transition. Lattices vibrations.
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Figures Captions

Figure 1. Chain phase diagram. Only the spring constants of the springs contained in
the molecules depend on the electronic state of the molecules. Phonons create a field-like
which favours the (b) level while the electronic parameter A favours the (a) level. This
competition leads to a first order phase transition. The coexistence curve is ended by the

critical point C Witll the coordinates 0c = 1.45404 and to = 0.07175. In this Figure

El N

z=—=1,zint = - = 0.4 and p = 0.002. For this value of the parameter p, the atom B

A
of the molecule AB is an Hydrogen.

Figure 2 Variations of the chain critical temperature with the reduced parameter xint(=

k
E) In this Figure z = 1.

k
Figure 3. Variations of the chain critical temperature with the ratio z = % In this Figure

xint = 0.4.

Figure 4. Thermal variation of the (b) level fraction. In curve (1) there is not an in-

teraction between the molecules and the distance between both energy levels is constant.
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In curves (2) and (3) there is an interaction between the molecules which leads to a dis-
continuity when the value of 9 is lower than the critical value ¢ = 1.454. In this Figure

z=1.

Figure 5. Thermal variation of sound velocity. The values of the model parameters are
the same in Figures 4 and 5. In curve (1) the spring constants £ and K do not vary with
the temperature because there is not an interaction between the molecules. Consequently
the sound velocity is constant. In curves (2) and (3) there is an interaction between the
molecules which leads to a thermal variation of £ and K, and of the sound velocity. There

is a discontinuity when the value of § is lower than the critical value ¢ = 1.454.

Figure 6. Sound velocity thermal hysteresis loop. Open circle: stable state; dark circle:
metastable state; cross: unstable state. The transition temperature value is between 0.0648
and 0.0650. The limits of the hysteresis loop are t,, = 0.0663 and 45, = 0.0595. The loop
width is At = 6.8 1072, The thermodynamic states of the (a) phase are stable below the
transition temperature and those of the (b) phase are stable above it. The values of the

model parameters are the same as in Figure 4.

Figure 7. Chain phase diagrams for y = 0. and y = +0.1. The coordinates of the critical
point vary with the y values: t¢ is equal to 0.1688, 0.2207 and 0.2777 for y equal to —0.1, 0.
and 0.1, respectivement. The model parameters are (x = 0.6, y; z = 1, p = 0.002, xint = 0.4

).




