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ON THE CLT FOR ROTATIONS AND BV FUNCTIONS

JEAN-PIERRE CONZE AND STÉPHANE LE BORGNE

IRMAR - UMR 6625, F-35000 Rennes, France

Abstract. Let x 7→ x+ α mod 1 be a rotation on the circle and let ϕ be a step func-
tion. We denote by ϕn(x) the corresponding ergodic sums

∑n−1
j=0 ϕ(x+ jα). For a class

of irrational rotations (containing the class with bounded partial quotients) and under
a Diophantine condition on the discontinuity points of ϕ, we show that ϕn/‖ϕn‖2 is
asymptotically Gaussian for n in a set of density 1. The proof is based on decorrela-
tion inequalities for the ergodic sums taken at times qk, where (qk) is the sequence of
denominators of α. Another important point is the control of the variance ‖ϕn‖22 for n
belonging to a large set of integers. When α is a quadratic irrational, the size of this set
can be precisely estimated.
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Introduction

For a dynamical system (X,µ, T ) and an observable ϕ on X, a general question is the

asymptotic behaviour in distribution of the ergodic sums
∑L−1

0 ϕ◦T k after normalisation.
For a large class of observables and chaotic systems, many results of convergence toward
a Gaussian distribution are known.

When the dynamical system has zero entropy, in particular for a rotation, the situation
is di�erent. Nevertheless one can ask if, at least, there are observables satisfying a non
degenerate Central Limit Theorem. In this direction there are positive answers: R. Burton
and M. Denker [4] in 1987, then T. de la Rue, S. Ladouceur, G. Peskir and M. Weber [9],
M. Lacey [18] proved for rotations the existence of functions whose ergodic sums satisfy
a CLT after self-normalization. In general for a measure preserving aperiodic system,
further results by D. Volný and P. Liardet [21], J.-P. Thouvenot and B. Weiss [23] showed
that any distribution can appear as a limiting distribution of the ergodic sums of some
functions after normalisation.

A di�erent question is to ask if, for smooth systems, there is a CLT for explicit functions
in a certain class of regularity. Here we consider step functions on X = R/Z and their
ergodic sums ϕn(x) :=

∑n−1
0 ϕ(x+ jα) over an irrational rotation x 7→ x+ α mod 1.

By the Denjoy-Koksma inequality, if ϕ is a centered function with bounded variation, the
sequence (ϕn) is uniformly bounded along the sub-sequence of denominators of α. But,
besides, a stochastic behaviour at a certain scale can occur along other sub-sequences
(nk). We propose a quantitative analysis of this phenomenon.

Let us mention the following related papers. For ψ := 1[0, 1
2

[ − 1[ 1
2
,0[, F. Huveneers [15]

studied the existence of a sequence (nk)n∈N such that (ψnk) after normalization is asymp-
totically normally distributed. In [6] it was shown that, when α has unbounded partial
quotients, along some subsequences the ergodic sums of ϕ in a class of step functions can
be approximated by a Brownian motion.

Here we will use as in [15] a method based on decorrelation inequalities which applies
in particular when the sequence of partial quotients of α is bounded (α is said to be of
bounded type or bpq) or under a slightly more general Diophantine assumption. It relies
on an abstract central limit theorem valid under some suitable decorrelation conditions.
If ϕ is a step function, we give conditions which ensure that for n in a set of integers of
density 1, the distribution of ϕn/‖ϕn‖2 is asymptotically Gaussian (Theorem 2.4). Beside
the remarkable recent �temporal� limit theorems for rotations of bounded type (see [1], [2],
[10], [3]), this shows that a �spatial� asymptotic normal distribution can also be observed
for n in a large set of integers.

An important point is the control of the variance ‖ϕn‖2
2. In Section 1, we study the set of

integers for which the variance ‖ϕn‖2
2 of the ergodic sums is big (expected to be of order

lnn for n belonging to a set of density 1, in the case α bpq). The most precise information
is obtained in the special case where α is a quadratic irrational in Subsection 1.4.
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The central limit theorem is presented in Section 2. It is based on the decorrelation
between the ergodic sums at times qk (the denominators of α) and on an abstract central
limit theorem. To apply the results to a step function, a Diophantine condition is needed
on the discontinuities of ϕ which holds generically.

The proofs of the CLT and the decorrelation are given in Sections 3 and 4. In Appendix
1, we prove a proposition used for quadratic numbers in the study of the variance.

The results of this paper have been announced in [5]. The authors thank the referees for
their helpful remarks.

1. Variance of the ergodic sums

Notation The uniform measure on T1 identi�ed with X = [0, 1[ is denoted by µ. A
function ϕ on T1 is viewed as a 1-periodic function of a real variable. We denote by V (ϕ)
the variation of the restriction of ϕ to [0, 1] and write BV for �with bounded variation�.

The class of real centered BV functions on T1 is denoted by C. It contains the 1-periodic
step functions with a �nite number of discontinuities. The Fourier coe�cients of a function
ϕ are denoted by ϕ̂(r). For ϕ ∈ C, we can write:

ϕ̂(r) =
γr(ϕ)

r
, r 6= 0, with K(ϕ) := sup

r 6=0
|γr(ϕ)| ≤ V (ϕ)

2π
< +∞.(1)

Let α = [0; a1, a2, . . .] be an irrational number in ]0, 1[, with partial quotients an = an(α),
numerators pn and denominators qn, n ≥ 1.

The ergodic sums
∑n−1

j=0 ϕ(x + jα) of a 1-periodic function ϕ for the rotation by α are

denoted by ϕn(x). Their Fourier expansion is ϕn(x) =
∑
r 6=0

γr(ϕ)

r
eπi(n−1)rα sin πnrα

sin πrα
e2πirx.

If ϕ ∈ C, then V(ϕn) ≤ nV (ϕ) and |ϕ̂n(r)| = |γr(ϕ)|
|r|

| sin πnrα|
| sin πrα|

≤ nK(ϕ)

|r|
, r 6= 0.

1.1. Reminders on continued fractions.

In this subsection, we recall some classical results on diophantine approximation. For this
material we refer to [16] or [19], as well as J. Beck's book [2].

For u ∈ R, {u} denotes its fractional part and ‖u‖ := infn∈Z |u− n| = min({u}, 1− {u})
its distance to Z. Recall that 2‖x‖ ≤ | sin πx| ≤ π‖x‖, ∀x ∈ R.
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For n ≥ 1, writing α =
pn
qn

+
θn
qn
, we have

1

an+1 + 2
≤ qn
qn+1 + qn

≤ qn‖qnα‖ = qn|θn| ≤
qn
qn+1

=
qn

an+1qn + qn−1

≤ 1

an+1

,(2)

θn = (−1)n‖qnα‖, α =
pn
qn

+ (−1)n
‖qnα‖
qn

,
1

2
q−1
n+1 ≤ θn ≤ q−1

n+1,(3)

qn+1/qn+k ≤ C ρk, ∀n, k ≥ 1, with C =
5 +
√

5

2
, ρ =

√
5− 1

2
< 1.(4)

Let us show the last inequality: for n ≥ 1 �xed, putting r0 = qn, r1 = qn+1, rk+1 =
rk + rk−1, for k ≥ 1, we have qn+k ≥ rk, ∀k ≥ 0, by induction and (4) follows easily.

For n ≥ 1, we denote by m(n) the integer such that n ∈ [qm(n), qm(n)+1[.

If α has bounded partial quotients (i.e., sup an <∞), then m(n) is of order lnn.

Ostrowski's expansion ([22], [2])

Every integer n ≥ 1 can be represented as follows (α-Ostrowski's expansion):

if n < qm+1, n =
m∑
k=0

bk qk,with 0 ≤ b0 ≤ a1 − 1, 0 ≤ bk ≤ ak+1 for 1 ≤ k ≤ m.(5)

Indeed, if n ∈ [q0, q1 = a1[, then (5) is satis�ed, and if n ∈ [qm, qm+1[ with m ≥ 1, we
write n = bmqm + r, with 1 ≤ bm ≤ am+1, 0 ≤ r < qm. By iteration, we get either r = 0
at some point and the algorithm stops, or n ∈ [q0, q1[. In either cases we obtain (5).

In this way, we can code every n < qm+1 by a word b0...bm, with b0 ∈ {0, 1, ..., a1− 1} and
bj ∈ {0, 1, ..., aj+1}, j = 1, ...,m.

In this representation, bm(n) 6= 0 and bj = 0 for m(n) < j ≤ m when m > m(n). In the
latter case, there are m−m(n) zero's at the right end. For a given m and n < qm+1, this
Ostrowski's expansion is �proper� (without zeros at the end) if m = m(n).

For m ≥ 0, we call admissible of length m + 1 a �nite word b0...bm such that b0 ∈
{0, 1, ..., a1 − 1}, bj ∈ {0, 1, ..., aj+1}, for j = 1, ...,m and such that, for two consecutive
letters bj−1, bj, if bj = aj+1 then bj−1 = 0.

Remark that if b0...bm is admissible, m ≥ 1, then b0...bm−1 is admissible. Let us show
by induction that the Ostrowski's expansion of an integer n is admissible. Let n be in
[qm, qm+1[. We start the construction of the expansion of n as above. Now the following
steps of the algorithm yield the Ostrowski's expansion of n − bmqm. Since n − bmqm ∈
[0, qm[, the Ostrowski's expansion of n− bmqm is admissible. It remains to check that, if
bm = am+1, then bm−1 = 0. But if bm−1 6= 0, we would have n ≥ am+1qm + qm−1 = qm+1,
a contradiction.

Conversely, if b0...bm is admissible, one shows by induction that b0+b1q1+...+bmqm < qm+1.
This holds if m = 0, since b1 < q1 = a1. Assume that this is true for the length m. Let
b0...bmbm+1 be admissible of length m+ 1.
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If bm+1 = am+2, then bm = 0 and b0 + b1q1 + ...+ bmqm = b0 + b1q1 + ...+ bm−1qm−1 < qm,
so that b0 + b1q1 + ...+ bm+1qm+1 < qm + am+2qm+1 = qm+2.
If bm+1 ≤ am+2 − 1, then b0 + b1q1 + ...+ bm+1qm+1 < qm+1 + (am+2 − 1) qm+1 < qm+2.

Therefore, if we associate to an admissible word the integer n = b0 + b1q1 + ... + bmqm,
there is a bijection between the Ostrowski's expansions of integers n < qm+1 and the set of
admissible words of length m+ 1. The number of admissible words of length m is qm− 1.

For n given by (5), putting n0 = b0, nk =
∑k

t=0 bt qt, for k ≤ m(n), we have

ϕn(x) =

m(n)∑
k=0

nk−1∑
j=nk−1

ϕ(x+ jα) =

m(n)∑
k=0

bk qk−1∑
j=0

ϕ(x+ nk−1α + jα)

=

m(n)∑
k=0

bk−1∑
i=0

ϕqk(x+ (nk−1 + iqk)α) =

m(n)∑
k=0

fk(x),(6)

with fk(x) :=

bk−1∑
i=0

ϕqk(x+ (nk−1 + iqk)α) = ϕbkqk(x+ nk−1α),(7)

By convention, we put
∑bk−1

i=0 ϕqk(x+ (nk−1 + iqk)α) = 0, if bk = 0.

If ϕ is a BV centered function, then it holds (Denjoy-Koksma inequality):

‖ϕq‖∞ = sup
x
|
q−1∑
i=0

ϕ(x+ iα)| ≤ V (ϕ), if q is a denominator of α.(8)

One can also show that if ϕ satis�es (1) then ‖ϕqn‖2 ≤ 2πK(ϕ). By (8), we have for fk
de�ned by (7): ‖fk‖∞ ≤ bkV (ϕ) ≤ ak+1V (ϕ).

1.2. Bounds for the variance.

Let ϕ ∈ C and n ∈ [q`−1, q`[. The variance is bounded from below as follows:

‖ϕn‖2
2 = 2

∑
k>1

|ϕ̂(k)|2 (sinπnkα)2

(sinπkα)2
≥ 2

∑̀
j=1

|ϕ̂(qj)|2
(sin πnqjα)2

(sinπqjα)2
≥ c0

∑̀
j=1

|ϕ̂(qj)|2
‖nqjα‖2

‖qjα‖2
,

with c0 = 8
π2 . Therefore, by (2) we have, for 0 < δ < 1

2
,

‖ϕn‖2
2 ≥ c0

∑̀
j=1

|γqj(ϕ)|2 a2
j+1 ‖nqjα‖2 ≥ c0 δ

2
∑̀
j=1

|γqj(ϕ)|2 a2
j+1 1‖nqjα‖≥δ.(9)
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An upper bound for the variance and a lower bound for the mean of the variance are
shown in [6]: there are constants C, c > 0 such that

‖ϕn‖2
2 ≤ C K(ϕ)2

m(n)∑
j=0

a2
j+1,(10)

1

n

n−1∑
k=0

‖ϕk‖2
2 ≥ c

m(n)−1∑
j=0

|γqj(ϕ)|2 a2
j+1.(11)

Inequality (9) gives a semi explicit lower bound for the variance. Note that by (8), the
variance is small if n is a denominator qi of α. In this case, as expected, one �nds that
the lower bound given by (9) is small. Indeed, by (4), we have ‖qiqjα‖ ≤ C1ρ

|i−j|, with
ρ < 1, for a constant C1, so that, for a given δ > 0, the number of j's less than ` such
that ‖qiqjα‖ ≥ δ is bounded independently from `.

