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Quantification des incertitudes dans un modèle numérique d'interaction sol-structure soumis à une source ferroviaire

Ce papier porte sur la réponse d'un système dynamique d'interaction sol-structure avec plusieurs sources d'incertitudes. Les forces extérieures sont dues aux vibrations ferroviaires qui se propagent dans le sol jusqu'aux fondations puis dans le bâtiment. Dans des travaux précédents [START_REF] Soize | A nonparametric model of random uncertainties in linear structural dynamics[END_REF], un modèle numérique d'un tel système dynamique, sans incertitude, a été présenté [START_REF] Mondot | Characterization of structure-borne sound sources : The source descriptor and the coupling function[END_REF]. Ce modèle consiste à coupler une représentation déterministe d'un bâtiment avec ces fondations dans un sol proche couplé à un sol lointain. La méthode des éléments finis (FEM) est utilisée pour construire la représentation numérique du bâtiment, des fondations et du sol proche. Le sol éloigné est représenté par des éléments de frontière (BEM). La prédictivité de ce modèle est ici améliorée par la prise en compte des incertitudes reliées à chaque sous systèmes (le sol lointain, le sol proche et les fondations et le bâtiment). Nous proposons de quantifier les incertitudes relatives aux erreurs paramétriques pour chaque méthodes numériques et les incertitudes relatives aux erreurs de modélisation (approche non-paramétrique). De ce fait, un modèle probabiliste mixte paramétrique et non-paramétrique est construit. L'approche probabiliste paramétrique consiste en la modélisation des incertitudes paramétriques par une variable ou un champs aléatoire. L'approche non-paramétrique consiste en la modélisation des matrices globales de masse, raideur et amortissement de chaque modèles numériques par des matrices aléatoires. Les lois de probabilité de ces variables, champs et matrices aléatoires sont construites en utilisant le principe du maximum d'entropie (voir [START_REF] Villot | Modelling the influence of structural modifications on the response of a building to railway vibration[END_REF]). Ce papier traite un exemple numérique dans lequel les fluctuations statistiques de la réponse aléatoire sont déterminées par la méthode de Monte Carlo. La construction du modèle moyen par la méthode des mobilités est présentée dans le paragraphe 2. Dans le paragraphe 3, le modèle moyen est étendu au modèle probabiliste mixte paramétrique et non-paramétrique. Dans la suite, le paragraphe 4 donne les résultats attachés à cet exemple.

Modèle numérique moyen 2.1 Description du système mécanique

Dans ce paragraphe, nous présentons la méthodologie utilisée pour résoudre le problème d'interaction sol-structure dont l'excitation est une source ferroviaire. Cette méthodologie est basée sur la méthode des mobilités qui serra présentée dans le prochain sous-paragraphe. Pour la clarté de la présentation nous présentons un exemple en deux dimensions (voir la Figure 1). Le système étudié est constitué de deux sous-systèmes, le bâtiment et le sol entier incluant les fondations. Le bâtiment et les fondations sont constitués du même matériau. L'excitation ferroviaire est modélisée par une force ponctuelle f T (voir Figure 1), appliquée à la surface du sol, et dans la bande de fréquence [10 -250] 

[A s (z, ω)] = -ω 2 [M s (z)] + ω[D s (z)] + [K s (z)] est telle que : [A s (z, ω)] u s (ω) = f s (ω) , (1) 
où u s est le vecteur déplacement du modèle éléments finis et f s est le vecteur des forces extérieures. Considérons que les degrés de liberté sont ordonnés comme suit : 

[B s ] =   [B 11 s ] [B 12 s ] [B 13 s ] [B 12 s ] T [B 22 s ] [B 23 s ] [B 13 s ] T [B 23 s ] T [B 33 s ]   , u s =   u 1 s u 2 s u 3 s   , f s =   f 1 s f 2 s f 3 s   , (2) où 
[B s ] signifie [M s (z)], [K s (z)], [D s (z)] et [A s (z, ω)], et
(z)], [K s (z)], [D s (z)]. Nous obtenons alors [A s (z, ω)] q s (ω) = g s (ω) , (3) où 
[A s (z)] = -ω 2 [M s (z)] + ω[D s (z)] + [K s (z)
] est la matrice de raideur dynamique réduite du sol proche avec les fondations, et où

q s =   u 1 s u 2 s q 3 s   , g s =   f 1 s f 2 s [φ s ] T f 3 s   , (4) 
dans lequel q 3 s = [M 33 s (z)] -1 [φ s ] T [M 33 s (z)] u 3 s et u 3 s = [φ s ] q 3 s . Soit [S 1 (z, ω)] et [S 2 (z, ω)
] les matrices construites par l'utilisation de la BEM avec une représentation intégrale sur Γ c de façon à modéliser la propagation des ondes dans le sol lointain telle que :

[S 1 (z, ω)]u 2 s (ω) = [S 2 (z, ω)] f 2 s (ω) . (5) 
Cette représentation est commune à de nombreux codes BEM-FEM (voir pour notre exemple [START_REF] Jean | Boundary and finite elements for 2D soil-structure interaction problems[END_REF][START_REF] Jean | A 2.5D BEM model for ground-structure interaction[END_REF]).

