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        Abstract—we present an optical-haptic tracking system 
suitable for augmented and virtual reality applications. The 
paper addresses tow issues of such system. The first one concerns 
the calibration method that can be used to calibrate the force 
feedback device: SPIDAR.  The second contribution is about the 
development of a hybrid tracking system. The proposed 
hybridization aims to provide both accurate and interrupted 
position data. 
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I. INTRODUCTION 
. The SPIDAR [1], for SPace Interaction Device for 

Augmented Reality, is a kind of motor string-based haptic 
display system. The system allows the user to directly 
manipulate virtual object in the virtual environment. The 
proposed system is called SPIDAR-8, which has 8 couples of 
DC motor/rotary encoder distributed on each vertex of a cubic 
structure. Position of the user can be measured by the length of 
the strings. The length of a string is known by reading the 
values from the rotary encoder. Nevertheless, the SPIDAR 
tracking is highly distorted and inaccurate.  
The suitable device used in virtual reality and augmented 
reality systems, as well as ours, is the optical tracking system. 
However, it has a major drawback: tracking-loss.  The 
combination of the SPIDAR and the Optical tracking system 
allows to overcome drawbacks of both tracking technologies 
and to make 3D interaction to be more vivid and continuous.  
In this research paper in due hand, we underline first previous 
works on tracking system. Then, we describe the method used 
for registration of the tracking system to report data position.  
Thereafter, we develop a calibration and registration algorithm 
for providing special accuracy of both tracking system 
component. Lastly, we evaluate the performances of the 
proposed hybridization method. 

II. RELATED WORKS 
The following overview of related activities focuses mainly on 
the calibration methods for position sensor systems.   
Further references are discussed with regard to similar to our 
approach. Early works have focused on electromagnetically 

based tracking systems that are sensitive to the ambient 
electromagnetic environment.  
Bryson [2], in a technical report, has discussed methods for the 
measurement and characterization of the static distortion in 3D 
tracking system. The measurement and calibration methods 
were applied to the Polhemus electromagnetic tracking system 
Kindratenko and Sherman [3] have performed a calibration 
method based on neural network for electromagnetic tracking 
systems. They obtained quite good results compared to other 
calibration methods like linear interpolation.  
Barratt et al [4] have proposed an electromagnetic 3D 
ultrasound system for vascular imaging application.  They use 
a robust registration method developed by Fitzgibbon [5].  
Livingston [6] used a mapping gird to calibrate the 
electromagnetic tracking systems. He restricted the workspace 
to improve its accuracy. He succeeded to reduce error position 
to 79%.  Birkfellner et al [7] developed a hybrid tracking 
system based on both electromagnetic and optical used in 
surgery. The purpose of such system is to ensure the tracking 
continuity as well as to overcome the limits of both systems. 

III. SPIDAR CHARACTERIZATION   

1. The measurement process 
For a properly SPIDAR characterization, the three 

dimensional position must not depend on technical constraints. 
Therefore, we use a virtual grid composed of a huge number of 
small cubes, implying that collected SPIDAR data covers the 
whole SPIDAR workspace.  

 

 
Figure 1. A virtual gird for SPIDAR characterization [8] 
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To perform the suggested characterization, two infrared 
cameras need to be rigidly mounted on the platform used, for 
instance the big SPIDAR. We call this optical tracking system 
"ART Tracking".  

Data subsequently needs to be collected while moving the 
effector in all possible orientations. Whenever the effector 
collides with a cube, we record the positions given by 
SPIDAR, the positions given by ART tracking system and also 
the encoder values. The above measurements were performed 
in a workspace limited to 1m3 to obtain good characterization. 

2. Three-dimensional structure of  the SPIDAR distortion 
Distortions can be viewed in several ways. The clearest 

way of representing of this distortion is with a position error, 
defined as the returned position by the tracker minus the actual 
position. The three dimensional graphic below (Fig 3) indicates 
this distortion. The distribution of absolute error seems to be 
onion skin distribution in the sense that error is distributed over 
many spherical planes. The magnitude of absolute error grows 
as the effector is going far from the center of the measurement 
volume. In fact, the magnitude of error is longer than 30mm in 
outside planes. 
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Fig. 2.  Absolute Error distribution in the SPIDAR workspace (Dark green is 
the best). 