Now our �rst goal will be to bound from below the variance ‖ϕn‖2 by a big value for n in
a large set.

Bounds for the variance for n in a large set of integers

According to (9), a lower bound for ‖ϕn‖2 depends on two separate conditions:

First we need the following condition on the Fourier coe�cients of ϕ:

∃M, η, θ > 0 such that Card {j ≤ N : aj+1 |γqj(ϕ)| ≥ η} ≥ θ N, ∀N ≥M.(12)

This condition clearly holds when ϕ is the function ϕ0(x) = {x} − 1
2
, since in this case

|γqj(ϕ0)| = 1
2π
,∀j. Its validity, related to Diophantine conditions on the points of discon-

tinuities, will be discussed for some step functions in Subsection 2.2.

For j < `, we will estimate how many times {nqjα} ∈ Iδ := [0, δ] ∪ [1 − δ, 1] for n ≤ q`
and deduce from this estimation that

∑`
j=1 1Iδ({n qj α}) =

∑`
j=1 1‖nqjα‖≤δ is small for a

large set of values of n.

Lemma 1.1. For every δ ∈]0, 1
2
[ and every interval of integers I = [N1, N1 +L[, we have

N1+L−1∑
n=N1

1Iδ({n qj α}) ≤ 20 (δ + q−1
j+1)L,∀j such that qj+1 ≤ 2L.(13)

Proof. For a �xed j and 0 ≤ N1 < N1 + L, let us describe the behaviour of the sequence
(‖n qjα‖, n = N1, ..., N1 + L− 1).

Recall that (modulo 1) we have qjα = θj, with θj = (−1)j‖qjα‖ (see (3)). We treat the
case j even (hence θj > 0). The case j odd is analogous.

We are going to count how many times, for j even, we have {n θj} < δ or 1− δ < {n θj}.
We start with n1 := N1. Putting w(j, 1) := {n1 θj}, we have {n θj} = w(j, 1) + (n−n1)θj,
for n = n1, n1 + 1, ..., n2 − 1, where n2 is such that w(j, 1) + (n2 − 1 − n1) θj < 1 <
w(j, 1) + (n2 − n1) θj.
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Putting w(j, 2) := {n2 θj}, we have w(j, 2) = w(j, 1) + (n2−n1) θj − 1 < θj. Starting now
from n2, we have {n θj} = w(j, 2) + (n − n2)θj for n = n2, n2 + 1, ..., n3 − 1, where n3 is
such that w(j, 2) + (n3 − 1− n2) θj < 1 < w(j, 2) + (n3 − n2) θj.

We iterate up to R(j), where nR(j)−1 < N1 + L ≤ nR(j). This construction yields a
sequence n1 < n2 < ... < nR(j) such that {nθj} = w(j, i) + (n− ni)θj, ∀n ∈ [ni, ni+1[, and

w(j, i) + (ni+1 − 1− ni) θj < 1 < w(j, i) + (ni+1 − ni) θj,

with w(j, i) de�ned recursively by w(j, i + 1) = {w(j, i) + (ni+1 − ni) θj} and satisfying
w(j, i) < θj, for i = 1, ..., R(j).

Since (ni+1 − ni + 1) θj ≥ w(j, i) + (ni+1 − ni) θj > 1 for i 6= 1 and i 6= R(j), we have

ni+1 − ni ≥ θ−1
j − 1, for each i 6= 1, R(j). This implies R(j) ≤ L

θ−1
j − 1

+ 2.

For each i, the number of integers n ∈ [ni, ni+1 − 1[ such that {nθj} ∈ [0, δ[∪ ]1− δ, 1[ is
bounded by 2(1 + δ θ−1

j ). (This number is less than 2 if δ < θj.)

Altogether, using (3) and the assumption 2L ≥ qj+1, the number of integers n ∈ I such
that {nθj} ∈ [0, δ[∪ ]1− δ, 1[ is bounded by

2R(j)(1 + δ θ−1
j ) ≤ (

2L

θ−1
j − 1

+ 4) (1 + δ θ−1
j ) ≤ 4 (L+ θ−1

j ) (δ + θj)

≤ 4 (L+ 2qj+1) (δ + q−1
j+1) ≤ 20 (δ + q−1

j+1)L. �

Remark 1. For every δ ∈]0, 1
2r

[ and every interval [N1, N1 + L], we have by a slight
extension of Lemma 1.1:

(14) Card {n ∈ [N1, N1 + L] : d(nqjα,Z/r) ≤ δ} ≤ 20r (δ + q−1
j+1)L, if qj+1 ≤ 2L.

Lemma 1.2. Let I = [N1, N1 + L] be an interval and ` such that q` ≤ 2L.

a) For all δ ∈]0, 1
2
[ and ζ ∈]0, 1[, the density of set

A := {n ∈ I : Card (j < ` : d(nqjα,Z) ≤ δ) ≤ ζ`}(15)

satis�es

Card(A) ≥ (1− 20 ζ−1 (δ + C`−1))L.(16)

b) Under Condition (12) on ϕ, there are positive constants η0, c (not depending on δ) such

that, for every δ ∈]0, 1
2
[, the subset V (I, δ, `) := {n ∈ I : ‖ϕn‖2 ≥ η0 δ

√
`} satis�es:

Card (V (I, δ, `)) ≥ (1− c (δ + `−1))L.(17)

Proof. a) Let Ac = I \A be the complementary of A. We will �nd an upper bound of the
density L−1 Card(Ac) by counting the number of values of n in I such that ‖nqjα‖ < δ in
an array indexed by (j, n).



8 JEAN-PIERRE CONZE AND STÉPHANE LE BORGNE

By summing (13) from j = 0 to j = `− 1 and using the de�nition of A, we get:

20 (δ`+
∑

0≤j≤`−1

q−1
j+1)L ≥

∑
0≤j≤`−1

∑
n∈I

1Iδ({n qj α})

≥
∑
n∈Ac

∑
0≤j≤`−1

1Iδ({n qj α}) ≥
∑
n∈Ac

ζ ` = ζ `Card(Ac).

With C :=
∑∞

j=0 q
−1
j , we have Card(Ac) ≤ 20 ζ−1 (δ + C`−1)L, so (16) is shown.

b) With ζ = 1
2
θ, where θ is the constant in (12), in view of the de�nition of A and (12),

we have, for n ∈ A:

Card
(
{j ≤ `− 1 : ‖nqjα‖ ≥ δ}

⋂
{j : |γqj(ϕ)| ≥ η}

)
≥ (1− (ζ + 1− θ)) ` =

1

2
θ `.

Putting c := 20 ζ−1 max(1, C) and η0 = (1
2
c0 η

2 θ)
1
2 , this implies by (9) and (16):

‖ϕn‖2
2 ≥

1

2
c0 δ

2 η2 θ ` = η2
0 δ

2 `, ∀n ∈ A, and Card (A) ≥ 1− c (δ + `−1)L;(18)

hence A ⊂ V (I, δ, `) and therefore V (I, δ, `) satis�es (17). �

The constants c and η0 below are those of Lemma 1.2.

Theorem 1.3. Under Condition (12) on ϕ, the density of the subset

W := {n ∈ N : ‖ϕn‖2 ≥ η0

( m(n)

lnm(n)

) 1
2}

satis�es for every N ≥ 1:

Card
(
W ∩ [0, N [

)
N

≥ 1− 2c (lnm(N))−
1
2 .

Proof. Since t/ ln t is increasing for t ≥ e, we have, after the �rst terms, for n inW c∩[0, N [:

‖ϕn‖2 < η0

( m(n)

lnm(n)

) 1
2 ≤ η0

( m(N)

lnm(N)

) 1
2 .

Therefore, by b) of Lemma 1.2 with I = [0, N [, L = N , δ = (lnm(N))−
1
2 and ` = m(N),

it follows

Card
(
W c ∩ [0, N [

)
N

≤ c (lnm(N))−
1
2 + cm(N)−1 ≤ 2c (lnm(N))−

1
2 . �

1.3. A counter-example.

In the next sections we will show that, under a Diophantine condition on α, for a big
set of n, the distribution of ϕn/‖ϕn‖2 is approximately Gaussian. In particular, by (11),
if n` ≤ q`+1 is an integer such that ‖ϕn`‖2 = maxk<q`+1

‖ϕk‖2, then we have the lower

bound ‖ϕn`‖2
2 ≥ c

∑`−1
j=0 |γqj |2a2

j+1. Under Condition (12), it can be shown that, for these
indices n` giving the record variances, when the partial quotients of α are bounded, the
distribution of ϕn`/‖ϕn`‖2 is asymptotically Gaussian.
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Let us show by a counter-exemple that this is not true without a condition on α.

For a parameter γ > 0, let the sequence (an)n≥1 be de�ned by

an = bnγc if n ∈ {2k : k ≥ 0}, = 1 if n /∈ {2k : k ≥ 0}.

Let α be the number which has (an)n≥1 for sequence of partial quotients. For simplicity,
let us take for ϕ the sawtooth function ϕ0 de�ned above for which γk = −1

2πi
, ∀k.

For ` > 1, let n` := max{n < q`+1 : ‖ϕn‖2 = maxk<q`+1
‖ϕk‖2}. We have

‖ϕn‖2
2 ≥ c

`−1∑
j=0

|γqj |2a2
j+1 ≥ c

blog2(`)c∑
s=0

22γs ≥ c`2γ.

In the sum ϕn`(x) =
∑`

k=0

∑bk qk−1
j=0 ϕ(x + Nk−1α + jα) de�ned in (6), we can isolate

the indices k for which k + 1 is a power of 2 (for the other indices ak+1 = 1) and write
ϕn`(x) = U` + V` with

U` =
∑blog2(`)c

p=1

∑b2p q2p−1
j=0 ϕ(x+N2p−1α + jα),

V` =
∑

k∈[0,`]∩{ak+1=1}
∑bk qk−1

j=0 ϕ(x+Nk−1α + jα).

We will see in (49) that the variance of a sum where bk equals 0 or 1 is bounded as follows

‖
∑

k∈[0,`]∩{ak+1=1}

bk qk−1∑
j=0

ϕ(x+Nk−1α + jα)‖2
2 ≤ C` log(`).

On the other side, we also have

|
blog2(`)c∑
p=1

b2p−1 q2p−1−1∑
j=0

ϕ(x+N2p−2α+ jα)| ≤
blog2(`)c∑
p=1

a2pV (ϕ) ≤ C

blog2(`)c∑
p=1

2γp ≤ C`γ.

The previous bounds imply
ϕn`
‖ϕn`‖2

= U`
‖ϕn`‖2

+ V`
‖ϕn`‖2

with ‖ϕn`‖2 ≥ c`γ, ‖U`‖∞ ≤ C`γ,

‖V`‖2 ≤ (C` log(`))1/2.

Thus, if γ > 1/2, one has
∥∥∥ U`
‖ϕn`‖2

∥∥∥
∞
≤ C

c
,
∥∥∥ V`
‖ϕn`‖2

∥∥∥
2
→ 0 and the limit points of the

distributions of
ϕn`
‖ϕn`‖2

have all their supports included in [−C
c
, C
c
], hence are not Gaussian.

1.4. A special case: quadratic numbers.

When α is a quadratic number, using the ultimate periodicity of the sequence (an(α))n≥1

and the good properties of the associated Ostrowski's expansion of the integers, it is
possible to improve the result of Theorem 1.3 on the variance. In this subsection we
show that the variance ‖ϕn‖2

2 of the ergodic sums of ϕ under the rotation by a quadratic
number α is of order lnn for n in a big set of integers whose size is precisely estimated. For
example, if we take ϕ(x) = {x}− 1

2
, Theorem 1.5 shows that there are positive constants
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η1, η2, R and ξ ∈]0, 1[ such that,

1

N
Card {n ≤ N : η1 lnn ≤ ‖ϕn‖2

2 ≤ η2 lnn} ≥ (1−RN−ξ).(19)

The main step in the proof is the following proposition showing that, in case of a quadratic
number, for most of the integers n (in a set whose size is precisely estimated), ‖nqjα‖ is
far from 0 for a big proportion of j's:

Proposition 1.4. If α is a quadratic number, for every ε0 ∈]0, 1
2
[, there are δ ∈]0, 1

2
[ and

positive constants C and ξ such that for every ` ≥ 1:

Card {n < q`+1 : Card (j < ` : d(nqjα,Z) ≥ δ) ≥ (1− ε0) `} ≥ (1− Cq−ξ`+1) q`+1.(20)

The proof of Proposition 1.4 is given in Appendix.

