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STRUCTURE CONDITIONS UNDER SHORT-SALES CONSTRAINTS AND
APPLICATIONS TO CONVERGING ASSET PRICES

DELIA COCULESCU AND MONIQUE JEANBLANC

ABSTRACT. Under short sales prohibitions, no free lunch with vanishing risk (NFLVR-S)
is known to be equivalent to the existence of an equivalent supermartingale measure for
the price processes (Pulido [23]). For two given price processes, we translate the property
(NFLVR-S) in terms of so called structure conditions and we introduce the concept of fun-
damental supermartingale measure. When a certain condition necessary to the construction
of the fundamental supermartingale measure is not fulfilled, we provide the corresponding
arbitrage portfolios. The motivation of our study lies in understanding the particular case
of converging prices, i.e., that coincide at a bounded random time.

1. INTRODUCTION

In arbitrage-free financial markets, the law of one price simply states that similar financial
assets, i.e., that have identical payoffs, should be sold at the same price in different loca-
tions. There are some particular assumptions about the financial markets that lead to this
fundamental result, importantly investors need to be able to observe the prices in the differ-
ent locations and to sell short the corresponding assets. Also, there should be no transaction
costs. Indeed, under these assumptions, any investor is able to construct an arbitrage port-
folio consisting in a short position in the (relatively) overpriced asset and a long position in
the (relatively) underpriced asset, thus making a riskless profit. This represents the simplest
arbitrage strategy one can encounter: not only is it a buy and hold strategy, but additionally,
it is model independent, i.e., does not rely upon an underlying model for describing the
prices dynamics in time.
Obviously, in case of short sales prohibitions, the above described arbitrage portfolios are
impossible to construct, hence similar assets may have differing prices: the rule of one
price does not apply. A question arises naturally: How may the differing prices behave as
stochastic processes within the limits of no arbitrage with short sales constraints? The aim
of this paper is precisely to shed light on this question.
With this motivation in mind, we study the probabilistic properties of two stochastic pro-
cesses when one imposes the no free lunch with vanishing risk condition under short sales
constraints, abbreviated (NFLVR-S). This condition was introduced by Pulido in [23], as
the counterpart -when investors are not allowed to short sell- of the no arbitrage paradigm
(NFLVR) of Delbaen and Schachermayer (see [5] and [7]). For the reader’s convenience,
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the definition of (NFLVR-S) is provided in Section 2. Based on previous work by Jouini
and Kallal [16], Fritelli [11], Pham and Touzi [22], Napp [19] and Karatzas and Kardaras
[17], the paper by Pulido [23] establishes important properties of price processes under
short sale prohibitions namely the equivalence between (NFLVR-S) and the existence of
an equivalent supermartingale measure for the price processes. In the current paper, we
shall rather translate the condition (NFLVR-S) in terms of so-called "structure conditions"
for two underlying stochastic processes and define the notion of fundamental supermartin-
gale measure. When a certain condition, necessary to the construction of the fundamental
supermartingale measure is not fulfilled, we provide the corresponding arbitrage portfolios.
The developed theory is illustrated with many examples of converging asset prices, that
is, price processes that are expected to "cross", i.e., to reach almost surely the same value
over some bounded horizon, which is the mathematical description of the similar assets. In
this particular framework of converging prices, the existence of imperfect and asymmetric
information is crucial to justify the formation and persistence in time of the differing prices.
This element is integrated in our analysis: we assume that each individual price is formed
given some distinct information set (filtration) a priori unrelated with the information set
that drives the price formation in a different location, except measurability of the final
payoff in both situations. The no arbitrage conditions are analysed from the perspective of
an agent (called the insider) that has access to a global information set, i.e., that comprises
the observation of the two differing prices. The insider can trade in both markets, but cannot
sell short.
There are many examples of converging prices, the simplest being a future contract and its
underlying asset, or the two portfolios arising from the call-put parity (i.e., one consisting of
a call option and bonds, the second of a put option and underlying stock). In markets with
short sales prohibitions, the call-put parity is not expected to hold in every point in time
but we observe the identity of the payoffs at maturity. Other examples of convergence are
represented by some portfolios that are commonly used in capital structure arbitrages or the
pairs trading. Note however that in these cases the convergence is model-based; in capital
structure arbitrages a particular "structural" model is assumed to explain the joint evolution
of the prices for the different securities with common issuer, while in the pairs trading, the
pairs are selected upon a statistical analysis. Nevertheless, assuming that the underlying
models are "correct" the question remains the same: how to construct the strategies when
selling short is not possible? Finally, our framework applies well to the case of similar
derivative contracts that are sold over the counter, and thus differing prices typically arise
as a consequence of a imperfect information between the different sellers and buyers.
The remaining of the paper is organised as follows: Section 2 introduces the probabilistic
model for the two converging prices and recalls the no arbitrage framework we adopt in
this paper. Section 3 establishes the “structure conditions” in Theorem 3.4. In Section 4,
we derive sufficient conditions for the existence of a supermartingale measure as well as
some necessary conditions. We introduce a probability measure that we call fundamental
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supermartingale measure and arbitrage portfolios are provided when a certain condition is
not fulfilled and the fundamental supermartingale measure cannot be constructed. Section
5 analyses many examples of converging prices. Let us emphasise that our main results in
Section 3 and Section 4, (in particular the structure conditions in Theorem 3.4, the construc-
tion of the fundamental supermartingale measure and the arbitrage portfolios is Theorem
4.2 and Lemma 4.7), are more general: the property of the two prices to be converging is
not used for deriving these results.

2. A STOCHASTIC MODEL WITH TWO CONVERGING ASSET PRICES

In this paper, all probabilities and filtrations are defined on a probability space (Ω,F ,P).
We consider two financial assets, possibly traded in different locations (exchanges). Their
respective price processes are denoted by X := (Xt)t≥0 and Y := (Yt)t≥0, while FX :=
(FXt )t≥0 and FY := (FYt )t≥0 are their respective right-continuous P-augmented filtrations.
Following [23], we suppose that X and Y are nonnegative semimartingales in their own
filtration with right continuous sample path that are locally bounded. The spot interest rates
are constant and equal to zero, that is, the price processes X and Y are already discounted.
We assume that an investor (called hereafter the insider) is able to observe the price dy-
namics in the two locations, so that his information flow is given by G := (Gt)t≥0 with

Gt = ∩s>tFXs ∨ FYs .

Also, the insider has a bounded trading horizon, denoted T , which is a G-stopping time.
Many examples that we’re considering fit in the following framework:

Definition 2.1. A couple of financial assets (X, Y ) are said to have converging prices if
the G-stopping time inf{t ∈ R+ | Xt = Yt} is bounded.

