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ON THE CLT FOR ROTATIONS AND BV FUNCTIONS
JEAN-PIERRE CONZE AND STEPHANE LE BORGNE

IRMAR - UMR 6625, F-35000 Rennes, France

ABSTRACT. Let z — =+ a mod 1 be a rotation on the circle and let ¢ be a step func-
tion. We denote by ¢, () the corresponding ergodic sums Z?;(} o(x + ja). For a class
of irrational rotations (containing the class with bounded partial quotients) and under
a Diophantine condition on the discontinuity points of ¢, we show that ¢, /||¢n]2 is
asymptotically Gaussian for n in a set of density 1. The proof is based on decorrela-
tion inequalities for the ergodic sums taken at times g, where (¢x) is the sequence of
denominators of . Another important point is the control of the variance ||¢,||3 for n
belonging to a large set of integers. When « is a quadratic irrational, the size of this set
can be precisely estimated.
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Introduction

For a dynamical system (X, u,T) and an observable ¢ on X, a general question is the
asymptotic behaviour in distribution of the ergodic sums 25 ~1 »oT* after normalisation.
For a large class of observables and chaotic systems, many results of convergence toward
a Gaussian distribution are known.

When the dynamical system has zero entropy, in particular for a rotation, the situation
is different. Nevertheless one can ask if, at least, there are observables satisfying a non
degenerate Central Limit Theorem. In this direction there are positive answers: R. Burton
and M. Denker [4] in 1987, then T. de la Rue, S. Ladouceur, G. Peskir and M. Weber |9],
M. Lacey [18] proved for rotations the existence of functions whose ergodic sums satisfy
a CLT after self-normalization. In general for a measure preserving aperiodic system,
further results by D. Volny and P. Liardet [21], J.-P. Thouvenot and B. Weiss [23] showed
that any distribution can appear as a limiting distribution of the ergodic sums of some
functions after normalisation.

A different question is to ask if, for smooth systems, there is a CLT for explicit functions
in a certain class of regularity. Here we consider step functions on X = R/Z and their

ergodic sums ¢, (z) := Y20 ' ¢(x + ja) over an irrational rotation z — x + a mod 1.

By the Denjoy-Koksma inequality, if ¢ is a centered function with bounded variation, the
sequence () is uniformly bounded along the sub-sequence of denominators of «. But,
besides, a stochastic behaviour at a certain scale can occur along other sub-sequences
(ng). We propose a quantitative analysis of this phenomenon.

Let us mention the following related papers. For ¢ := L1 — 1[%70[, F. Huveneers [15]

studied the existence of a sequence (ny)nen such that (i, ) after normalization is asymp-
totically normally distributed. In [6] it was shown that, when o has unbounded partial
quotients, along some subsequences the ergodic sums of ¢ in a class of step functions can
be approximated by a Brownian motion.

Here we will use as in [15] a method based on decorrelation inequalities which applies
in particular when the sequence of partial quotients of « is bounded (« is said to be of
bounded type or bpq) or under a slightly more general Diophantine assumption. It relies
on an abstract central limit theorem valid under some suitable decorrelation conditions.
If ¢ is a step function, we give conditions which ensure that for n in a set of integers of
density 1, the distribution of ¢, /||¢,]|2 is asymptotically Gaussian (Theorem 2.4). Beside
the remarkable recent “temporal” limit theorems for rotations of bounded type (see [1], [2],
[10], [3]), this shows that a “spatial” asymptotic normal distribution can also be observed
for n in a large set of integers.

An important point is the control of the variance ||, ||3. In Section 1, we study the set of
integers for which the variance ||¢,||3 of the ergodic sums is big (expected to be of order
Inn for n belonging to a set of density 1, in the case a bpq). The most precise information
is obtained in the special case where « is a quadratic irrational in Subsection 1.4.
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The central limit theorem is presented in Section 2. It is based on the decorrelation
between the ergodic sums at times g (the denominators of o) and on an abstract central
limit theorem. To apply the results to a step function, a Diophantine condition is needed
on the discontinuities of (¢ which holds generically.

The proofs of the CLT and the decorrelation are given in Sections 3 and 4. In Appendix
1, we prove a proposition used for quadratic numbers in the study of the variance.

The results of this paper have been announced in [5]. The authors thank the referees for
their helpful remarks.

1. Variance of the ergodic sums

Notation The uniform measure on T! identified with X = [0,1[ is denoted by pu. A
function ¢ on T is viewed as a 1-periodic function of a real variable. We denote by V()
the variation of the restriction of ¢ to [0, 1] and write BV for “with bounded variation”.

The class of real centered BV functions on T! is denoted by C. It contains the 1-periodic
step functions with a finite number of discontinuities. The Fourier coefficients of a function
¢ are denoted by ¢(r). For ¢ € C, we can write:

- Yr\P ) V(e
D o) = : )>?" # 0, with K(p) := sup |7,(¢)] < () o 1o
r r#0 2w
Let o = [0; a4, ag, ...] be an irrational number in ]0, 1], with partial quotients a,, = a,(«),

numerators p, and denominators g,, n > 1.

The ergodic sums Z;:& o(x + ja) of a 1-periodic function ¢ for the rotation by « are

denoted by ¢, (x). Their Fourier expansion is @, (z) = Z 7 () eritn—tra ST omira
T

sin mra
r£0
— Yr(@)| |sinTnra n K(p
If € C, then V(z,) < nV(¢) and [F2(r)] = yfn|)| ||Sin7rroz|| = |r(| o

1.1. Reminders on continued fractions.

In this subsection, we recall some classical results on diophantine approximation. For this
material we refer to [16] or [19], as well as J. Beck’s book [2].

For u € R, {u} denotes its fractional part and ||u|| := inf,cz |u — n| = min({u}, 1 — {u})
its distance to Z. Recall that 2||z|| < |sinnmz| < 7||z||, Vo € R.
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n en
For n > 1, writing a = Pn + —, we have
qn Gn
1 In qn dn 1
(2) < < QnHQnO‘“ = Qn|9n| < = < >
Ap+1 + 2 dn+1 + dn gn+1 An+14n + dn—1 Ap+1
n Prn nHQnaH ]' — —
(3) On = (=1)"[|gne|, a = o (-1) q’ §qn+11 <O < dpis
5 5 5—1
(4) 1/ Gnir < Cp*, Vn,k > 1, with C' = +2\/_,,0 = \/—2 <1

Let us show the last inequality: for n > 1 fixed, putting rqg = q,, ™1 = Qni1, Thi1 =
Ty + rp_1, for kK > 1, we have ¢, > 7, Vk > 0, by induction and (4) follows easily.

For n > 1, we denote by m(n) the integer such that n € [¢m(n), Gmmn)+1]-

If a has bounded partial quotients (i.e., sup a,, < o), then m(n) is of order Inn.

Ostrowski’s expansion (|22], [2])

Every integer n > 1 can be represented as follows (a-Ostrowski’s expansion):

(5) if n < g1, n:Zbqu,WithOSbo <a;—1, 0< b, <agyq for1 <k <m.
k=0

Indeed, if n € [qy, ¢1 = a1], then (5) is satisfied, and if n € [¢n, Gmy1] with m > 1, we
write n = b, ¢ + 7, with 1 < b,,, < @11, 0 < 7 < @, By iteration, we get either r = 0
at some point and the algorithm stops, or n € [qo, ¢1[- In either cases we obtain (5).

In this way, we can code every n < g,,+1 by a word bg...b,,, with by € {0,1,...,a; — 1} and
b; € {0,1,....,a;11}, 7 =1,...,m.

In this representation, b,y # 0 and b; = 0 for m(n) < j < m when m > m(n). In the
latter case, there are m — m(n) zero’s at the right end. For a given m and n < ¢, 11, this
Ostrowski’s expansion is “proper” (without zeros at the end) if m = m(n).

For m > 0, we call admissible of length m + 1 a finite word by...b,, such that b, €
{0,1,...,a1 — 1}, b; € {0,1,...,;aj41}, for j = 1,...,m and such that, for two consecutive
letters bj—la bj, if bj = Qj41 then bj—l = 0.

Remark that if by...b,, is admissible, m > 1, then bg...b,,_1 is admissible. Let us show
by induction that the Ostrowski’s expansion of an integer n is admissible. Let n be in
[Gms @ms1]- We start the construction of the expansion of n as above. Now the following
steps of the algorithm yield the Ostrowski’s expansion of n — b,,q,,. Since n — b,,q,, €
[0, gm], the Ostrowski’s expansion of n — b,,q,, is admissible. It remains to check that, if
by = Gmy1, then b, 1 = 0. But if b,,_; # 0, we would have n > ¢, 1¢m + -1 = @m1,
a contradiction.

Conversely, if by...b,, is admissible, one shows by induction that bg+b1q1+...+bm@m < @ma1-
This holds if m = 0, since by < q; = a;. Assume that this is true for the length m. Let
bg...bybmy1 be admissible of length m + 1.
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If bi1 = o, then b,, =0 and by + b1qy + ... + b @ = bo +b1g1 + ... + by 1Gm—1 < @,
so that by + b1g1 + ... + by 1@mt1 < G + Amg2Gme1 = Gme2-

If b1 < @ — 1, then by + 011 + ... + by 1Gmg1 < Gt + (@2 — 1) Gt < G-
Therefore, if we associate to an admissible word the integer n = by + b1q1 + ... + byGm,
there is a bijection between the Ostrowski’s expansions of integers n < ¢,,+1 and the set of
admissible words of length m + 1. The number of admissible words of length m is ¢, — 1.

For n given by (5), putting ng = by, ny = Zf:o by qi, for k < m(n), we have

m(n) ng—1 m(n) by q—1
Z Z (x + ja) = Z Z o(x 4+ ng_1a + ja)
=0 j=ng_1
m(n) by—1 m(n)
(6) Z o (@ + (e +igr)a) = Y filw),
k=0 =0 k=0
b—1
(7) with fi(2) := Y @, (& + (nk-1 +iq)0) = Poq, (@ + ni10),
=0

By convention, we put kaol Oa (T + (N1 +ige)a) = 0, if by = 0.

If v is a BV centered function, then it holds (Denjoy-Koksma inequality):
(8) |€qlloe = sup| Z o(x +ia)] < V(p), if q is a denominator of .

One can also show that if ¢ satisfies (1) then ||, |l2 < 27 K(¢). By (8), we have for f;
defined by (7): [|fllec < bV (#) < ar1V ()

1.2. Bounds for the variance.

Let ¢ € C and n € [qr_1, q¢[- The variance is bounded from below as follows:

. (sin Tnka)? 5 sin mng; o |lng;a||?
lenlly =2 18 |2 QZI |2—] CoZ|90 ) ]”27

e (sinka)? (sinmg;a) |7e

with ¢y = f—Q. Therefore, by (2) we have, for 0 < § < 3,

l
9 leall; > COZW% W az Ingiall® > 00 > g, (9) @41 Ljngyalzo-

7=1
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An upper bound for the variance and a lower bound for the mean of the variance are
shown in [6]: there are constants C,c > 0 such that

m(n)
(10) leals < CK(9)* Y i,
j=0
1n71 m(n)—1
(11) Sl = e Y (P d
k=0 j=0

Inequality (9) gives a semi explicit lower bound for the variance. Note that by (8), the
variance is small if n is a denominator ¢; of «. In this case, as expected, one finds that
the lower bound given by (9) is small. Indeed, by (4), we have |gg;al < C1pl=7l, with
p < 1, for a constant C, so that, for a given § > 0, the number of j’s less than ¢ such
that ||¢;q;a]| > § is bounded independently from /.

