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State estimation and fault detection for 2-D discrete-time systems

Dalil Ichalal 1, Benoı̂t Marx2 and José Ragot2

Abstract— This paper presents an observer based sensor fault
diagnosis for 2-D systems. Firstly, a state observer is designed by
taking into account the measurements in a fixed length sliding
window. Secondly, structured residual signals are generated by
a bench of finite memory state observers which allow to detect
and isolate sensor faults affecting the system. Finally, simulation
results are given to illustrate the proposed approach.

I. INTRODUCTION

Since thirty years, a growing interest for systems whose
state depends on several variables can be noted. Even if
most of the published works concern two dimensional (2-D)
systems, some concepts can also be addressed for general
multidimensional systems [2] [3]. In image processing, 2-
D filters are well known and intensively applied. The main
fields of automatic control have also been revisited through
2-D systems: modeling, stability analysis, control and state
estimation. More recently, several works have been proposed
in the framework of fault diagnosis, for sensor fault detection
and unknown input estimation.

Among the precursor works, [10] [11] have introduced
the first formulation of double-indexed systems resulting
in particular in the 2-D digital filters [1]. This allowed to
develop the concept of 2-D transfer function [23] [8] [22],
to propose its calculation from a state equation [30] [15] [14]
and to analyze its observability and stability properties [17]
[21] [19]. Many publications were devoted to the control
of 2-D systems in various fields: iterative learning control
[29], quadratic control [24], H∞ control [20], trajectory
tracking [31]. State estimation has also been addressed: the
Luenberger-like observer design has been extended to 2-D
systems in [6] [13] [32]. Then, these 2-D observers have
been used for state and unknown input estimation and fault
diagnosis [5] [4] [7] . Amon the 2-D model literature, a
lot of works concern the methodological aspects, however
only a few of them are dedicated to application purposes.
Nevertheless, let us cite [9] and [12] in the metallurgical
field, [16] for an application related to the vehicle traffic and
[28] in image processing.

In what follows, our attention is focused on the fault
diagnosis by extending the use of the parity space developed
in the context of 1-D systems [27] to the case of 2-D systems.
The faults to be detected and isolated affect the sensors, but
other types of faults could be taken into account, in particular
those affecting the actuators of the system.
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II. 2-D SYSTEM MODELING

In the following the Fornasini-Marchesini [11] model is
used. Its structure is given by:{

x(i+1, j+1) = A1x(i+1, j) + A2x(i, j+1) + Bu(i, j)

y(i, j) = Cx(i, j)
(1)

where x(i, j) ∈ Rnx , u(i, j) ∈ Rnu and y(i, j) ∈ Rny

represent respectively the state, input and output vectors. A1,
A2, B, C, D are real matrices with appropriate dimensions.
The system is also expressed in a conventional form by
(A1, A2, B,C) and its transfer function is defined by:

W (z1, z2) = C(I −A1z1 −A2z2)−1Bz1z2 (2)

The expression (2) can be used for stability analysis [16] and,
more generally, to highlight its structural properties [18]. The
figure 1 depicts the simulation scheme of the system (1). This
simulation requires the knowledge of the initial boundary
conditions on the state in the directions i and j and the
sequence of calculation order.

x(i+ 1, j + 1)
x(i, j + 1)

i

j

x(i+ 1, j)

Fig. 1. State calculus scheme

Remark 1: In many situations, especially when one of the
directions, j for instance, indexes a spatial direction, the
evolution of the system is confined in a domain of the type
DN = (i, j) : i ≥ 0, 0 ≤ j ≤ N [31].
The following notations are used:

A(i,j) = A1A
(i−1,j) + A2A

(i,j−1)

A(0,0) = I
A(i,j) = 0 if i < 0 or if j < 0

(3)

Some useful definitions are given below.
Definition 1: The model is observable if each couple

x(h + 1, k), x(h, k + 1) can be computed from the future
values of the inputs and the outputs y(i, j), u(i, j), i ≥ h
and j ≥ k.



Definition 2: The model is reconstructible if each couple
x(h+1, k), x(h, k+1) can be computed from the past values
of the inputs and the outputs y(i, j), u(i, j), i ≤ h et j ≤ k.

Lemma 1: [17] The model is reconstructible if the pair
(C,A1r + A2s) is reconstructible for all r, s ∈ C.

III. FINITE MEMORY OBSERVER

The finite memory observer aims to reconstruct the system
state by using only the input and output measurements made
on a finite time horizon. Let us consider the discrete-time 2-D
(1). Firstly, the system state x(i, j) is expressed with respect
to the initial conditions and the inputs, then it is written on
a finite horizon.