WhenX and Y are converging prices, we shall consider that the insider’s horizon is a given
point of convergence of the two prices, i.e., T is such that

ξ := XT = YT

and such that T is a bounded G-stopping time. One can take T = inf{t ∈ R+ | Xt = Yt},
but such a restriction is not necessary. In some situations the G-stopping time T can be
chosen as the maturity of the assets, when the cash flow ξ is paid to the investors that
have long positions either in the asset X or Y . In this case T should be an FX and an
FY -stopping time (i.e., cash flows are always observable by holders of long positions in
the corresponding assets). Another interesting situation is when T is only observed by the
insider, hence T is neither an FX nor an FY -stopping time. Either of the two interpretations
are possible here, i.e., we do not require T to be more than a bounded G-stopping time, but
remaining fixed through the analysis.
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Our aim is to analyse the no arbitrage property (NFLVR-S) from the insider’s perspective,
i.e., when there are prohibitions for the insider to sell short the assets X and Y . In other
words, we consider that the investor’s strategies involve the following positions: long or
short in cash (πC) and only long positions inX and Y (πX and πY ), consequently the value
of the investor’s portfolio writes:

V π
t := πCt + πXt Xt + πYt Yt, (1)

and, when self financing, we have dV π
t := πXt dXt + πYt dYt. As usual, we impose some

admissibility conditions for strategies under (NFLVR-S) in this framework. We refer to
Pulido [23] for more details.

Definition 2.2. A trading strategy is a G-predictable process π = (πC , πX , πY ). A trading
strategy π is called an admissible trading strategy under short sales prohibitions forX and
Y if:

(i) πX ∈ L(X) and πY ∈ L(Y ) (i.e., πX is integrable with respect to the semimartin-
gale X , πY is integrable with respect to the semimartingale Y ).

(ii) The process V π is bounded from below.
(iii) πX ≥ 0 and πY ≥ 0.

We denote by T the set of admissible trading strategies under short sales restrictions for X
and Y .

In the definition above, the price processes X and Y need to be G-semimartingales; this
question is examined in the next section.
We now define the following sets:

K := {V π
T , π ∈ T } C :=

(
K − L0

+(P)
)
∩ L∞(P).

where L0
+(P) is the space of equivalence classes of nonnegative finite random variables,

and L∞(P) is the space of P-essentially bounded random variables. No Free Lunch with
Vanishing Risk under short sales prohibition (NFLVR-S) is defined as follows: (NFLVR-S)
holds if C̄ ∩L0

+(P) = {0}, where C̄ is the closure of C with respect with the ‖ · ‖∞ norm in
L∞(P).

Theorem 2.3. [23] (NFLVR-S) holds if and only if there exists a probability measure P̃
such that P̃ ∼ P such that the processes X and Y are (G, P̃)-supermartingales. Such a
probability measure is called a supermartingale measure.

Because the condition of no arbitrages in the form of (NFLVR-S) is equivalent to the exis-
tence of a supermartingale measure for the couple (X, Y ) in the filtration G, our aim is to
shed light on the properties of processes X and Y when considered as stochastic processes
in the larger filtration G, under the requirement that there exists a probability measure P̃
such that P̃ ∼ P such that the processes X and Y are (G, P̃)-supermartingales.
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3. STRUCTURE CONDITIONS UNDER (NFLVR-S)

We aim to clarify the properties of processes X and Y that admit an equivalent super-
martingale measure. Structure conditions for asset prices first appeared in the setting of no
arbitrage without short selling constraints, i.e., derived from imposing the existence of a
strict martingale density. We refer to Föllmer and Schweizer [9], Ansel and Stricker [2],
Schweizer [24] for more details.
We shall carry out our analysis in the filtration G and the interval [0, T ], i.e., the insider’s
information set and the insider’s investing horizon. Note however that the stochastic pro-
cessesX and Y are defined on infinite time horizon and the conditions (NA-X) and (NA-Y)
are also supposed to hold on an infinite time horizon.
To begin with, let us introduce some notations that are going to be used in the remaining of
the paper:

Notation 3.1. (i) We write 〈Z〉 for the predictable bracket of a semimartingale Z un-
der the measure P and in the filtration G. Whenever the underlying filtration we
are considering is not G and/or the probability is not P we shall use explicit nota-
tions: for instance 〈Z〉(F,Q) is the predictable bracket under a measure Q and in a
filtration F (implicitly, Z needs to be an F-semimartingale).

(ii) The expectation operator under the probability P is written E; whenever the prob-
ability measure is a different one, we shall use explicit notation, i.e., EQ is the
expectation under the probability measure Q.

(iii) P(F) is the class of F-predictable processes, where F is a given filtration.
(iv) S(M) is the stable subset of (G,P)-local martingales generated by M , where M is

a (G,P)-locally square integrable martingale ; S(M)⊥ is the set of (G,P)-locally
square integrable martingales that are strongly orthogonal to M .

(v) E(Z) denotes the Doléans-Dade exponential of a semimartingale Z.
(vi) We use the notation {dA 6= 0}, or alternatively {dA > 0}, for the support of the

measure dA(ω), associated to an increasing process A.

Also, we shall use the terms decreasing for nonincreasing and increasing for nondecreasing.
The following result is a more precise formulation of Theorem 2.3 in the particular case of
converging prices:

Lemma 3.2. Suppose that (X, Y ) are converging prices. Then, the prices (X, Y ) satisfy
(NFLVR-S) if and only if there exists a probability measure P̃ such that P̃ ∼ P and:

X = M̃ + Z̃X

Y = M̃ + Z̃Y ,

where M̃t := EP̃[ξ|Gt] and Z̃X and Z̃Y are two (G, P̃)-potentials (i.e., are positive super-
martingales satisfying Z̃X

T = Z̃Y
T = 0).



6 DELIA COCULESCU AND MONIQUE JEANBLANC

Proof. (NFLVR-S) holds if and only if a supermartingale measure P̃ exists. But thenX and
Y are uniformly integrable P̃-supermartingales and the expressions follow from the Riesz
decomposition and the terminal condition XT = YT . For more details, see [18, VI-11] or,
alternatively, [4, T12 p. 97]. 2

Now, we investigate the structure of price processes under the reference probability P,
which is arbitrarily chosen. We only detail the case of one of the assets.

Proposition 3.3. Assume (NFLVR-S) holds. Then X is a (G,P)-special semimartingale on
the interval [0, T ].

Proof. If (NFLVR-S) holds, then there exists a probability measure equivalent to P, say
P̃, such that X is a (G, P̃)-supermartingale. The set of semimartingales being stable under
equivalent changes of the probability measure (Girsanov-Meyer theorem), it follows that
X is a (G,P)-semimartingale. Being locally bounded, it is special [12, Corollary 8.7.]. 2

Below, we also exploit some additional assumption, that is, the price dynamics ofX reflects
a (local) equilibrium, namely there exists an equivalent local martingale measure for X
when considered as a stochastic process in its own filtration:

(NA-X) There exists QX ∼ P such that the price processX is an (FX ,QX)-local martingale
(in other words, QX is a martingale measure for X in its own filtration).

This assumption is introduced for a finer understanding of how the G price is formed.

Theorem 3.4. Assume that (NFLVR-S) holds. Then, there exist JX and wX all being in
P(G) and a (G,P)-local martingale MX with MX

0 = 0, such that for any t ≤ T :

Xt = X0 + JXt +

∫ t

0

wXu d〈MX〉u +MX
t . (2)

The process JX satisfies JX0 = 0, is decreasing and dJX is singular with respect to d〈MX〉.
If (NA-X) holds, we have the following additional properties:

(a) If X is FX-predictable, the process JX is null.
(b) If JX is not null, then there exist purely discontinuous (FX ,P) martingales that are

not (G,P) martingales.

Proof. In view of Proposition 3.3, there exists a (G,P)-local martingale MX and a finite
variation, G-predictable process V X , such that:

Xt = X0 + V X
t +MX

t .