Theorem 1.5. If α is a quadratic number and if ϕ satis�es Condition (12), there are
positive constants η1, η2, R and ξ ∈]0, 1[ such that, for N big enough, it holds :

Card {n ≤ N : η1 lnn ≤ ‖ϕn‖2
2 ≤ η2 lnn} ≥ N (1−RN−ξ).(21)

Proof. There is η2 > 0 such that the upper bound in (21) holds for every n ≥ 1: indeed,
when α is quadratic, as (qk) is equivalent to a geometric sequence, m(n) is equivalent to
ln(n) up to a multiplicative constant factor. Therefore, for n ∈ [q`, q`+1[ (i.e., m(n) = `),

(10) implies ‖ϕn‖2
2 ≤ CK(ϕ)2

∑`
j=0 a

2
j+1 ≤ η2 ln(n), for some positive constant η2.

For the lower bound, by (9) we have ‖ϕn‖2
2 ≥ c0 δ

2
∑`

j=1 |γqj(ϕ)|2 a2
j+1 1‖nqjα‖≥δ. Let ϕ

in C be such that (12) is satis�ed and, for ε0 = 1
2
θ, let δ = δ(ε0) be given by Proposition

1.4. According to (12) and (20), for ` big enough, the set of integers n < q`+1 such that
simultaneously ‖nqjα‖ ≥ δ and |γqj(ϕ)| ≥ η, for at least 1

2
θ` di�erent indices j, has a

cardinal bigger than q`+1(1− C q−ξ`+1) for some constants C > 0, ξ ∈]0, 1[.

Therefore we have ‖ϕn‖2
2 ≥ c0

2
η2 δ2θ ` = η1` for more than q`+1(1 − Cq−ξ`+1) values of n

between 1 and q`+1.

This shows that, for N ∈ [q`, q`+1[, the cardinal of the set {n < N : ‖ϕn‖2
2 ≤ η1`} is less

than Cq1−ξ
`+1 ≤ C ′N1−ξ (because for a quadratic number sup` q`+1/q` < +∞). Hence, the

result. �

2. A central limit theorem and its application to rotations

2.1. Decorrelation and CLT.

An abstract CLT under a decorrelation property

Below Y1 denotes a r.v. with a normal distribution N (0, 1). Recall that, if X, Y are two
real random variables, their mutual (Kolmogorov) distance in distribution is de�ned by:
d(X, Y ) = supx∈R |P(X ≤ x)− P(Y ≤ x)|.
The notation C denotes an absolute constant whose value may change from a line to the
other.
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Proposition 2.1. Let N be a positive integer. Let (qk)1≤k≤N be an increasing sequence
of positive integers such that for a constant ρ ∈]0, 1[

qk/qm ≤ C ρm−k, 1 ≤ k < m ≤ N.(22)

Let (fk)1≤k≤N be real centered BV functions such that for constants uk

‖fk‖∞ ≤ uk, V(fk) ≤ C uk qk, 1 ≤ k ≤ N.(23)

Moreover assume that, for some constant θ, the following decorrelation properties hold:

|
∫
X

ψ fk dµ| ≤ C V(ψ)uk
kθ

qk
, 1 ≤ k ≤ N, ∀ψ BV,(24)

|
∫
X

ψ fk fm dµ| ≤ C V (ψ)uk um
mθ

qk
, 1 ≤ k ≤ m ≤ N,∀ψ BV centered,(25)

|
∫
X

ψ fk fm ft dµ| ≤ C V (ψ)uk um ut
tθ

qk
, 1 ≤ k ≤ m ≤ t ≤ N,∀ψ BV centered.(26)

Then, putting wN := maxNj=1 uj, SN := f1 + · · ·+ fN , there is for every δ > 0 a constant
C(δ) > 0 (depending only on δ) such that the condition

wN
‖SN‖2

≤ Np− 1
2 , with p ∈ [0,

1

8
[,(27)

implies

d(
SN
‖SN‖2

, Y1) ≤ C(δ)N−
1−8p

12
+δ.(28)

The proposition is proved in Section 3. We apply it to an irrational rotation by taking
for qk's the denominators of α (they satisfy (22)) and for fk the ergodic sums ϕbkqk of
a function ϕ (composed by a translation), where the bk's (bk ≤ ak+1) are given by the
Ostrowski's expansion described above.

Decorrelation between partial ergodic sums

In order to apply the previous proposition we will prove decorrelation properties between
the ergodic sums of ϕ ∈ C at time qn under the following assumption on α:

Hypothesis 1. There are two constants A ≥ 1, p ≥ 0 such that

an ≤ Anp,∀n ≥ 1.(29)

Remark 2. a) The case α of bounded type, i.e., with bounded partial quotients, corre-
sponds to p = 0. In this case, as we have seen, m(n) is of order lnn.

b) Observe that m(n) can be smaller, but at least of order
lnn

ln lnn
up to a bounded factor,

under the more general assumption 1.

Lemma 2.2. a) For every p > 1, for a.e. α, there is a �nite constant A(α, p) such that

an ≤ A(α, p)np,∀n ≥ 1.(30)
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b) If α satis�es (29), then there is c > 0 such that

‖kα‖ ≥ c

|k| (log k)p
, ∀k > 1.(31)

Proof. a) We have an+1(α) = b1/θn(α)c where θ is the Gauss map. Let γ > 1. Since

α→ (a1(α))
1
γ is integrable for the θ-invariant measure dx

1+x
on ]0, 1], we have, for a constant

A(γ): µ{α : an(α) > ns} ≤ A(γ)n−
s
γ .

By the Borel-Cantelli lemma, it follows that for a.e α there is C(α, γ) such that, if s > γ,
an(α) ≤ C(α, γ)ns, ∀n ≥ 1.

b) For every irrational α, there are C > 0 and λ > 1 such that the denominators of α
satisfy q` ≥ Cλ`, for every ` ≥ 1. For k ≥ 2, let n be such that qn−1 ≤ k < qn. Since
Cλn−1 ≤ qn−1 ≤ k, it follows that n ≤ C ′ log k, for some constant C ′. By (29), we have
an ≤ Anp ≤ A(C ′ log k)p.

Since ‖kα‖ > ‖qn−1α‖ ≥
1

2qn
≥ 1

4anqn−1

≥ 1

4ank
, this implies (31). �

As a corollary, using Theorem 1.3, it follows that for a.e. α, under the rotation by α, for a
function ϕ ∈ C satisfying (12), the growth of the variance ‖ϕn‖2

2 is �roughly� of order lnn.
In Subsection 2.2 we will see that, if α satis�es (29) with p < 1

4
, (12) itself is a generic

condition for some class of step functions ϕ.

Proposition 2.3. Let ψ and ϕ be BV centered functions. Suppose that α satis�es Hy-
pothesis 1. Then there are constants C, θ1, θ2, θ3 such that, for every 1 ≤ k ≤ m ≤ `:

|
∫
X

ψ ϕbkqk dµ| ≤ C V(ψ) V(ϕ)
kθ1

qk
bk,(32)

|
∫
X

ψ ϕbkqkϕbmqm dµ| ≤ C V(ψ) V(ϕ)2 m
θ2

qk
bkbm,(33)

|
∫
X

ψ ϕbkqkϕbmqmϕb`q` dµ| ≤ C V(ψ) V(ϕ)3 `
θ3

qk
bkbmb`.(34)

The proposition is proved in Section 4. From the propositions 2.1 and 2.3 we will deduce
a convergence toward a Gaussian distribution under a variance condition, by bounding
the distance to the normal distribution.

Theorem 2.4. Let ϕ be in C satisfying (12).

1) The set de�ned (cf. Theorem 1.3) by

W := {n ∈ N : ‖ϕn‖2 ≥ η0 (logm(n))−
1
2 m(n)

1
2}(35)

has density 1 in N.
Suppose that α satis�es Hypothesis 1 (i.e., for constants A ≥ 1, p ≥ 0, an ≤ Anp,∀n ≥ 1)
with p < 1

8
. Then, for δ ∈]0, 1−8p

12
[, there is a constant C(δ) such that, for n in W ,

d(
ϕn
‖ϕn‖2

, Y1) ≤ C(δ)m(n)−
1−8p

12
+δ −→

n∈W,n→∞
0.(36)
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In particular when α has bounded partial quotients, we have p = 0 and m(n) can be
replaced by log n.

2) Suppose that α is a quadratic irrational. With the notation of Theorem 1.5, let

V := {n ≥ 1 : η1

√
log n ≤ ‖ϕn‖2 ≤ η2

√
log n}.

Then, there are two constants R, ξ > 0 such that
- the density of V satis�es:

Card(V
⋂

[1, N ]) ≥ N (1−RN−ξ), for N ≥ N0;(37)

- for δ ∈]0, 1
12

[, there is a constant C(δ) such that, for n ∈ V :

d(
ϕn
‖ϕn‖2

, Y1) ≤ C(δ) (log n)−
1
12

+δ −→
n∈V, n→∞

0.(38)

Proof. 1) The result on the density of the set W follows from Theorem 1.3.

For (36), we use Proposition 2.1 withN = m(n) (wherem(n) is such that n ∈ [qm(n), qm(n)+1[),
fk de�ned by (7) and the decomposition of the ergodic sums given by (6), i.e.,

ϕn(x) =

m(n)∑
k=0

fk(x), where fk(x) :=

bk−1∑
i=0

ϕqk(x+ (nk−1 + iqk)α) = ϕbkqk(x+ nk−1α).

The decorrelation inequalities in Proposition 2.3 are obtained for functions of the form
ϕbkqk . But in the proof of the decorrelation inequalities, one sees that they remain valid for
fk, since translations on the variable do not change the modulus of the Fourier coe�cients.

As ‖fk‖∞ ≤ bkV (ϕ) ≤ ak+1V (ϕ), up to a �xed factor the constant uk in the statement of
Proposition 2.3 can be taken to be ak+1 ≤ kp, for some constant p > 0, by Hypothesis 1.

With the notation of Proposition 2.1, we have wN := maxNj=1 bj, ϕn = SN = f1 + · · ·+fN .
For n ∈ W and under Hypothesis 1, we have

wN
‖SN‖2

≤ CNp− 1
2 (logN)

1
2 .

The factor (logN)
1
2 can be absorbed in the factor Np− 1

2 by taking p larger and we have
(27). By (28) it follows:

d(
ϕn
‖ϕn‖2

, Y1) ≤ C(δ)m(n)−
1−8p

12
+δ.

2) In the quadratic case, p = 0 and the property of the set V is given by Theorem 1.5. �

Remark 3. The previous result is written with a self-normalisation. If α is quadratic, let
us consider the ergodic sums normalised by

√
lnn: (ϕn/

√
lnn)n≥1. Then, for n ∈ V , the

accumulation points of the sequence of distributions are Gaussian non degenerated with
a variance belonging to a compact interval.
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2.2. Application to step functions, examples.

If ϕ belongs to the class C of centered BV functions, with Fourier series
∑

r 6=0
γr(ϕ)
r

e2πir.,
to apply Theorem 2.4 we have to check Condition (12) on the coe�cients γqk(ϕ), i.e.:

∃M, η, θ > 0 such that
1

N
Card {j ≤ N : aj+1 |γqj(ϕ)| ≥ η} ≥ θ, ∀N ≥M.

The functions {x} − 1
2

= −1
2πi

∑
r 6=0

1
r
e2πirx and 1[0, 1

2
[ − 1[ 1

2
,1[ =

∑
r

2
πi(2r+1)

e2πi(2r+1). are

immediate examples where this condition is satis�ed. In the second case, one observes that
γqk = 0 if qk is even, = 2

πi
if qk is odd. Clearly, (12) is satis�ed, because two consecutive

qk's are relatively prime and therefore cannot be both even.

In general, for a step function, Condition (12) (and therefore a lower bound for the
variance ‖ϕn‖2

2 for a large set of integers n) is related to the Diophantine properties of its
discontinuities with respect to α. We discuss now this point.

Let us consider a centered step function ϕ on [0, 1[ taking a non null constant value vj ∈ R
on the interval [uj, uj+1[, j = 0, 1, ..., s, with u0 = 0 < u1 < ... < us < us+1 = 1:

ϕ =
s∑
j=0

vj 1[uj ,uj+1[ − c.(39)

The constant c above is such that ϕ is centered, but it plays no role below.

Lemma 2.5. If ϕ is given by (39), there is a continuous periodic function Hϕ(u1, ..., us) ≥
0 such that

|γr(ϕ)|2 = π−2Hϕ(ru1, ..., rus).(40)

Proof. Since ϕ̂(r) =
∑s

j=0
vj
πr
e−πir(uj+uj+1) sin πr(uj+1 − uj), r 6= 0, Hϕ(u1, ..., us) is

[
s∑
j=0

vj cos π(uj + uj+1) sin π(uj+1 − uj)]2 + [
s∑
j=0

vj sinπ(uj + uj+1) sin π(uj+1 − uj)]2. �

Examples: 1) ϕ = ϕ(u, · ) = 1[0,u[ − u, Hϕ(u) = sin2(πu).

2) ϕ = ϕ(w, u, · ) = 1[0, u] − 1[w, u+w], H(ϕ) = 4 sin2(πu) sin2(πw).

We show now that (12) is satis�ed generically by the family of step functions parametrised
by (u1, ..., us) de�ned by (39).