Now our first goal will be to bound from below the variance ||¢,||2 by a big value for n in
a large set.

Bounds for the variance for n in a large set of integers
According to (9), a lower bound for ||¢,||2 depends on two separate conditions:

First we need the following condition on the Fourier coefficients of :

(12) 3M,n,0 > 0 such that Card {j < N : aji1|vg(p)| > n} > 0N, VN > M.

This condition clearly holds when ¢ is the function ¢%(z) = {2} — 1, since in this case

g, (€°)] = %,Vj . Its validity, related to Diophantine conditions on the points of discon-
tinuities, will be discussed for some step functions in Subsection 2.2.

For j < ¢, we will estimate how many times {ng;a} € I; :=[0,0] U [1 — 4, 1] for n < ¢,
and deduce from this estimation that Z§:1 1,({ngja}) = Z§:1 Ljng;al<s is small for a
large set of values of n.

Lemma 1.1. For every § €]0, 5[ and every interval of integers I = [Ny, Ny + L[, we have

Ni+L-1
(13) Z 1,({ng a}) <20(6+ qjjrll) L,Vj such that q;+1 < 2L.

n=N1

Proof. For a fixed j and 0 < Ny < N; + L, let us describe the behaviour of the sequence
(HnQJOéan = Nla st Nl + L — 1)

Recall that (modulo 1) we have g;a = 0;, with 6; = (—=1)?||g;c| (see (3)). We treat the
case j even (hence 6; > 0). The case j odd is analogous.

We are going to count how many times, for j even, we have {nf;} <dor1—45 < {nb,}.
We start with ny := Ny. Putting w(j, 1) := {n; 6,}, we have {n6;} = w(j, 1)+ (n—n4)0;,
for n = ny,my +1,...,np — 1, where ny is such that w(j,1) + (no — 1 —n1)6; < 1 <
w(j, 1) + (n2 — ) 6;.
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Putting w(j,2) := {n26,}, we have w(j,2) = w(j,1) + (ng —ny) §; — 1 < §,. Starting now
from no, we have {n6;} = w(j,2) + (n — ny)b; for n = ny,ny + 1,...,n3 — 1, where nj is
such that w(j,2) + (ng —1—mng)0; <1 < w(y,2) + (n3 — n2) ;.

We iterate up to R(j), where ng;y—1 < N1 + L < npg). This construction yields a

sequence nq < ng < ... < ng(;) such that {nd;} = w(j,i) + (n —n;)0;, Vn € [n;, niy [, and
w(,7) + (nig1 — 1 =) 0; <1 <w(j,9) + (Rt —ni) b

with w(j,7) defined recursively by w(j,i+ 1) = {w(j,7) + (ni11 — n;) 6;} and satisfying

w(j,1) <6, fori=1,.., R(j).

Since (nj41 —n; +1)0; > w(j, i) + (nip1 —n;)0; > 1 for i # 1 and ¢ # R(j), we have

L
Nijp1 — Ny > 9]71 — 1, for each i # 1, R(j). This implies R(j) < 1 + 2.
1
For each 7, the number of integers n € [n;,n;41 — 1] such that {nd;} € [0,6[U]1 —§,1] is
bounded by 2(1 4 d6;"). (This number is less than 2 if § < 6;.)

Altogether, using (3) and the assumption 2L > g;1, the number of integers n € I such
that {nd,} € [0,0[U]1 — 4, 1] is bounded by

2R(j)(1400;") < ( +4)(14+00;") <4(L+60;")(6+0))

01 —1

J
< 4(L+2g511) 0 +q534) <200+ ¢y L. O

Remark 1. For every § €]0,5-[ and every interval [Ny, Ny + L], we have by a slight
extension of Lemma 1.1:

(14)  Card{n € [N;, N1+ L] : d(ngje, Z/r) < 6} < 20r (6 + q; )L, if qj1 < 2L.

Lemma 1.2. Let I = [Ny, Ny + L| be an interval and ¢ such that qo < 2L.
a) For all § €]0, 5[ and ¢ €]0, 1[, the density of set

(15) A={nel: Card(j <{:d(ngjo,Z) <) < (l}
satisfies
(16) Card(A) > (1 —-20¢" (6 +C¢™ ) L.

b) Under Condition (12) on p, there are positive constants no,c (not depending on §) such
that, for every § €]0, 5[, the subset V(I,6,0) :={n €1 : |gulla > md V) satisfies:

(17) Card (V(I,6,0)) > (1 —c(6+ 1) L.

Proof. a) Let A° = I\ A be the complementary of A. We will find an upper bound of the
density L~! Card(A®) by counting the number of values of n in I such that ||ng;al| < ¢ in
an array indexed by (j,n).



8 JEAN-PIERRE CONZE AND STEPHANE LE BORGNE

By summing (13) from j =0 to j = ¢ — 1 and using the definition of A, we get:

200600+ > gl)L> Y Y 1,({nga})

0<j<l—1 0<j<l—1 nel
> > 1,({ngia}) = Y L= (lCard(A°).
neAc 0<j</—1 neA¢

With € := 32> ¢;', we have Card(A°) < 20¢"" (6 + C¢') L, so (16) is shown.

b) With ¢ = £6, where 6 is the constant in (12), in view of the definition of A and (12),
we have, for n € A:

Card({j < (= 1+ [ngyall > 8} (Vi b (0)] =) = (1= (C+1-6)) ¢ = 2.
Putting ¢ := 20 ¢~ max(1,C) and 79 = (L¢on?0)2, this implies by (9) and (16):
(18) llonlls > %co 2?00 =mn56*¢, Yn€ A, and Card (A) >1—c(0+ 1) L;
hence A C V(1,4,¢) and therefore V(I,0, () satisfies (17). O

The constants ¢ and 7y below are those of Lemma 1.2.

Theorem 1.3. Under Condition (12) on ¢, the density of the subset

m(n) |1

)*}

Wes {n e N: ol > m (5o

satisfies for every N > 1:
Card (W N [0, N)
N
Proof. Since t/Int is increasing for t > e, we have, after the first terms, for n in WeN|[0, N|:
m(n) |1 m(N) |1
nll2 < < nli—=+) %
lonll2 no(lnm(n)) no(lnm(N))

Therefore, by b) of Lemma 1.2 with I = [0, N[, L= N, § = (Inm(N))"2 and ¢ = m(N),
it follows
Card (Wen [0, N[)
N

>1—2c(Inm(N)) 2.

N

g

<c(Inm(N)) 72 + em(N) ™' < 2¢(Inm(N)) 2.

1.3. A counter-example.

In the next sections we will show that, under a Diophantine condition on «, for a big
set of n, the distribution of ¢, /||¢x||2 is approximately Gaussian. In particular, by (11),
if ny < qey1 is an integer such that ||¢n,||s = max<q,., |[¢kll2, then we have the lower
bound ||, |3 > ¢ Zﬁ;(l) 7g;17a3,,. Under Condition (12), it can be shown that, for these
indices ny giving the record variances, when the partial quotients of o are bounded, the
distribution of ¢, /||¢n,||2 is asymptotically Gaussian.
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Let us show by a counter-exemple that this is not true without a condition on .

For a parameter v > 0, let the sequence (a,),>1 be defined by
an = 7] if ne{2" . k>0}, =1ifn¢ {2 : k>0

Let a be the number which has (a,),>1 for sequence of partial quotients. For simplicity,
let us take for ¢ the sawtooth function ¢° defined above for which v, = VEk.

27rz ’

For £ > 1, let ny := max{n < qu11 : [|¢nll2 = maxy<q,,, [|¥rll2}. We have

[logo(£)]

lenll3 > c Z o Paty > e Y 22 > e,

s=0

In the sum ¢,,(r) = Zk 0 Zb’“ %=1 o(x 4+ Ny_yo + ja) defined in (6), we can isolate
the indices k for which k + 1 is a power of 2 (for the other indices ayy; = 1) and write
©n, (2) = Uy + V; with

U = oo 300 ol + Nowora + ja),
by ar—1 .
Zke[om{akﬂ 1} Z 0T w(r A+ Npa - ja).
We will see in (49) that the variance of a sum where by equals 0 or 1 is bounded as follows

b qx—1

IS ple+ Nea+ja)3 < Cllog(0).

ke[0,0N {app1=1} =0

On the other side, we also have

Uogz(f J bop_1g2p 11 [log2(€)] [log2(€) ]
Z Z ©(x 4+ Nop_sax + ja)| < Z axV(p) < C Z 2P < O
p=1 p=1
. . Pny _ Uy Ve 1
The previous bounds imply Tons = Tonde + Tona with [|on,ll2 > @, Ul < CO,

IVell2 < (Cllog(€))"/2.

Thus, if v > 1/2, one has ‘ Yy

U Q
||%0ng ll2

Ve
”50714”2

— 0 and the limit points of the

[—<, €], hence are not Gaussian.

distributions of have all their supports included in

IIwwHa

1.4. A special case: quadratic numbers.

When « is a quadratic number, using the ultimate periodicity of the sequence (a,()),>1
and the good properties of the associated Ostrowski’s expansion of the integers, it is
possible to improve the result of Theorem 1.3 on the variance. In this subsection we
show that the variance ||,||% of the ergodic sums of ¢ under the rotation by a quadratic
number « is of order Inn for n in a big set of integers whose size is precisely estimated. For
example, if we take ¢(z) = {z} — 1, Theorem 1.5 shows that there are positive constants
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n1, 12, R and € €]0, 1] such that,
1
(19) NCard < N:mplnn<|es<nInn}>(1—-RN®).

The main step in the proof is the following proposition showing that, in case of a quadratic
number, for most of the integers n (in a set whose size is precisely estimated), ||ng;o|| is
far from 0 for a big proportion of j’s:

Proposition 1.4. If « is a quadratic number, for every ¢ €]0, %[, there are 0 €]0, %[ and
positive constants C' and & such that for every £ > 1:

(20) Card{n < g1 : Card (j < ¢:d(ngjo, Z) > &) > (1 —¢gg) £} > (1 — ng_fl) Qos1-

The proof of Proposition 1.4 is given in Appendix.

Theorem 1.5. If a is a quadratic number and if ¢ satisfies Condition (12), there are
positive constants ny, 12, R and £ €]0, 1] such that, for N big enough, it holds :

(21) Card{n < N: mInn < [|p,||3 <n2 Inn} > N(1 - RN,

Proof. There is 15 > 0 such that the upper bound in (21) holds for every n > 1: indeed,
when « is quadratic, as (gx) is equivalent to a geometric sequence, m(n) is equivalent to
In(n) up to a multiplicative constant factor. Therefore, for n € [q, qo11[ (i-e., m(n) = £),

(10) implies ||@,]|3 < CK(p)? Zﬁ:o a?,; < mpln(n), for some positive constant 7.

in C be such that (12) is satisfied and, for g = 16, let 6 = (o) be given by Proposition
1.4. According to (12) and (20), for ¢ big enough, the set of integers n < g,y1 such that
simultaneously [|ng;al > & and |v,,(¢)| > 7, for at least 50/ different indices j, has a

For the lower bound, by (9) we have [[@nll3 > c00% Y25_; 7g,(#)? 4211 Ljngjalzs. Let

cardinal bigger than gp1(1 — C’q[fl) for some constants C' > 0, £ €]0, 1[.

Therefore we have |[¢,]|3 > ©n?§%0¢ = nif for more than gpy, (1 — Cg,f,) values of n
between 1 and qgy;.

