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Running title: VLP production induces plant cell wall alterations 

 

Summary 

Influenza virus-like particles (VLPs) have been shown to induce a safe and potent 

immune response through both humoral and cellular mechanisms. They represent 

promising novel influenza vaccine. Plant-based biotechnology allows for the large-

scale production of VLPs of biopharmaceutical interest using different model 

organisms, including Nicotiana benthamiana plants. In this platform, influenza VLPs 

bud from the plasma membrane and accumulate between the membrane and the 

plant cell wall. A better understanding of the plant cell wall composition of infiltrated 

tobacco leaves becomes a major interest for the plant-biotechnology industry in 

order to design and optimize efficient production processes. In this study, we have 

investigated the alteration of the biochemical composition of cell walls from N. 

benthamiana leaves subjected to abiotic and biotic stresses induced by the 

Agrobacterium-mediated transient transformation and the high-level expression of 

influenza VLPs. By comparison with non-infiltrated leaves, results show that abiotic 

stress due to vacuum infiltration without Agrobacterium did not induce any detectable 

modification of the cell wall. In contrast, various chemical changes of the leaf cell 

walls were observed post Agrobacterium infiltration. Moreover, infection with 

Agrobacterium induced deposition of callose and lignin as well as modification of 

pectin methylesterification, increase of arabinosylation of RG-I side chains and 

expression of arabinogalactan proteins (AGPs). Finally, modifications of the cell wall 

composition in response to agro-infiltration were slightly more important in plants 

expressing hemagglutinin-based VLP than in plants infiltrated with the 

Agrobacterium strain containing the p19 suppressor of silencing alone. 
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Introduction 

The market share of vaccines is rapidly increasing with a growing interest toward 

virus-like particles (VLPs) products. VLPs are produced by recombinant expression 

in heterologous systems of viral structural proteins. They mimic viruses with respect 

to their morphology and size as well as their immunogenic potential, but do not 

contain viral DNA or RNA constituting an important safety advantage over traditional 

vaccines (Grgacic and Anderson, 2006; Lua et al., 2014; Le Mauff et al., 2014). The 

last two decades witnessed the rise of plant biotechnology and demonstrated the 

potential of plant-derived biopharmaceuticals production platforms. Stable or 

transient expression of proteins in plants allows the production of well-folded and 

functional biopharmaceuticals, including VLPs, in a safe and scalable manner 

(Kushnir et al., 2012). After synthesis, hemagglutinin-based VLPs remain trapped in 

leaves within the apoplast space surrounded by the cell wall (D’Aoust et al. in 2010). 

Since agro-infiltration-based production of VLPs requires Agrobacterium tumefaciens 

as a vehicle for gene shuttling to the host cell nucleus, studying the impact of 

Agrobacterium infiltration on plant tissues composition is of primary importance.  In 

this context, limited knowledge exists on the cell wall modifications occurring during 

transient expression although the bacterial plant-Agrobacterium interaction is well-

understood (Pitzschke and Hirt, 2010; Pruss et al., 2008). Therefore, understanding 

the cell wall biochemical modification in tobacco leaves during the production 

process is of main interest.  

Plant cell wall is composed of three main polymers: cellulose, hemicellulose and 

pectins. The cellulose is a polymer of β(1,4)-glucose that constitutes the main 

network of the cell wall ensuring anisotropic growth of cells (Baskin and Jensen, 

2013; Brown, 2004). Hemicelluloses encompass polymers consisting of β(1,4)-linked 
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monosaccharides substituted by various side chains. Among them, xyloglucans are 

the most abundant hemicellulose in primary cell walls of eudicots. They consist of a 

cellulose backbone substituted by α(1,6)-linked xylose residues and additional 

arabinose, galactose or fucose units (Pena et al., 2008). Acetylesterifications occur 

either on carbone 6 of the glucose backbone, of the galactose or arabinose residues 

of the side chains (Gille et al., 2011). The xylans and mannans hemicelluloses are 

much less abundant in eudicots and do not exceed 5% of total hemicellulloses 

(Scheller and Ulvskov, 2010). Finally, pectins are acidic polymers of cell wall 

consisting of α(1,4)-linked homogalacturonan (HG) and rhamnogalacturonans (RG). 

HG presents different levels of methyl- and acetylesterification that varies according 

to plant development stage (Wolf et al., 2009). RG is further subdivided into two 

classes: RG-I which consists of arabinan and galactan chains linked to a backbone 

of [→2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→] repeating disaccharides (Mohnen, 2008) 

and RG-II which possess a homogalacturonan backbone that is substituted with four 

complex and structurally conserved oligosaccharide side chains (O’Neill, 2001). In 

addition to these polysaccharides, cell walls contain hydroxyproline rich 

glycoproteins (HRGP) (Nguema-Ona et al., 2013), such as arabinogalactan proteins 

(AGPs), and structural proteins.   