We can write V X
t =

∫ t
0
wXu d〈MX〉u + JXt , where dJX is a signed measure that is singular

with respect to d〈MX〉 (i.e., the Lebesgue decomposition of dV X with respect to d〈MX〉;
see Proposition A.3 in Appendix A).
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To show that JX is a decreasing process, we use Girsanov’s theorem and Theorem A.1 in
Appendix A. More precisely, let P̃ be an equivalent G-supermartingale measure for X . By
Girsanov’s theorem the decomposition of X is given by: X = X0 + (JX + D̃X) + M̃X ,
where M̃X is a (G, P̃)-martingale and:

(i) dD̃X � d〈MX〉. Hence dD̃X and dJX are singular.
(ii) the process JX + D̃X is decreasing.

The two above points imply that both JX and D̃X are decreasing (Theorem A.1 (b)). Fur-
ther properties of the process JX are found by making use of (NA-X), that is, the existence
of an equivalent local martingale measure for X in its own filtration.
This property implies the following (FX ,P) decomposition of X:

Xt = X0 +

∫ t

0

vXu d〈mX〉(FX ,P)
u +mX

t .

for mX an (FX ,P) local martingale and vX ∈ P(FX).
Let mX,c (resp. mX,d) be the continuous (resp. purely discontinuous) FX-local martingale
composing mX . Necessarily, mX,c and mX,d are (G,P) special semimartingales; we write
their canonical decompositions as:

mX,c = MX,c + AX (3)

mX,d = MX,d +BX , (4)

where MX,c (resp MX,d), the martingale part of the (G,P)-semimartingale mX,c (resp.
mX,d) is continuous (resp. purely discontinuous). Summing up (3) and (4) we obtain
MX = MX,c + MX,d and MX,c (resp. MX,d) are the continuous (resp. purely discontinu-
ous) G-local martingales composing MX . The (G,P) decomposition of X writes:

Xt = X0 + AXt +BX
t +

∫ t

0

vXu d〈mX〉(FX ,P)
u +MX

t .

The processmX,c has the same constancy intervals as 〈mX,c〉(FX ,P); similarily,MX,c has the
same constancy intervals as 〈MX,c〉. But 〈mX,c〉(FX ,P) = 〈MX,c〉 (when a semimartingale
is continuous, its predictable bracket is defined independently of the filtration). Therefore,
we can write:

mX,c
t =

∫ t

0

11{d〈MX,c〉>0}dm
X,c
s =

∫ t

0

11{d〈MX,c〉>0}d(MX,c
s + AXs )

= MX,c
t +

∫ t

0

11{d〈MX,c〉>0}dA
X
s ,

that is (comparing with (3)),AXt =
∫ t
0

11{d〈MX,c〉>0}dA
X
s . This proves that dAX � d〈MX,c〉

and therefore:
dAX � d〈MX〉. (5)
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(a) If X is FX- predictable, then mX is (predictable and hence) continuous. Also, X
is G-predictable, and MX is continuous. It follows that mX,d = MX,d = BX = 0,
that is MX = MX,c. Also, 〈mX〉(FX ,P) = 〈MX〉. Consequently, JX ≡ 0.

(b) Form (a), JX 6= 0 implies that BX 6= 0, that is, mX,d is not a (G,P) local martin-
gale.

2

We emphasise that from Theorem 3.4, (NFLVR-S) implies a decomposition for Y (with
obvious notations):

Yt = Y0 + JYt +

∫ t

0

wYu d〈MY 〉u +MY
t . (6)

We consider below two examples of converging prices.

Example 3.5. Let B1 and B2 be two independent P-Brownian motions with respective
natural filtrations F1 and F2; consider that θ1 is an F1 stopping time and θ2 is an F2

stopping time (hence, they are predictable), both considered to have absolutely continuous
cumulative distribution functions denoted C1 and C2, and satisfying C1(T ) < 1, C2(T ) <
1.

The following payoff is scheduled at a fixed maturity date T :

ξ = 11{θ1>T} + 11{θ2≤T}.

We consider the following distinct information sets:

G1t :=F2
t ∨ σ(t ∧ θ1),

G2t :=F1
t ∨ σ(t ∧ θ2).

and we assume that the corresponding prices are Xt = E(ξ|G1t ) and Yt = E(ξ|G2t ).

We have the following G1 martingales, t ≤ T :

P(θ1 > T |G1t ) = 11{θ1>t}
P(θ1 > T )

P(θ1 > t)
= 11{θ1>t}

1− C1(T )

1− C1(t)

(see Proposition 1 in [8]), and:

P(θ2 ≤ T |G1t ) = P(θ2 ≤ T |F2
t ),

(as θ2 is independent from θ1) i.e., the last process is a Brownian martingale. We deduce
that the G1 adapted price for the claim ξ decomposes as follows:

Xt =X0 −
∫ t

0

1− C1(T )

1− C1(s)
d11{θ1≤s} +

∫ t∧θ1

0

(1− C1(T ))d(1− C1(s))−1 +MX
t ,

where MX = P(θ2 ≤ T |F2
· )− P(θ2 ≤ T ).
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Similar arguments lead to the following G2 adapted price:

Yt =Y0 +

∫ t

0

1− C2(T )

1− C2(s)
d11{θ2≤s} −

∫ t∧θ2

0

(1− C2(T ))d(1− C2(s))−1 +MY
t ,

with MY = P(θ1 > T |F1
· )− P(θ1 > T ).

One can check that: FX = G1, FY = G2, while the insider filtration is G = F1 ∨ F2 (i.e.,
the natural filtration of (B1, B2)). The processes MX and MY are also G martingales.
They are Brownian martingales, from the discussion above. Therefore 〈MX〉 and 〈MY 〉 are
absolutely continuous with respect to the Lebesgue measure. We deduce thatX decomposes
as in (2) and Y as in (6), with the processes

JX : = −
∫ ·
0

1− C1(T )

1− C1(s)
d11{θ1≤s}

JY : =

∫ ·
0

1− C2(T )

1− C2(s)
d11{θ2≤s}

being G-predictable. Because JY is an increasing process, we conclude by Theorem 3.4
that the price process Y does not respect (NFLVR-S) for the insider.

Example 3.6. Let us consider the hitting time by a Brownian motionB of a positive random
variable D independent from the Brownian motion:

TD = inf{t ≥ 0 | Bt ≥ D}.

In the filtration F = (Ft) given by Ft := σ(TD ∧ s, s ≤ t) we have that TD is a totally
inaccessible F-stopping time with corresponding F-intensity process:

c(t) =
11{TD>t}

P(TD > t)

∫ ∞
0

fx(t)dFD(x),

where FD(x) is the distribution function ofD and fx(t) is the density function of the hitting
time T x. We denote Ht := 11{TD≤t} −

∫ t
0
c(s)ds which is an F-martingale.

Let us assume that the price process X is given by the positive local martingale X =
X0E(−H), that is, it satisfies:

Xt = X0 −
∫ t

0

Xs−dHs.

One can notice that FX = F. For simplicity we do not introduce the second asset Y
and we rather concentrate on the dynamics of X in the larger filtration G given by Gt :=
FXt ∨ σ(Bs, s ≤ t).