This shows that, for N € [gs, qo11], the cardinal of the set {n < N : |l@,]|5 < mil} is less

than qu};f < C'N'~¢ (because for a quadratic number sup, go.1/q < +0oc). Hence, the
result. O

2. A central limit theorem and its application to rotations

2.1. Decorrelation and CLT.
An abstract CLT under a decorrelation property

Below Y; denotes a r.v. with a normal distribution A/ (0,1). Recall that, if X,Y are two
real random variables, their mutual (Kolmogorov) distance in distribution is defined by:
d(X,Y) =sup, |P(X <z) -P(Y <2)|.

The notation C' denotes an absolute constant whose value may change from a line to the
other.
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Proposition 2.1. Let N be a positive integer. Let (qr)i<k<n be an increasing sequence
of positive integers such that for a constant p €]0,1]

(22) @ /gm <Cp"F 1<k<m<N.
Let (fi)1<k<n be real centered BV functions such that for constants uy

Moreover assume that, for some constant 6, the following decorrelation properties hold:

0

(24) |/X wfkdu\SCV(w)uk%, 1< k< N,V BY,
0

(25) l/ O fi fndpt] < C V(W) gty —, 1< k < m < N, BV centered,
X qk
0

t
(26) ‘/ U [ fon frdu| K CV(@)ugupuy—, 1 < k<m<t< N,V BV centered.
X qk

Then, putting wy = 1rnaX§V:1 uj, Sn := fi+ -+ fn, there is for every d > 0 a constant
C(9) > 0 (depending only on §) such that the condition

) 1
(27) ”;”;VHQ < 7%, with p € [0, <],
implies
S _1-8p
(28) d(ﬁ,m < CB)N~ "9,

The proposition is proved in Section 3. We apply it to an irrational rotation by taking
for ¢;’s the denominators of a (they satisfy (22)) and for f;, the ergodic sums ¢y, , of
a function ¢ (composed by a translation), where the by’s (b, < ajy1) are given by the
Ostrowski’s expansion described above.

Decorrelation between partial ergodic sums

In order to apply the previous proposition we will prove decorrelation properties between
the ergodic sums of ¢ € C at time ¢, under the following assumption on «:

Hypothesis 1. There are two constants A > 1, p > 0 such that
(29) a, < Anf,Vn > 1.

Remark 2. a) The case a of bounded type, i.e., with bounded partial quotients, corre-
sponds to p = 0. In this case, as we have seen, m(n) is of order Inn.

b) Observe that m(n) can be smaller, but at least of order up to a bounded factor,

nlnn
under the more general assumption 1.

Lemma 2.2. a) For every p > 1, for a.e. «, there is a finite constant A(c,p) such that
(30) a, < A(a,p)nf, ¥n > 1.
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b) If « satisfies (29), then there is ¢ > 0 such that

(31) kal| > k> 1.

c
|k (log k)

Proof. a) We have a,1(a) = [1/6™(«r)] where 0 is the Gauss map. Let v > 1. Since
a— (al(&))% is integrable for the f-invariant measure ﬂ—xx on |0, 1], we have, for a constant

A@): e an(e) >0} < A(y)n 7.

By the Borel-Cantelli lemma, it follows that for a.e a there is C'(a, ) such that, if s >,
an(a) < Cla,y)n®,Vn > 1.

b) For every irrational «, there are C' > 0 and A\ > 1 such that the denominators of «
satisfy g > C\, for every £ > 1. For k > 2, let n be such that ¢,_1 < k < ¢,. Since
CA" ! < g, < k, it follows that n < C'log k, for some constant C’. By (29), we have
a, < An? < A(C"log k)P.

1

1 1
Since [|kal| > ||gn-1c|| > 3 > v > T this implies (31). O

As a corollary, using Theorem 1.3, it follows that for a.e. «, under the rotation by «, for a
function ¢ € C satisfying (12), the growth of the variance ||, ||3 is “roughly” of order Inn.
In Subsection 2.2 we will see that, if o satisfies (29) with p < 1, (12) itself is a generic
condition for some class of step functions .

Proposition 2.3. Let i) and ¢ be BV centered functions. Suppose that o satisfies Hy-
pothesis 1. Then there are constants C, 01,05, 03 such that, for every 1 < k <m < {:

i

(32) | / B ona dii] < CV(E) V(g) = by,

X dk

2m62

(33) | / 0 Pn P ] < CV V(R T iy,

X

2

(34) | / PP ] < OV V(R bbb

X

The proposition is proved in Section 4. From the propositions 2.1 and 2.3 we will deduce
a convergence toward a Gaussian distribution under a variance condition, by bounding
the distance to the normal distribution.

Theorem 2.4. Let ¢ be in C satisfying (12).

1) The set defined (cf. Theorem 1.3) by

(35) W= {neN: [lgnll2 > no (logm(n))~2 m(n)
has density 1 in N.

Suppose that o satisfies Hypothesis 1 (i.e., for constants A >1,p >0, a, < AnP,¥Vn > 1)
with p < %. Then, for 6 €]0, %[, there is a constant C(0) such that, for n in W,
1—

(36) A2 V) < C(8)m(n)~ ="+ — 0.

ngnH27 neW,n—oo

NI

}
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In particular when o has bounded partial quotients, we have p = 0 and m(n) can be
replaced by logn.
2) Suppose that « is a quadratic irrational. With the notation of Theorem 1.5, let

Vi={n>1:nlogn < |l <n logn}.

Then, there are two constants R,& > 0 such that
- the density of V' satisfies:

(37) Card(V ()[1,N]) > N (1= RN %), for N > No;

- for § €]0, 5[, there is a constant C(8) such that, forn € V:
(38) A2 V1) < C(8) (logn) = — 0.

||g0nH2’ neV, n—oco

Proof. 1) The result on the density of the set W follows from Theorem 1.3.

For (36), we use Proposition 2.1 with N = m(n) (where m(n) is such that n € [¢m(n), Gmm)+1])
fr defined by (7) and the decomposition of the ergodic sums given by (6), i.e.,

m(n) br—1
on(x) = frlx), where fi(2) = ¢q (& + (np_1 + igr)e) = Gpq, (€ + np_10v).
k=0 =0

The decorrelation inequalities in Proposition 2.3 are obtained for functions of the form
©by.q,- But in the proof of the decorrelation inequalities, one sees that they remain valid for
fx, since translations on the variable do not change the modulus of the Fourier coefficients.

As || felloo < bV () < ax1V (@), up to a fixed factor the constant uy in the statement of
Proposition 2.3 can be taken to be ap,, < kP, for some constant p > 0, by Hypothesis 1.

With the notation of Proposition 2.1, we have wy := maxévzl bj, on =Sy = fr+---+ fn.
For n € W and under Hypothesis 1, we have

YN < oNP3(log N)3.
1Sn][2

The factor (log N)% can be absorbed in the factor N?~2 by taking p larger and we have
(27). By (28) it follows:

d(—2" yy) < C(8) m(n)~ 5"+
N

2) In the quadratic case, p = 0 and the property of the set V' is given by Theorem 1.5. [

Remark 3. The previous result is written with a self-normalisation. If « is quadratic, let
us consider the ergodic sums normalised by vInn: (¢,/vInn),>;. Then, for n € V, the
accumulation points of the sequence of distributions are Gaussian non degenerated with
a variance belonging to a compact interval.
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2.2. Application to step functions, examples.

If ¢ belongs to the class C of centered BV functions, with Fourier series Zr;eo @ e2mir:,

to apply Theorem 2.4 we have to check Condition (12) on the coefficients v, (), i.e.:
1
dM,n,0 > 0 such that NCard {1 <N :aj|v, ()| =n} >0, VN > M.

: 1 -1 1 ; 9 - .
The functions {z} — 5 = 55 30,07 €™ and 11— 1p = 3, o 22D are
immediate examples where this condition is satisfied. In the second case, one observes that
Vg = 0 if gy s even, = 2 if g, is odd. Clearly, (12) is satisfied, because two consecutive

qr’s are relatively prime and therefore cannot be both even.

In general, for a step function, Condition (12) (and therefore a lower bound for the
variance ||, ||3 for a large set of integers n) is related to the Diophantine properties of its
discontinuities with respect to a. We discuss now this point.

Let us consider a centered step function ¢ on [0, 1] taking a non null constant value v; € R
on the interval [uj, uj41[, j =0,1,...;s, with up =0 < uy < ... < ug < ugy1 = 1:

(39) v = Z Vi L — -
7=0

The constant ¢ above is such that ¢ is centered, but it plays no role below.

Lemma 2.5. If ¢ is given by (39), there is a continuous periodic function Hy(uy, ..., us) >
0 such that

(40) e (0)> = 772 Hy(ruy, ..., ruy).

Proof. Since (r) = Y_i_g 2 e ™t e) sinr(ujg — uy), 7 # 0, Ho(ug, .. uy) is

[Z v; cos(u; + w1 sinm(ujg — uj))? + [Z v; sinm(u; + wj) sinm(ujg —uj))? O
j=0 Jj=0

Ezamples: 1) o = ¢(u, -) = 1 — u, Hy(u) = sin®*(u).
2) o= p(w,u, -) =1, o] = L, uruw], H(p) = 4 sin®(ru) sin’®(rw).

We show now that (12) is satisfied generically by the family of step functions parametrised
by (u1, ..., us) defined by (39).

Corollary 2.6. 1) Suppose that ¢ is a step function given by (39) for s > 1, with
parameter (uy,...,us). Then Condition (12) is satisfied if (uq,...,us) is such that the
sequence (qpuy, ..., Qs )g>1 15 uniformly distributed in T*.

2) This latter condition holds for a.e. value of (uq, ..., us) in T*.
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Proof. 1) If the sequence (gxuy, ..., QrUs)r>1 is uniformly distributed in T*, we have with
the notation of Lemma 2.5:

hm AT Z ’F}/Qk = hm Z H Qkuh . anUs)

k=1
(41) = H(zy,...,xs)dzy...dxg > 0, for a.e. (uq,...,us) € T°.

']I‘S

Let Ny and 6 > 0 be such that, for N > Ny, + Zszl V4 ()] > 8. The sequence
(174 (#)|?, k > 1) is bounded by K := 7 2||Hy||s. Therefore, we have, for N > Ny,

N
1
< N Z Ve () Z va; ()1 T N Z g (P)l<n < Z Ly, ()20 + .
k=1

This shows: + SV Ly, ()20 = K=Y6 —n?), for N > N,.
It follows that (12) is satisfied with M = No,n = ()7,0 = K12,

2) To prove the uniform distribution for a.e. value of (uy, ..., us) in T, by Weyl equirepar-
tition criterium it suffices to show, for all integers rq, ..., r, not all 0,

N
. 1 2imqg (riui+...+rsus) s
(42) hgnNZe rlrit =0, for a.e. (uq,...,us) € T°.
k=1
Since (g) is a strictly increasing sequence of integers, (42) follows from the law of large
numbers for orthogonal bounded variables (Rajchman’s theorem) which is recalled in
Appendix 2 in a slightly more general formulation (Proposition 6.1). O

Besides a generic result, there are also specific values of the parameter (uq,...,us) for
which (12) holds. A simple example (for s = 1) is:

Ezample 3: o(L, -) = 1, ST 2 oforry,re € N,O <1y <.

We will give another example of spemal values related to the rectangular billiard model
in example 4 below.

Remark 4. For the case of example 1, let us make some remarks about the degeneracy
of the variance.