Les matrices [S 1 (z, ω)] et [S 2 (z, ω)] ne sont pas obligatoirement définies positives. Néanmoins, pour les fréquences régulières, l'inverse de [S 1 (z, ω)] existe, la fonction de réponse en fréquence [H 2 (z, ω)] = [S 1 (z, ω)] -1 [S 2 (z, ω)] est une matrice symétrique et nous avons alors :

u 2 s (ω) = [H 2 (z, ω)] f 2 s (ω) . (6) 
Le modèle réduit du sous-système source est définie par les équations (3), ( 4) et (6).

Modèle numérique réduit du sous-système récepteur

Dans ce paragraphe, nous présentons le modèle réduit du sous-système récepteur (le bâtiment). En premier lieu, le modèle d'éléments finis est construit, puis il le modèle numérique réduit est déduit en résolvant un problème aux valeurs propres.

Soit la matrice de masse [M r (z)], la matrice de raideur [K r (z)] et la matrice d'amortissement [D r (z)], les matrices éléments finis modélisant le bâtiment. La matrice de raideur dynamique

[A r (z, ω)] = -ω 2 [M r (z)] + ω[D r (z)] + [K r (z)] est telle que : [A r (z, ω)] u r (ω) = f r (ω) , (7) 
où u r est le vecteur des déplacements sur les degrés de liberté du modèle éléments finis et f r et le vecteur éléments finis des forces extérieures appliquées au bâtiment. Nous imposons que les degrés de liberté du sous-système sont ordonnés de la façon suivante : [A r (z, ω)] q r (ω) = g r (ω) ,

[B r ] = [B 11 r ] [B 12 r ] [B 12 r ] T [B 22 r ] , u r = u 1 r u 2 r , f r = f 1 r 0 , (8) 
[A r (z)] = -ω 2 [M r (z)] + ω[D r (z)] + [K r (z) (9) où 
] est la matrice de raideur dynamique du bâtiment où,

q r = u 1 r q 2 r , g r = f 1 r 0 , ( 10 
)
dans lequel q 2 r = [M 22 r (z)] -1 [φ r ] T [M 22 r (z)] u 2 r , de même u 2 r = [Φ r ] q 3 r .

Couplage des modèles réduits des sous-systèmes source et récepteur

Dans ce paragraphe, nous présentons la méthode des mobilités utilisée pour coupler les deux soussystèmes source et récepteur. La méthode des mobilités consiste à calculer f 1 r = -f 1 s , la force appliquée sur le récepteur par la source, en quatre étapes.

Premièrement, la vitesse libre v (ω) = ω u 1 s (ω) est déterminée en résolvant les équations (3), ( 4) et ( 6) pour f 3 s (ω) modélisant la force extérieure f T (ω) (voir Figure 1) et f 1 s (ω) = 0 (interface Γ s libre). En parallèle, les matrices des mobilités de la source [Y Γs (z, ω)], et du récepteur [Y Γr (z, ω)], déterminées sur les degrés de liberté portés par les surfaces Γ s et Γ r (voir Figure 1) doivent être construites. Elles peuvent être facilement obtenues grâce à la décomposition par bloque introduite précédemment. Néanmoins, cela n'est pas toujours possible avec un code commercial. Une approche différente consiste à calculer directement les matrices de mobilité en résolvant un ensemble de problèmes. La mobilité est écrite comme le rapport entre la vitesse et la force appliquée. Dans notre cas, résoudre les équations (3), (4) et (6) pour f 3 s (ω) = 0 (aucune force extérieure à la source) et {f 1 s (ω)} k = δ jk (une force unitaire appliquée sur les degrés de liberté de Γ s ) nous donne : [Y Γs (z, ω)] ij = ω {u 1 s (ω)} i , et résoudre ( 9) et [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF] pour {f 1 r (ω)} k = δ jk (force unitaire appliquée sur les degrés de liberté de Γ r ), nous donne : [Y Γr (z, ω)] ij = ω {u 1 r (ω)} i . Puis la force de contact, f p (ω), qui est appliquée par la source sur le système récepteur (lorsque ceux-ci sont couplés) est alors donnée par (pour plus de détails voir [START_REF] Cremer | Structure-Borne Sound structural vibrations and sound radiation at audio frequencies[END_REF][START_REF] Ropars | Modélisation des vibrations d'origine ferroviaire transmises aux bâtiments par le sol[END_REF]) :

f p (ω) = ([Y Γs (z, ω)] + [Y Γr (z, ω)]) -1 v (ω) . (11) 
Finalement, la réponse du récepteur est déterminée en résolvant les équations ( 9) et (10) pour f 1 r (ω) = f p (ω). La vitesse moyenne des dalles v d est un indicateur de la gène ressentie par les résidents d'un bâtiment soumit à de telles vibrations [START_REF] Ohlrich | Structure-borne sound sources and their power tranfer[END_REF] et est utilisée ici.