Corollary 2.6. 1) Suppose that ϕ is a step function given by (39) for s ≥ 1, with
parameter (u1, ..., us). Then Condition (12) is satis�ed if (u1, ..., us) is such that the
sequence (qku1, ..., qkus)k≥1 is uniformly distributed in Ts.
2) This latter condition holds for a.e. value of (u1, ..., us) in Ts.
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Proof. 1) If the sequence (qku1, ..., qkus)k≥1 is uniformly distributed in Ts, we have with
the notation of Lemma 2.5:

lim
N

1

N

N∑
k=1

|γqk(ϕ)|2 = lim
n

1

n

n∑
k=1

Hϕ(qku1, ..., qkus)

=

∫
Ts
H(x1, ..., xs) dx1...dxs > 0, for a.e. (u1, ..., us) ∈ Ts.(41)

Let N0 and δ > 0 be such that, for N ≥ N0,
1
N

∑N
k=1 |γqk(ϕ)|2 ≥ δ. The sequence

(|γqk(ϕ)|2, k ≥ 1) is bounded by K := π−2‖Hϕ‖∞. Therefore, we have, for N ≥ N0,

δ ≤ 1

N

N∑
k=1

|γqk(ϕ)|2 ≤ K

N

N∑
k=1

1|γqj (ϕ)|≥η +
η2

N

N∑
k=1

1|γqj (ϕ)|<η ≤
K

N

N∑
k=1

1|γqj (ϕ)|≥η + η2.

This shows: 1
N

∑N
k=1 1|γqj (ϕ)|≥η ≥ K−1(δ − η2), for N ≥ N0.

It follows that (12) is satis�ed with M = N0, η = ( δ
2
)

1
2 , θ = K−1 δ

2
.

2) To prove the uniform distribution for a.e. value of (u1, ..., us) in Ts, by Weyl equirepar-
tition criterium it su�ces to show, for all integers r1, ..., rs not all 0,

lim
k

1

N

N∑
k=1

e2iπqk(r1u1+...+rsus) = 0, for a.e. (u1, ..., us) ∈ Ts.(42)

Since (qk) is a strictly increasing sequence of integers, (42) follows from the law of large
numbers for orthogonal bounded variables (Rajchman's theorem) which is recalled in
Appendix 2 in a slightly more general formulation (Proposition 6.1). �

Besides a generic result, there are also speci�c values of the parameter (u1, ..., us) for
which (12) holds. A simple example (for s = 1) is:

Example 3: ϕ( r1
r2
, · ) = 1[0,

r1
r2

[ − r1
r2
, for r1, r2 ∈ N, 0 < r1 < r2.

We will give another example of special values related to the rectangular billiard model
in example 4 below.

Remark 4. For the case of example 1, let us make some remarks about the degeneracy
of the variance.

It is known that if α is bpq and if limk | sin(πqku)| = 0, where qk are the denominators of
α, then u ∈ Zα+Z (cf. for instance [8]). But it is easily seen that there is an uncountable

set of u's such that limN
1
N

∑N
k=1 sin2(πqku) = 0 and thus for which Condition (12) does

not hold.

Observe also that, if α is not bpq, there are many u's for which the sequence (qkumod1)
does not satisfy the equidistribution property in a strong sense and (41) fails.

Indeed, let u =
∑

n≥0 bnqnα mod 1, bn ∈ Z, 0 ≤ bn ≤ an+1, be the so-called Ostrowski ex-

pansion of u associated to the denominators of α. It can be shown that, if limn
|bn|
an+1

= 0,



16 JEAN-PIERRE CONZE AND STÉPHANE LE BORGNE

then limk ‖qku‖ = 0 (Proposition 1 in [13]). There is an uncountable set of u's sat-

isfying the condition limn
|bn|
an+1

= 0 if α is not bpq. For these values of u, we have

limk γqk(ϕ(u, .)) = 0. Therefore Condition (12), which is used to get a lower estimate
of the variance, fails, although, if u is not in the countable set Zα + Z, ϕ(u, .) is not a
coboundary (and even generates an ergodic cocycle).

Remark 5. Another remark is about the �generic� validity of estimates of the variance.

As previous remarked, in Theorem 2.4 the CLT is written with self-normalisation (by
‖ϕn‖2). In Theorem 1.3 the lower bound given for the variance ‖ϕn‖2

2 for n in the set W
can be smaller than the mean of the variance.

Inequalities (10) and (11) give a precise estimation of the variance in the mean when an
information is available on γqi(ϕ).

For example in the case of the �saw-tooth� function, we get the estimate
∑m(n)

k=1 a2
k for the

mean of the variance.

If we consider Example 1 or more generally ϕ = ϕ(u, .) given by (39), the same estimate
is valid �generically� with respect to u under a condition on α. This is a consequence of
the equidistribution argument used previously and of Proposition 6.1. Namely, using this
proposition and an approximation by trigonometric polynomials, we get:

If 1 ≤ an ≤ np, with p < 1
4
, if Hϕ(u1, ..., us) is a continuous periodic function on the torus

Ts, s ≥ 1, then:

lim
N

∑N
k=1 a

2
kH(qku1, ..., qkus)∑N

k=1 a
2
k

=

∫
Ts
H(x1, ..., xs)dx1...dxs, for a.e. u.(43)

For instance, in Example 1, lim
N

∑N
k=1 a

2
k sin2(πqku)∑N
k=1 a

2
k

=
1

2
, for a.e. u.

By (11), it follows that the mean of the variance, 1
n

∑n−1
k=0 ‖ϕk(u, .)‖2

2, is of order
∑m(n)

k=1 a2
k

generically with respect to u, if α satis�es Hypothesis 1, i.e., an = O(np),∀n ≥ 1, with
p < 1

4
.

Vectorial case

For simplicity, we consider the case of two components. Let be given a vectorial func-
tion Φ = (ϕ1, ϕ2), where ϕ1, ϕ2 are two centered step functions with respectively s1, s2

discontinuities: ϕi =
∑si

j=0 v
i
j 1[uij ,u

i
j+1[ − ci, for i = 1, 2.

Let the matrix Γn be de�ned by Γn(a, b) := (log n)−1‖aϕ1
n + bϕ2

n‖2
2 and denote by I2 the

2-dimensional identity matrix.

Theorem 2.7. If α has bounded partial quotients and if the condition (12) is satis�ed
uniformly with respect to (a, b) in the unit sphere, there are 0 < r1, r2 < +∞ two constants
such that for a �large� set of integers n as in Theorem 2.4:
- Γn satis�es inequalities of the form r1I2 ≤ Γn(a, b) ≤ r1I2;
- the distribution of Γ−1

n Φn converges to the standard 2-dimensional normal law.
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Proof. We only sketch the proof. The classical method of proof of a CLT for a vectorial
function is to show a scalar CLT for all linear combinations of the components of the
function. So the proof is like that of Theorem 2.1, but taking care of the bound from
below of the variance for aϕ1

n + bϕ2
n: (12) should be uniform for (a, b) on the unit sphere.

This is done in the next proposition. �

Proposition 2.8. Let Λ be a compact space and (Fλ, λ ∈ Λ) be a family of nonnegative
non identically null continuous functions on Td depending continuously on λ. If a sequence
(zn) is equidistributed in Td, then

∃N0, η > 0 such that Card{n ≤ N : Fλ(zn) ≥ η} ≥ θ N, ∀N ≥ N0,∀λ ∈ Λ.(44)

Proof. For λ ∈ Λ, let uλ ∈ Td be such that Fλ(uλ) = supu∈Td Fλ(u). We have Fλ(uλ) > 0
and there is ηλ > 0 and an open neighborhood Uλ of uλ such that Fλ(u) > 2ηλ for u ∈ Uλ.
Using the continuity of Fλ with respect to the parameter λ, the inequality Fζ(u) > ηλ holds
for u ∈ Uλ and ζ in an open neighborhood Vλ of λ. By compactness of Λ, there is a �nite
set (λj, j ∈ J) such that (Vλj , j ∈ J) is an open covering of Λ. Let θ := 1

2
infj∈J Leb(Uλj).

By equidistribution of (zn), there is N0 such that 1
N

∑N
n=1 1Uλj (zn) ≥ θ, ∀N ≥ N0, ∀j ∈ J .

Let η := infj∈J ηλj . For every λ ∈ Λ, there is j ∈ J such that λ ∈ Vλj and therefore
Fλ(zn) ≥ ηλj ≥ η, if zn ∈ Uλj . This implies:

Card{n ≤ N : Fλ(zn) ≥ η} ≥ Card{n ≤ N : zn ∈ Uλj} ≥ θN, ∀N ≥ N0. �

A generic result

By Proposition 2.8 applied for (a, b) in the unit sphere, for a.e. values of the parameter
(u1

1, ..., u
1
s1
, u2

1, ..., u
2
s2

), the functions aϕ1 +bϕ2 satisfy Condition (12) uniformly in (a, b) in
the unit sphere. Hence Theorem 2.7 applies generically with respect to the discontinuities.

Special values: an application to the rectangular billiard in the plane

Example 4 Now, for an application to the periodic billiard, we consider the vectorial
function ψ = (ϕ1, ϕ2) with

ϕ1 = 1[0,α
2

] − 1[ 1
2
, 1
2

+α
2

] =
2

π

∑
r∈Z

e−πi(2r+1)α
2

sin(π(2r + 1)α
2
)

2r + 1
e2πi(2r+1) · ,

ϕ2 = 1[0, 1
2
−α

2
] − 1[ 1

2
,1−α

2
] =
−2i

π

∑
r∈Z

eπi(2r+1)α
2

cos(π(2r + 1)α
2
)

2r + 1
e2πi(2r+1) · .

The Fourier coe�cients of ϕ1 and ϕ2 of order r are null for r even.

Let us consider a linear combination ϕa,b = aϕ1 + bϕ2. For r = 2t+ 1 odd, we have:

c2t+1(aϕ1 + bϕ2) =
2

π

1

2t+ 1
e−πi(2t+1)α

2 [a sin(π(2t+ 1)
α

2
)− ib cos(π(2t+ 1)

α

2
)].

If qj is even, γqj(ϕa,b) is null. If qj is odd, we have

|γqj(ϕa,b)|2 = |a sin(πqj
α

2
)− ib sin(π(

1

2
+ qj

α

2
))|2,
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For qj odd, we have by (2),

‖qj
α

2
‖ = ‖pj

2
+
θj
2
‖, hence

∣∣∣‖qjα
2
‖ − ‖pj

2
‖
∣∣∣ ≤ ∣∣∣∣θj2

∣∣∣∣ ≤ 1

2qn+1

,

‖1

2
+ qj

α

2
‖ = ‖qj

2
− pj

2
− θj

2
‖, hence

∣∣∣∣‖qjβ2‖ −
(
‖1

2
+
pj
2
‖
∣∣∣∣) ≤ ∣∣∣∣θj2

∣∣∣∣ ≤ 1

2qn+1

,

This implies, for qj odd: γqj(ϕa,b) = a(1 +O( 1
qj+1

)), if pj is odd, = b(1 +O( 1
qj+1

)), if pj is
even.

The computation shows that, if α is such that, in average, there is a positive proportion
of pairs (pj, qj) which are (even, odd) and a positive proportion of pairs (pj, qj) which are
(odd, odd), then the condition of Theorem 2.7 is ful�lled by the vectorial step function
ψ = (ϕ1, ϕ2).

For an application to the model of rectangular periodic billiard in the plane described in
[7], we refer to [6].

3. Proof of Proposition 2.1 (CLT)

The di�erence HX,Y (λ) := |E(eiλX)− E(eiλY )| can be used to get an upper bound of the
distance d(X, Y ) thanks to the following inequality ([12], Chapter XVI, Inequality (3.13)):
if X has a vanishing expectation, then, for every U > 0,

d(X, Y ) ≤ 1

π

∫ U

−U
HX,Y (λ)

dλ

λ
+

24

π

1

σ
√

2π

1

U
.(45)

Using (45), we get an upper bound of the distance between the distribution of X and the

normal law by bounding |E(eiλX)− e− 1
2
σ2 λ2|.

We will use the following remarks:

V(fg) ≤ ‖f‖∞V(g) + ‖g‖∞V(f), ∀f, g BV,(46)

if g ∈ C1(R,R) and u is BV, then V(g ◦ u) ≤ ‖g′‖∞V(u).(47)

Let wk := maxkj=1 uj, where uj is larger than ‖fj‖∞ (see Proposition 2.1).

Since V(fk) ≤ Cuk qk, (24) implies

|
∫
X

fkfm dµ| ≤ C
qk
qm
mθ w2

m, for k ≤ m.(48)

Bounding the moments
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Lemma 3.1. Under the assumption of Proposition 2.1, there is C1 such that∫
X

|
m+∑̀
k=m

fk|2 ≤ C1 ln(m+ `)
∑

j∈[m,m+`]

u2
j ≤ C1 ` ln(m+ `)w2

m+`.(49)

∫
X

|
m+∑̀
k=m

fk|3 ≤ C1 ` ln2(m+ `)w3
m+`, ∀m, ` ≥ 1,(50)

∫
X

|
m+∑̀
k=m

fk|4 ≤ C1 `
2 ln2(m+ `)w3

m+`, ∀m, ` ≥ 1.(51)

Proof. We show (50) and (51). The proof of (49) is the same.