It is known that if « is bpq and if limy, | sin(7gzu)| = 0, where g, are the denominators of
a, then v € Za+7Z (cf. for instance [8]). But it is easily seen that there is an uncountable
set of u’s such that limy + S sin?(mgru) = 0 and thus for which Condition (12) does
not hold.

Observe also that, if a is not bpq, there are many wu’s for which the sequence (gyumod1)
does not satisfy the equidistribution property in a strong sense and (41) fails.

Indeed, let u = >" >0 bpgna mod 1, b, € Z, 0 < b, < a,11, be the so-called Ostrowski ex-

pansion of u associated to the denominators of a. It can be shown that, if lim,, a|bi|1 =0,
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then limy ||gzul| = 0 (Proposition 1 in [13]). There is an uncountable set of u’s sat-

n

isfying the condition l1mna‘ = 0 if « is not bpq. For these values of u, we have

+1
limy, v, (p(u,.)) = 0. Therefore Condition (12), which is used to get a lower estimate
of the variance, fails, although, if w is not in the countable set Za + Z, ¢(u,.) is not a
coboundary (and even generates an ergodic cocycle).

Remark 5. Another remark is about the “generic” validity of estimates of the variance.

As previous remarked, in Theorem 2.4 the CLT is written with self-normalisation (by
|¢nll2). In Theorem 1.3 the lower bound given for the variance ||, |3 for n in the set W
can be smaller than the mean of the variance.

Inequalities (10) and (11) give a precise estimation of the variance in the mean when an
information is available on 7, (¢).

For example in the case of the “saw-tooth” function, we get the estimate ZZL(?) az for the
mean of the variance.

If we consider Example 1 or more generally ¢ = ¢(u,.) given by (39), the same estimate
is valid “generically” with respect to v under a condition on «. This is a consequence of
the equidistribution argument used previously and of Proposition 6.1. Namely, using this
proposition and an approximation by trigonometric polynomials, we get:

If1<a, <nP, withp <1 1 if Hy(uy, ..., ug) is a continuous periodic function on the torus
Ts, s > 1, then:

(43) hm Zk 1 ak (Qkula '7qkus) _ H(ﬂfl,
Zk | 4 Te

N .
>k @i sin®(mgpu) - 1, for a.e. u.

Z;CV:I aj 2

By (11), it follows that the mean of the variance, 1 S"77 ||k (u,.)|3, is of order S g2
generically with respect to u, if « satisfies Hypothesis 1, i.e., a, = O(n?),Vn > 1, with
p<i.

ey Tg)dxy...dzg, for a.e. u.

For instance, in Example 1, li]{[n

Vectorial case

For simplicity, we consider the case of two components. Let be given a vectorial func-
tion ¢ = (901,@2), where !, p? are two centered step functions with respectively s;, s9

discontinuities: ¢* = > % v} Vi i, — Giy for 1= 1,2,

Let the matrix I',, be defined by Fn(a, b) := (logn)~!|lapl + bp?||? and denote by I the
2-dimensional identity matrix.

Theorem 2.7. If « has bounded partial quotients and if the condition (12) is satisfied
uniformly with respect to (a,b) in the unit sphere, there are 0 < r1,ry < 400 two constants
such that for a “large” set of integers n as in Theorem 2./:

- Ty, satisfies inequalities of the form rily < T'y(a,b) < rily;

- the distribution of T;'®,, converges to the standard 2-dimensional normal law.
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Proof. We only sketch the proof. The classical method of proof of a CLT for a vectorial
function is to show a scalar CLT for all linear combinations of the components of the
function. So the proof is like that of Theorem 2.1, but taking care of the bound from
below of the variance for ap} + bp?: (12) should be uniform for (a,b) on the unit sphere.
This is done in the next proposition. O

Proposition 2.8. Let A be a compact space and (F\,\ € A) be a family of nonnegative
non identically null continuous functions on T® depending continuously on \. If a sequence
(2,) is equidistributed in T?, then

(44) 3 No,n > 0 such that Card{n < N : F)\(z,) > n} >0 N, YN > Ny, VA € A.

Proof. For X € A, let uy € T¢ be such that F)(uy) = sup,cqe Fr(u). We have Fy(uy) > 0
and there is 7, > 0 and an open neighborhood U, of uy such that Fy(u) > 2n, for u € U,.
Using the continuity of F with respect to the parameter A, the inequality F(u) > 1, holds
for u € Uy and ( in an open neighborhood V) of A\. By compactness of A, there is a finite
set (\j,7 € J) such that (Vy,,j € J) is an open covering of A. Let 0 := S inf;c; Leb(U,,).

By equidistribution of (z,), there is Ny such that 3 327, 1v, (2n) > 6,YN > Ny, Vj € J.

Let  := infjcyny;. For every A € A, there is j € J such that A € V), and therefore
Fx(zn) > m\; 2> m, if 2, € Uy,;. This implies:

Card{n < N : Fx(2z,) 2 n} > Card{n < N : z, € Uy,} > 0N, VN > N,. O

A generic result

By Proposition 2.8 applied for (a,b) in the unit sphere, for a.e. values of the parameter

(uf, ..., ul ,uf, ..., ul)), the functions ap' 4 by?* satisfy Condition (12) uniformly in (a, b) in

aey s17

the unit sphere. Hence Theorem 2.7 applies generically with respect to the discontinuities.
Special values: an application to the rectangular billiard in the plane

Example 4 Now, for an application to the periodic billiard, we consider the vectorial
function ¢ = (¢!, p?) with

2 , osin(r(2r+1)%) , .
1 _ . _ = —mi(2r+1)% 2/ 2mi(2r+1)-
o= logi—lggep =72 ¢ BT R ’
r€Z
—2i , ocos(m(2r+1)%) ,
2 _ _ _ mi(2r+1) % 2/ 2mi(2r+1)-
7= todn T s T e BT R '
rEL

The Fourier coefficients of o' and ¢? of order r are null for r even.

Let us consider a linear combination ¢, = ap' + bp?. For r = 2t + 1 odd, we have:

2 1 a o o

carr1(ap' + bp?) = ] e™HDS (g sin(m(2t + 1) 2) —ibcos(m(2t + 1) 5 )]

If g; is even, 7y, (¢ap) is null. If ¢; is odd, we have

) o . 1 «
Ve, (Pap)|” = |asin(mg; 5) — b Sm(ﬂ(§ + qj 5))|2>
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For ¢; odd, we have by (2),

a p; b, ‘ Q Pj ‘ 0; 1
1« G p Y L. p ) L
lg+agl = 15 =% =3l hence fllgiball = (I3 + 1| ) < 5] < 5—

This implies, for ¢; odd: 7y,(¢ap) = a(l + O(;1)), if p; is odd, = b(1 + O(;1)). if p; is
even.

The computation shows that, if « is such that, in average, there is a positive proportion
of pairs (pj, ¢;) which are (even, odd) and a positive proportion of pairs (p;, ¢;) which are
(odd, odd), then the condition of Theorem 2.7 is fulfilled by the vectorial step function
¥ = (o %)

For an application to the model of rectangular periodic billiard in the plane described in
[7], we refer to [6].

3. Proof of Proposition 2.1 (CLT)

The difference Hxy(\) := [E(e?X) — E(e**Y)| can be used to get an upper bound of the
distance d(X,Y’) thanks to the following inequality ([12], Chapter XVI, Inequality (3.13)):
if X has a vanishing expectation, then, for every U > 0,

d\ N 24 1 1

A T o2n U

Using (45), we get an upper bound of the distance between the distribution of X and the
normal law by bounding |E(e**) — om0 ,\2|.

(45)  d(X,Y) < % / " Her )

We will use the following remarks:

(46)  V(fg) < Ifll<V(g) + gl V(f), VS, 9 BV,
(47)  if g € CY(R,R) and u is BV, then V(gou) < ||¢']|ec V(1)

Let wy := max®_, u;, where u; is larger than | f;||o (see Proposition 2.1).

Since V(fx) < Cuyg qx, (24) implies

(48) |/ frfmdyu| < C’((j—kme w?, for k < m.
be

m

Bounding the moments
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Lemma 3.1. Under the assumption of Proposition 2.1, there is Cy such that

m—+L

(49) / DY AP <Cilim+0) > wl <Ciln(m+Owl,,,
k=m JjE[m,m+L]
m+/
(50) / |ka|3§C’1€1n2(m—l—€)w;+g, Vm, > 1,
k=m
m—+/
(51) / 1S Al < O it £ by, Ym0 1.
X k=m
Proof. We show (50) and (51). The proof of (49) is the same.
1) For (50), it suffices to bound the sums | / fsfeSudpl.
m<s<t<u<m+€

Replacing fi, by w,', fr, we will deduce the bound (50) from the inequalities (23), (24),
(25) when wy <1, for 1 <k <m+ ¢ By (23) and (46), we have

| /X fofifudul <C and V(f.f) < Clgs + ) < 3Ca.

From (24) and (22), then from (25) and (22), we obtain

) fudu| < C——= (fot) u’ < oty < Cplu=qy?
f ft)-fudp p :
Qu,

([t d < Cv<f> 0 < C%Ue < C (t—s)ue'
| f (fefu) dul . p
t

Set Kk =

o (1/ ln(m +/0). If t — s or u—t > k, the previous inequalities imply:

| / fofifudul < Cofa < Clm+0)03 < Clm + €)™
X
[t implies:

> | / Fufufdnl < CE(C+m) ™ < C.
m<s<t<u<m+L: max(t—s,u—t)>
Now the result follows from:

Z ‘/X fofifudu| < CUR>.

m<s<t<u<m+L: max(t—s,u—t)<s

2) For (51), we bound the sums Z |/ fsfefufodu| using (22) and succes-

sively (24), (25), (26).
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We obtain (because f, is centered for the first inequality):

‘/ (Fofof)fodp| < CATI00) (fsftf” o < OB < opent,

| / i —E(fuf)] fufodul < C <§sft) 0 < 00 < iy,

u 4y

'/ fofifufodul < €222 (fs) o < O%v@ < Cplt=yf.
t

Putting k = ( / ) log(m /), we get by the previous inequalities, for constants C, Cy, Cs:

> | /X Jodiful i

< OP(+m)t [ gdnll [t

m<s<t<u<v<m+f
<O+ [ fdudnl)? < €+ Cot? o + )
m<s<t<m+€
The remaining terms give a bound which can be absorbed in the previous one, namely:

> || £Adufdn] < CO3 < Cut loglm + 0.

m<s<t<u<m+L: max(t—s,u—t,v—u)<kK

Proof of Proposition 2.1
The proof is given in several steps.
Defining blocks

We split the sum S, := f; + --- + f,, into small and large blocks. The small ones will be
removed, providing gaps and allowing to take advantage of the decorrelation properties
assumed in the statement of the proposition.

Let 7,6 be parameters (8 close to 0) such that 0 < § < 1 and § < 7. We set for n > 1:

n = ni(n) = [07],np = ny(n) =[],

v=uv(n) =n; +ng, p(n):=|n/v(n)|+1=n"""+h, ~n'"", with |h,| bounded.
For 0 < k < p(n), we put (with f; =0,if n <j <n+v)

Fok = frvmrr + -+ fevm)yrnm)y  Gak = fevm)rnmmr T+ a1 vn)
The sums F, , G, have respectively n; ~ n",ny ~ nd terms and S, reads

p(n)—1

OM

We put S/, : Zp Fok, Vg =Ung —(f Fikd,u)%.
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The following inequalities are implied by (49):

(52) vl =2y = | Fuil3 < Cn” nnw?, [Gusl3 < o unw?, 0 < k < p(n).