Modèle probabiliste généralisé des incertitudes

Afin d'augmenter la prédictibilité du modèle numérique, plusieurs sources d'incertitudes sont prises en compte. Nous supposons que ρ soil , ρ struct , b soil , b struct , s soil , s struct sont les seuls paramètres incertains de ce modèle. Le modèle probabiliste paramétrique des incertitudes est construit en remplaçant le vecteur z par un vecteur aléatoire Z = (Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 ), dont les composantes sont des variables aléatoires dont le modèle probabiliste est construit en utilisant le principe du maximum d'entropie. De ce fait, Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 sont des variables aléatoires statistiquement indépendantes ayant une loi de probabilité gamma,leurs fonctions de densités de probabilités sont complètement gouvernées par leurs valeurs moyennes E{Z i } = {z} i et leurs coefficients de dispersions δ Zi [START_REF] Guilleminot | On the statistical depenence for the components of random elasticity tensors exhibing material symmetry properties[END_REF]. Cette loi de probabilité assure, entre autre, que le moment d'ordre deux des composantes du vecteur aléatoire soit fini. En parallèle, l'approche probabiliste généralisée consiste à substituer les matrices aléatoires [B(Z)] par les matrices aléatoires 

[B] = [L B (Z)][G B ][L B (Z)] T où [B(Z)]

Résultats et discussions

Incertitudes généralisées sur les valeurs moyennes des vibrations d'une dalle du bâtiment

L'aléa généralisé (Figure 4) apparaît proche de celui généré par les erreurs de modélisation. Du fait de la présence des erreurs de paramètres, l'écart type est ici plus petit que dans le cas où seule les erreurs de modélisation sont présentes. 

  Hz. Cette représentation peut paraître simpliste mais cela permet une calibration afin de reproduire exactement des vibrations mesurées in situ [13]. En parallèle, une source plus sophistiquée peut être obtenue par la superposition de forces ponctuelles. Par la suite et dans le cadre de la méthode des mobilités, nous dénommerons le bâtiment par récepteur et le sol, incluant les fondations, par source. Le récepteur est modélisé par la méthode des éléments finis (FEM), la source est, quand à elle, construite en utilisant la méthode des éléments finis couplée aux éléments de frontière (FEM-BEM). Dans cette représentation les paramètres incertains sont la densité de masse du sol ρ soil et de la structure ρ struct (bâtiment et fondations), le module d'élasticité isostatique du sol b soil et de la structure b struct , et le module de cisaillement du sol s soil et de la structure s struct . Nous introduisons un vecteur contenant ces paramètres z = (ρ soil , ρ struct , b soil , b struct , s soil , s struct ).
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 1 Figure 1 -Représentation de l'exemple

  où [B r ] signifie [M r (z)], [K r (z)], [D r (z)] et [A r (z, ω)], et où u 1 r est le vecteur contenant les degrés de liberté relatifs à Γ r et u 2 r le vecteur relatif aux autres degrés de liberté de la représentation éléments finis du bâtiment. Soit Φ 1 , Φ 2 , . . . les vecteurs propres obtenus par la résolution du problème aux valeurs propres suivant [K 22 r (z)] Φ = λ [M 22 r (z)] Φ. Puisque [M 22 r (z)] et [K 22 r (z)] sont deux matrices symétriques réelles définies positives, les valeurs propres associées 0 < γ 1 ≤ γ 2 ≤ . . . sont positives. Nous définissons [Φ r ] = (Φ 1 Φ 2 . . . Φ m ) comme les matrices modales réduites. La matrice globale de masse [M 22 r (z)] = [φ r ] T [M 22 r (z)] [φ r ], la matrice global de raideur [K 22 r (z)] = [φ s ] T [K 22 r (z)] [φ r ] et la matrice global d'amortissement [D 22 r (z)] = [φ r ] T [D 22 r (z)] [φ r ] sont des matrices m × m réelles, symétriques et définies positives. Nous construisons ainsi la matrice de masse réduite [M r (z)], la matrice de raideur réduite [K r (z)], et la matrice d'amortissement réduite [D r (z)] en substituant les matrices [M 22 r (z)], [K 22 r (z)], [D 22 r (z)] par [M 22 r (z)], [K 22 r (z)], [D 22 r (z)] dans la décomposition par bloque de [M r (z)], [K r (z)], [D r (z)]. Nous obtenons alors :