We denote ΛG the G-compensator of TD, so that the process: HG
t := 11{TD≤t} − ΛG

t is a
G-martingale. It can be shown (using [8] and the fact that σ(Bs, s ≤ t) is immersed in
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G), that ΛG is absolutely continuous with respect to the measure generated by the running
supremum of the Brownian motion:

ΛG
t =

∫ t∧TD

0

dP(TD > s|FBs )

P(TD > s|FBs )
= −

∫ t∧TD

0

dFD(Ss)

1− FD(Ss)
= − ln(1− FD(St∧TD)), (7)

where FB is the Brownian filtration and S is the running supremum of B. The G decompo-
sition of X writes, using that H = HG −

∫
c(s)ds+ ΛG:

Xt = X0 +

(∫ t

0

Xsc(s)ds−
∫ t

0

XsdΛG
s

)
−
∫ t

0

Xs−dH
G
s .

Using Theorem 3.4 we identify MX
t = −

∫ t
0
Xs−dH

G
s . From (7) it can be seen that d〈MX〉

is absolutely continuous with respect to dS. Therefore, JXt =
∫ t
0
Xsc(s)ds, as the Lebesgue

measure is orthogonal with respect to the dS. Because JX is increasing, from Theorem 3.4
we conclude that there are arbitrage opportunities, in the sense that (NFLVR-S) fails. Here
again, an arbitrage strategy is easy to implement by the G-informed investor: buy the asset
X at any time before TD when the Brownian motion is strictly below its running maximum
and sell it any time before it reaches its maximum level again. On these intervals, the
price process X is strictly increasing; the arbitrage strategy described performs a strictly
positive profit proportional to the holding period of the asset X .

4. A RESULT ON THE EXISTENCE OF A SUPERMARTINGALE MEASURE

In this section we investigate the existence of a specific G-supermartingale measure for
two price processes X and Y , that we shall call fundamental supermartingale measure for
(X, Y ). This object will play an important role, as systematic arbitrage opportunities occur
when this supermartingale measure cannot be constructed.
The analysis gains a lot in transparency if we start by assuming the existence of a certain
supermartingale measure for one of the assets, that we shall still call P for simplicity. More
precisely, in this section, we work with the filtered probability space (Ω,G,G,P), where
the two assets are assumed to have the following representations:

X = X0 + JX +MX , (8)

Y = Y0 + V Y +MY , (9)

with MX and MY being (G,P)-local martingales that are locally square integrable with
MX

0 = MY
0 = 0 and such that the process V Y is a finite variation, G-predictable pro-

cess. The process JX is considered to be decreasing and the measure dJX is orthogonal to
d〈MX〉.

Remark 4.1. The decomposition in (8) differs from (2). The existence of such a super-
martingale measure P for X -that here is assumed- is a first step to the construction of the
fundamental supermartingale measure for the couple (X, Y ).
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We decompose the martingale MY as:

MY = M1 +M2

with M1 ∈ S(MX) and M2 ∈ S(MX)⊥ so that we can write M1 as:

M1
t =

∫ t

0

hudM
X
u , (10)

for some process h ∈ P(G) and assumed to have right-continuous sample path.

We shall need the following additional decompositions:

• The predictable, finite variation part of Y stated in (9) decomposes uniquely as:

V Y = A− a, (11)

whereA and a are increasing processes which do not increase on the same sets (that
is dA and da are orthogonal measures)1, and a0 = A0 = 0.
• The process A decomposes uniquely as a sum of two other increasing processes:

A = A1 + A2,

where dA1 � h+d〈MX〉 and dA2⊥h+d〈MX〉. Therefore, there exist a1 ≥ 0 such
that

A1
t =

∫ t

0

a1uh
+
u d〈MX〉u

(the non negativity of a1 comes from the fact that A1 is increasing) and ã1 so that
ã1 = ã111{h>0} = a1

h
11{h>0} ≥ 0 and

A1
t =

∫ t

0

ã1ud〈M1〉u =

∫ t

0

ã1u(hu)
2d〈MX〉u.

We now state our main result of this section:

Theorem 4.2. Assume that ã1∆M1 < 1 holds almost surely. We consider the following
conditions:

(C1) dA2 � d〈M2〉. We denote ã2 the density of dA2 with respect to d〈M2〉.
(C2) ã2∆M2 < 1.
(C3) E [D∗T ] = 1, where:

D∗t := Et
(
−
∫ ·
0

ã1sdM
1
s

)
Et
(
−
∫ ·
0

ã2sdM
2
s

)
, t ∈ [0, T ]. (12)

1In order to preserve the compatibility with the decomposition result in Theorem 3.4, dA is assumed
absolutely continuous with respect to d〈MY 〉. This property will solely be used for constructing an arbitrage
portfolio in Lemma 4.7.
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If (C1)-(C3) are satisfied, the price processes (X, Y ) satisfy (NFLVR-S). Additionally, the
probability measure P∗ defined as:

dP∗

dP

∣∣∣
Gt

:= D∗t , t ∈ [0, T ]. (13)

is a supermartingale measure for (X, Y ) that we call the fundamental supermartingale
measure for (X, Y ).

Conversely, if the price processes (X, Y ) satisfy (NFLVR-S), then (C1) and (C2) hold true,
so that the process D∗ is a strictly positive local martingale.

Remark 4.3. We notice that the probability P∗ depends on the initial probability P. This
calls for some clarifications about naming P∗ fundamental supermartingale measure, es-
pecially because P plays already a particular role (see Remark 4.1). Intuitively, some
absolute continuity relations that proved to be crucial in its construction are preserved un-
der an equivalent change of the probability measure. For this reason, there is something
systematic (i.e., not depending on P) about the conditions (C1) and (C2): when any of
them fails to be true then also (NFLVR-S) fails, and obviously, (NFLVR-S) does not depend
on the probability P except for fixing the null sets. This is the reason for using the term
“fundamental". The following properties are providing some additional insight:

- Let us write V Y = JY +
∫
wY d〈MY 〉 and assume that E

(
−
∫
wY dMY

)
is a uni-

formly integrable martingale. We define Q via dQ
dP |GT := ET

(
−
∫
wY dMY

)
Then,

under Q, we have the following decompositions (with obvious notations):

X = X0 + V X,Q +MX,Q,

Y = Y0 + JY +MY,Q,

which are symmetrical to (8)-(9) under P. A further (and, we have to admit, tedious)
analysis consisting of applying Theorem 4.2 under Q and with the roles ofX and Y
reversed, leads to the same supermartingale measure P∗ as obtained when starting
from P.

- Nevertheless, there is no uniqueness of P∗. If we consider a change of measure Q
satisfying: the martingale E(dQ

dP |Gt) is orthogonal to MX , then, under Q we have
the following decompositions:

X = X0 + JX +MX ,

Y = Y0 + V Y,Q +MY,Q.

Theorem 4.2 can be applied under Q, but we do not obtain in general the same
fundamental supermartingale measure as when starting from P.

Before proving the theorem, let us give some simple examples in order to illustrate the
various processes involved, in particular the different decompositions of the process V Y .
Note that we do not consider below that X and Y are converging prices; examples with
converging prices are provided in Section 5.
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Example 4.4. Suppose that B1 and B2 are two independent Brownian motions and

Xt = X0 +B1
t∧θ with θ := inf{t ∈ [0, T ], Bt = −X0}, T fixed

Yt = Y0 +

∫ t

0

Fsds+

∫ t

0

HsdB
1
s +

∫ t

0

GsdB
2
s , t ∈ [0, T ],

with F , G and H being predictable processes, that for simplicity we assume bounded. Let
us identify the key processes introduced previously in this section.