Infections of plants by pathogens induce a large set of plant defense responses 

including deposition of lignin and callose as well as cross-linking between cell wall 

polysaccharides and glycoproteins (Malinovsky et al., 2014). These chemical 

modifications reinforce the walls of cells surrounding the infection site, creating a 

barrier that limits the spread of the pathogen (Zhao and Dixon, 2014). To date, 

modifications of cell wall polymers under biotic stress conditions are well described 

(Malinovsky et al., 2014). For example, relationship between defense signal 
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pathways, such as the jasmonic acid pathway, and modification of cellulose 

synthesis and lignification has been clearly demonstrated (Caño-Delgado et al., 

2003). Moreover, xylan networks are known to be reinforced during infection through 

the cross-linking of ferrulate esters with lignins (Malinovsky et al., 2014). Pectins also 

play a key function as sentinel of the cell wall integrity. In the context of pathogen-

plant interactions, pathogen and plant pectin-degrading enzymes release partially 

methylesterified oligogalacturonide fragments that act as signals of tissue infection 

by pathogens (Bethke et al., 2014). 

In this paper, we present the biochemical alterations of the plant cell wall N. 

benthamiana plants arising from abiotic stress resulting from the vacuum infiltration 

and biotic stresses caused by infiltration of Agrobacterium or due to the transient 

expression of influenza-VLPs. 

 

Results 

Experimental design  

Four N. benthamiana plant groups were submitted to different abiotic and biotic 

stresses in order to analyse their respective impact on plant cell wall constituents 

(Figure 1A). Sugar composition and linkage analyses of cell walls prepared from 

agro-infiltrated and non-infiltrated N. benthamiana plants were carried out in order to 

investigate the influence of Agrobacterium-mediated influenza VLP production on the 

cell wall composition (Figure 1B). Cell walls prepared from non-infiltrated (Ni) plants 

that were subjected to the same conditions as for the three other groups, were 

analysed and considered as a non-infiltrated control group, while cell walls of plants 

infiltrated with water only (Water) were studied to investigate the impact of the abiotic 
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stress due to the vacuum treatment used to infiltrate the Agrobacterium inside plant 

tissues. A third group of plants were agro-infiltrated with an Agrobacterium strain 

carrying a binary plasmid designed for the expression of the p19 suppressor of gene 

silencing, to assess biotic stress due to Agrobacterium infection (labelled as “p19” 

plants) in absence of VLP expression. Finally, a last plant group, annotated as “H5”, 

was infiltrated with an Agrobacterium strain capable of transferring both p19 and the 

Influenza H5 hemagglutinin genes to the plant cells allowing for transient expression 

of the hemagglutinin and budding of VLP to occur (Figure 1A). For each group, 

leaves from three plants were harvested at day 1, 4 and 7 post-infiltration and the 

different cell wall components were sequentially extracted as follow: Alcohol 

Insoluble Residues (AIR) were first prepared and mainly consisted of cell wall 

polysaccharides and AGPs. Then, water-soluble constituents (pectins and AGPs) 

and hemicellulose fractions were extracted from the AIR fraction of each plant. 

Finally, insoluble material left was considered as being insoluble cellulose (Figure 

1B).  

Overall sugar composition of crude cell walls extracts (AIR) 

Monosaccharide composition of AIR isolated from cell walls of non-infiltrated 

N. benthamiana leaves (Ni) was in agreement with previous data (Figure 2A) 

(Nguema-Ona et al., 2012) showing that glucose, galacturonic acid and rhamnose 

are the most abundant monosaccharides. Similar monosaccharide compositions 

were measured in AIR isolated from Water, P19 and H5 infiltrated leaves, collected 

from day 1 to day 7 (Supplemental Table 1). Sugar linkage composition of neutral 

monosaccharides, identified by gas chromatography coupled to an electron impact 

mass spectrometer (GC-EIMS) after permethylation of the sample, was first 

determined in Ni group. In the cell wall AIR fraction of these plants, the most 
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abundant partially methylated alditol acetate derivatives, were assigned to 4-linked 

glucose, 4,6-linked glucose, 2- and/or 4-linked xylose and terminal xylose derived 

from cellulose and xyloglucans (Figure 2B). Detection of 2-linked rhamnose and 2,4-

linked rhamnose residues in a 2/1 ratio indicated that a third of the [→2)-α-L-Rhap-

(1→4)-α-D-GalpA-(1→] repeating unit of the RG-I backbone of cell walls of N. 

benthamania leaves were substituted by side chains. Linkages of galactose and 

arabinose residues were consistent with the presence of branched 5-linked 

arabinans and 4-linked galactans (Figure 2B).  

 The three main cell wall fractions, pectins, hemicelluloses and cellulose, 

isolated from AIR, were quantified for each plant group. The relative abundance of 

pectins, hemicellulose and cellulose components varied from 53 to 65%, from 12 to 

28% and from 18 to 26%, respectively. No statistical significant differences were 

observed between control (Ni) and water, p19 and H5 infiltrated plants collected at 

day 1, 4 and 7 (Figure 2C). 