A. State and output expressions with respect to inputs and
state initial conditions

Theorem 1: The state of the system (1) is expressed with
respect to its initial conditions and inputs as follows:

x(i, j)=

j∑
k=1

A(j−k,i−1)A2x(0, k)+
i∑

k=1

A(j−1,i−k)A1x(k, 0)

+

j−1∑
n=0

i−1∑
m=0

A(j−n−1,i−m−1)Bu(m,n) (4)

where the matrices A(i,j) are defined in (3). Consequently,
the output of the system is expressed as:

y(i, j) =

j∑
k=1

CA(j−k,i−1)A2x(0, k)+

i∑
k=1

CA(j−1,i−k)A1x(k, 0)

+

j−1∑
n=0

i−1∑
m=0

CA(j−n−1,i−m−1)Bu(m,n) (5)

The figure 2 depicts, for a simple case: i = 4 and j = 3,
both the input and state spaces. The stars stand for the initial
state position.

Fig. 2. State computation, from the input space (left) to the state space
(right)

Proof: The proof is made by induction. For (i, j) =
(1, 1), from (1), we have:

x(1, 1) = A1x(1, 0) + A2x(0, 1) + Bu(0, 0) (6)

which is also given by (4). Now, assuming that (4) is true
for (i, j), x(i + 1, j + 1) is computed. Firstly, from (1) we
have:

x(i + 1, j) = A1x(i + 1, j − 1) + A2x(i, j) + Bu(i, j − 1)
(7)

Using (4), equation (7) can be written in terms of the inputs
and of the initial states:

x(i + 1, j) = A1

(j−2∑
n=0

i∑
m=0

A(j−n−2,i−m)Bu(m,n)+

j∑
k=1

A(j−1−k,i)A2x(0, k) +

i+1∑
k=1

A(j−2,i+1−k)A1x(k, 0)
)

+Bu(i, j − 1) + A2

(j−1∑
n=0

i−1∑
m=0

A(j−n−1,i−m−1)Bu(m,n)+

j∑
k=1

A(j−1−k,i−1)A2x(0, k) +

i∑
k=1

A(j−1,i−k)A1x(k, 0)
)

(8)
In (8), the term multiplying x(0, k), denoted by p1, can be
simplified as follows:

p1 = A1

(
j−1∑
k=1

A(j−1−k,i)A2x(0, k)

)

+A2

(
j∑

k=1

A(j−k,i−1)A2x(0, k)

)

=

j−1∑
k=0

(A1A
(j−1−k,i) + A2A

(j−k,i−1))A2x(0, k)

+A2
2A2x(0, j)

=

j∑
k=0

A(j−k,i)A2x(0, k)

(9)

The term multiplying x(k, 0) in (8), denoted p2, becomes:

p2 = A1

i+1∑
k=1

A(j−2,i+1−k)A1x(k, 0)

+A2

i∑
k=1

A(j−1,i−k)A1x(k, 0)

=

i+1∑
k=1

A(j−2,i+1−k)A1x(k, 0)

(10)

Finally, the term multiplying u in (8), denoted p3 becomes:

p3 = A1

j−2∑
n=0

i∑
m=0

A(j−n−2,i−m)Bu(m,n)

+A2

j−1∑
n=0

i−1∑
m=0

A(j−n−1,i−m−1)Bu(m,n)

+Bu(i, j − 1)

=

i∑
m=0

j−1∑
n=0

A(j−n−1,i−m)Bu(m,n)

(11)

According to (9), (10) and (11), the state (8) becomes:

x(i + 1, j) =

j∑
k=0

A(j−k,i)A2x(0, k)

+

i+1∑
k=1

A(j−2,i+1−k)A1x(k, 0)

+

i∑
m=0

j−1∑
n=0

A(j−n−1,i−m)Bu(m,n) (12)



Then, x(i, k + 1) can be obtained analogously and, finally,
the two expressions of x(i+ 1, j) and x(i, k + 1) imply (4).
The equation (5) is a direct consequence of (4).

B. State and output expressions on a finite horizon

The state measurements can now be expressed from the
state equation (4) according to the inputs and the initial
values of the system state. Without loss of generality, this
expression will be established on the window (i, j) ∈ [1 :
I]× [1:J ] for which the initial states are x(0, j), j = 1, . . . , J
and x(i, 0), i = 1, . . . , I .