We have MX
t = B1

t∧θ, M
1
t =

∫ t∧θ
0

HsdB
1
s =

∫ t
0
HsdM

X
s , M2

t =
∫ t
t∧θHsdB

1
s +

∫ t
0
GsdB

2
s .

Therefore: 〈M1〉t =
∫ t∧θ
0

(Hs)
2ds =

∫ t
0
(Hs)

2d〈MX〉s; 〈M2〉t =
∫ t
0

[
(Hs)

211{θ≤s} + (Gs)
2
]
ds.

Moreover, the process At =
∫ t
0
(Fs)

+ds decomposes as A = A1 + A2 with:

A1
t =

∫ t∧θ

0

11{Hs>0}(Fs)
+ds =

∫ t

0

ã1sd〈M1〉s, where ã1t =
11{Ht>0}(Ft)

+

(Ht)2

A2
t =

∫ t

0

11{Hs≤0}∪{θ≤s}(Fs)
+ds.

The existence of the density process ã2 is not guaranteed. The absolute continuity condition
(C1) in the Theorem 4.2 becomes: The process G is non null on the set:

{(t, ω)|θ(ω) > t,Ht(ω) ≤ 0, Ft(ω) > 0} ∪ {(t, ω)|θ(ω) ≤ t,Ht(ω) = 0, Ft(ω) > 0}.
When this is the case, we have A2

t =
∫ t
0
ã2sd〈M2〉s with

ã2t = 11{θ>t}
11{Ht≤0}(Ft)

+

(Gt)2
+ 11{θ≤t}

(Ft)
+

(Ht)2 + (Gt)2

and the following process

D∗ : = E
(
−
∫ θ∧·

0

(Fs)
+

(
11{Hs>0}

Hs

dB1
s +

11{Hs≤0}

Gs

dB2
s

)
−
∫ ·
·∧θ

(Fs)
+HsdB

1
s +GsdB

2
s

(Hs)2 + (Gs)2

)
is the candidate for the density of the fundamental supermartingale measure. The theo-
rem then states that there exists a super-martingale measure if (the other conditions being
fulfilled) E [D∗T ] = 1.

Example 4.5. Another simple example is the one where M2 ≡ 0. In this case the theorem
simply says that A should not increase on the sets where d〈X, Y 〉 < 0, otherwise (NFLVR-
S) does not hold. See also Subsection 5.1.

Example 4.6. If the process 〈X, Y 〉 is strictly increasing, then A2 ≡ 0 and only the condi-
tion (C3) in the theorem: E

[
ET
(
−
∫ ·
0
ã1sdM

1
s

)]
= 1 needs to be checked. However, if this

not fulfilled, we cannot in general conclude to absence of (NFLVR-S) as (C3) is not a neces-
sary condition. Consider for instanceX = E (B1) and Y = E

(∫ ·
0

ds√
T−s +B1

· +
∫ ·
0

dB2
s√

T−s

)
,

again with B1 and B2 being independent Brownian motions. The density process D∗ is
given by D∗ = E

(
−
∫ ·
0

dB1
s√

T−s

)
, D∗T = 0 and is a strict local martingale (see Example
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2.2 in [13]), hence the fundamental supermartingale measure is not well defined. How-
ever (NFLVR) holds, as the probability Q is dQ

dP = ET (−B2) is an equivalent martingale
measure for (X, Y ).

Proof. (Proof of the Theorem 4.2)

"⇒" Condition (C1) ensures the existence of a process ã2, such that:

A2 =

∫ ·
0

ã2ud〈M2〉u

and ã2 is nonnegative, due to the increasing property ofA2. Condition (C3), implies that the
process D is a martingale, while condition (C2) together with the condition ã1∆M1 < 1
ensure that it is strictly positive.
We define:

dP∗

dP

∣∣∣
GT

:= D∗T

which is indeed an equivalent probability measure. It is easy to check that it is a super-
martingale measure: indeed, under P∗,

dXt = dJXt − ã1thtd〈MX〉t + dm∗t = dJXt − ã1t (ht)+d〈MX〉t + dm∗t

where m∗ is a P∗-local martingale. The processes JX and −
∫
ã1s(h)+s d〈MX〉s being de-

creasing, X is a supermartingale under P∗. Also:

dYt = dV Y
t +dMY

t = dA1
t +dA2

t−dat+dM∗
t − ã1t (ht)2d〈MX〉t− ã2td〈M2〉t = dM∗

t −dat
where M∗ is a P∗-local martingale.

"⇐" We assume that there exists an equivalent supermartingale measure, that we denote P̃.
Without loss of generality, the density process has the representation

dP̃
dP

∣∣∣
Gt

= Et(−L), (14)

where L can be decomposed as:

Lt =

∫ t

0

`1udM
1
u +

∫ t

0

`2udM
2
u + Ut.

with U a local martingale orthogonal to both M1 and M2.

The processes X and Y are P̃-supermartingales; therefore we need to have simultaneously:

(i) (〈MX , L〉t, t ∈ [0, T ]) is an increasing process;
(ii)

(∫ t
0

11{dA 6=0}d〈MY , L〉u − At, t ∈ [0, T ]
)

is an increasing process.
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Condition (i) is obtained as follows. The process X is a P̃-supermartingale if and only
if JX − 〈MX , L〉 is a decreasing process. But JX is decreasing and dJX is singular to
d〈MX〉, therefore the condition (i) appears as necessary and sufficient for X to be a P̃-
supermartingale.

Also, some clarifications concerning the condition (ii) above. The process Y is a P̃-
supermartingale if and only if V Y − 〈MY , L〉 is a decreasing process. But V Y − 〈MY , L〉
is decreasing if and only if the two processes (At −

∫ t
0

11{dA 6=0}d〈MY , L〉u, t ∈ [0, T ]) and
(−at−

∫ t
0

11{da6=0}d〈MY , L〉u, t ∈ [0, T ]) are decreasing. However, the last condition is not
going to be exploited here.
From condition (i) above, we obtain that necessarily the process h`1 is nonegative. In
particular on the set {h < 0} the process `1 has negative or null values only.

Let us now analyze condition (ii). For simplicity, we denote: ˜̀1
t := `1t11{dA 6=0} and ˜̀2

t :=

`2t11{dA 6=0}. From the above observation regarding `1, the process ˜̀1 satisfies:

˜̀111{h<0} ≤ 0, (15)

We recall that the process A decomposes as
∫ t
0
ã1ud〈M1〉u + A2

t , with ã1 satisfying ã1 =
ã111{h>0} and hence:(∫ t

0

11{dA 6=0}d〈MY , L〉u − At
)

=

=

∫ t

0

(˜̀1
u − ã1u)11{hu>0}d〈M1〉u +

∫ t

0

˜̀2
ud〈M2〉u −

(
A2
t −

∫ t

0

˜̀1
u11{hu≤0}d〈M1〉u

)
.