 Together, monosaccharide composition and sugar linkages analyses 

indicated that no major overall change in the cell wall polysaccharide compositions 

are occurring over the 7-day incubation period in infiltrated plants expressing H5 

VLP, when compared to the control groups subjected to different stresses (Ni, Water 

and P19).  The plant cell wall fractions were further analysed to investigate whether 

subtle modifications were induced by the different plant treatments.   

Analysis of pectins and AGPs 

Monosaccharide composition of polysaccharides extracted in hot water was further 

investigated to determine if the different infiltration treatments could induce subtle 

structural modifications that could not be revealed from the analysis of overall AIR 

fractions. This hot-water soluble fraction mainly contained pectins and AGPs of the 
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cell wall. Figure 3A presents the monosaccharide composition obtained for the Ni 

plant group at day 1. Galacturonic acid (GalA) was the main monosaccharide 

present in this fraction, followed by galactose (Gal), arabinose (Ara) and rhamnose 

(Rha). This indicated that pectins were mainly constituted of RG-I and 

homogalacturonans. Other pectic polysaccharides, such as RG-II and 

xylogalacturonans, represented only tiny percent of total pectins extracted and were 

not further analyzed.  

 Quantification of AGP was carried out by rocket gel electrophoresis showed 

that AGPs represented only 1.5 to 3% (w/w) of the water soluble fractions (Figure 

3B). Furthermore, as shown in the figure 3B, the proportion of AGPs was found to 

increase by 2-fold for H5-infiltrated leaves when compared to Ni and water group. 

The contribution of the AGP to the monosaccharide composition was therefore 

revealed to be quite low. In consequence, monosaccharides detected in the hot-

water soluble fraction mainly arise from pectins.  

 Sugar composition of the pectins extracted in the hot-water soluble fractions 

showed slight variations between tobacco leaf groups and over time. To better 

understand and illustrate these observations, three different ratios were calculated 

from the relative amount of the main sugars components: the GalA/Rha ratio reflects 

the proportion between RG-I and HG as these two monosaccharides are unique 

monomers of these respective pectin backbones, whereas ramification sizes of RG-I 

can be represented by the ratio between Ara or Gal (monosaccharides present in the 

side chains) relative to Rha residues (constituent of the RG-I backbone). GalA/Rha 

ratio indicated that RG-I and HG were in similar amounts in pectin extracts of all the 

plant groups with ca 58% of RG-I and 42% of HG. In contrast, Gal/Rha and Ara/Rha 

ratios changed over time or among the plant groups. Indeed, the Gal/Rha increased 
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from day 1 to day 7 but this variation is similar in the different plant groups and likely 

revealed the increase of galactan ramifications of the RG-I during the growth of 

plants over the 7-day incubation period (Figure 3C, left panel). In contrast, the 

increases of Ara/Rha ratio were observed only in agro-infiltrated leaves (p19 and H5) 

and not in the Ni leaves nor in the leaves infiltrated with water (Figure 3C, right 

panel). Moreover, this increase was more important in leaves expressing 

hemagglutinin-based VLP (H5). It was then concluded that infiltration with 

Agrobacterium strains induces an increase of arabinosylation of cell wall RG-I 

constituent, increase even higher when the hemagglutinin-based VLP is expressed.  

 Pectins are usually methyl- and/or acetyl-esterified. Degrees of 

acetylesterification and methylesterification were therefore measured in the different 

pectin fractions. No modification of the level of acetylation was detected suggesting 

that acetylesterification of pectins was not affected by any of the treatment 

performed (data not shown). As shown in Figure 3D, overall degree of 

methylesterification of the pectin was ca 15% and remained constant over the 7-day 

incubation period in Ni, water and p19 groups. Interestingly, this level of 

methylesterification slightly decreased from 15% to 11% over the same incubation 

period for the H5 group. 

 

Analysis of hemicelluloses 

 Monosaccharide compositions of hemicellulose fractions from AIR extracted 

from the four plant groups over time were investigated. In addition, fragments of 

hemicelluloses released by digestion with specific endoglycanases were analysed by 

Matrix-Assisted Laser Desorption Ionization-Time of Flight-Mass Spectrometry 

(MALDI-TOF MS). This approach produces enzyme-specific fingerprints which allow 
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for a fast and informative monitoring of hemicellulose structural variations (Lerouxel 

et al., 2002). Sugar composition of hemicellulose indicated that the main 

monosaccharides found were glucose (Glc), xylose (Xyl) and arabinose (Ara), in a 

5:2:1 ratio (Figure 4A) as expected according to literature (York et al., 1996).  

Moreover, this ratio remained constant in the different groups studied as well as at all 

the time points. 

 Presence of xylans was investigated by digesting hemicellulose extracts with 

an endoxylanase, and analysing the resulting xylan fragments by MALDI-TOF MS. 