 
The characterization of SPIDAR leads us to different 

problems. On one hand, SPIDAR has several defects that 
distort position measurements. On the other hand, SPIDAR 
interface is a black box. So, we have no idea on the 
mathematical model used to compute effector position.  

 

IV. NEURAL NETWORK CALIBRATION METHOD 
This paper presents a regression-based approach for solving 

the SPIDAR’s calibration problem. In statistics, regression is 
composed of techniques for modeling the relationship between 
a response variable and one or more explanatory variables [8]. 
The goal is to find a useful function ( )f x  for the regression 
function ( )f x  that estimates effector position in terms of value 
of observed responses. The following discussion summarizes 
the main outlines of neural network regression method. 

1. Neural Network  
A neural network is a two-stage regression or classification 

model, typically represented by a network diagram as in figure 
4. For regression, typically K = 1 and there is only one output 
unit Y1 at the top [9]. 

 
 Fig.3. A Schematic of a single hidden layer, feed-forward neural network [8] 

 
   The neural network model has unknown parameters, often 
called weights, and we seek values for them that make the 
model fit the training data well. We refer the complete set of 
weights by , which consists of: 
 0 , ; 1, 2,..,m m m M     ( 1)M p  weights                   

 0 , ; 1,2,..,k k k K   ( 1)K M  weights  

For regression, we use sum-of-squared errors as our measure of 

fit (error function): 
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The generic approach to minimize ( )R   is by gradient 
descent, called back propagation. In the back propagation 
method, each hidden unit passes and receives information only 
to and from units that share a connection. However, back- 
propagation can be very slow, and for that reason it is usually 
not the method of choice [9]. 

The Levenberg-Marquardt optimization approach [10] is a 
nonlinear optimization method using descent gradient. This 
method improves the classical gradient descent algorithm. 
This optimization reduces significantly the algorithm 
convergence time (equation 5). 
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V.     HYPRID  TRACKING SYSTEM  

  A flow diagram of the hybrid tracking system can be seen in 
figure 4.  

 
Figure 4.  Flow chart of the hybrid tracking system 

Once a request is being sent from the virtual reality 
application, the system checks whether it can provide data 
from the ART tracking.  If this optical component loses track 
then the hybrid system requests position from the haptic 
component.  In this case, the system checks the validity of data 
and calibrates the SPIDAR using the neural network. 
Switching between the two components depends on the optical 
tracking activity. 

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS 
In this section, we present the results of the neural network 

calibration method and we evaluate the performances of the 
final system. . 

1. Calibration using Neural Network 
A. Neural Network implementation 

To implement a neural network we need to follow five 
step. First, we determine the number of input and output 
layers. In our work, we use one input layer which represents 
the position given by SPIDAR.  Secondly, we scale all inputs 
to have mean zero and standard deviation one. This ensures all 
inputs are treated equally in the regularization process. 
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Where 
.spi spi J   et .spispi

J  

.art art J   et .artart
J  

spi : Matrix of means of components of the matrix of 
positions given by the SPIDAR 

art : Matrix of means of components of the matrix of 
positions given by ART system. 

spiP : Positions given by the SPIDAR 

artP : Positions returned by the ART system 

J: Identity matrix 

spiN : standardized positions of the SPIDAR  

artN : standardized positions of the ART system. 
    Thirdly, we need to estimate the number of hidden layers 
and units. The choice is guided by background knowledge and 
experimentation. With one hidden layer, network is able, with 
a sufficient number of units to approximate any continuous 
function. To avoid computation complexity, we will use one 
hidden layer. 

The optimal number of units in the hidden layer was 
estimated empirically by testing many networks with different 
number of units. The absolute error is plotted as a function of 
the number of units in the hidden layer (Fig 6). The plot 
allows identifying the most efficient network and thus the 
number of units. Indeed, the number of units is equal to five. 

 

 
Fig.  5. Absolute error as a function of the number of hidden units 

 
Fourthly, we use the Bipolar Sigmoid activation function to 

move from the input layer to the hidden layer. The second 
activation function is chosen to be linear. 

Lastly, the learning problem that we consider in this paper 
is categorized as a supervised learning approach. Hence, we 
use a Levenberg-Marquardt algorithm, measurements of mean 
squared error illustrate the learning behavior.  