By stating the equations in the interval (i, j) ∈ [1:I]×[1:J ],
one can establish the following equation expressing the state
and output vectors x and y gathering all the states and the
outputs in the considered window with respect to the initial
conditions x0 and the inputs u in the same window:

x =Fxx0 + Fuu (13a)
y =Gxx0 + Guu (13b)

with x0 ∈ R(I+J).nx , u ∈ RI.J.nu , x ∈ RI.J.nx , y ∈
RI.(J+2).ny and with the definitions:

x =


x1

x2

...
xI

 xi =


x(i, 1)
x(i, 2)

...
x(i, J)

 x0 =

[
x.,0

x0,.

]

x.,0 =


x(1, 0)
x(2, 0)

...
x(I, 0)

 x0,. =


x(0, 1)
x(0, 2)

...
x(0, J)

 u =


u0

u1

...
uI−1



ui =


u(i, 0)
u(i, 1)

...
u(i, J − 1)

 y =



y.,0
y0,.
y1
y2
...
yI


yi =


y(i, 1)
y(i, 2)

...
y(i, J)

 (14)

where xi ∈ RJ.nx , ui ∈ RJ.nu . Fx, Fu, Gx and Gu

have appropriate dimensions and depend on A(i,j), B and
C (details on these matrices will be given in an example).

Remark 2: The equation (13) clearly states the influence
of the initial state x0 on the current system state. More-
over, (13) can be used for any window length, provided
the matrices Fx, Fu, Gx and Gu are adapted accordingly.
However, for a sliding observation window of fixed length
[0 : I] × [0 : J ], the matrices Fx, Fu, Gx and Gu are
constant and only the definitions (14) are reevaluated.
This remark will naturally be used, by adapting the ob-
servation window, when performing the state and output
estimations for fault diagnosis.

C. Finite memory observer (FMO) design

Based on (13b) and on the input/output measurements on
the observation window [0 : I] × [0 : J ], the initial system
state is estimated by minimizing the following criteria:

Φ =‖ y −Gx x0 −Guu ‖2W (15)

where the weighting matrix W allows to privilege the effect
of certain observations. If the matrix Gx is full column rank,
the estimated initial state is computed from:

x̂0 = (GT
xWGx)−1GT

xW (y −Gu u) (16)

Based on (13) and (16), the following FMO can be proposed

x̂ = Fx x̂0 + Fu u
ŷ = Gx x̂0 + Gu u

(17)

The state estimation on the window [0 : I] × [0 : J ] is
applicable for all other observation sequences of fixed length,
especially, for the window [1 : I + 1]× [0 : J ], the variable
i being considered as the discrete time and the variable j
indexing a constant number of states. As pointed out in
the remark 2, the structure of (16) and (17) are valid for a
sliding window. Only the values of u and y must be updated,
while the matrices preserve their structures and constant
parameters.

IV. SENSOR FAULT DETECTION

A. Residual generation for fault detection
If a sensor fault affects the system, (1) becomes

x(i + 1, j + 1)=A1x(i + 1, j)+A2x(i, j + 1) + Bu(i, j)

y(i, j) = Cx(i, j) + f
(18)

where f = [f1 . . . fny
]T is the sensor fault. The output

estimation of the FMO (17) allows to generate the output
reconstruction error: ỹ(i, j) = y(i, j)−ŷ(i, j) that is a sensor
fault indicator or residual. Its analysis allows to performs
sensor fault detection and isolation [26].

B. Example for horizon of length 2
The fault free output vector can be expressed as (19) to

highlight the relation between the inputs in [0 : 1] × [0 : 1]
and the outputs in [0 : 2] × [0 : 2],

y(1, 0)
y(2, 0)
y(0, 1)
y(0, 2)
y(1, 1)
y(1, 2)
y(2, 1)
y(2, 2)


=



C 0 0 0
0 C 0 0
0 0 C 0
0 0 0 C

CA1 0 CA2 0
CA2

1 0 CA1A2 CA2

CA2A1 CA1 CA2
2 0

CA(1,1)A1 CA2
1 CA(1,1)A2 CA2

2


×


x(1, 0)
x(2, 0)
x(0, 1)
x(0, 2)

+



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

CB 0 0 0
CA1B CB 0 0
CA2B 0 CB 0

CA(1,1)B CA2B CA1B CB




u(0, 0)
u(0, 1)
u(1, 0)
u(1, 1)



(19)



In (19) structure of (13) is preserved with Gx and Gu defined
by:

Gx =



C 0 0 0
0 C 0 0
0 0 C 0
0 0 0 C

CA1 0 CA2 0
CA2

1 0 CA1A2 CA2

CA2A1 CA1 CA2
2 0

CA(1,1)A1 CA2
1 CA(1,1)A2 CA2

2



Gu =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

CB 0 0 0
CA1B CB 0 0
CA2B 0 CB 0

CA(1,1)B CA2B CA1B CB



(20)

The particular structure of Gx can be used to study its rank,
that is useful to analyse the rank of GT

xWGx in (16).