(53) V(elc(Fn,O‘i‘u--"Fn,k—l ) S C‘C‘ wn Q(kfl) vty -

Since g1 + ga + .- + ¢ < Cgpy1,Vn > 1, by (22), it follows by (47) and hypothesis (23):

Lemma 3.2.

p(n)—1 p(n)—1
_r=8
(54) |||Sn||§ - Z vi| = |||Sn||§ - Z HFnkH%‘ <Cn' 2 lnnwf17
k=0 k=0
p(n)—1
(55)  1Sn =Sl = | Z Grl]? < Cn' " Innw?.
k=0

Proof. It follows from (48) and (22), with Cy = (52)2,

b d
|/ (qu)(th)dMSC'opc_bdewfl, Va<b<c<d.
X u=a t=c

Therefore, we have, with C} = Cy >_. >0 P, writing simply Fj, G} instead of Fri, Gk,

’/F Fydp| < Con’ wy, Z = (vm)

0<j<k<p(n) 0<j<k<p(n)

Scon wipnz Z p(k v— jV<C«pn2nwp pr<cn2 n'

wy, p
0<j<k<p(n) i>0

The LHS of (54) is less than the sum for £ =0 to p(n) — 1 of
/Gidﬁﬂr |/Gkadﬂ| + |/Gka+1dM|

0<]<k O<]<k 1

The first term is bounded by C'n°Innw?, the second one and the third one bounded by
Cn5 lnn w? are the biggest. The other terms are negligible as shown by the preliminary

computation: n’ p”‘S is small compared to a power of n, for n big.
Therefore the LHS of (54) is less than: C1n!~"n"s" Innw? = Cyn'~ 2" Innw?.

An analogous computation shows that the LHS of (55) behaves like 2™~ [ G2 dy which
gives the bound C'n!'=™*° Innw? of (55). O

Approzimation of the characteristic function of the sum S!, by a product

For ( € R, let I, 1(¢) :=1, 1,4(C) := / e Fnot+Fui) gy 0 < k < p(n).
X
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Lemma 3.3. For 0 < k < p(n), we have

(56) nal€) = (1= & 122) Lo (1 € C (P i 12(n) + ¥ ().

Proof. We use €™ =1+ iu — u® — tu® 4+ u'r(u), with |r(u)| <

We have L x(C) = [y e<Umorubas) L iCF, = § FRy = §CFn + C Ly r(CFu)] dp
For the first term, using (53), we have:

ni
|/ eiC(Fn,0+~~-+Fn,k—l) ka du| < Z ’/ eiC(Fn,O"r...-‘an,k—l) fku—i—j d#|
X . X
7=1

24,f01ru€R. Let k > 1.

ni ni

Qk v+n v n
< ClCfwn YT (kv ) Wiy < CICwhn® Y p o
j=1 ik v+j =
C
(57) < P j¢lwn? e,

=1,
Similarly, for the second term we apply (25) and (53) and we get:

| / eiC(Fn,()-f-“"'FFn,k—l) ngk d# — InJc—l / Fs,k d[L|
X

X

(58) < OV (el FnottFui-1)) ZZ Dy +7)° < O¢|w? nt7 pr2.

—1j—=1 k’ 1v+j

Likewise (26) and Lemma 3.1 imply: |/ ot k=) 8 dy
X

< |/ (eiC(Fn,0+~~~+Fn,k—1) _ E(eiC(Fn,o+~--+Fn,k—1)) Fik du| + |/ Fr?,k d,u|
X

(59) < C¢|n'TTT0 w3 pm2 4 O™ w? In?(n).
At last, by (51) we have

(60) |/ (Fn,0t+Fn,k-1) FskT(CFnk) du| < /X Fs’k dp < win®" In(n)?.

From (57), (58), (59) and (60), we deduce that |I,(¢)— (1— % vz 1) Ink-1(¢)] is bounded
up to a constant factor C' by

2w =+ |G n*7 e 4 IRt ot g P () 11w T )
In the sum above, for n big, we keep only the last two terms, since for n big enough the

first terms are smaller than the last ones. O

If X and Y are two real square integrable random variables, then [E(e'*) — E(eY)| <
| X — Y|l2. Therefore, using (55), we have for J,(¢) := [ ¢’ dp:

(61)  Jn(Q) = Lnpmy (O < [CHISn = Spll2 < C'[¢]wn n

= (In n)%,
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then, by (61) and (56) of Lemma 3.3, we get
19.(¢) = T (1—%C2 2)\ < 130(€) = Tnpm (O] + 00 ™ 1 s(©) = (1= 5 03) L1 (0]
< C[I¢|wan 5 (Inn)'/? s T|<|3w n™ In*(n) + n'="Ctwin® In(n)?
(62) < C’[|C|wn =5 (Inn)z + |CPwd n(Inn)? + Crwd n'*+ (Inn)?2.

Approximation of the exponential by a product

Below, ¢ will be such that || v, < 1. This is satisfied if

(63) IC| nEw,(logn)z < 1.

Lemma 3.4. If (pr)kes is a finite family of real numbers in [0, 1[, then
_ ) 1

(64) 0 < e ZwesPh — kl;[J(l —pr) < keZJpz, if 0<pp < §,W€.

Proof. We have In(1 — u) = —u — v?v(u), with % <wou) <1, for 0 < u < % and
1—e 28 <N gy, if S, e > 0.

Writing 1 — pp = e ? ¢, with ¢, = —(In(1 — pg) + px), the previous inequality implies
0<¢g < pﬁ, if 0 < pp < % Therefore, under this condition, we have:

0<e 2Pk — [, —px) = e—Zka(l _ e—ZJek) <e XY g <Y < Sopk O

We apply (64) with pj, = 2(2 v, ,, under Condition (63). In view of (52) it follows:
1,2 2 p(n)i 1 ) 2
65) 13T - [ (- 5l < ¢ Z oh < CCHwh n™* In’(n).

k=0 =0

The bound is like the last term in (62).

Conclusion
From (62) and (65), it follows:

[Ja(€) — e3¢ TR o < C[I¢ wnF (Inm)7 + [P wd n (nn)? + ¢l '+ (nn)?).
We replace ¢ by ﬁ; hence Condition (63) becomes

(66) n? wy(log n)% <1

15n]l2

.\ Sp(x) 1 a2 )

w
n1n?(n) +/\4“S”||4 n* In®(n)].

3
Wy,

1 T4+6 3
+ Al
15113

<Ol

.
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Since |e=% — e7?| < |a — b|, for any a,b > 0, we have, by (54):

n 2 p(n)—1 2
—1)2 ; 5% ”2 Zp( - UI% 1A 9 W, 1_ﬂ
2N < — S E Ch 2z 1 .
|6 € ’ -9 HS H2 |” HQ e Uk| HS H nn

Let us call respectively F; the error in neglecting the sums on the small blocks, Es the
2
error in the replacement of e 2% by exp(—3\? %), Es5 the error of order 3 in the
nll2
expansion, F, the approximation error of the exponential by the product.

-y Sn(z)
Finally we get the bound | fX e Sal du(x) — e_%’\2| <FE+E+E;+FE, <

1 ) 2

CliNyeT
||5 Hz 1S.5" HSnH
Denote by Y; a r.v. with N(0, 1)-distribution. Putting R,

1Snll3
the bound reads:

IISnllz
(67) C[IA|Run 5" + A2 R2n="2" Inn + |AP R3 nln®(n) + A* R: n 7+ In?(n)).
Notice that 0 can be taken arbitrary small. A change of its value modifies the generic
constant C' in the previous inequalities. Therefore we take 6 = 0 in the optimisation below,
keeping in mind that the constant factor in the inequalities depends on §. Likewise the
Inn factors can be neglected.

We have an inequality of the form H S (N < CZ?:I IA

nents are glven by the previous 1nequahty In view of (45), it follows that, up to a constant

@ ReinYi where the expo-

factor, d(HS B Y1) <
1 T+ Zoﬁl e Roi i < L +U,R,n = + L2 e n'=7 4+ 1U SR3n+4 - U4R4
Un - 1 n n — Un 2 n-"m 3 4 n

Now, we optimize the choice of U = U,,. As R, is less than n? for some 3 > 0, if we take
U, = n” with v > 0, then the previous inequality gives inside the bracket the bound:

nliTT_ﬁ"r’Y + 1n1—5—2,3+2'y + 1 n1—35+37 + 1n1+7_45+4,\/‘

2 3 4
We choose U, such that 1/U, is of the same order as the second term, i.e., we take
n~Y =nlTa 22 e ’y—ﬂ If 7=1andif =1—p withp>0, thenltglves
1-28 1
The four terms in the bound are respectively:
1 p 1 2p 1 1 4p

A)=——+7z, B)=—y=—=+—, (C)=—- D)=—=+—.

We check that (B) is the biggest term: (B) — (A) = 5+5% >0, (B)—(C)=¢—-% >

0,ifp<i, (B)—-(D)=35-2>0,ifp< i

This gives the bound stated in Proposition 2.1 for the distance to the normal law:

3 4
In?(n) + A2 0= Inn + APt ndn’(n) + M T I (n)].
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For every ¢ > 0, for N big enough, there is a constant C'(§) > 0 (depending only on )

rw 1
such that, if 7= < NP7z with p € [0, <[, then

SN 1-8p &

d(~———,Y1) < CO)N = ™ << 1.
[1Sn |2

To conclude, observe that, if w, < n? with p < § and ||S, [ > Cnz/(logn)z, (66) is
satisfied for |A\| < U,, = n?, since

1

z wn(log ’I’L)E

nnz ——=2_~
1502

wis

= Cno"% (logn)z < 1, for n big. O

N

<Cne'pri (logn)

4. Proof of Proposition 2.3 (decorrelation)

For the proof of Proposition 2.3, by homogeneity, we may assume that v and ¢ are BV
centered functions with variation < 1. Moreover, we may also assume b; = 1, Vi. Indeed,
the decorrelation inequalities will follow from bounds on sums of products of quantities

First we truncate the Fourier series of the ergodic sums ¢,. For functions in C, the remain-
ders are easily controlled and it suffices to treat the case of trigonometric polynomials.

For ¢ € C, the Fourier coefficients of order j # 0 of the ergodic sum ¢,, satisfy:

K ()] Injall
1 el

5y = (@) [sinmjal
" jI Tsmmjal

(68) <3

Recall also (cf. (8)) that, if ¢ is a denominator of «, then

q—1

lpqlloe =sup | Y p(x + La)] < V(p) and [|p,]l2 < 27 K(¢).
T y=0

We will use the notations: Sy f for the partial sum of order L > 1 of the Fourier series of
f e LAT), Rf := f — Spf for the remainder and, ¢, denoting the denominators of «,

(69) a, = i1 <api1+1, ¢:= ol 1 Tni1-

n n

Preliminary inequalities and truncation

We begin by some inequalities which are valid for any irrational number «.

Lemma 4.1. There is a constant C' such that, if q is a denominator of a,

1| Ljal? L
(70) s LBl oLy g
5z, 7% lljal q
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Proof. If f is a non negative BV function with integral u(f), by Denjoy-Koksma inequality
applied to f — u(f), we have

) -1 0o
fja LS 1 1 m oplf) V()
> Z QZf qurv")a)Sq—Q(Zi—z)(qu(fHV(f)):g(TﬂL )
= i=1 r=0 =1
Taking for f(z) respectively 1 %](|x|) and 311 %[(|x|) we obtain
1 1 1 1 1 L? L
7@t RleE <C @ty
Jilljell<+,5>q j:lljall>+,i>q
This implies (70), since for L < ¢:
—Z Lkl _ ;s 3 L Ll o Byl o
7% el = J? < el e T g
17 \> liell<+,5>q liell>1,3>q

We will use the good equirepartition of the numbers ||ka|| when k varies between 1 and g,
through two inequalities given in the following lemma, which will be used several times.