No fragment corresponding to the xylan fingerprint was detected indicating that these 

hemicelluloses are in trace amounts in N. benthamiana cell wall (data not shown). In 

contrast, as illustrated in Figure 4B, digestion of the hemicellulose fractions with an 

endoglucanase, that cleaves xyloglucan after non-substituted glucose residues, 

released three main fragments for which masses were assigned to XXG, XSG and 

XSGG/GXSG, in agreement with data reported in the literature (Chevalier et al., 

2010; Sims et al., 1996; York et al., 1996). These fragments were named according 

to the nomenclature suggested by Fry et al. (1993) where G refers to glucose units 

of the backbone, X and S refer to α-D-Xylp-(1→6) and to α-L-Araf-(1→2)-α-D-Xylp-

(1→6) xyloglucan side chains, respectively (Figure 4D). The same enzyme 

fingerprinting analyses were performed on hemicellulose fractions isolated from 

leaves of plants harvested at day 1, 4 and 7. No detectable modification of 

monosaccharide composition and MALDI-TOF MS profiles was observed across the 

different plant groups (Supplemental Table 2A).  

 To investigate the presence of alkali labile substitutions on xyloglucan, 

endoglucanase digestion was performed on AIR fractions. In these conditions, 

endoglucanase releases fragments from native xyloglucan carrying alkali labile 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

groups that are otherwise lost during hemicellulose extraction with 4 M KOH. MALDI-

TOF MS analysis of the digests showed xyloglucan fragments carrying one or two 

acetate groups (+ 42 Da) and larger oligoglucosyl backbones (Figure 4C, first panel, 

Supplemental Table 2B) (Chevalier et al., 2010; Sims et al., 1996). The presence of 

these fragments indicated that acetylation occurs on glucose residues that protects 

the backbone from exhaustive endoglucanase digestion. Based on these data, it was 

concluded that xyloglucan from N. benthamania cell wall leaves mainly consists of 

XXGGG repeating units that are substituted on xylose side chains by arabinose 

residues and acetylated on the backbone glucose residues (Figure 4D). The 

structure of major fragments was confirmed by analysis of fragmentation patterns 

obtained in tandem mass spectrometry (Supplemental Figure 1). Endoglucanase 

xyloglucan fingerprinting was carried out on AIR isolated from infiltrated leaves 

collected at day 1, 4 and 7 (Figure 4C). In the agro-infiltrated leaves (p19 and H5), 

minor ions were specifically and reproducibly detected in the m/z 1350-1450 range 

(Figure 4C). These ions were neither detected in control leaves, nor in leaves 

infiltrated with water, indicating that these additional xyloglucan fragments resulted 

from alkali labile modifications of xyloglucan in response to Agrobacterium infiltration. 

These ions, that are the unique modifications observed in xyloglucan fingerprints, did 

not significantly modify the xyloglucan overall structure and remain unidentified 

(Supplemental Tables 3B and 2C). Nevertheless, a significant increase of 

monolignols was observed in the xyloglucan-enriched fraction of H5 group at day 7 

compared to Ni group at the same day (data not shown).  

Callose and lignin deposition 
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Callose deposition was investigated by staining the tissue with aniline blue and 

observing the presence of callose under confocal microscope. As expected, this 

revealed that callose is synthesized in response to the agroinfiltration stress (not 

shown). To quantify the extent of callose deposition in infiltrated plants, 3-linked Glc 

was measured by GC-MS in leaves collected from day 7 plants. Permethylation of 

polysaccharides of AIR fractions allows the discrimination between 4-linked Glc 

derived from cellulose and 3-linked Glc found in callose only. Figure 5 shows the gas 

chromatography profiles of the monosubstituted hexoses obtained from day 7 leaves 

of Ni and water, or p19 or H5 infiltrated leaves. The results clearly demonstrated the 

presence of 3-linked Glc, and therefore reflect that callose is specifically synthesised 

in agro-infiltrated leaves (p19 and H5). Quantification of 3-linked Glc indicated that 

callose represented about 3% (w/w) of the cell wall polysaccharides in infected 

tissues of H5 VLP-expressing plants. 

Lignin deposition was monitored by phloroglucinol staining of leaves. Infiltrations 

were carried out with a syringe on one half of the leaf; the other half remained 

untreated for comparison (Figure 6). Lignin deposition was detected as brown spots 

in agro-infiltrated leaves (p19 and H5) from day 4. At day 7, a more contrasted 

staining of all the infected tissues was observed relative to their respective controls 

non treated half leaf. In contrast, leaves infiltrated with water were comparable to 

control leaves demonstrating the specificity of the signal obtained. 
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Discussion 

Plant-based biotechnology allows for the large-scale production of Influenza virus-

like particles in N. benthamiana leaves through the Agrobacterium-mediated 

transient transformation and the expression of hemagglutinin surface protein. To 

investigate to what extent abiotic stress due to vacuum infiltration and/or biotic stress 

due to agro-infiltration induce cell wall modifications, chemical composition of cell 

walls from N. benthamania leaves was analysed, over a 7-day post infiltration period, 

in plants infiltrated under vacuum with different inoculum solutions (water, p19, H5) 

and results were compared to those of non-infiltrated plants. This study 

demonstrated that stresses induced by the infiltration process brought to large-scale 

for transient expression of considerable amount of biomass were not causing 

significant cell wall modification at the macromolecular level. All plant groups 

analysed showed a predominant portion of pectins in their cell wall and cellulosic 

compounds split equally between arabinoxyloglucans as the main hemicellulose, and 

cellulose, as it was expected for the N. benthamiana plants (Nguema-Ona et al., 

2012, York et al., 1996). Observations of significant modifications were only possible 

after fractionation of the different polymers constituting the cell wall.  