The process above should be increasing. Because both processesA2 and−
∫ ·
0

˜̀1
u11{hu≤0}d〈M1〉u =

−
∫ ·
0

˜̀1
u11{hu<0}d〈M1〉u are increasing (see (15)) and they do not increase (i.e., they stay

constant) on the set {ht > 0}, it follows that the process:∫ ·
0

11{hu≤0}
˜̀2
ud〈M2〉u − C (16)

needs to be increasing, where Ct := A2
t −

∫ t
0

˜̀1
u11{hu≤0}d〈M1〉u is increasing. It follows

from Theorem A.1 in the Appendix A that C is absolutely continuous with respect to
d〈M2〉. Because C is the sum of two increasing processes, then each term should be
absolutely continuous with respect to d〈M2〉, that is:∫ t

0

˜̀1
u11{hu≤0}d〈M1〉u =

∫ t

0

˜̀1
u11{hu≤0}eud〈M2〉u (17)

for some nonnegative process (et), and

A2
t =

∫ t

0

ã2ud〈M2〉u
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for a nonnegative process ã2 = ã211{h≤0}. It follows that the condition (C1) in the theorem
must hold. In particular, the local martingale D∗ exists.
It remains to show that (C2) holds as well, a property that triggers the strict positivity the
local martingaleD∗. Below we show that (C2) is a consequence of the strict positivity of the
local martingale E(−L) in (14). We notice first that, the process in (16) being increasing:

(ã2 − ˜̀1e− ˜̀2)11{h≤0} ≤ 0,

and therefore:
0 ≤ ã2 ≤ (˜̀1e+ ˜̀2)11{h≤0} ≤ ˜̀211{h≤0}. (18)

To obtain the last inequality above, we use ˜̀1e11{h≤0} ≤ 0 (e being a positive process).
Indeed: 11{h<0} ˜̀

1 ≤ 0 as in (15), 11{h=0}d〈MX〉 = 0 and therefore, using the equality (17)
the process 11{h=0} ˜̀

1e is null.

As the process E(−L) in (14) is strictly positive, and from the orthogonality of M1 and
M2, it follows that we must have: −`1∆M1 > −1 and −`2∆M2 > −1. In particular, the
last inequality holds on the set {ã2 > 0} ∩ {h ≤ 0} (notice that on this set we have `2 > 0,
which follows from (18)). Then, the inequalities in (18) ensure that

−ã2∆M2 > −1

Indeed, (18) implies that −ã2 ≥ −˜̀211{h≤0}, hence, if ∆M2 > 0, one has −ã2∆M2 ≥
−˜̀211{h≤0}∆M

2 ≥ −11{h≤0} ≥ −1. If ∆M2 < 0, one has −ã2∆M2 ≥ 0 > −1. Therefore
the condition (C2) in the theorem holds as well. 2

Theorem 4.2 emphasizes the fact that the condition (C1) is necessary for (NFLVR-S) to
hold. In the remaining of this section we reveal a systematic arbitrage portfolio when (C1)
fails. For this, we identify the set where the condition fails (i.e., the arbitrage set):

A := {(ω, t) ∈ Ω× [0, T (ω)] | dA2
t (ω) > 0 and d〈M2〉t(ω) = 0};

in other words, in A the measure dA2 is not absolutely continuous with respect to d〈M2〉.
The condition (C1) can be rewritten as: P(ω : ∃t, (ω, t) ∈ A) = 0.
We introduce the début of A:

DA := inf{t ≥ 0 | (ω, t) ∈ A},
with the usual convention: inf ∅ =∞.
The random time DA is a predictable G stopping time. This can be proved as follows. The
processes A2 and 〈M2〉 are G-predictable, hence the set A is G-predictable. Furthermore,
A2 and 〈M2〉 are right continuous, so that [[DA]] ⊂ A. We conclude using Proposition 2.40,
p. 354 in [20].
The exit time from A:

EA := inf{t > DA | (ω, t) /∈ A}
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is as well a predictable stopping time (it can be also written as the début of the set {(ω, t) ∈
Ω× [[DA ∧ T, T ]] | dA2

t (ω) = 0 or d〈M2〉t(ω) > 0}).
To construct our arbitrage portfolio we use a trading strategy π = (πC , πX , πY ), where
πXt ≥ 0 represents the quantity of asset X in the portfolio at time t, πYt ≥ 0 the quantity of
asset Y and πCt ∈ R is the amount invested in the risk-free asset (cash) at time t to have a
self financing strategy (see Definition 2.2). We recall that the value of the portfolio at time
t ∈ [0, T ] writes:

V π
t := πCt + πXt Xt + πYt Yt. (19)

Additionally, our arbitrage portfolio will satisfy the following conditions:

(a) it is initiated at time DA at no cost: V π
DA

= 0.
(b) at some G stopping time S ≤ T the portfolio has positive value: V π

S ≥ 0 a.s. with
P(V π

S > 0) > 0. In our case S is any stopping time less or equal to EA.
(c) the underlying trading strategy π is admissible in the sense of the Definition 2.2

(some of the admissibility conditions are already implied by the previous points).

Such a portfolio is indeed the following one: π0 = (0, 0, 0) (that is, no initial investment),
then the self financing strategy associated with

πXt = −ht11{t∈[[DA,EA[[} (20)

πYt = 11{t∈[[DA,EA[[}. (21)

The lemma below shows that the portfolio value is increasing, in particular it is bounded
from below, which ensures that the underlying trading strategies are admissible, that is, (c)
is satisfied. It also proves that condition (b) holds (i.e., the portfolio is an arbitrage) as soon
as we have a violation of (C1), that is: P(ω : ∃t, (ω, t) ∈ A) > 0.

Lemma 4.7. The value of a self-financing portfolio V π with π as in (20)-(21) is an increas-
ing process, and strictly increasing for (ω, t) ∈ A.

Proof. The portfolio value is constant outside the set A, therefore we only need to investi-
gate the behaviour of the prices processes X and Y inside the set A.
The portfolio being self-financing, we have:

dV π
t = −htdXt + dYt =

(
−htdJXt − htdMX

t

)
+
(
dV Y

t + htdM
X
t + dM2

t

)
= −htdJXt + dA2

t + dM2
t .

The last equality appears as a consequence of the fact that in A we have dA2 > 0 so that
da = dA1 = 0 and dV Y = dA2.
But the process JX is necessarily constant in A. This is is because dJX is singular to
d〈MX〉 (by definition of JX), and we do have d〈MX〉 > 0 for all (ω, t) ∈ A. The last
property can be seen form the following arguments. We recall the following properties:
dA2 is absolutely continuous with respect to d〈MY 〉 = d〈M1〉 + d〈M2〉 (consequence of
the fact that dA is absolutely continuous with respect to d〈MY 〉, see footnote 1 page 9); and



18 DELIA COCULESCU AND MONIQUE JEANBLANC

inside A we have dA2 is orthogonal to d〈M2〉. It follows that inside A, dA2 is absolutely
continuous with respect to d〈M1〉 and hence also with respect to d〈MX〉. Consequently,
d〈MX〉 > 0 for all (ω, t) ∈ A.
We deduce that the dynamics of the portfolio’s value can be rewritten:

dV π
t = dA2

t + dM2
t for (ω, t) ∈ A.