Lemma 4.2. We have

qt+1—1
(71) Z S Z S Cqir1 Inqeyq, Vt >0,
J=qt j=1
1 ! r
) Y <Y g, =0y a vr>o.
D T P
>~ r+1

Proof. There is exactly one element of the set {ja mod 1,5 = 1,...,¢;:11 — 1} in each

interval [q+ ,5:11[ =1,...,q:41 — 1. Moreover, for 1 < j < ¢, 1, one has ||ja| > quﬂ.
qr+1—1 1 qi+1—1

This implies: — < 2441 + < Cgqrir Inqeaq.
; ljal e_zl 0/ g

From (71) applied for ¢t = 1,...,r, we deduce (72):

Z Z Z Z Z | Z%ln%ﬂ- 0

1<j<gr+1 1=0 ¢t <j<qt+1 t<]<Qt+1

J |IJOéH J Hjall

Lemma 4.3. For ¢ € C, it holds

(73) ||S 7'S0qTL
Proof. Using the Fejér kernel, we get

o < CV(p) In(gr).

1 L 1% 1
154, Panlloo < g, lloo + . > 1% ()] £ l@gulloe + CK(9)— Y Tall
" lil<ar " =1

(73) follows by (8) and (71). O
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Truncation
Now we bound the truncation error for the Fourier series of the ergodic sums ¢y, 4, .

Lemma 4.4. If ¢ is bounded and ¢ € C, with C; = V(¢)?||t)]|oo, C2 = V(0)*[|¥]l00, up

to a numerical factor, we have, for ¢, < ¢m < q- < qu:

(74) \/@D CanPam — SaePan SaePam) Apt| < Cy ( " )%
(75) | [ 6 onenon, = Suctn, Sutun Sup il < Co (2} 1),
Proof. We use the bound (70) which gives, for ¢, < ¢,

IRLq 13 = 120 )P =D ‘%E?P Hﬁ;ﬁ"f <2 K(¢)2‘Z]—Z,

l71>ae |71>qe

For ¢ bounded, as ||¢q, [la < CK(p), this implies: | [ ¢ [©g.@am — SaPan SaePam] dit] <
an m \ 1
1 oo lllq ll2 1 Raeanll2 + 11 Raaull2 1., 12] < C V(@) ¥l [(@) +(== " )?].

This proves (74). For (75), in each term of the expansion of (S,,¢,, + Rq,¥q,) (SgPam +
Ry Pam) (Sqs+ Ray) = SauPan Saeam SarPars we bound one factor in L2-norm and the others
in uniform norm using (73). O

Inequalities under Hypothesis 1
Recall that the decorrelation inequalities of Lemma 4.5 are based on Hypothesis 1 on «.

From (29) in Hypothesis 1, one deduces: for constants B, C, the coefficients in Ostrowski’s
expansion satisfy b, < Bn” and, since ¢, < B™ (n!)?,

(76) Ing, <Cnlnn, ¢, <Cn’™ Inn.

The case when « has bounded partial quotients corresponds to p = 0 and we have then

Let us mention that Hardy and Littlewood in [14] considered quantities similar to that in
the lemma below. One of their motivations was to study asymptotically the number of
integral points contained in homothetic triangles.

Lemma 4.5. If a1 < AP VE > 1 and n < m < {, we have for every A > 1:

anjaH np+2 Inn
77 o mn
(77) Zy el = ¢ "am
HanCYHHkaaH C 2p+4 2
78 AN < A A,
@) 2 ik el Tkl S g XA

1<j,k<qn,j#k

i+ 7+ ki kel el [kl = g

—qa<i,j,k<qn,i+j+k#0
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Proof. 1) Proof of (77)

We use the inequalities: ””’“O‘H < lgre|| < — o

”q’”a” = (A) + (B), with

- for j < qui1, [[Fgrall < 1for j > . For

qe—1

> n, we write Z

7 el
(A) = qni_ll ||an04|| 1 Z 1
T2 G lel S g 2 T
qr+1—1 1 n st
Z Z ol < e = Ingeyr, by (72);
C]n+1 P L — Int+1 5 Ik
$ il _ Z N
(B) = m
2 lial <, A Tl
{—1 1 qr+1—1 - 1 q
k+1
< Z — Z ||— <C Z = gy, by (71).
k=n+1 (L J=ax Je k=n+1 Ak

By (4), we know that qz—:l < OpF™, with p < 1, for k > n+1. By hypothesis, aj; < AkP.

n p+2]
It follows with the notation (69): (A) < ¢ ch < Cn?"nn and for (B), with a

4n+1 15 Gn+1
bound which doesn’t depend on ¢ > n:
1 n = , CnPtlinn
Z Il Bl gy < O3 P (b n+ PP (i +n+1) < 0 O
Int1 27 Tk Gk Int1 555 Gn+1

2) Proof of (78)

To bound the sum in (78), we cover the square [1,gx[X[1,qa] in N x N by rectangles
Rys = [qr, @ri1[X[@ss gs+1]| for r and s varying between 0 and A — 1 and then we bound

the sum on each of these rectangles (minus the diagonal if r = s).

Distinguishing different cases according to the positions of r and s with respect to n + 1
and m + 1, we have, for j € [¢., ¢11[, k € [¢s, gs11], J # k-

lgnjall |gmke]| 1 1
k= jlikl7all |kl = Gmaxtrntt)@maxtsm+1) |k — j]ll7al]| kol

By (71) and (72), using ||(k — j)a|| < [ljall + [Fall), we have

Z 1 < Z ( 1 X 1 )
k= jllljedllkall = k=gl =Dl el |k =gk = g)all |kl

(jvk)ERT,S (j7k)€RT,S
max(r,s)

SQmaX(r,s)-‘rl hl(Qmax(r,s)—i-l) Z Ct-
t=0
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It follows
‘ max(r,s)
3 lgngallllgmball  _ Gmax(r,s)+1 I (Gmax(rs)r1) D €
(J.k)ERr,s, 7k k= lk g el [[Eall ™ Gmax(rins1) Gmax(s,m+1) t=0
) A
< 1 o
< — n(qat1) ;Ct (nax  ay

The square [1, ga[x[1, gs[ is covered by A? rectangles R, , and the sums on these rectangles
are bounded by the same quantity. It follows, with Hypothesis 1
A

j k
vy ladalllankal e © 405N max d < Camt ) o

1<5,k<qn, j#k k= jlkjljallllkall = gne — k=1,..,A Qi1

3) Proof of (79)

Here we consider sums with three indices 7, 7, k. Though we do not write it explicitly, these
sums are to be understood to be taken on non zero indices 4, j, k such that i + 5 + k # 0.
We cover the set of indices by sets of the form

R:I:r,:l:s,:l:t - {(27]7 k) NS [QTa QT-‘rl[v j:.] € [q87 QS-‘t—l[? +k S [Qta Qt+1[}

Distinguishing different cases according to the positions of r, s and ¢ with respect to n+1,
we get: if (4,7,k) € Riris+r and n <m < 0,

s lallanjallakal _ 1 |
’7’| ‘j| ‘k| Qmax(r,;n+1)dmax(s,n+1)dmax(t,n+1)
1 1 1 1 1
We have ———— < [+= - +——]
i el kel = [+ 5+ B)all il kel [licl[ [kl |lic]] [lje]

We then use (71) and (72) three times, sum over Ry, 1 +; and get:

1
2 it g+ kel {ljadl [kall

(ivjvk)eRﬁ: +s,+

3 max(r,s,t

Qmax(rs t)+1) (qs—l—lqt—l-l + gr+19t+1 + QT+IQS+1) .

v=0
By (80) we then have:
3 [gnicll|gmjel||gekel]
i 45+ KL ] R e e |k

Ry s+t

(Ziil(?}((r,&t) CU) 1112 (Qmax(r,s,t))
Gmax(r,n+1)4max(s,n+1)dmax(t,n+1)
3A

Cv) ln (ga+1)( max a 2,
D (1)(, max, af)

<C

(Gs+1Gt+1 + Gr1Q+1 + Gr19s41)

<
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One needs 8A® boxes Ry, 114 to cover the set {—qa < 1,7,k < qa, i +Jj + k # 0}. This
implies for a constant C:

> lgpiollanjollakal  _ C s

i sl 3+ R KTl TaT TkaT = Gus

Proof of Proposition 2.3

By (68) we have ]/wgoq du| < Z |2qn (j Hw Z lanjol d (32) follows
= =i HJ
p+2 1
mom (7): 3= 8 lg.joll o n™” Inn
< J Tjal =

We prove now (33). With L = ga, we have:

/ U Sig Sipadn= S En () (k) 00 — k).

71 |kI<L,j#k

In what follows, the constant C' is equal to V(1)V (¢)? (up to a factor not depending on
¥ and @) which may change.

Recall that, by (4), there is a constant B such that m < Blng,,, Vm > 1.

The functions v, ¢ are real valued. By (78), it holds | /1/1 SL®qn SLPqm dp| <

> mOlEm G -r <o Y il < Sy

KIS L.k S k= algklall kel = gn

Putting it together with the truncation error term (74) and replacing g,+1 by ¢,, we get

AZPH(In A)?
APTRAT L (@nyd) for < m < A

(81) |/ Y g, Pq, dp| < C'|
X dn ga

Recall that (‘;—TZ)% < p*2™. Let us take A — m of order 2(In %)*1 Ing,, i.e., such that

the second term in the bracket of the RHS of (81) is of order 1/¢,. We have then
A < max(m, Cilogq,) and with Hypothesis 1 the first term in the bracket is less than

m2p+5

1 max( (1n )%, m2+%) < 2 ma( (1n.g0) 2%, (1n.g)*%) < & (In g+ < C
qn qn dn dn

This shows (33) with 6, = 2p + 5.
In the same way, (34) follows from (75) and (79). O
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5. Appendix 1: proof of Proposition 1.4

Proof of Proposition 1.4

The proof consists in several steps. To bound from below d(ng;«, Z), successively we code
n as an admissible word (Ostrowski’s coding), reduce long words to short words, then
interpret cardinals in terms of cylinders and invariant measure for a subshift. Finally we
use a result of large deviations recalled in Lemma 5.1.

For the reader’s convenience, at each step we will consider first the simpler special case
of the golden mean o = @ (the corresponding rotation number is % €]0,1[). Then
the general case is treated between the signs “<»” and “A” and may be skipped if « is the

golden mean.

When « is the golden mean, its partial quotients are equal to 1 and (g,) (the Fibonacci
sequence with ¢_1 = 0,90 = 1,¢q; = 1,...) is almost a geometric sequence of ratio o. We
have

(82) qn = %[(2 +a)a"+ (-1)"B—a)a™"], n >0,
(83) A"+ (—a)™ e, d"Z)=a", n>1.

¢ For a general quadratic number «, the sequence (a,) is ultimately periodic: there are
integers ng, p such that a,, = a,, Vn > ny.

0 1 0 1 0 1 0 1 .
LetAl.—(1 Gn0+1>’Ai'_<1 an0+i>(1 an0+i1>“'(1 an0+1),f0rz>1.