1) For (50), it su�ces to bound the sums
∑

m≤s≤t≤u≤m+`

|
∫
X

fsftfu dµ|.

Replacing fk by w
−1
m+` fk, we will deduce the bound (50) from the inequalities (23), (24),

(25) when wk ≤ 1, for 1 ≤ k ≤ m+ `. By (23) and (46), we have

|
∫
X

fsftfu dµ| ≤ C and V(fsft) ≤ C(qs + qt) ≤ 3Cqt.

From (24) and (22), then from (25) and (22), we obtain

|
∫
X

(fsft).fu dµ| ≤ C
V (fsft)

qu
uθ ≤ C

qt
qu
uθ ≤ Cρ(u−t)uθ,

|
∫
X

fs.(ftfu) dµ| ≤ C
V (fs)

qt
uθ ≤ C

qs
qt
uθ ≤ Cρ(t−s)uθ.

Set κ = θ+3
ln(1/ρ)

ln(m+ `). If t− s or u− t ≥ κ, the previous inequalities imply:

|
∫
X

fsftfu dµ| ≤ Cρκuθ ≤ C(m+ `)−θ−3uθ ≤ C(m+ `)−3.

It implies: ∑
m≤s≤t≤u≤m+` : max(t−s,u−t)>κ

|
∫
X

fsftfu dµ| ≤ C`3(`+m)−3 ≤ C.

Now the result follows from:∑
m≤s≤t≤u≤m+` : max(t−s,u−t)≤κ

|
∫
X

fsftfu dµ| ≤ C`κ2.

2) For (51), we bound the sums
∑

m≤s≤t≤u≤v≤m+`

|
∫
X

fsftfufv dµ| using (22) and succes-

sively (24), (25), (26).
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We obtain (because fv is centered for the �rst inequality):

|
∫
X

(fsftfu).fv dµ| ≤ C
V (fsftfu)

qv
vθ ≤ C

qu
qv
vθ ≤ Cρ(v−u)vθ,

|
∫
X

[fsft − E(fsft)] fufv dµ| ≤ C
V (fsft)

qu
vθ ≤ C

qt
qu
vθ ≤ Cρ(u−t)vθ,

|
∫
X

fsftfufv dµ| ≤ C
V (fs)

qt
vθ ≤ C

qs
qt
vθ ≤ Cρ(t−s)vθ.

Putting κ = θ+4
ln(1/ρ)

log(m+`), we get by the previous inequalities, for constants C,C2, C3:∑
m≤s≤t≤u≤v≤m+` : max(t−s,u−t,v−u)>κ

|
∫
X

fsftfufv dµ|

≤ C`4(`+m)−4 +
∑

m≤s≤t≤u≤v≤m+`

|
∫
X

fsft dµ| |
∫
X

fufv dµ|

≤ C + (
∑

m≤s≤t≤m+`

|
∫
X

fsft dµ|)2 ≤ C + C2 `
2 (ln(m+ `))2.

The remaining terms give a bound which can be absorbed in the previous one, namely:∑
m≤s≤t≤u≤m+` : max(t−s,u−t,v−u)≤κ

|
∫
X

fsftfufv dµ| ≤ C`κ3 ≤ C3 ` log(m+ `)3. �

Proof of Proposition 2.1

The proof is given in several steps.

De�ning blocks

We split the sum Sn := f1 + · · ·+ fn into small and large blocks. The small ones will be
removed, providing gaps and allowing to take advantage of the decorrelation properties
assumed in the statement of the proposition.

Let τ, δ be parameters (δ close to 0) such that 0 < δ < 1
2
and δ < τ . We set for n ≥ 1:

n1 = n1(n) := bnτc, n2 = n2(n) := bnδc,
ν = ν(n) := n1 + n2, p(n) := bn/ν(n)c+ 1 = n1−τ + hn ∼ n1−τ , with |hn| bounded.

For 0 ≤ k < p(n), we put (with fj = 0, if n < j ≤ n+ ν)

Fn,k = fk ν(n)+1 + · · ·+ fk ν(n)+n1(n), Gn,k = fk ν(n)+n1(n)+1 + · · ·+ f(k+1) ν(n).

The sums Fn,k, Gn,k have respectively n1 ∼ nτ , n2 ∼ nδ terms and Sn reads

Sn =

p(n)−1∑
k=0

(Fn,k +Gn,k).

We put S ′n :=
∑p(n)−1

k=0 Fn,k, vk = vn,k := (
∫
X
F 2
n,k dµ)

1
2 .
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The following inequalities are implied by (49):

(52) v2
k = v2

n,k = ‖Fn,k‖2
2 ≤ Cnτ lnnw2

n, ‖Gn,k‖2
2 ≤ C nδ lnnw2

n, 0 ≤ k < p(n).

Since q1 + q2 + ...+ qn ≤ Cqn+1,∀n ≥ 1, by (22), it follows by (47) and hypothesis (23):

V(eiζ(Fn,0+···+Fn,k−1)) ≤ C|ζ|wn q(k−1) ν+n1 .(53)

Lemma 3.2.

|‖Sn‖2
2 −

p(n)−1∑
k=0

v2
k| = |‖Sn‖2

2 −
p(n)−1∑
k=0

‖Fn,k‖2
2| ≤ C n1− τ−δ

2 lnnw2
n,(54)

‖Sn − S ′n‖2
2 = ‖

p(n)−1∑
k=0

Gk‖2 ≤ C n1−τ+δ lnnw2
n.(55)

Proof. It follows from (48) and (22), with C0 = Cρ
(1−ρ)2 ,

|
∫
X

(
b∑

u=a

fu) (
d∑
t=c

ft) dµ| ≤ C0 ρ
c−b dθ w2

d, ∀a ≤ b < c ≤ d.

Therefore, we have, with C1 = C0

∑
i≥0 ρ

iν , writing simply Fk, Gk instead of Fn,k, Gn,k,∑
0≤j<k<p(n)

|
∫
Fj Fk dµ| ≤ C0 n

θ w2
n

∑
0≤j<k<p(n)

ρkν+1−(jν+n1)

≤ C0 n
θ w2

n ρ
n2

∑
0≤j<k<p(n)

ρ(k−1)ν−jν ≤ C0 ρ
n2 nθ w2

n p(n)
∑
i≥0

ρiν ≤ C1 n
1
2
−δ+θ w2

n ρ
nδ .

The LHS of (54) is less than the sum for k = 0 to p(n)− 1 of∫
G2
k dµ+ |

∫
Gk Fk dµ|+ |

∫
Gk Fk+1 dµ|

+2
∑

0≤j<k

[|
∫
Fj (Fk +Gk) dµ|+ |

∫
Gj Gk dµ|] + 2

∑
0≤j<k−1

|
∫
GjFk dµ|.

The �rst term is bounded by C nδ lnnw2
n, the second one and the third one bounded by

C n
δ+τ

2 lnnw2
n are the biggest. The other terms are negligible as shown by the preliminary

computation: nθ ρn
δ
is small compared to a power of n, for n big.

Therefore the LHS of (54) is less than: C1 n
1−τ n

δ+τ
2 lnnw2

n = C1 n
1− τ−δ

2 lnnw2
n.

An analogous computation shows that the LHS of (55) behaves like
∑p(n)−1

k=0

∫
G2
k dµ which

gives the bound C n1−τ+δ lnnw2
n of (55). �

Approximation of the characteristic function of the sum S ′n by a product

For ζ ∈ R, let In,−1(ζ) := 1, In,k(ζ) :=

∫
X

eiζ (Fn,0+···+Fn,k) dµ, 0 ≤ k < p(n).
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Lemma 3.3. For 0 ≤ k < p(n), we have

|In,k(ζ)−
(
1− ζ2

2
v2
n,k

)
In,k−1(ζ)| ≤ C

(
|ζ|3w3

n n
τ ln2(n) + ζ4w4

n n
2τ ln2(n)

)
.(56)

Proof. We use eiu = 1 + iu− 1
2
u2 − i

6
u3 + u4r(u), with |r(u)| ≤ 1

24
, for u ∈ R. Let k ≥ 1.

We have In,k(ζ) =
∫
X
eiζ(Fn,0+···+Fn,k−1) [1 + iζFn,k− ζ2

2
F 2
n,k− i

6
ζ3F 3

n,k + ζ4F 4
n,k r(ζFn,k)] dµ.

For the �rst term, using (53), we have:

|
∫
X

eiζ(Fn,0+···+Fn,k−1) Fn,k dµ| ≤
n1∑
j=1

|
∫
X

eiζ (Fn,0+···+Fn,k−1) fk ν+j dµ|

≤ C|ζ|wn
n1∑
j=1

q(k−1) ν+n1

qk ν+j

(k ν + j)θ w(k−1) ν+n1 ≤ C|ζ|w2
n n

θ

n1∑
j=1

ρν+j−n1

≤ Cρ

1− ρ
|ζ|w2

n n
θ ρn2 .(57)

Similarly, for the second term we apply (25) and (53) and we get:

|
∫
X

eiζ(Fn,0+···+Fn,k−1) F 2
n,k dµ− In,k−1

∫
X

F 2
n,k dµ|

≤ CV(eiζ(Fn,0+···+Fn,k−1))w2
n

n1∑
j′=1

j′∑
j=1

((k − 1)ν + j′)θ

q(k−1)ν+j

≤ C|ζ|w3
n n

θ+τ ρn2 .(58)

Likewise (26) and Lemma 3.1 imply: |
∫
X

eiζ(Fn,0+···+Fn,k−1) F 3
n,k dµ|

≤ |
∫
X

(eiζ(Fn,0+···+Fn,k−1) − E(eiζ(Fn,0+···+Fn,k−1))F 3
n,k dµ|+ |

∫
X

F 3
n,k dµ|

≤ C |ζ|n1+2τ+θ w3
n ρ

n2 + Cnτ w3
n ln2(n).(59)

At last, by (51) we have

|
∫
X

eiζ(Fn,0+···+Fn,k−1) F 4
n,k r(ζFn,k) dµ| ≤

∫
X

F 4
n,k dµ ≤ w4

nn
2τ ln(n)2.(60)

From (57), (58), (59) and (60), we deduce that |In,k(ζ)−
(
1− ζ2

2
v2
n,k) In,k−1(ζ)| is bounded

up to a constant factor C by

|ζ|2w2
n n

θ ρn2 + |ζ|3w3
n n

θ+τ ρn2 + |ζ|4 n1+2τ+θ w4
n ρ

n2 + |ζ|3w3
n n

τ ln2(n) + |ζ|4w4
n n

2τ ln2(n).

In the sum above, for n big, we keep only the last two terms, since for n big enough the
�rst terms are smaller than the last ones. �

If X and Y are two real square integrable random variables, then |E(eiX) − E(eiY )| ≤
‖X − Y ‖2. Therefore, using (55), we have for Jn(ζ) :=

∫
X
eiζ Sn dµ:

|Jn(ζ)− In,p(n)(ζ)| ≤ |ζ| ‖Sn − S ′n‖2 ≤ C |ζ|wn n
1−τ+δ

2 (lnn)
1
2 ,(61)
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then, by (61) and (56) of Lemma 3.3, we get

|Jn(ζ)−
∏p(n)

k=1 (1− 1
2
ζ2v2

k)| ≤ |Jn(ζ)− In,p(n)(ζ)|+
∑p(n)−1

k=0 |In,k(ζ)− (1− ζ2

2
v2
k) In,k−1(ζ)|

≤ C [|ζ|wn n
1−τ+δ

2 (lnn)1/2 + n1−τ |ζ|3w3
n n

τ ln2(n) + n1−τζ4w4
nn

2τ ln(n)2

≤ C [|ζ|wn n
1−τ+δ

2 (lnn)
1
2 + |ζ|3w3

n n (lnn)2 + ζ4w4
n n

1+τ (lnn)2].(62)

Approximation of the exponential by a product

Below, ζ will be such that |ζ| vn,k ≤ 1. This is satis�ed if

|ζ|n
τ
2wn(log n)

1
2 ≤ 1.(63)

Lemma 3.4. If (ρk)k∈J is a �nite family of real numbers in [0, 1[, then

0 ≤ e−
∑
k∈J ρk −

∏
k∈J

(1− ρk) ≤
∑
k∈J

ρ2
k, if 0 ≤ ρk ≤

1

2
,∀k.(64)

Proof. We have ln(1 − u) = −u − u2 v(u), with 1
2
≤ v(u) ≤ 1, for 0 ≤ u ≤ 1

2
and

1− e−
∑
εk ≤

∑
εk, if

∑
k εk ≥ 0.

Writing 1 − ρk = e−ρk−εk , with εk = −(ln(1 − ρk) + ρk), the previous inequality implies
0 ≤ εk ≤ ρ2

k, if 0 ≤ ρk ≤ 1
2
. Therefore, under this condition, we have:

0 ≤ e−
∑
J ρk −

∏
J(1− ρk) = e−

∑
J ρk
(
1− e−

∑
J εk
)
≤ e−

∑
ρk
∑
εk ≤

∑
εk ≤

∑
ρ2
k. �

We apply (64) with ρk = 1
2
ζ2v2

n,k, under Condition (63). In view of (52) it follows:

|e
1
2
ζ2

∑
v2
k −

p(n)−1∏
k=0

(1− 1

2
ζ2v2

k)| ≤
1

4
ζ4

p(n)−1∑
k=0

v4
k ≤ Cζ4w4

n n
1+τ ln2(n).(65)

The bound is like the last term in (62).