Looking at structural components of pectins, two main modifications were observed. 

The first one was a decrease in the methylesterification rate of the 

homogalacturonans. This process is already described in the literature and relies on 

the fact that during plant-pathogen interactions, homogalacturonan oligosaccharides 

are involved in the elicitation of the plant defense responses. Through the action of 

pectin-degrading enzymes, weakly methylesterified oligogalacturonides resulting 

from the degradation of homogalacturonans that are recognized by Wall-Associated 

Kinases receptors and induce defense gene expression (Ferrari et al., 2013; Osorio 
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et al., 2008). Moreover, de-esterification of galacturonic acid residues by pectin 

methylesterases is known to promote cell wall rigidification resulting in the cross 

linking of the acidic pectins with calcium ions, affecting the porosity of the primary 

cell wall and thus forming a stronger barrier to cross for pathogens (Peaucelle et al., 

2012). The second modification observed on this polymer was on the ramifications of 

the rhamnogalacturonan. Analysis of the different ratio Ara/Rha and Gal/Rha 

exposed two different pectin responses. Galactosylation was shown to increase in 

relation with the growth of the plant as all the groups showed a significant increase of 

their proportion after the 4 and 7-days incubation time. Arabinosylation level of the 

rhamnogalacturonan side chains was increased in Agrobacterium-infiltrated leaves 

(P19 and H5 plants) by comparison to control plants. Such a cell wall modification in 

response to an Agrobacterium infection was not reported before. Elongation of RG-I 

arabinan chains during infection could reinforce the primary cell wall in response to 

infection as these side chains are known to interact with cellulose or xyloglucan 

(Wang et al., 2012; Zykwinska et al., 2005). Moreover, synthesis of arabinans may 

impact the flexibility of cell wall. Indeed, it was previously reported that, in an abiotic 

stress such as dehydration, arabinans are involved in the plant survival modulating 

the flexibility of the cell wall (Moore et al., 2008, 2013).  

The level of AGP was also increased at day 7 in agro-infiltrated leaves by 

comparison to non-infiltrated plants. Although the involvement of AGPs in plant 

pathogen interaction has already been mentioned in the literature (Nguema-Ona et 

al., 2013; Seifert and Roberts, 2007), their precise role in the metabolic pathway of 

the plant defense against pathogens remains unclear. It was demonstrated that they 

can link pectins and hemicelluloses together and therefore may contribute to the cell 

wall rigidification, thus limiting the spread of the pathogens in the leaf tissue (Popper 
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and Fry, 2007; Tan et al., 2013). Another demonstration performed by Cannesan et 

al. in 2012 also established the involvement of the AGPs in plant defense reaction, 

highlighting the role of these molecules in the control of early infection of pea roots. 

In the industrial context of plant infection by Agrobacterium, the role of AGPs in the 

defense mechanisms remain unknown but our result exposed a potential role of 

these molecules in the leaf tissue as their population doubled over the 7-day 

infection. 

Hemicelluloses in N. benthamiana cell wall are mainly composed of 

arabinoxyloglucans consisting of XXGGG repeating units that are substituted on 

xylose side chains by arabinose residues and acetylated on glucose residues of the 

backbone, in agreement with data reported for hemicelluloses from Solanaceae 

plants (Vincken et al., 1997; York et al., 1996). Enzymatic hydrolysis of AIR with 

endo-β-1.4-glucanase and MALDI-MS enzyme fingerprinting enabled the detection 

of numerous xyloglucan fragments carrying acetate groups. Comparison of MS 

profiles between the different plants groups did not show significant differences in 

the content of major fragments. Nevertheless, Agrobacterium infiltration induced the 

accumulation of three low abundant xyloglucan fragments that were not detected in 

control or water-infiltrated leaves and which structures remain unidentified. Since 

these fragments were no more observed after alkali treatments and considering that 

higher amounts of monolignols were detected in xyloglucan fractions, the hypothesis 

is that these stress-induced fragments could arise from the esterification of 

xyloglucan with monolignols. Such esterification has been reported for a dimer Xyl-α-

1-6-Glc of arabinoxyloglucans by Ishii et al. in 1990. More experiments will have to 

be carried out to unravel the structures of these minor xyloglucan motifs and 

determine their function in plant defense against pathogens. 
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Callose and lignins polymers are known to be deposited in the cell wall during 

infections. These modifications are known to reinforce the walls of cells surrounding 

the infection site to limit the spread of the pathogen (Zhao et al., 2014). Callose 

accounted for up to 3% (w/w) of the cell wall polysaccharides in p19 and H5-

infiltrated leaf groups. In addition, phloroglucinol staining revealed lignin deposition 

between the day 4 and the day 7 and only in leaves submitted to Agrobacterium 

infiltration treatments. 