From the recursive relation ( n ) = ( 0 1 ) ( n—1 ) , between the denomina-

An+1 I angr dn
tors (g,) of «, it follows, Vk > 1, nothptm—1 ) _ AmA’; ( Qno-1 ), m=1,..,p.
QH0+kp+m Qno

The matrix A, is a 2 x 2 matrix with determinant (—1)? and non negative integer coef-
ficients (positive if p > 1). It has two distinct eigenvalues A > 1 and —\~! (where ) is a
quadratic number) and it is diagonal in a basis of R? with coordinates in Q[A\]. We have
N+ (=A"Hr e Z

Without loss of generality we may suppose that p is even (otherwise, we replace it by 2p).

Therefore there are integers r, sy, ty, ug, v for £ € {0,...,p — 1} such that

1 ‘
(84) Gng thptt = — [(se + teA) N + (ug + v A) A7F], Wk > 0.

For every ¢, (¢no+kp+e)k>1 behaves like a geometric progression with ratio .
For the golden mean, (84) corresponds to (82) for n even and r = 5. A

1) Ostrowski’s coding, invariant measure for a subshift of finite type and counting
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As recalled in Subsection 1.1, every n < ¢,,+1 is coded by an “admissible” word by...b,,,
with by € {0,1,...,a; — 1}, b; € {0,1,...,a;41}, j = 1,...,m, where for two consecutive
letters bj—l; bj7 if bj = Qj41, then bj—l =0.

For a the golden mean, a finite word by...b,, is admissible if it is composed of 0’s and
1’s and two consecutive letters b;, b, 1 cannot be both 1. We denote by X the space of
one-sided infinite admissible sequences, that is sequences of 0, 1 without two consecutive
1’s. For simplicity the letter b will denote an admissible word, either finite or infinite.
The context will make clear if b is finite or not.

If b = by...by is an admissible word, we put ny, := Zf:o big;.

When « is the golden mean, we use the sub-shift (X, o), where 0 = oy is the shift on
X. Let u be the o-invariant probability measure on X of maximal entropy. Let C,, .,
denote the cylinder composed of sequences starting with xq...x,. For n > 1, depending
whether zy and z,, are both equal to 1, or only one of them, or none, we have
1 a a?
C = a ", a " or a "
#(Cro..z0) o+ 2 o+ 2 a+2

If £ C X is a union of cylinders of length n, its measure can be compared to the number
of cylinders which compose it:

o+ 2
85
( ) a—+1

w(E) < a " Card {cylinder W of length n: W C E} < (a+2) u(E).

& In the general case, let us consider the set of infinite admissible sequences corresponding
to the Ostrowski expansions for the periodic part of the sequence (a,):

X = {z = (x;)ien such that Vi z;_1x; # ua, ;1 with u # 0}.

The space X is invariant under the action of o’ (because (a,) is p-periodic for n > ng).
We define an irreducible aperiodic sub-shift of finite type as follows: the state space of
Y is the set of words xy...2,_; of X, a transition between two such words w; and wy is
allowed if the concatenation wjws is the beginning of length 2p of a sequence in X.

From (84) we see that the exponential growth rate of the number of Ostrowski expansions
of length at most ng + pk is In A (with respect to k). It is also the growth rate of the
number of words of length pk of X. As these words correspond to the words of length
k in Y, the topological entropy of (Y, o) is In A (where o = oy is the shift to the left on
Y). There is a unique invariant probability measure p on (Y, o) with entropy In A. This
measure can be constructed as follows. Let B be the matrix with entries 0 and 1 that
gives the allowed transitions between elements of the alphabet of Y. As the topological
entropy of Y is the logarithm of the spectral radius of B, this spectral radius is A\. Let U
and V be two positive vectors such that BU = AU, ‘BV = AV, UV = 1. The measure
i is the Markovian measure determined by its values on cylinders given by

M(Oyoyl---yn) = Vyo Uyn/\_n7

when yoy; ...y, is an admissible word (see [17] pp.21-23 and p.166 for more details on
this classical construction). As there are only finitely many products V,, U,,, there exists

n?
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a constant ¢ > 0 such that, if a subset F of Y is a union of cylinders of length n, then

1
(86) o p(E) < Card {W cylinders of length n: W C E} X" <d u(E). A

Lemma of large deviations

We will use the following inequality of large deviations for irreducible Markov chains with
finite state space (see [20], Theorem 3.3):

Lemma 5.1. Let A be finite union of cylinders. For every e €)0, 1], there are two positive

constants R(e), &(e) depending on A such that

87) plreX: %22: 14(c"2) < p(A)(1 — &)} < R(e) e=$OL L > 1.

2) Reduction of the Ostrowski expansion to a “window”

By (2) and (4) we have, for a constant p < 1, ||gig;al < Cp?~". Hence, for 0 < j < ¢, if
missuchthat0<j—m<j+ﬁ<fz

Jtr—1 j—k—1
®8) I Zb agsall =1 Y biggalll < | Z bigig;e]| + | Z bigigial| < Cp™"

1=j—K i=j+K
It means that || Y20_, bigigiall = ||npeq;all is well approximated by | Zi;’{__ﬁl biqiqio||

which depends on a word with indices belonging to a window around j, with a precision
depending on the size of the window. This is valid for any irrational «.

The quantity introduced in the next definition can be viewed as a function of an infinite
word b or of a finite word b;_,,, ..., bj1.,. We put

(59) Dbg) =2 S (1) (@ + (—a) ) e

A simple computation shows that I'(b, j + 1) = —I'(ob, j). Therefore we have:

(90) [(0%b, ko) = (=1)F T (b, k + ko).

Lemma 5.2. Let « be the golden mean For every § > 0, there is ko = Ko(0) such that
(91) d(npeqjoe — (b, ), Z/5) <6, if j > K.

Proof. We can restrict the sum ny qja = Zf:o bigiqja to the sum g:;fno biqiq;cv, since

their distance modulo 1 is small for k¢ big enough by (88).

1 92— o -1, o
By (82)7 we have 49 = —gaa“—j + Ta(_a)—(zﬂ) + % (&]—Z + (_a)z—]);
J+ko 1 J+ko . - o
hence: Z bigigjo0 = R Z [b; (1 + @)a™ 7+ 4 b; (=1)H (2 — @) "D 4 T(b, §).
i=j—ro i=j—Ko

The distance to Z of the first sum above at right is small by (83). O
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The lemma shows that for the golden mean the distance to Z/5 of Z?:o b; gi gjoc is almost
the distance to Z/5 of I'(b, j), which depends on the “short” word b;_,...bj4x, (reduction
to a window of width 2k¢ of the “long” word b...b;) in such a way that its values, when j
varies, are the values of a fixed function computed for shifted words.

¢ The lemma extends to a general quadratic number. We need some notation.

For an integer i, we write ¢ = 1+ pn; +ng, where ¢ is the class of i —ng modulo p and n; the
integer part of (i — ng)/p. The classes mod p are identified with the integers 0,...,p — 1.
With the notation introduced in (84), we put

.. (07 .. (%
T(i,j) = r—2(si+ tiN) (u; +v;A), U4, j) = ﬁ(ui+ VA (85 + 15 A).

Lemma 5.3. Let § €]0, 2—1T[ There is ko = Ko(0) such that, if §j > ng + Kop,

no+(n;+ro)p—1
(92)  dlmpegie— > b [TEHNY + U (i, AN ] Z/r) < 6.

i=no+(n;—kKo)p

Proof. Recall that (a,) is p-periodic for n > ny. We consider indices j > ngy and take
sums on windows union of blocks of length p, hence of the form ng+mp, ..., ng+qp — 1.
Using (84), the product ¢ugtkp+m Gno+k/p+m 1S €qual to

1 / /
= [(sm + tuN) (Spr + o DN (U, + 0 A) Uy + Ve A)ATFFE )}

1 ! !
+— [<sm ) (W O VA 4 (4 0 A) (S0 + L A)AF —’f] .
.
Still using (84), we have

Sm (Smr +twA) \par _ Sm

1 —(k'+k
, ” , (Gro+(k/+k)ptm’ — ;(um/ + U A) A (k'+ )).

From this (and a similar equality) we obtain

Qno+kp+m Qno+k'p+m' &

1 N N

= 5 [ ) s+ 0 N (1 + 0\ (50 + e DX 0@
Sm tm

= = Qnot (' +k)p+m @ + ot (K ket ptm

Sm Um’ — (k! tm (L
= 55 e S5EAN 05 i N,

Since d(gng+ (b +kyprm @ Z)7) < d(Qng (b +ypm @, Z) < CA~FH0) 1y (2) the distance of
the left side term above to Z/r is bounded by CA~*+%)_ Tt follows:

d(qigjoe — [T(@, YN + U (i, )NV "], Z/r) < CAPOH0) i 5 > g,
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Thus, using (88), for kg large enough and if j > ng + kop, we have:

no+(n;+ro)p—1
d(npeq;o0 — Z b; [T(z, AN+ U (G, l’))\’“_"ﬂ JZ]T)
i=no+(n;—kKo)p
no—+(nj+ro)p—1
< COXNFP 4 O Z AT ONTROP L 20 kg AT < 5. O

i=ng-+(n;—ro)p

JAN

3) From long words to short words

Lemma 5.4. Let 1 < {y < {1 < 0 be three integers and let A : by...by — by, ...by be
the “restriction” map from the set L of admissible words to shortened words. There is a
constant ¢ > 0 such that, if S is the image of A, for any subset P of S, we have

Card (P) < Card{w € L : A(w) € P}
Card (S) = ¢ Card (L) ‘

We can take c = 4 for the golden mean, ¢ = uy?, with ug = infys; 1=l in the general

q—1 "’
case.

Proof. The proof is given for the golden mean. The general case is analogous.

The ways of completing a short word into a long one depend only on the first letter by,
and the last letter b,,: if by, # 1, any admissible beginning fits; if b,y = 1, then only
the admissible beginnings finishing by 0 fit; if b, = 0 then any admissible ending fits; if
bs, = 1, only endings with 0 as first letter fit.

The number of admissible words of length r is ¢,,1, the number of admissible words of
length r beginning (or ending) by 0 is g,.

Let denote S;, @ = 1, ..., 4, the set of short words by, . ..b, such that b, = by, =0, by, =0
and by, =1, by, =1 and by, =0, by, = by, = 1, respectively.

Depending on the set S; to which A(w) belongs, the cardinal of Card A~} (A(w)) is Dy =
Qo Ge—t+15 Do = QegQe—er5 D3 = Quoo—1G0—1,+1, 0r Dy = qoy—19e—s, respectively.

Since, 2 5 < ¢ /qr+1 <1, for all v, we have D, = max; D;, Dy = min; D;, Dy < Dy < 4D,
and finally

4
Card (P) = ZCard (PNS;) :Z 1Card{w€£:/\(w)€7308i}
i=1

=1 Z

IA

1
DLZCard{wEE:A(w)EPﬂSi}— —Card{w € L : A(w) € P},
4

Dy

4
Card (S) = ZCard Z ! —Card{w € L: A(w) € §;} > DLCard (£). O
i=1 1

Z
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4a) End of the proof of Proposition 1.4 when « is the golden mean

Let § be a small positive number. Its value will be chosen later. It follows from (14) for
¢ big enough that, if qjjrll < 9:

(93) Card{n € [1,qi1[: d(ngja,Z/5) <36} < Cy0qe1,Vj < L.