Conclusion

From (62) and (65), it follows:

|Jn(ζ)− e− 1
2
ζ2

∑p(n)−1
k=0 v2

k | ≤ C [|ζ|wn n
1−τ+δ

2 (lnn)
1
2 + |ζ|3w3

n n (lnn)2 + ζ4w4
n n

1+τ (lnn)2].

We replace ζ by λ
‖Sn‖2 ; hence Condition (63) becomes

λ

‖Sn‖2

n
τ
2 wn(log n)

1
2 ≤ 1.(66)

We get: |
∫
X
e
iλ

Sn(x)
‖Sn‖2 dµ(x)− e

− 1
2

λ2

‖Sn‖22

∑
k v

2
k |

≤ C [|λ| wn
‖Sn‖2

n1−τ+δ + |λ|3 w3
n

‖Sn‖3
2

n ln2(n) + λ4 w4
n

‖Sn‖4
2

n1+τ ln2(n)].
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Since |e−a − e−b| ≤ |a− b|, for any a, b ≥ 0, we have, by (54):

|e−
1
2
λ2 − e

− 1
2

λ2

‖Sn‖22

∑p(n)−1
k=0 v2

k | ≤ 1

2

λ2

‖Sn‖2
2

|‖Sn‖2
2 −

p(n)−1∑
k=0

v2
k| ≤ Cλ2 w2

n

‖Sn‖2
2

n1− τ−δ
2 lnn.

Let us call respectively E1 the error in neglecting the sums on the small blocks, E2 the

error in the replacement of e−
1
2
λ2

by exp(−1
2
λ2

∑
v2
k

‖Sn‖22
), E3 the error of order 3 in the

expansion, E4 the approximation error of the exponential by the product.

Finally we get the bound |
∫
X
e
iλ

Sn(x)
‖Sn‖2 dµ(x)− e− 1

2
λ2| ≤ E1 + E2 + E3 + E4 ≤

C [|λ| wn
‖Sn‖2

n
1−τ+δ

2 ln
1
2 (n) + λ2 w2

n

‖Sn‖2
2

n1− τ−δ
2 lnn+ |λ|3 w3

n

‖Sn‖3
2

n ln2(n) + λ4 w4
n

‖Sn‖4
2

n1+τ+δ ln2(n)].

Denote by Y1 a r.v. with N (0, 1)-distribution. Putting Rn := wn
‖Sn‖2 , the bound reads:

C [|λ|Rn n
1−τ+δ

2 + λ2R2
nn

1− τ−δ
2 lnn+ |λ|3R3

n n ln2(n) + λ4R4
n n

1+τ+δ ln2(n)].(67)

Notice that δ can be taken arbitrary small. A change of its value modi�es the generic
constant C in the previous inequalities. Therefore we take δ = 0 in the optimisation below,
keeping in mind that the constant factor in the inequalities depends on δ. Likewise the
lnn factors can be neglected.

We have an inequality of the form H Sn
‖Sn‖2

,Y1
(λ) ≤ C

∑4
i=1 |λ|αi Rαi

n nγi , where the expo-

nents are given by the previous inequality. In view of (45), it follows that, up to a constant
factor, d( Sn

‖Sn‖2 , Y1) ≤

1

Un
+

4∑
i=1

α−1
i Uαi

n Rαi
n nγi ≤ 1

Un
+ UnRn n

1−τ
2 +

1

2
U2
n R

2
n n

1− τ
2 +

1

3
U3
n R

3
n n+

1

4
U4
n R

4
n n

1+τ .

Now, we optimize the choice of U = Un. As Rn is less than n
−β for some β > 0, if we take

Un = nγ with γ > 0, then the previous inequality gives inside the bracket the bound:

n
1−τ

2
−β+γ +

1

2
n1− τ

2
−2β+2γ +

1

3
n1−3β+3γ +

1

4
n1+τ−4β+4γ.

We choose Un such that 1/Un is of the same order as the second term, i.e., we take

n−γ = n1− τ
2
−2β+2γ, i.e., γ =

τ
2

+2β−1

3
. If τ = 1

2
and if β = 1

2
− p with p > 0, then it gives:

γ =
1− 8p

12
> 0 if p <

1

8
.

The four terms in the bound are respectively:

(A) = −1

6
+
p

3
, (B) = −γ = − 1

12
+

2p

3
, (C) = −1

4
+ p, (D) = −1

6
+

4p

3
.

We check that (B) is the biggest term: (B) − (A) = 1
12

+ p
3
> 0, (B) − (C) = 1

6
− p

3
>

0, if p < 1
2
, (B)− (D) = 1

12
− 2p

3
> 0, if p < 1

8
.

This gives the bound stated in Proposition 2.1 for the distance to the normal law:
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For every δ > 0, for N big enough, there is a constant C(δ) > 0 (depending only on δ)

such that, if wN
‖SN‖2

≤ Np− 1
2 with p ∈ [0, 1

8
[, then

d(
SN
‖SN‖2

, Y1) ≤ C(δ)N−
1−8p

12
+δ << 1.

To conclude, observe that, if wn ≤ np with p < 1
8
and ‖Sn‖2 ≥ Cn

1
2/(log n)

1
2 , (66) is

satis�ed for |λ| ≤ Un = nγ, since

nγ n
τ
2
wn(log n)

1
2

‖Sn‖2

≤ Cn
1−8p

12 np−
1
4 (log n)

1
2 = Cn−

1
6

+ p
3 (log n)

1
2 ≤ 1, for n big. �

4. Proof of Proposition 2.3 (decorrelation)

For the proof of Proposition 2.3, by homogeneity, we may assume that ψ and ϕ are BV
centered functions with variation ≤ 1. Moreover, we may also assume bi = 1,∀i. Indeed,
the decorrelation inequalities will follow from bounds on sums of products of quantities
like |ϕ̂bnqn(j)| ≤ bn |ϕ̂qn(j)| or ‖ϕbnqn‖2 ≤ bn ‖ϕqn‖2.

First we truncate the Fourier series of the ergodic sums ϕq. For functions in C, the remain-
ders are easily controlled and it su�ces to treat the case of trigonometric polynomials.

For ϕ ∈ C, the Fourier coe�cients of order j 6= 0 of the ergodic sum ϕn satisfy:

|ϕ̂n(j)| = |γj(ϕ)|
|j|

| sin πnjα|
| sin πjα|

≤ π

2

K(ϕ)|
|j|

‖njα‖
‖jα‖

.(68)

Recall also (cf. (8)) that, if q is a denominator of α, then

‖ϕq‖∞ = sup
x
|
q−1∑
`=0

ϕ(x+ `α)| ≤ V (ϕ) and ‖ϕq‖2 ≤ 2πK(ϕ).

We will use the notations: SLf for the partial sum of order L ≥ 1 of the Fourier series of
f ∈ L2(T), RLf := f − SLf for the remainder and, qn denoting the denominators of α,

a′n :=
qn+1

qn
≤ an+1 + 1, cn :=

qn+1

qn
ln qn+1.(69)

Preliminary inequalities and truncation

We begin by some inequalities which are valid for any irrational number α.

Lemma 4.1. There is a constant C such that, if q is a denominator of α,∑
|j|≥q

1

j2

‖Ljα‖2

‖jα‖2
≤ C

L

q
, ∀L ∈ [1, q].(70)
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Proof. If f is a non negative BV function with integral µ(f), by Denjoy-Koksma inequality
applied to f − µ(f), we have

∞∑
j=q

f(jα)

j2
≤

∞∑
i=1

1

(iq)2

q−1∑
r=0

f((iq+ r)α) ≤ 1

q2
(
∞∑
i=1

1

i2
) (q µ(f) +V (f)) =

π2

6
(
µ(f)

q
+
V (f)

q2
).

Taking for f(x) respectively 1[0, 1
L

](|x|) and 1
x2 1[ 1

L
, 1
2

[(|x|), we obtain:∑
j: ‖jα‖≤ 1

L
, j≥q

1

j2
≤ C (

1

q2
+

1

Lq
),

∑
j: ‖jα‖≥ 1

L
, j≥q

1

j2

1

‖jα‖2
≤ C (

L2

q2
+
L

q
).

This implies (70), since for L ≤ q:

1

2

∑
|j|≥q

1

j2

‖Ljα‖2

‖jα‖2
≤ L2

∑
‖jα‖≤ 1

L
, j≥q

1

j2
+

∑
‖jα‖> 1

L
, j≥q

1

j2

1

‖jα‖2
≤ 2C (

L

q
+
L2

q2
) ≤ 4C

L

q
. �

We will use the good equirepartition of the numbers ‖kα‖ when k varies between 1 and qn
through two inequalities given in the following lemma, which will be used several times.

Lemma 4.2. We have
qt+1−1∑
j=qt

1

‖jα‖
≤

qt+1−1∑
j=1

1

‖jα‖
≤ Cqt+1 ln qt+1, ∀t ≥ 0,(71)

∑
1≤j<qr+1

1

j ‖jα‖
≤ C

r∑
t=0

qt+1

qt
ln qt+1 = C

r∑
t=0

ct, ∀r ≥ 0.(72)

Proof. There is exactly one element of the set {jα mod 1, j = 1, ..., qt+1 − 1} in each
interval [ `

qt+1
, `+1
qt+1

[, ` = 1, ..., qt+1 − 1. Moreover, for 1 ≤ j < qt+1, one has ‖jα‖ ≥ 1
2qt+1

.

This implies:

qt+1−1∑
j=1

1

‖jα‖
≤ 2qt+1 +

qt+1−1∑
`=1

1

`/qt+1

≤ Cqt+1 ln qt+1.

From (71) applied for t = 1, ..., r, we deduce (72):∑
1≤j<qr+1

1

j ‖jα‖
=

r∑
t=0

∑
qt≤j<qt+1

1

j ‖jα‖
≤

r∑
t=0

1

qt

∑
qt≤j<qt+1

1

‖jα‖
≤ C

r∑
t=0

qt+1

qt
ln qt+1. �

Lemma 4.3. For ϕ ∈ C, it holds
‖Sqrϕqn‖∞ ≤ C V (ϕ) ln(qr).(73)

Proof. Using the Fejér kernel, we get

‖Sqrϕqn‖∞ ≤ ‖ϕqn‖∞ +
1

qr

∑
|j|<qr

|jϕ̂qn(j)| ≤ ‖ϕqn‖∞ + CK(ϕ)
1

qr

qr−1∑
j=1

1

||jα||
.

(73) follows by (8) and (71). �
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Truncation

Now we bound the truncation error for the Fourier series of the ergodic sums ϕbn qn .

Lemma 4.4. If ψ is bounded and ϕ ∈ C, with C1 = V (ϕ)2‖ψ‖∞, C2 = V (ϕ)3‖ψ‖∞, up
to a numerical factor, we have, for qn ≤ qm ≤ qr ≤ q`:

|
∫
ψ [ϕqnϕqm − Sq`ϕqn Sq`ϕqm ] dµ| ≤ C1 (

qm
q`

)
1
2 ,(74)

|
∫
ψ [ϕqnϕqmϕqr − Sq`ϕqn Sq`ϕqm Sq`ϕqr ] dµ| ≤ C2 (

qr
q`

)
1
2 ln2(q`).(75)

Proof. We use the bound (70) which gives, for qn ≤ q`,

‖RLϕqn‖2
2 =

∑
|j|≥q`

|ϕ̂qn(j)|2 =
∑
|j|≥q`

|γj(ϕ)|2

j2

‖qnjα‖2

‖jα‖2
≤ C2K(ϕ)2 qn

q`
.

For ψ bounded, as ‖ϕqn‖2 ≤ CK(ϕ), this implies: |
∫
ψ [ϕqnϕqm − Sq`ϕqn Sq`ϕqm ] dµ| ≤

‖ψ‖∞[‖ϕqn‖2 ‖Rq`ϕqm‖2 + ‖Rq`ϕqn‖2 ‖ϕqm‖2] ≤ C V (ϕ)2‖ψ‖∞ [(
qn
q`

)
1
2 + (

qm
q`

)
1
2 ].

This proves (74). For (75), in each term of the expansion of (Sq`ϕqn + Rq`ϕqn) (Sq`ϕqm +
Rq`ϕqm) (Sq` +Rq`)−Sq`ϕqn Sq`ϕqm Sq`ϕqr , we bound one factor in L2-norm and the others
in uniform norm using (73). �

Inequalities under Hypothesis 1

Recall that the decorrelation inequalities of Lemma 4.5 are based on Hypothesis 1 on α.

From (29) in Hypothesis 1, one deduces: for constants B,C, the coe�cients in Ostrowski's
expansion satisfy bn ≤ B np and, since qn ≤ Bn (n!)p,

ln qn ≤ C n lnn, cn ≤ C np+1 lnn.(76)

The case when α has bounded partial quotients corresponds to p = 0 and we have then
ln qn ≤ C n.