 

Comparison of cell walls of leaves collected from p19 and H5 plants indicated 

that expression of H5-VLP vaccines induced more important cell wall modification 

than those observed post-infiltration with Agrobacterium containing the inhibitor of 

gene silencing p19 sequence alone. This is mainly illustrated by data with regards to 

AGPs, degree of methylesterification and arabinan contents. These observations 

suggested that in addition to defense reactions related to the infection with 

Agrobacterium strains, accumulation of VLPs in leaves may induce an additional 

modification either due to a physical constraint related to HA accumulation or 

budding of VLP between the plasma membrane and the cell wall.  

 

Altogether these data allow a better understanding of the modifications to 

plant cell wall composition in infiltrated tobacco leaves in the context of the 

production of influenza VLPs. The identified modifications are known to rigidify the 

cell wall and to alter its degradation by pathogens, it is therefore expected that these 

modifications have an impact on the mechanical and enzymatic extraction 

processes. As a further step towards an optimal extraction process, we are currently 

evaluating the impact of the modifications to cell wall composition on the efficacy of 
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the influenza VLP extraction process. The acquired knowledge of the cell wall 

structure and its defense-induced reinforcement will greatly help in designing optimal 

extraction processes for influenza VLPs and other biopharmaceutical proteins. 

 

Experimental procedures 

Materials 

Eight week-old N. benthamiana plants were infiltrated under vacuum either with 

water or with Agrobacterium tumefaciens suspension containing a plasmid encoding 

for the silencing p19 alone or in combination to a gene sequence encoding the 

Influenza H5 hemagglutinin. At day 1, 4 and 7 following Agrobacterium infiltration, 12 

plants were taken out of the green house, 3 corresponding to non-infiltrated plants as 

negative control group, 3 plants infiltrated with water and named water, 3 plants 

infiltrated with Agrobacterium containing the p19 gene sequence named “p19” and 

finally 3 plants infiltrated with Agrobacterium containing both p19 and H5 

hemagglutinin gene sequences named “H5” (Figure 1A).  

Preparation of Alcohol Insoluble Residues  

Leaves were harvested and then crushed in 70% ethanol. In order to remove 

chlorophyll and pigments, successive incubations were performed in 70% ethanol at 

70°C for 15 min and centrifugation at 4 500 g for 5 min at 4°C. Once pigments were 

completely removed from the samples, the insoluble materials were washed in 

methanol: chloroform (1: 1) and then in acetone. These successive washing steps 

led to isolation of insoluble samples named Alcohol Insoluble Residues (AIR) (Figure 

1B). 
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Sequential extraction of cell wall polysaccharides 

 Pectins and AGPs were extracted from AIR fraction by incubation in water at 90°C 

and then in 0.5% oxalate ammonium at 90°C. Soluble fractions were separated from 

the insoluble materials by centrifugation at 5000 g, dialyzed against water for oxalate 

ammonium part and then lyophilized. Hemicelluloses were extracted from the 

previous insoluble residue with 4 M potassium hydroxide containing 0.1% sodium 

borohydride. Soluble fractions containing hemicelluloses were neutralized and 

dialyzed against water. Insoluble residues after 4 M KOH treatments correspond to 

insoluble cellulose. 

 

Monosaccharide composition 

Two mg of polysaccharide fractions were hydrolyzed with 2M trifluoroacetic acid 

(TFA) for 2 h at 110°C. After freeze-dring, samples were then converted in methyl 

glycosides by heating in 1 M methanol-HCl (Supelco) for 16 h at 80 °C. Samples 

were dried under a stream of nitrogen, washed twice with methanol and then treated 

with hexamethyldisilazane (HMDS) : trimethylchlorosilane (TMCS) : pyridine solution 

(3 : 1 : 9, Supelco), for 20 min at 80°C. The resulting trimethylsilyl methyl glycosides 

were dried, resuspended in 1ml of cyclohexane and injected in the 3800 GC system 

equipped of a CP-Sil5-CB capillary column (Agilent Technologies). Elution was 

performed with the following temperature gradient: 120°C to 160°C at a rate of 

10°C/min, 160°C to 220°C at a rate of 1.5°C/min, 220°C to 280°C at a rate of 

20°C/min. Quantification of each monosaccharides was carried out using standards 

and response factors determined for each monosaccharide. 
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Sugar linkage analysis 

Five mg of AIR were permethylated with iodomethane in a suspension of NaOH in 

dry DMSO and the resulting partially methylated alditol acetate derivatives were 

prepared according to protocols described by the glycotechnology core resource of 

SanDiego (http://glycotech.ucsd.edu/protocols/07_Comp_Analysis_by_Alditol_Rev2.pdf). 

Monosaccharide derivatives were injected in a gas chromatograph (GC) (Hewlett-

Packard 6890 series) coupled to an electron impact Autospec mass spectrometer 

(EI-MS) (Micromass, Manchester, UK) equipped with an Opus 3.1 data system. 