We now notice that inside A we have d〈M2〉 ≡ 0, by definition of A, which implies that
M2 is constant inside A. This simplifies the dynamics of V π:

dV π
t = dA2

t for (ω, t) ∈ A

that is, V π is strictly increasing for (ω, t) ∈ A. 2

5. SOME EXAMPLES OF CONVERGING PRICES

We keep the notation of Section 4 and consider the specific case of converging prices, i.e.
XT = YT = ξ a.s.. Whenever appearing, QX (resp. QY ) is an equivalent local martingale
measure for X in the filtration FX (resp. for Y in the filtration FY ).

5.1. The martingale M2 is null. In this case, we can derive the following quadratic co-
variation rule:

Lemma 5.1. We suppose that X and Y satisfy the hypotheses from the previous section
with M2 ≡ 0. If (NFLVR-S) holds then the process:∫ t

0

11{d〈X,Y 〉≤0}dYs

is a (G,P)-supermartingale, which is to say:∫ t

0

11{d〈X,Y 〉≤0}dV
Y
s

is a decreasing process.

Proof. The result follows as an application of the Theorem 4.2. We give an intuitive
explanation. The search of supermartingale measures for X and Y requires an analysis
of the finite variation parts of Q decompositions of X and Y , for different probability
measures Q, with Q ∼ P. Let us denote these V X,Q and V Y,Q respectively. A measure Q
such that V X,Q and V Y,Q are decreasing is a supermartingale measure. On the set where
the quadratic covariation process 〈X, Y 〉 is decreasing (that is on the set {d〈X, Y 〉 ≤ 0}), a
change of measure from P to a given Q, has opposite effects on V X,Q and V Y,Q: when one
is decreased, the other increased (as compared to their P counterparts). We have V X,P =
JX and is constant on {d〈X, Y 〉 ≤ 0}; suppose that V Y,P(= V Y ) is increasing on S ⊂
{d〈X, Y 〉 ≤ 0}. Then, for any Q such that V Y,Q is decreasing in S, we necessarily have
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V Y,Q increasing in S. So, there is no supermartingale measure for the couple (X, Y ) in this
case. 2

We give below some examples of converging assets.
First, let us suppose T is constant, that MX is a continuous martingale with deterministic
quadratic variation, f a deterministic function and F (t) =

∫ t
0
f(s)d〈MX〉s. Then, the

consider the following prices:

Xt =X0 +MX
t

Yt =X0 −
∫ t

0

MX
s f(s)d〈MX〉s +

∫ t

0

hsdM
X
s .

with
ht = 1 + F (T )− F (t) .

An integration by parts shows that X and Y have converging prices, XT = YT a.s.. Con-
sider for instance F (t) = 1−ert for some r > 0 (and implicitly f(t) < 0), then the process
ht = 1 + ert − erT is negative in an interval of the form [0, S] with S < T , provided that
T is large enough. By Lemma 5.1, there are arbitrage opportunities if the martingale MX

has positive excursions in the interval [0, S].

As a second example, let us analyse the case of Brownian diffusions. Suppose that B is
a (G,P) Brownian motion, f(t, x) and σ(t, x) are two Lipschitz continuous and strictly
positive functions on R+ × R, and x0 and y0 are some positive constants. We consider the
following prices

Xt =x0 +

∫ t

0

σX(s, Bs)dBs,

Yt =y0 +

∫ t

0

f(s, Bs)ds+

∫ t

0

σY (s, Bs, )dBs

and give conditions under which they are convergent prices. Assume that

σY (t, x) = σX(t, x)− ∂g

∂x
(t, x),

with g being a solution of f + ∂g
∂t

+ 1
2
∂2g
∂x2

= 0 and g(T, x) = y0 − x0 (that is: g(t, x) =

y0 − x0 + E[
∫ T
t
f(s, Bs)ds|Bt = x] ). Then, XT = YT . There are arbitrage opportunities

as soon as d〈X, Y 〉 ≤ 0, that is:

σX(t, x) ≤ ∂

∂x
g(t, x).

Let us now consider the case of a "survival claim": ξ = 11{τ >T}, i.e., that pays one mone-
tary unit if some event τ does not occur before some fixed maturity T . Suppose that for all
investors τ is a totally inaccessible stopping time; it admits a constant (FX ,QX) intensity
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λX , resp. a constant (FY ,QY ) intensity λY . In this case, X (resp. Y ) is increasing on the
stochastic interval [0, τ ∧ T ) and has a downward jump at τ if τ ≤ T . More precisely:

Xt = QX(τ > T |FXt ) = 11{τ>t}e
−λX(T−t)

Yt = QY (τ > T |FYt ) = 11{τ>t}e
−λY (T−t).

(NFLVR-S) holds in this model (for instance Qm is supermartingale measure with m =
arg maxi∈{X,Y } λ

i). This is in line with Lemma 5.1: [X, Y ]t = ∆Xτ∆Yτ11{τ≤t} ≥ 0 and
hence 〈X, Y 〉 ≥ 0.
Now, consider an alternative of the above example, where in the filtration FX , the stopping
time τ is predictable, but it is totally inaccessible in FY with constant intensity, i.e., Y is
increasing on the stochastic interval [0, τ ∧ T ) and has a downward jump at τ if τ ≤ T
as above. In the filtration G the stopping time τ is predictable (because it is predictable in
FX ⊂ G), therefore the price process Y appears to be G-predictable and of finite variation,
in particular 〈X, Y 〉 ≡ 0. Then, there are arbitrage opportunities: in the filtration G there is
no change of measure to make it a supermartingale. An obvious arbitrage strategy consists
in buying Y and selling it just before τ .

5.2. Investors with similar risk attitudes in the two markets. Let us assume that: Xt =
E[ξ|FXt ] and Yt = E[ξ|FYt ]. We interpret this as investors having similar risk attitudes,
because P acts as a martingale measure on both markets individually, where the same payoff
ξ is priced in a manner compatible with no arbitrage (more exactly (NFLVR)). In the larger
filtration G nevertheless, there is no guarantee of no arbitrage.
We illustrate with an example of a defaultable asset: ξ = 11{τ>T}E(B)T , the maturity T
being fixed. We assume that B is a Brownian motion and τ , the default time of the issuer is
an exponentially distributed random variable wih parameter λ, which is independent from
the Brownian motion B.
We assume that the following information sets are available for each of the two markets
and the insider, respectively, for t ∈ [0, T ]:

FXt = σ(BT ) ∨ σ(τ ∧ s, s ≤ t)

FYt = σ(Bs, s ≤ t) ∨ σ(τ)

Gt = σ(Bs, s ≤ t) ∨ σ(BT ) ∨ σ(τ).

We denote
Nt := 11{τ≤t} − λ(t ∧ τ),

which is an FX-martingale. Also, we notice that the FY Brownian motion B is a semi-
martingale in the larger filtration G, namely

Bt = −
∫ t∧T

0

BT −Bu

T − u
du+ βt

with β being a (G,P) Brownian motion.
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Using 11{τ>t}e
λt = Et(−N), we obtain that:

Xt = 11{τ>t}e
−λ(T−t)ET (B) = ET (B)e−λT −

∫ t

0

Xs−dNs,

which is an FX-martingale. However, in the filtration G the process X is predictable and
of finite variation. As it is not decreasing, we conclude by Theorem 3.4 that X does not
fulfil (NFLVR-S). On the other hand, Y is given by the following FY -martingale:

Yt = 11{τ>T}E(B)t = 11{τ>T} +

∫ t

0

YudBu

while in the larger filtration G, the following decomposition holds for Y :

Yt = 11{τ>T} −
∫ t

0

Yu
BT −Bu

T − u
du+

∫ t

0

Yudβu.