Let us mention that Hardy and Littlewood in [14] considered quantities similar to that in
the lemma below. One of their motivations was to study asymptotically the number of
integral points contained in homothetic triangles.

Lemma 4.5. If ak+1 ≤ Akp,∀k ≥ 1 and n ≤ m ≤ `, we have for every Λ ≥ 1:

∞∑
j=1

‖qnjα‖
j2 ‖jα‖

≤ C
np+2 lnn

qn+1

,(77)

∑
1≤j,k<qΛ, j 6=k

‖qnjα‖‖qmkα‖
|k − j| k j ‖jα‖ ‖kα‖

≤ C

qn+1

Λ2p+4(ln Λ)2,(78)

∑
−qΛ<i,j,k<qΛ, i+j+k 6=0

‖qniα‖ ‖qmjα‖ ‖q`kα‖
|i+ j + k| i j k ‖iα‖ ‖jα‖ ‖kα‖

≤ C

qn+1

Λ3p+8.(79)
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Proof. 1) Proof of (77)

We use the inequalities: ‖jqkα‖
j
≤ ‖qkα‖ ≤ 1

qk+1
for j < qk+1, ‖jqkα‖ ≤ 1 for j ≥ qk+1. For

` > n, we write

q`−1∑
j=1

‖qnjα‖
j2 ‖jα‖

= (A) + (B), with

(A) :=

qn+1−1∑
j=1

1

j

‖qnjα‖
j ‖jα‖

≤ 1

qn+1

qn+1−1∑
j=1

1

j

1

‖jα‖

≤ 1

qn+1

n∑
k=0

1

qk

qk+1−1∑
j=qk

1

‖jα‖
≤ C

1

qn+1

n∑
k=0

qk+1

qk
ln qk+1, by (72);

(B) :=

q`−1∑
j=qn+1

‖qnjα‖
j2 ‖jα‖

≤
`−1∑

k=n+1

qk+1−1∑
j=qk

1

j2 ‖jα‖

≤
`−1∑

k=n+1

1

q2
k

qk+1−1∑
j=qk

1

‖jα‖
≤ C

`−1∑
k=n+1

1

qk

qk+1

qk
ln qk+1, by (71).

By (4), we know that qn+1

qk
≤ Cρk−n, with ρ < 1, for k ≥ n+1. By hypothesis, ak+1 ≤ Akp.

It follows with the notation (69): (A) ≤ C

qn+1

n∑
k=0

ck ≤
C np+2 lnn

qn+1

and for (B), with a

bound which doesn't depend on ` ≥ n:

1

qn+1

`−1∑
k=n+1

qn+1

qk

qk+1

qk
ln qk+1 ≤ C

1

qn+1

∞∑
j=0

ρj (j + n+ 1)p+1 ln(j + n+ 1) ≤ C np+1 lnn

qn+1

. �

2) Proof of (78)

To bound the sum in (78), we cover the square [1, qΛ[×[1, qΛ[ in N × N by rectangles
Rr,s = [qr, qr+1[×[qs, qs+1[ for r and s varying between 0 and Λ − 1 and then we bound
the sum on each of these rectangles (minus the diagonal if r = s).

Distinguishing di�erent cases according to the positions of r and s with respect to n+ 1
and m+ 1, we have, for j ∈ [qr, qr+1[, k ∈ [qs, qs+1[, j 6= k.

‖qnjα‖ ‖qmkα‖
|k − j| j k ‖jα‖ ‖kα‖

≤ 1

qmax(r,n+1)qmax(s,m+1)

1

|k − j|‖jα‖‖kα‖
.

By (71) and (72), using ‖(k − j)α‖ ≤ ‖jα‖+ ‖kα‖), we have∑
(j,k)∈Rr,s

1

|k − j|‖jα‖‖kα‖
≤

∑
(j,k)∈Rr,s

(
1

|k − j| ‖(k − j)α‖ ‖jα‖
+

1

|k − j| ‖(k − j)α‖ ‖kα‖

)

≤ qmax(r,s)+1 ln(qmax(r,s)+1)

max(r,s)∑
t=0

ct.
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It follows ∑
(j,k)∈Rr,s, j 6=k

‖qnjα‖‖qmkα‖
|k − j| k j ‖jα‖ ‖kα‖

≤
qmax(r,s)+1

qmax(r,n+1)qmax(s,m+1)

ln(qmax(r,s)+1)

max(r,s)∑
t=0

ct

≤ 1

qn+1

ln(qΛ+1)
Λ∑
t=0

ct max
k=1,...,Λ

a′k.

The square [1, qΛ[×[1, qΛ[ is covered by Λ2 rectangles Rr,s and the sums on these rectangles
are bounded by the same quantity. It follows, with Hypothesis 1,∑
1≤j,k<qΛ, j 6=k

‖qnjα‖‖qmkα‖
|k − j| k j ‖jα‖ ‖kα‖

≤ Λ2 C

qn+1

ln(qΛ+1)
Λ∑
t=0

ct max
k=1,...,Λ

a′k ≤
C

qn+1

Λ2p+5 ln(Λ)2. �

3) Proof of (79)

Here we consider sums with three indices i, j, k. Though we do not write it explicitly, these
sums are to be understood to be taken on non zero indices i, j, k such that i+ j + k 6= 0.
We cover the set of indices by sets of the form

R±r,±s,±t = {(i, j, k) : ±i ∈ [qr, qr+1[,±j ∈ [qs, qs+1[,±k ∈ [qt, qt+1[}

Distinguishing di�erent cases according to the positions of r, s and t with respect to n+1,
we get: if (i, j, k) ∈ R±r,±s,±t and n ≤ m ≤ `,

‖qniα‖‖qmjα‖|q`kα‖
|i| |j| |k|

≤ 1

qmax(r,n+1)qmax(s,n+1)qmax(t,n+1)

.(80)

We have
1

‖iα‖ ‖jα‖ ‖kα‖
≤ 1

‖(i+ j + k)α‖
[

1

‖jα‖ ‖kα‖
+

1

‖iα‖ ‖kα‖
+

1

‖iα‖ ‖jα‖
].

We then use (71) and (72) three times, sum over R±r,±s,±t and get:∑
(i,j,k)∈R±r,±s,±t

1

|i+ j + k| ‖iα‖ ‖jα‖ ‖kα‖

≤ (

3 max(r,s,t)∑
v=0

cv) ln2(qmax(r,s,t)+1) (qs+1qt+1 + qr+1qt+1 + qr+1qs+1) .

By (80) we then have:∑
R±r,±s,±t

‖qniα‖‖qmjα‖|q`kα‖
|i+ j + k| |i| |j| |k| ‖iα‖ ‖jα‖ ‖kα‖

≤ C
(
∑3 max(r,s,t)

v=0 cv) ln2(qmax(r,s,t))

qmax(r,n+1)qmax(s,n+1)qmax(t,n+1)

(qs+1qt+1 + qr+1qt+1 + qr+1qs+1)

≤ C

qn+1

(
3Λ∑
v=0

cv) ln2(qΛ+1)( max
k=1,...,Λ

a′k)
2.
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One needs 8Λ3 boxes R±r,±s,±t to cover the set {−qΛ < i, j, k < qΛ, i + j + k 6= 0}. This
implies for a constant C:∑

−qΛ<i,j,k<qΛ, i+j+k 6=0

‖qniα‖‖qmjα‖|q`kα‖
|i+ j + k| |i| |j| |k| ‖iα‖ ‖jα‖ ‖kα‖

≤ C

qn+1

Λ3p+8. �

Proof of Proposition 2.3

By (68) we have |
∫
ψ ϕqn dµ| ≤

∑
j 6=0

|ϕ̂qn(j)| |ψ̂(−j)| ≤ K
∑
j≥1

‖qnjα‖
j2 ‖jα‖

and (32) follows

from (77):
∑
j≥1

‖qnjα‖
j2 ‖jα‖

≤ C
np+2 lnn

qn+1

.

We prove now (33). With L = qΛ, we have:∫
ψ SLϕqn SLϕqm dµ =

∑
|j|,|k|≤L,j 6=k

ϕ̂qn(j) ϕ̂qm(k) ψ̂(j − k).

In what follows, the constant C is equal to V (ψ)V (ϕ)2 (up to a factor not depending on
ψ and ϕ) which may change.

Recall that, by (4), there is a constant B such that m ≤ B ln qm,∀m ≥ 1.

The functions ψ, ϕ are real valued. By (78), it holds |
∫
ψ SLϕqn SLϕqm dµ| ≤

∑
|j|,|k|≤L,j 6=k

|ϕ̂qn(j)| |ϕ̂qm(k)| |ψ̂(j − k)| ≤ C
∑

1≤j,k≤L

‖qnjα‖ ‖qm kα‖
|k − j| j k ‖jα‖ ‖kα‖

≤ C

qn+1

Λ2p+4(ln Λ)2.

Putting it together with the truncation error term (74) and replacing qn+1 by qn, we get

|
∫
X

ψ ϕqnϕqm dµ| ≤ C [
Λ2p+4(ln Λ)2

qn
+ (

qm
qΛ

)
1
2 ], for n ≤ m ≤ Λ.(81)

Recall that ( qm
qΛ

)
1
2 ≤ ρ

Λ−m
2 . Let us take Λ − m of order 2(ln 1

ρ
)−1 ln qn, i.e., such that

the second term in the bracket of the RHS of (81) is of order 1/qn. We have then
Λ ≤ max(m,C1 log qn) and with Hypothesis 1 the �rst term in the bracket is less than

C1

qn
max( (ln qn)2p+5,m2p+5) ≤ C2

qn
max( (ln qn)2p+5, (ln qm)2p+5) ≤ C2

qn
(ln qm)2p+5 ≤ C3

m2p+5

qn
.

This shows (33) with θ2 = 2p+ 5.

In the same way, (34) follows from (75) and (79). �
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5. Appendix 1: proof of Proposition 1.4

Proof of Proposition 1.4

The proof consists in several steps. To bound from below d(nqjα,Z), successively we code
n as an admissible word (Ostrowski's coding), reduce long words to short words, then
interpret cardinals in terms of cylinders and invariant measure for a subshift. Finally we
use a result of large deviations recalled in Lemma 5.1.

For the reader's convenience, at each step we will consider �rst the simpler special case

of the golden mean α =
√

5+1
2

(the corresponding rotation number is
√

5−1
2
∈]0, 1[). Then

the general case is treated between the signs �♦� and �4� and may be skipped if α is the
golden mean.

When α is the golden mean, its partial quotients are equal to 1 and (qn) (the Fibonacci
sequence with q−1 = 0, q0 = 1, q1 = 1, ...) is almost a geometric sequence of ratio α. We
have

qn =
1

5
[(2 + α)αn + (−1)n(3− α)α−n], n ≥ 0,(82)

αn + (−α)−n ∈ Z, d(αn,Z) = α−n, n ≥ 1.(83)

♦ For a general quadratic number α, the sequence (an) is ultimately periodic: there are
integers n0, p such that an+p = an, ∀n ≥ n0.

Let A1 :=

(
0 1
1 an0+1

)
, Ai :=

(
0 1
1 an0+i

)(
0 1
1 an0+i−1

)
. . .

(
0 1
1 an0+1

)
, for i > 1.

From the recursive relation

(
qn
qn+1

)
=

(
0 1
1 an+1

)(
qn−1

qn

)
, between the denomina-

tors (qn) of α, it follows, ∀k ≥ 1,

(
qn0+kp+m−1

qn0+kp+m

)
= AmA

k
p

(
qn0−1

qn0

)
, m = 1, ..., p.

The matrix Ap is a 2 × 2 matrix with determinant (−1)p and non negative integer coef-
�cients (positive if p > 1). It has two distinct eigenvalues λ > 1 and −λ−1 (where λ is a
quadratic number) and it is diagonal in a basis of R2 with coordinates in Q[λ]. We have
λp + (−λ−1)p ∈ Z.
Without loss of generality we may suppose that p is even (otherwise, we replace it by 2p).
Therefore there are integers r, s`, t`, u`, v` for ` ∈ {0, . . . , p− 1} such that

qn0+kp+` =
1

r

[
(s` + t`λ)λk + (u` + v`λ)λ−k

]
, ∀k ≥ 0.(84)

For every `, (qn0+kp+`)k≥1 behaves like a geometric progression with ratio λ.

For the golden mean, (84) corresponds to (82) for n even and r = 5. 4
1) Ostrowski's coding, invariant measure for a subshift of �nite type and counting
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As recalled in Subsection 1.1, every n < qm+1 is coded by an �admissible� word b0...bm,
with b0 ∈ {0, 1, ..., a1 − 1}, bj ∈ {0, 1, ..., aj+1}, j = 1, ...,m, where for two consecutive
letters bj−1, bj, if bj = aj+1, then bj−1 = 0.

For α the golden mean, a �nite word b0...bm is admissible if it is composed of 0's and
1's and two consecutive letters bi, bi+1 cannot be both 1. We denote by X the space of
one-sided in�nite admissible sequences, that is sequences of 0, 1 without two consecutive
1's. For simplicity the letter b will denote an admissible word, either �nite or in�nite.
The context will make clear if b is �nite or not.