Separations were obtained using a Zebron Z5-MSi (30m, 0.25mm id, 0.25µm film 

thickness, Phenomenex) capillary column. Helium was the carrier gas and the flow-

rate was 0.8mL/min. The temperature programming started at 100°C for 1 min, 

ramped to 160°C at 10°C/min, then ramped to 220°C at 2°C/min and finally ramped 

to 270°C at 15°C/min (maintained at 270°C for 1 min). The temperatures of the 

injector, the interface and the lines were 250°C. Injections of 0.5 µL were performed 

in splitless mode. EI mass spectra were recorded using electron energy of 70eV, an 

acceleration voltage of 8kV and a resolving power of 1000. The trap current of 200 

µA and the magnet scan rate was 1s/decade over a m/z range 600-3800. The 

temperature of ion source was 250°C. Sugar linkage analysis was deduced from the 

EI-MS fragmentation patterns of partially methylated alditol acetate derivatives 

according to http://www.ccrc.uga.edu/databases/PMAA. 

 

Determination of degree of methylesterification of pectins 

Pectin fractions were saponified by 0.1M sodium hydroxide at 4°C during 2 h. 

Solutions were then neutralized by addition of 0.1M HCl and then used for Klavons 

titration. Five hundred µl of samples were diluted to 1 ml with 0.1M potassium 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

phosphate pH 7.5. One ml of alcohol oxidase 1U/ml was then added and the solution 

was incubated for 15 min at 25°C. Two ml of 0.02M 2.4-pentandione in 0.05M acetic 

acid and 0.2M ammonium acetate were added and the mixture was heated at 60°C 

for 15 min. Absorbance at 412nm was then recorded and converted into µg/ml of 

methanol with respect to a calibration curve. 

 

Determination of degree of acetylesterification of pectins 

Pectin acetylation was determined using a Megazyme acetic acid assay kit (E-

ACETRM) after saponification of pectins and monitoring of released acetic acid 

according to the supplier instructions. 

 

Xyloglucan fingerprinting 

Two mg of AIR or hemicellulose fractions were digested with 4U of endo-beta-

glucanase (Megazyme, Ireland), in sodium acetate buffer 0.01M pH 5 at 37°C 

overnight. After addition of 3 volumes of cold 100% ethanol, the soluble fraction 

containing xyloglucan fragments was collected by centrifugation at 5.000 g. 

Supernatant was dried and then dissolved in 100 µL of 0.1% TFA. One µL was 

spotted on a MALDI-TOF plate with DHB as matrix. Spectra were recorded on a 

Voyager DE-Pro from AB Sciex in positive reflector mode and accumulation of 3000 

laser shots.  

Xylan fingerprinting 

Search for xylan fragments was done according to the protocol carried out for 

xyloglucan fingerprinting using ten µl of Xylanase M6 (Megazyme, Ireland) as 

endoglycanase. 
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AGP quantification 

Soluble fraction resuspended at 9mg/ml were spotted on a 1% agarose gel 

containing Yariv reagent at 50µg/ml. Gel was then placed under 200V electric field 

overnight. Quantification was carried out using a calibration curve obtained with 

arabic gum displaced inside the gel. The area of trapped AGPs was calculated by 

ImageJ software. 

 

Determination of lignin deposition 

Lignin deposition was monitored by staining N. benthamiana leaves with 

phloroglucinol. Leaves were washed with 100% ethanol during 3 days in order to 

remove pigments. Then, leaves were incubated with 2.5% phloroglucinol in 70% 

ethanol overnight at room temperature. Revelation of the phloroglucinol staining was 

then performed by incubation in 37% hydrochloric acid during 5 min. 

 

Quantification of phenolic compounds 

In the xyloglucan-enriched fraction obtained after endoglucanase digestion 

precipitated with absolute ethanol, a silylation was performed through a treatment 

with BSTFA/TMCS (Supelco, Sigma Aldrich) in dry pyridine solvent for 30 minutes at 

80°C. Samples were then dried and resuspended in cyclohexane before being 

injected in the same amount in gas chromatograph (GC) (Hewlett-Packard 6890 

series) coupled to an electron impact Autospec mass spectrometer (EI-MS) 

(Micromass, Manchester, UK) equipped with an Opus 3.1 data system. Separations 

were obtained using a Zebron Z5-MSi (30m, 0.25mm id, 0.25µm film thickness, 

Phenomenex) capillary column. Helium was the carrier gas and the flow-rate was 
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0.8mL/min. The temperature programming started at 100°C for 1 min, ramped to 

160°C at 10°C/min, then ramped to 220°C at 2°C/min and finally ramped to 270°C at 

15°C/min (maintained at 270°C for 1 min). The temperatures of the injector, the 

interface and the lines were 250°C. Injections of 0.5 µL were performed in splitless 

mode. EI mass spectra were recorded using electron energy of 70eV, an 

acceleration voltage of 8kV and a resolving power of 1000. The trap current of 200 

µA and the magnet scan rate was 1s/decade over a m/z range 600-3800. The 

temperature of ion source was 250°C. Identification of phenolic compound was 

based on the injection of standards of each of them. Quantification was then 

performed thanks to a ratio between area under curve of the peaks of interest and 

peak of xylose. 