The integral
∫ t
0
Yu

BT−Bu

T−u du is well defined: indeed, from [15] this condition is equivalent

to
∫ T
0

Ys√
T−sds < ∞ and, since E(Yt) ≤ 1 one has E

(∫ T
0

|Ys|√
T−sds

)
< ∞. This type

of model is known for not satisfying (NFLVR). Imposing short sales constraints for the
insider does not prevent the free lunches. The candidate density process for the fundamental
supermartingale measure is:

D∗t = Et
(∫ ·

0

(BT −Bu)
+

T − u
dβu

)
,

the fact that (BT−Bu)+

T−u is not square integrable prevents it from being a valid change of
measure. See, e.g., [1, Section 4.2.1].

5.3. Different risk attitudes in the two markets. Here we assume that the two markets
have different equivalent martingale measures. We work directly in the filtration G, gener-
ated by two independent P-Brownian motions B and β. We denote W := ρB+

√
1− ρ2β

for some ρ ∈ [−1, 1]. The two asset prices are supposed to be as follows:

Xt = X0 +Bt

Yt = EQY

[XT |Gt],

with
dQY

dP

∣∣∣
Gt

:= E
(
−
∫ ·
0

W Y
u dBu

)
t

,

and with W Y satisfying dW Y
t = ρW Y

t dt + dWt. We consider X0 > 0 and T = inf{t ≥
0, Xt = 0} ∧ T̄ with T̄ non random (so that the price processes are positive).
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Under the above assumptions, the processes W Y , BY
t = Bt +

∫ t
0
W Y
u du and β are QY -

Brownian motions. It can be easily computed that Y has the following (G,P) decomposi-
tion:

Yt = X0 +

∫ t

0

(1− ρ(T − u))W Y
u du+

∫ t

0

(1− ρ(T − u))dBu−
√

1− ρ2
∫ t

0

(T − u)dβu.

We have for t ≤ T :

M1
t =

∫ t

0

hudBu with ht = 1− ρ(T − t)

M2
t = −

√
1− ρ2

∫ t

0

(T − u)dβu

At =

∫ t

0

(
W Y
u

hu

)+

d〈M1〉u.

For simplicity we fix T̄ = 2. We can conclude using Theorem 4.2 that (NFLVR-S) holds
true:

(1) If ρ ≤ 0, then h > 0 and conditions (C1) and (C2) are trivially satisfied with ã2 ≡ 0.
Condition (C3) also holds true.

(2) If ρ > 0 then, {(ω, t)|ht ≤ 0} = [0,max(0, 2 − 1/ρ)]. For ρ ∈ (1/2, 1], this inter-
val is not empty and dA2

t > 0 whenever W Y
t < 0, and these negative excursions of

W Y occur a.s. on every bounded interval. Hewever, there are no arbitrage oppor-
tunities in this case neither: all conditions are fulfilled to construct the fundamental
supermartingale measure P∗.

5.4. Filtering models with vanishing noise. Another class of examples fitting in the
framework of converging prices are filtering models where the noise in the observation
process is vanishing at a fixed time T .
We consider two price processes corresponding to the same contingent claim ξ. On one
market, the price is given by X , where, as in the previous example, X is a P-Brownian
motion starting at X0 and ξ = XT . On the other market, investors have access to a noisy
observation of X . More precisely, we assume that investors on the second market observe
the following process:

Ot =

∫ t

0

f(Xs)ds+Wt,

W being a Brownian motion independent from X . Furthermore, at time T the value ξ =
XT can be observed fully. More precisely, the information available for the investors on
the second market, denoted by H := (Ht)t∈[0,T ] is given by:

Ht = σ(Os, s ≤ t), for t < T

HT = σ(Os, s ≤ T ) ∨ σ(ξ).
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We denote Gt = σ(Xs, s ≤ t) ∨Ht. Now, we assume that:

Yt := E[ξ|Ht] (obviously YT = ξ).

We denote by Nt = Ot −
∫ t
0
f̂(Xs)ds the innovation process, where as usual f̂(X) is the

H-optional projection of the process f(X). We obtain for some FY -predictable process ψ
and for t < T :

Yt = E[Xt|FYt ] = X0 +

∫ t

0

ψudNu.

The process ψ is given by: ψt = ̂f(Xt)Xt − X̂tf̂(Xt) (see Theorem 3.35 in [3]). In
the filtration G, replacing Nt = Wt +

∫ t
0
(f(Xs) − f̂(Xs))ds we obtain the following

representation:

Yt = X0 +

(∫ t

0

ψu(f(Xu)− f̂(Xu))du+ 11{t≥T}(ξ − YT−)

)
+

∫ t

0

ψudWu

= X0 + V Y
t +M2

t .

Here we have an example with M1 ≡ 0. We can use Theorem 3.4 to deduce that the
dynamics of Y is not compatible with (NFLVR-S): we can write

V Y
t = JYt +

{∫ t

0

ψu(f(Xu)− f̂(Xu))du

}
where JYt = 11{t≥T}(ξ − YT−) is not a decreasing process.

APPENDIX A. SOME RECALLS ON MEASURES AND INCREASING PROCESSES

For the reader’s convenience we gather here some elementary results that were used in the
paper.

Theorem A.1. Let µ1 and µ2 be two finite (possibly signed) measures.

(a) Assume that both µ1 and µ2 are positive measures. Then, (µ1 − µ2) is a positive
measure only if µ2 is absolutely continuous with respect to µ1.

(b) Assume that µ1⊥µ2 and furthermore (µ1 + µ2) is a positive measure. Then, both
µ1 and µ2 are positive measures.

Proof.

(a) Suppose that (µ1 − µ2) is a measure on the σ-algebra F . Then, for all A ∈ F ,
(µ1 − µ2)(A) ≥ 0. In particular, if A is such that µ1(A) = 0 then: (µ1 − µ2)(A) =
µ1(A)− µ2(A) = −µ2(A) ≥ 0, which implies that µ2(A) = 0 (since we also have
µ2(A) ≥ 0 for µ2 being a positive measure). In other words: µ2 � µ1.

(b) For all A ∈ F , (µ1 +µ2)(A) ≥ 0; the orthogonality condition implies that µ1(A) ∈
{(µ1+µ2)(A), 0} and µ2(A) ∈ {(µ1+µ2)(A), 0} hence both are positive measures.
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An increasing process can be seen as a random measure on R+, dAt(ω), whose distribution
function is A•(ω). Similarly, a process of finite variation can be seen as a signed random
measure, since it can be written as the difference of two increasing processes.

Proposition A.2 ([14] p.30). Let A, B be finite variation processes (resp. increasing pro-
cesses) such that dB � dA. Then, there exists an optional (resp. nonnegative) process H
such that B =

∫
HdA up to an evanescent set. If moreover A and B are predictable, one

may choose H to be predictable.

Proposition A.3 ([6]). Let A, B be càdlàg, predictable processes of finite variation, with
B being increasing. Then, there is a predictable process ϕ and a predictable subset N of
R+ × Ω such that:

A =

∫
ϕdB +

∫
11NdA

and: ∫
R+

11N(u)dBu = 0.
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