  Les réalisations statistiquement indépendantes de V d , la moyenne spatiale de la vitesse vibratoire d'une dalle du bâtiment, sont déduites à partir des réalisations indépendantes du vecteur aléatoire Z et des matrices aléatoires[M 33 s ], [D 33 s ], [K 33 s ], [M 22 r ], [D 22 r ], [K 22 r ], [M 11 s (Z)], [M 12 s (Z)], [M 13 s (Z)], [M 22 s (Z)], [M 23 s (Z)], [D 11 s (Z)], [D 12 s (Z)], [D 13 s (Z)], [D 22 s (Z)], [D 23 s (Z)], [K 11 s (Z)], [K 12 s (Z)], [K 13 s (Z)], [K 22 s (Z)], [K 23 s (Z)], [M 11 r (Z)], [M 12 r (Z)], [D 11 r (Z)], [D 12 r (Z)] et [K 11 r (Z)], [K 12 r (Z)], [H 2 (Z, ω)]. Présentement, les résultats sont obtenus avec δ Z1 = δ Z2 = δ Z3 = δ Z4 = δ Z5 = δ Z6 = 0.1 et δ M 33 s , δ K 33 s , δ D 33 s , δ M 22 r , δ K 22 r , δ D 22 r = 0.014.1 Comparaison de l'impact des erreurs paramétriques et de modélisation sur la vitesse moyenne de dalle

Figure 2 -

 2 Figure 2 -Valeurs moyennes et écarts types du déplacement dans la direction x (haut) et dans la direction y (bas) sur la gamme des fréquences ferroviaires ([10-250]Hz)
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 3 Figure 3 -Valeurs moyennes et écarts types : déplacement dans la direction x (haut) et dans la direction y (bas) sur la gamme des fréquences ferroviaires ([10-250]Hz)

  où u 1 s et u 2 s sont les vecteurs relatifs à Γ s et Γ c respectivement et u 3 s est relatif aux autres degrés de liberté du modèle éléments finis. Soit φ 1 , φ 2 , . . . les vecteurs propres construits par la résolution du problème aux valeurs propres [K 33 s (z)] φ = λ [M 33 s (z)] φ. Puisque [M 33 s (z)] et [K 33 s (z)] sont deux matrices définies positives à composantes réelles, les valeurs propres associées 0 < ω 1 ≤ ω 2 ≤ . . . sont positives. Soit [φ s ] = (φ 1 φ 2 . . . φ n ) la matrice de la base modale tronquée. La matrice globale de masse [M 33 s (z)] = [φ s ] T [M 33 s (z)] [φ s ], la matrice globale de raideur [K 33 s (z)] = [φ s ] T [K 33 s (z)] [φ ] et la matrice globale d'amortissement [D 33 s (z)] = [φ s ] T [D 33 s (z)] [φ s ] sont des matrices n×n symétriques réelles définies positives. Ainsi nous construisons la matrice de masse réduite [M s (z)], la matrice de raideur réduite [K

	s (z)], la matrice d'amortissement
	réduite [D s (z)] en substituant les matrices [M 33 s (z)], [K 33 s (z)], [D 33 s (z)] par [M 33 s (z)], [K 33 s (z)], [D 33 s (z)]
	dans la décomposition par bloque de [M s

  B (Z)] sont telles que [L B (Z)][L B (Z)] T = [B(Z)] et les matrices aléatoires [G B], qui sont statistiquement indépendantes de Z, sont prises dans l'espace SE + introduit dans[START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF][START_REF] Villot | Modelling the influence of structural modifications on the response of a building to railway vibration[END_REF]. Le modèle probabiliste de [G B ] a été construit en utilisant le principe du maximum d'entropie et sa fonction de densité de probabilité est complètement définie par un coefficient de dispersion δ B . De ce fait, le modèle probabiliste présenté dans ce document et complètement définie par six valeurs moyennes E{Z 1 } = {z} 1 , . . . , E{Z 6 } = {z} 6 , et par douze coefficients de dispersions δ Z1 , δ Z2 , δ Z3 , δ Z4 , δ Z5 , δ Z6 et

	signifie les matrices [M 33 s (Z)], r (Z)] et où les matrices aléatoires triangulaires inférieures r (Z)], [D 22 r (Z)], [K 22 s (Z)], [M 22 s (Z)], [D 33 [K 33
	[L δ M 33 s , δ K 33 s , δ D 33 s , δ M 22 r , δ K 22 r , δ D 22 r .