C. Numerical application

The following example will be processed according to dif-
ferent sensor configurations in order to highlight the sensor
fault detection and isolation. The system under consideration
is defined by the state matrices:

A1 =

0.8 −0.2 0
0 0.6 0.2

0.1 0 −0.4

 A2 =

 0.4 0.2 0.1
−0.1 0.5 −0.3
0.1 0 0.15


B =

 0.5
−0.5
0.2

 (21)

The input control is given by: u = sin(t/15 cos(t/17))/2 +
0.1 The states x(i, j) ∈ R3 are defined in the domain [0 :
I]× [0 : J ] where I and J will be defined later.

In this example, fault detection and isolation is performed
by designing a bank of FMOs, where each observer uses
specific measurements and then is sensitive to the faults
affecting these outputs while being insensitive to the others.

The states x1, x2 and x3 are computed in the domain
(i, j) ∈ [0 : 100] × [1 : 5]. In order to highlight the fault
isolation performance, let us assume that all the states are
measured, i.e. C = I3. A sensor fault affect the second output
in the interval (i, j) ∈ [33 : 43]× [3 : 4]. In this example, the
FMO using the outputs {y1, y2, y3}, {y1, y2}, {y1, y3} and
{y2, y3} are designed.

The figure 3 illustrates the real system states. The figures
4, 5 and 6 depict the estimated states obtained from the
FMOs using respectively the outputs {y1, y2}, {y1, y3} and
{y2, y3} respectively (for lack of space the estimates obtained
with the outouts {y1, y2, y3}) are not presented). The analysis
of these figures shows that, even in the presence of the fault,
the states are perfectly estimated, provided the output y2 is
not used. It can be clearly seen when computing the output
error ỹ(i, j) = y(i, j)− Cx̂(i, j).
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Fig. 3. Real system states
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Fig. 4. Estimated state of the FMO using {y1, y2}

The analysis of the graphical results should be linked
to fault signatures given in the table I. In this table, the
sensitivity of each residual to each possible fault fi is
indicated, providing the theoretical signatures of each fault.
Note that these signatures are distinct from each other and
thus allows to perform fault isolation.

From a practical point of view, the fault detection and
isolation directly results from a comparison, at every sample

f1 f2 f3
ỹ{y1,y2,y3} × × ×
ỹ{y1,y2} × × .
ỹ{y1,y3} × . ×
ỹ{y2,y3} . × ×

TABLE I
THEORETICAL FAULT SIGNATURE
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Fig. 5. Estimated state of the FMO using {y1, y3}
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Fig. 6. Estimated state of the FMO using {y2, y3}

time, of the theoretical and experimental fault signatures. The
theoretical signatures are given in the table I. The experimen-
tal ones are obtained by thresholding the absolute value of
the residual signals given by the output reconstruction error
of the different FMO. These thresholds are previously chosen
according to the amplitude of the faults to be detected and
eventually adjusted by learning.

The analysis of the figures 7, 8, 9 and 10 clearly reveals
the presence of the faults. The residual signals of the figure
7, provided by the observer using all the outputs (including
the faulty ones) are all sensitive to the fault with different
degrees of sensitivity. The fault isolation is illustrated in the
figures 8, 9 and 10. It is clear that only the observer using
{y1, y3} allows the isolation by comparing the experimental
signature of the residual signals in the interval i ∈ [33 : 43]
with the theoretical signatures of the table I.
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ỹ(4,2)

0 50 100
−0.5

0

0.5
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Fig. 7. Residual signal based on {y1, y2, y3}
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ỹ(1,1)

0 50 100
−0.5

0

0.5
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ỹ(4,1)

0 50 100
−0.5

0

0.5
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Fig. 8. Residual signal based on {y1, y2}

V. CONCLUSION

This paper shows how to use a finite memory observer
for 2-D systems for the purpose of sensor fault diagnosis.
Emphasis is placed on the design of bank of observers in
order to be able to isolate faults affecting the plant sensors.
Naturally, a fairly straightforward extension of this work
would be to extend the obtained results to the detection and
isolation of faults affecting the inputs of the system (namely
actuator FDI). The detection and isolation of faults affecting
the system itself (component faults, which can result in the
variations of some system parameters) is in general more
tedious.
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ỹ(1,2)

0 50 100
−0.5

0

0.5
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ỹ(3,1)

0 50 100
−0.5

0

0.5
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