 

Statistical analysis 

Statistical analysis were performed using the R software. The data were first 

normalized according to the experimental internal standard method, and then 

statistical tests were run on the basis of three biological replicates and three 

technical replicates. To study the evolution of the cell wall between the 4 different 

conditions and the 3 different days, an ANOVA were performed. Let Ycds be the 

analyzed signal for the component s, condition c and the day d. Therefore, the model 

is: Ycds = µ + αc + βd + γcd + εcds, where αc is the condition factor, βd is the day factor, 

γcd is the condition and day interaction, and εcds are the gaussian residues. The effect 

between the different plant groups was considered significant when a p-value lower 

than 0.05 was obtained. When p-value were under 0.05, Bonferroni post-tests were 

further performed to specify if the difference was coming from the condition factor, 

the day factor or from their synergy. 
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Figure legends 

Figure 1: 

Experimental design of plants submitted to different biotic and abiotic treatments (A) 

and preparation of the cell wall constituents (B). Lightening icons represent the 

different stresses applied to each groups: abiotic stress from infiltration is in blue, 

biotic stress of bacterial infection is represented in green, and biotic stress arising 

from VLP production and accumulation is in red. 

Figure 2: 

Analysis of AIR material. Sugar composition (A) and linkages (B) analysis of main 

neutral monosaccharides of AIR extracted from control leaves at day 1. *co-eluting 

partially O-methylated samples. Relative percentages of cell wall polysaccharide 

fractions from all conditions at Day 1, 4 and 7 (C). Ara: arabinose, Rha: rhamnose, 

Fuc: fucose, Xyl: xylose, GlcA: glucuronic acid, Man: mannose, GalA: galacturonic 

acid, Gal: galactose, Glc: glucose, t-: terminal. 

Figure 3:  

Analysis of water soluble material. Monosaccharide composition of water soluble 

fraction of control plant at day 1 (A). Quantification of AGPs present in the water 

soluble fraction at day 7 (B). *: p-value below 0.05, **: p-value below 0.01 and ***: p-
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value below 0.001. Gal/Rha (left panel) and Ara/Rha ratio (right panel). Day 1 in 

black, day 4 in grey and day 7 in white. Symbols below charts indicate statistical 

analysis between the different conditions. First symbol corresponds to analysis 

performed on day 1, second one on day 4 and last one on day 7 (C). 0: no 

difference, *: p-value below 0.05, **: p-value below 0.01 and ***: p-value below 

0.001. Degrees of methylesterification of pectins (D). 

Figure 4:  

Analysis of hemicellulose material. Sugar composition determined by GC-FID (A) 

and xyloglucan fingerprint of the hemicellulose fraction isolated from non-infiltrated 

leaves by MALDI-TOF MS (B). Xyloglucan fingerprints of AIR isolated from Ni, water, 

p19 et H5 (C). Structure of XSGGG fragment (D). Nomenclature of xyloglucan 

fragments according to Fry et al. (1993). G: Glc residue carrying an acetate group. 

Figure 5:  

Callose detection. Gas chromatograms of the monosubstituted hexose regions 

(18.5-21 min) obtained after permethylation of AIR isolated from leaves collected at 

day 7 from control plants (Ni) and plants infiltrated with water or Agrobacterium 

strains (p19 and H5). 3-linked Glc results from callose deposition. 4-linked Glc 

corresponds to cellulose and 3-linked and 4-linked Gal arises from galactans. 

Figure 6:  

Lignin detection at day 1, 4 and 7 by staining with phloroglucinol. For each plant 

group, the leaves right side was infiltrated, whereas the left side was not.  

Supplemental Figure 1: 

MALDI-TOF MS/MS of m/z ion at 1331.7 assigned to XSGGG and its pattern of 

fragmentation. 
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Supplemental Table 1: 

Monosaccharide compositions of AIR extracted from leaves collected at day 1, 4 and 

7. nd: not detected.  

Supplemental Table 2A: 

Relative proportion of xyloglucan structures found by MALDI-TOF MS analysis of 

hemicellulose fraction treated by endoglucanase. nd: not detected, H: hexose, P: 

pentose. 

Supplemental Table 2B:  

Structure of xyloglucan fragments detected after endoglucanase treatment 

performed on AIR. H: hexose, P: pentose; A: Acetyl group; ?: Unknown structure; *: 

Structure confirmed by MS-MS analysis. Nomenclature for proposed structures: G: 

non substituted Glc unit, G: acetylated Glc, X: Glc substituted by α-D-Xylp-(1→6) 

residue, S: Glc substituted by α-L-Araf-(1→2)-α-D-Xylp-(1→6) side chain and T: Glc 

substituted by α-L-Araf-(1→3)-α-L-Araf-(1→2)-α-D-Xylp-(1→6) side chain. 

Supplemental Table 2C:  

Relative proportion of xyloglucan fragments detected after endoglucanase treatment 

performed on AIR. nd: not detected. 
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