B. Neural Network performances 

We see from the graphs that the calibration via neural 
network was successful to reduce the magnitude of the 
absolute error from an almost the whole workspace (less than 
30 mm). We note that the positions returned by the neural 
model are very similar to those given by ART tracking system. 

The magnitude of absolute error is plotted as a function of 
distance to the center of SPIDAR. Obviously, error is less 
sensitive to distance. The errors at distances higher than 400 
mm were successfully corrected by calibration. This plot 
shows the efficacy of neural network. So we can easily note 
that the distribution of absolute position error is much more 
uniform after calibration. Absolutely, neural network has 
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strongly reduced position error, thus increased the former 
accuracy. 
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Fig. 6.  Absolute Error distribution in the SPIDAR workspace after neural 

network calibration 
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Fig. 7.  Absolute position error as a function of distance to the SPIDAR center 

(before and after neural network based calibration) 
 
     To have better idea of the extent position error, we draw the 
corresponding histograms. 
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Fig. 8.  Histogram of absolute position errors before and after neural network 
based calibration  

 
    The first histogram is spread and indicates bad position 
accuracy. However, the second is left shifted underlying the 
good accuracy of neural network results.  

Neural network presents reliable standard derivation and 
mean error values as shown in the table 1. In fact, before 

calibration, the mean absolute error reaches 72.8593 mm and 
the standard deviation is 47.0641 mm, which means that the 
position given by the SPIDAR suffers from a bad accuracy 
and an important statistical dispersion. After calibration using 
neural network, the mean absolute error is below 8.1258 mm 
and the standard deviation is equal to 6.2656 mm, meaning a 
higher accuracy and a lower statistical dispersion. 

 
 
TABLE1. Standard deviation and the mean values  

                            before and after calibration 

Absolute Error 
 

Raw 
 

 
NN 

Mean (mm) 72.8593 8.1258 
Standard derivation (mm) 47.0641 6.2656 

 
   After testing neural network with training data, we need to 
demonstrate its fidelity by measuring its response to 
measurements that it has never encountered. For this, we have 
created two databases to evaluate the performance of our 
network in generalization.  
    Histograms of position errors and the following tables 2 and 
3 show that the neural network keeps good performance with 
data generalization for both databases mentioned above 
(database 1 and 2). The standard deviation and the mean 
values generated by the neural network are very good. 
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Fig. 9.  Histogram of absolute position errors in generalization using the 

first database (database 1) 
 

   
  TABLE2. Standard deviation and the mean values  
                      in generalization using database2 

Absolute Error 
 

Raw 
 

 
NN 

Mean (mm) 13.2295 5.1523 
Standard derivation (mm) 8.4124 5.1177 
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Fig. 10.  Histogram of absolute position errors in generalization using the 
first database (database 2) 

     
  
 
TABLE3. Standard deviation and the mean values  
                   in generalization using database2 

Absolute Error 
 

Raw 
 

 
NN 

Mean (mm) 15.7935 6.5667 
Standard derivation (mm) 11.6375 6.4320 

 

2. Test case of Hyprid tracking system 
 

The haptic tracking system or SPIDAR aims to reinforce 
the optical tracking system.  In fact, in case where the optical 
component loses tracking due to obstruction of the optical path 
or other, the system employed data provided by the SPIDAR 
after calibration. As shown in figure 11, this case is 
represented between frames 450 to 480 and 540 to 580. 

 
We note also that in the case where the calibration was not 

very effective, which can be seen in the frame 408, the optical 
tracking has priority. 

 

 
 

VII. CONCLUSIONS AND FURTHER WORK 
This paper proposed a method of characterization of the 

SPIDAR output using a virtual calibration gird. It presented 
also a regression method for solving the SPIDAR calibration 
problem and their evaluation.  We have proposed also an 

optical-haptic tracking system that enables 3D interaction to 
be more interactive as well as more accurate and continuous. 

In future work, we plan to extend the volume of workspace 
to improve learning by increasing the number of 
measurements and to test other different methods used for 
calibration.  We intend also to take the advantages of 
emerging technologies like depth camera for a lower cost 
tracking solution in virtual and augmented reality applications.  
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