If ko is big enough, from (91) in Lemma 5.2, we have with I'(b, j) defined in (89):
(94) d(npeqjo, Z/5) > 30 = d(I'(b, §),Z/5) > 26 = d(npeqjo, Z/5) > 6.
By taking kg large enough, we can suppose q;olﬂ < 0. By (93) (translated in terms of

words) for each j € [k, £], the proportion of words b = by ... b, of length ¢ + 1 for which
d(npeqjo, Z/5) > 30, is smaller than C16. Therefore, if £ > kg, we get

(95) Card {by...b,: d(I'(b,7),Z/5) <20} < C}qe, V] € [Ko, ).

But I'(b,j) depends only on the short word b;_, ...bj1s,, part of the long word b =
by ...bs. It follows, using Lemma 5.4 that

(96) Card {bj—ffo Ce bj+,{0 . d(F(b,j), Z/5) S 25} S 02 (5QQ,€0+2,Vj S [Iio, f]

Putting As :={b: d(I'(b, ko), Z/5) > 26}, it follows from (96) and (85):

p(AS) < a2 2Card {bj_n, - - - bjir : A(T(b,5),Z/5) < 26} < Co 6qamyroa 7072 < C36.
Let Cy be a constant > C5 and ¢ = C4d. Observe that we can chose ¢ large enough

so that p(As) (¢ — ko) > (1 —€) ¢ indeed, we have p(As) — (1 —¢) > 0 and by taking
0> pu(As)ko/(u(As) — (1 —€)) we obtain the required inequality.

Now we use r_o 14,(c%b) = Card {k < L : d(T'(c*b, ko), Z/5) > 26} and (90). Accord-
ing (94) with j = k+ ko and Lemma 5.1 with A = As and ¢ = C;§ (we assume § < C; 1),
there are two positive constants R = R(¢), £ = £(e) such that

p{b € X : Card{j € [ro, L + ko[- d(T'(b,),Z/5) > 26} < u(As)(1 —e)L} < R(e) e
Using “=" in (94), we have therefore, taking L = ¢ — ko, for £ — kg > j > Ko,

p{b € X : Card {j € [ro, £[: d(npeqja,Z/5) > 0} < pu(As)(1 —)(£ — ko) } < Re 8Er0),

By (85), the previous inequality translated in terms of cardinal yields for a constant Cj:
Card {by...b;: Card{j < £: d(npeqicr, Z)5) > 6} < (1 — C40)%} < Cse ' quy1.

If § is taken small enough to get (1 —gy) < (1 — C40)? and using that e is equivalent
to a power of qo1 (because (q)¢ is equivalent to a geometric progression), the previous
inequality shows (20) of Proposition 1.4. O
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& 4b) End of the proof of Proposition 1.4 for a general quadratic number
As for the golden number, we take a positive number o whose value will be fixed later.
By (14), if ¢ is large enough, we have for some C; > 0
Card{n € [1, qi+1[: d(ngjo,Z/r) < 36} < Cy0qe41,Vj € [no + Ko, {);
hence, in terms of admissible words by ... by, if j € [ng + ko, ¢,

(97) Card{by...bs: d(npeqjor,Z)r) <30} < Cyqes1.

Let I';,I'Y be the functions on Y

no~+(nj+ro)p—1

Fj(b) = Z b; [T(Z’ l’))\m—m’ + U(ia l’))\m—m} 7
i=no+(nj—kKo)p
no+2kop—1

L) o= > b [T( N + Ui, jIAo"] .

1=ng

Remark that the sums on the right can be viewed as functions of y through the b;’s.
Letting yr = bpgskp - - - Ong+ikptp—1, We see that the sum inside the definition of I'; is a
function of ¥, —wy - - Y rro—1-

Let As be the subset of Y defined by

As = {y: d(Fg(y),Z/r) > 26, forj=0,...,p—1}.
By (92) in Lemma 5.3, if ky is sufficiently large, we have the implication
(98) d(npeq;a, Z)1) > 36 = d(T'j(b), Z/1) > 26.

As j =7 —p, njrp=mn; +1and ni, = n; + 1, we obtain by 7; — ko iterations:

no+(n;+r0)p—1 no+(n; —1+rK0)p—1
> T N = > bispT (i + p, j)NT P
i=no+(n;—kKo)p i=no+(n;—1—rKo)p
no+(nj—p+ro)p—1 no+(nj—p+ro)p—1
= Z bitp (4, l’))\mﬂ—m — Z bipT (i j)NT i
i=no+(1j—p—kKo)p i=no+(n;—p—kKo)P

n0+nj— (nj —no)p‘i’ﬂop*l

= .. = Z bi-i-(nj—f-io)pT(L Z)Ani_nj*("?jfﬁ())lﬂ'

Z‘:n()"'(nj*(vj *“o)p_’m)p

no+2kop—1
Since 1, (n;—ro)p = Ko, the last quantity reduces to Z bi+(nj_,{0)pT(g', i)/\m—no.

i=ng
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no-+(n;+ro)p—1
The same computation can be done for Z biU (i, j)A\"~"™. Taking the sum for

i=no-+(nj—kKo)p

the T"s and U’s, we get
(99) Lj(y) =Tj(c""y).
From (98), (97) and (99), it follows, if £ > ng + 2kep and j > ng + Ko,
Card{bg...be: d(T;(c™ "™y),Z/r) <20} < C10Geia.
But I')(c"~"y) depends only on the short word bng+(y;—ro)p - - - no+(n;+ro)p—1, Which is a
sub-word of the “long” word by . ..b,. By Lemma 5.4 we obtain for constants Cs, C5 > 0:

(100) Card{bng+(n;—ro)p - - - Oro+(nj+ro)p—1 : d(Fg(am_”Oy),Z/r) < 20} < CpoN*,
Then, (100) and (86) imply that
(101)  u(A5) =p{y € Y : d(T),(y),Z/r) <26, m =0,....p— 1} < Cs0.

Now, we have
n—1
Z 14,(c"y) = Card{k < n: d(I'° (c"y),Z/r) > 20, m =0,...,p — 1},
k=0

no+(k+2ko)p—1
Doty = 3 b [TEmAT R U mpaen ],
i=ng+kp
and, if j = (k + ko)p +m € [ng + Ko, £] (i.e., n; = k + Ko, j = m),
d(T° (o*y), Z/r) > 26 = d(npeqja, Z)7) > 0.
In particular:
pCard{k < ny — ko : d(T° (c*y),Z/r) > 25, m =0,....,p— 1}
< Card{j < (ne — ko)p : d(npeq;ce, ZJ1r) > 6}
By Lemma 5.1, for the Markov chain deduced from Y with state space the set of words
of length 2k in Y, we get from (87):
pl{y : Card {j < (ne—ro)p : d(npeqja,Z)7r) > 6} < pu(As)(1—&)p(ne— ko) } < Recm=ro),
This can be translated in terms of cardinal using (86):
Card{yo . .. Yn,—no : Card{j < (ne—ro)p : d(npeqje, Z)1) > 6} < p(As)(1—)p(ne — ko) }
is smaller than Cye$0e—r0) \ne—+o Tt implies
Card {by...by: Card{j < {: d(npeqja,Z/r) > 6} < pu(As)(1—&)p(ne—rio)} < CyeSme=ro) \me=ro,
If ne > (ko + 1)/e (that is ¢ > p(ko + 2)/e), then p(ny — ko) > (1 — €)¢ and, for some

Cs > 0, there are less than Cse ¢\ words b of length ¢ such that
¢

(102) Card{j < (: d>_ bigigje, Z/r) > 6} < p(As)(1 — €)1

=0
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By (101), for &g > 0, we can choose € and § such that p(As)(1 —¢)? = 1 —gp. On the
other hand, since ¢ 'qu1 < A < cquqq for some ¢ > 0, Cge SN < (%qﬁf, for some
positive constants ¢, C;. Finally, we have obtained (20) (in terms of number of admissible
words):

Card {by...bs: Card{j < €: d(npeqja,Z)r) > 6} < (1 —go)l} < C7ql};f. O

6. Appendix 2: weighted orthogonal functions

Let (g,) be a sequence of orthogonal real functions in L? of a probability space (X, u)
and (u,) be a sequence of positive constants. By the Lebesgue dominated convergence
theorem, if the functions g, are uniformly bounded, the following condition

N 2
(103) lim % =0
m (ko Uk)?

is necessary for

N
(104) lim iz Ui 9e() =0, for a.e. .

N D k1 Uk

(103) is satisfied if the following condition holds:

(105) 1<u, <n",Vn>1, with 0 <~ < 1.
N2 N N
Indeed we have % < (mj\éx Uy ) 2 =1 U o max;_, Uk < N 0.

= N =N
D k=1 Uk)? h=1 QO we)® — (Xmy un)
But (103) and the result of Proposition 6.1 can fail if the parameter v in (105) is taken

> 1. Indeed, suppose that ||gx|l = 1, and let us take u, = k if k is a power of 2, else

Then, we have 1 < uy, < k, Yoo ul > $22" and S22 ug = 2" — (n+ 1), so that
"2
1
B T el [y
(D ke ur) 3

Proposition 6.1. Let (gx)x>1 be a sequence of orthogonal functions in L*(X, i), bounded
in L? norm. Under the condition

Wil

1
(106) 1<u, <n?, with0<~vy< 5
1t holds
ZN ug, g ()
(107) lim &=£=1 =0, for a.e. x.
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Zgﬂ uy, gr.()
chvzl Ug
there is a constant C such that / |Ry(z)|? dp < C N7 which implies Y07 | || Rur |13 <

+o0, if p(1 —2v) > 1. *

As 1 —2v >0, we can choose p such that p(1 — 2v) > 1. We have then: lim, R,»(z) = 0,
for a.e. z. Therefore, it suffices to show that:

hm sup |Rprie(x) — Rpp(x)| = 0, where J, ={0,1,...,(n+ 1)’ —n? — 1}.

Ledn

Proof. 1) Setting Ry(z) :=

, by orthogonality and the conditions on wy,

2) For reals A, C, By, Dy, { € J,, with C, D, > 0, it holds:
A+ By A _ maxey, | Be| +[A]

max| o, ol = c

Py
This implies, with A = Zk | Uk gk, Be = Zk w1 Uk Gk, C = Zk L Uk, Dp = >0 ;PH U,

maxees | Yo toey WOkl |0, 9k|
npP + npP
i1 Uk k=1 Uk

P — Iipp S
(108) Max | Rw-() — Ruw (7))

By a lemma of Rademacher-Mensov ([11], p. 156), if Y7, ..., Y, are mutually orthogonal
functions in a probability space (X, 1) with finite variances o?, ..., 0%, then

y4
(109) E[(r?iafi(z Y;))?] < C(log(4L)) Zaﬁ

If we put M,, , := maxyey, | Zzzrj, ukgr|, then by (109) we have

(N+1)p 1 (n+1)P 1
E(Mg,ﬁ < C(log(4pn”™) Z u < C(log(4pnP) Z il
j=nP j=npP

< C'(logn)? nP~tn?7 = C'(log n)? nP+1-1
It follows:
E[(maneJ | ZZ:; Uk G| )2] < (logn)?n

ne o - 2p
Zj:l U n

Therefore, since 2y — 1 < 0, we have

p(2y+1)—1

= ("(logn)? nP DL,

ZE maXeeJ|Zk nP Uk:gk!) ] < +00,
k 1“k
so that lim ——oxtes | %k:”p kG| =0, a.e.
" k=1 Uk

Both terms in the right side of (108) converge a.e. to 0, which implies a.e.:
lim max |Rppie(x) — Rop(x)] = 0. O
n €dn
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