If b = b0...b` is an admissible word, we put nb,` :=
∑`

i=0 biqi.

When α is the golden mean, we use the sub-shift (X, σ), where σ = σX is the shift on
X. Let µ be the σ-invariant probability measure on X of maximal entropy. Let Cx0...xn

denote the cylinder composed of sequences starting with x0 . . . xn. For n ≥ 1, depending
whether x0 and xn are both equal to 1, or only one of them, or none, we have

µ(Cx0...xn) =
1

α + 2
α−n,

α

α + 2
α−n or

α2

α + 2
α−n.

If E ⊂ X is a union of cylinders of length n, its measure can be compared to the number
of cylinders which compose it:

α + 2

α + 1
µ(E) ≤ α−n Card {cylinder W of length n : W ⊂ E} ≤ (α + 2)µ(E).(85)

♦ In the general case, let us consider the set of in�nite admissible sequences corresponding
to the Ostrowski expansions for the periodic part of the sequence (an):

X := {x = (xi)i∈N such that ∀i xi−1xi 6= uan0+i+1 with u 6= 0}.

The space X is invariant under the action of σpX (because (an) is p-periodic for n ≥ n0).
We de�ne an irreducible aperiodic sub-shift of �nite type as follows: the state space of
Y is the set of words x0 . . . xp−1 of X, a transition between two such words w1 and w2 is
allowed if the concatenation w1w2 is the beginning of length 2p of a sequence in X.

From (84) we see that the exponential growth rate of the number of Ostrowski expansions
of length at most n0 + pk is lnλ (with respect to k). It is also the growth rate of the
number of words of length pk of X. As these words correspond to the words of length
k in Y , the topological entropy of (Y, σ) is lnλ (where σ = σY is the shift to the left on
Y ). There is a unique invariant probability measure µ on (Y, σ) with entropy lnλ. This
measure can be constructed as follows. Let B be the matrix with entries 0 and 1 that
gives the allowed transitions between elements of the alphabet of Y . As the topological
entropy of Y is the logarithm of the spectral radius of B, this spectral radius is λ. Let U
and V be two positive vectors such that BU = λU, tBV = λV, tUV = 1. The measure
µ is the Markovian measure determined by its values on cylinders given by

µ(Cy0y1...yn) = Vy0Uynλ
−n,

when y0y1 . . . yn is an admissible word (see [17] pp.21-23 and p.166 for more details on
this classical construction). As there are only �nitely many products Vy0Uyn , there exists
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a constant c′ > 0 such that, if a subset E of Y is a union of cylinders of length n, then

(86)
1

c′
µ(E) ≤ Card {W cylinders of length n : W ⊂ E}λ−n ≤ c′ µ(E). 4

Lemma of large deviations

We will use the following inequality of large deviations for irreducible Markov chains with
�nite state space (see [20], Theorem 3.3):

Lemma 5.1. Let A be �nite union of cylinders. For every ε ∈]0, 1[, there are two positive
constants R(ε), ξ(ε) depending on A such that

µ{x ∈ X :
1

L

L−1∑
k=0

1A(σkx) ≤ µ(A)(1− ε)} ≤ R(ε) e−ξ(ε)L, ∀L ≥ 1.(87)

2) Reduction of the Ostrowski expansion to a �window�

By (2) and (4) we have, for a constant ρ < 1, ‖qiqjα‖ ≤ Cρ|j−i|. Hence, for 0 ≤ j ≤ `, if
κ is such that 0 ≤ j − κ ≤ j + κ ≤ `:

|‖
∑̀
i=0

biqiqjα‖ − ‖
j+κ−1∑
i=j−κ

biqiqjα‖| ≤ ‖
∑̀
i=j+κ

biqiqjα‖+ ‖
j−κ−1∑
i=0

biqiqjα‖ ≤ C ρ−κ.(88)

It means that ‖
∑`

i=0 biqiqjα‖ = ‖nb,`qjα‖ is well approximated by ‖
∑j+κ−1

i=j−κ biqiqjα‖
which depends on a word with indices belonging to a window around j, with a precision
depending on the size of the window. This is valid for any irrational α.

The quantity introduced in the next de�nition can be viewed as a function of an in�nite
word b or of a �nite word bj−κ0 , ..., bj+κ0 . We put

Γ(b, j) :=
1

5

j+κ0∑
i=j−κ0

(−1)ibi
(
αj−i + (−α)i−j

)
α.(89)

A simple computation shows that Γ(b, j + 1) = −Γ(σb, j). Therefore we have:

Γ(σkb, κ0) = (−1)k Γ(b, k + κ0).(90)

Lemma 5.2. Let α be the golden mean For every δ > 0, there is κ0 = κ0(δ) such that

d(nb,`qjα− Γ(b, j),Z/5) ≤ δ, if j ≥ κ0.(91)

Proof. We can restrict the sum nb,`qjα =
∑`

i=0 biqiqjα to the sum
∑j+κ0

i=j−κ0
biqiqjα, since

their distance modulo 1 is small for κ0 big enough by (88).

By (82), we have qiqj =
1 + α

5
αi+j +

2− α
5

(−α)−(i+j) +
(−1)i

5

(
αj−i + (−α)i−j

)
;

hence:

j+κ0∑
i=j−κ0

biqiqjα =
1

5

j+κ0∑
i=j−κ0

[bi (1 + α)αi+j+1 + bi (−1)i+j (2− α)α1−(i+j)] + Γ(b, j).

The distance to Z of the �rst sum above at right is small by (83). �
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The lemma shows that for the golden mean the distance to Z/5 of
∑`

j=0 bi qi qjα is almost
the distance to Z/5 of Γ(b, j), which depends on the �short� word bj−κ0 ...bj+κ0 (reduction
to a window of width 2κ0 of the �long� word b0...b`) in such a way that its values, when j
varies, are the values of a �xed function computed for shifted words.

♦ The lemma extends to a general quadratic number. We need some notation.

For an integer i, we write i = i+pηi+n0, where i is the class of i−n0 modulo p and ηi the
integer part of (i− n0)/p. The classes mod p are identi�ed with the integers 0, ..., p− 1.
With the notation introduced in (84), we put

T (i, j) :=
α

r2
(si + tiλ)(uj + vjλ), U(i, j) :=

α

r2
(ui + viλ)(sj + tjλ).

Lemma 5.3. Let δ ∈]0, 1
2r

[. There is κ0 = κ0(δ) such that, if j ≥ n0 + κ0p,

(92) d(nb,`qjα−
n0+(ηj+κ0)p−1∑
i=n0+(ηj−κ0)p

bi
[
T (i, j)ληi−ηj + U(i, j)ληj−ηi

]
,Z/r) ≤ δ.

Proof. Recall that (an) is p-periodic for n ≥ n0. We consider indices j ≥ n0 and take
sums on windows union of blocks of length p, hence of the form n0 +mp, . . . , n0 + qp− 1.
Using (84), the product qn0+kp+m qn0+k′p+m′ is equal to

1

r2

[
(sm + tmλ)(sm′ + tm′λ)λk+k′ + (um + vmλ)(um′ + vm′λ)λ−(k+k′)

]
+

1

r2

[
(sm + tmλ)(um′ + vm′λ)λk−k

′
+ (um + vmλ)(sm′ + tm′λ)λk

′−k
]
.

Still using (84), we have

sm
r

(sm′ + tm′λ)

r
λk+k′ =

sm
r

(qn0+(k′+k)p+m′ −
1

r
(um′ + vm′λ)λ−(k′+k)).

From this (and a similar equality) we obtain

qn0+kp+m qn0+k′p+m′α

− 1

r2

[
(sm + tmλ)(um′ + vm′λ)λk−k

′
+ (um + vmλ)(sm′ + tm′λ)λk

′−k
]
α

=
sm
r
qn0+(k′+k)p+m′α +

tm
r
qn0+(k′+k+1)p+m′α

− [
sm
r2

(um′ +
vm′

r2
λ)λ−(k′+k)α +

tm
r2

(um′ + vm′λ)λ−(k′+k+1)α].

Since d(qn0+(k′+k)p+m′α,Z/r) ≤ d(qn0+(k′+k)p+m′α,Z) ≤ Cλ−(k′+k) by (2), the distance of

the left side term above to Z/r is bounded by Cλ−(k′+k). It follows:

d(qiqjα−
[
T (i, j)ληi−ηj + U(i, j)ληj−ηi

]
,Z/r) ≤ Cλ−p(ηj+ηi),∀i, j ≥ n0.
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Thus, using (88), for κ0 large enough and if j ≥ n0 + κ0p, we have:

d(nb,`qjα−
n0+(ηj+κ0)p−1∑
i=n0+(ηj−κ0)p

bi
[
T (i, j)ληi−ηj + U(i, j)ληj−ηi

]
,Z/r)

≤ Cλ−κ0p + C

n0+(ηj+κ0)p−1∑
i=n0+(ηj−κ0)p

λ−ηj−ηi ≤ Cλ−κ0p + 2Cκ0λ
κ0−2ηj ≤ δ. �

4

3) From long words to short words

Lemma 5.4. Let 1 ≤ `0 ≤ `1 ≤ ` be three integers and let Λ : b0 . . . b` 7→ b`0 . . . b`1 be
the �restriction� map from the set L of admissible words to shortened words. There is a
constant c > 0 such that, if S is the image of Λ, for any subset P of S, we have

Card (P)

Card (S)
≤ c

Card {w ∈ L : Λ(w) ∈ P}
Card (L)

.

We can take c = 4 for the golden mean, c = u−2
0 , with u0 = infk>1

qk−1−1

qk−1
, in the general

case.

Proof. The proof is given for the golden mean. The general case is analogous.

The ways of completing a short word into a long one depend only on the �rst letter b`0
and the last letter b`1 : if b`0 6= 1, any admissible beginning �ts; if b`0 = 1, then only
the admissible beginnings �nishing by 0 �t; if b`1 = 0 then any admissible ending �ts; if
b`1 = 1, only endings with 0 as �rst letter �t.

The number of admissible words of length r is qr+1, the number of admissible words of
length r beginning (or ending) by 0 is qr.

Let denote Si, i = 1, ..., 4, the set of short words b`0 . . . b`1 such that b`0 = b`1 = 0, b`0 = 0
and b`1 = 1, b`0 = 1 and b`1 = 0, b`0 = b`1 = 1, respectively.

Depending on the set Si to which Λ(w) belongs, the cardinal of Card Λ−1(Λ(w)) is D1 =
q`0q`−`1+1, D2 = q`0q`−`1 , D3 = q`0−1q`−`1+1, or D4 = q`0−1q`−`1 respectively.

Since, 1
2
≤ qr/qr+1 ≤ 1, for all r, we have D1 = maxiDi, D4 = miniDi, D4 ≤ D1 ≤ 4D4

and �nally

Card (P) =
4∑
i=1

Card (P ∩ Si) =
4∑
i=1

1

Di

Card {w ∈ L : Λ(w) ∈ P ∩ Si}

≤ 1

D4

4∑
i=1

Card {w ∈ L : Λ(w) ∈ P ∩ Si} =
1

D4

Card {w ∈ L : Λ(w) ∈ P},

Card (S) =
4∑
i=1

Card (Si) =
4∑
i=1

1

Di

Card {w ∈ L : Λ(w) ∈ Si} ≥
1

D1

Card (L). �
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4a) End of the proof of Proposition 1.4 when α is the golden mean

Let δ be a small positive number. Its value will be chosen later. It follows from (14) for
` big enough that, if q−1

j+1 < δ:

Card {n ∈ [1, q`+1[ : d(nqjα,Z/5) ≤ 3δ} ≤ C1 δq`+1,∀j ≤ `.(93)

If κ0 is big enough, from (91) in Lemma 5.2, we have with Γ(b, j) de�ned in (89):

d(nb,`qjα,Z/5) ≥ 3δ ⇒ d(Γ(b, j),Z/5) ≥ 2δ ⇒ d(nb,`qjα,Z/5) ≥ δ.(94)

By taking κ0 large enough, we can suppose q−1
κ0+1 < δ. By (93) (translated in terms of

words) for each j ∈ [κ0, `], the proportion of words b = b0 . . . b` of length ` + 1 for which
d(nb,`qjα,Z/5) ≥ 3δ, is smaller than C1δ. Therefore, if ` ≥ κ0, we get

Card {b0 . . . b` : d(Γ(b, j),Z/5) ≤ 2δ} ≤ C1 δq`,∀j ∈ [κ0, `].(95)

But Γ(b, j) depends only on the short word bj−κ0 . . . bj+κ0 , part of the long word b =
b0 . . . b`. It follows, using Lemma 5.4 that

Card {bj−κ0 . . . bj+κ0 : d(Γ(b, j),Z/5) ≤ 2δ} ≤ C2 δq2κ0+2, ∀j ∈ [κ0, `].(96)

Putting Aδ := {b : d(Γ(b, κ0),Z/5) ≥ 2δ}, it follows from (96) and (85):

µ(Acδ) ≤ α−2κ0−2Card {bj−κ0 . . . bj+κ0 : d(Γ(b, j),Z/5) ≤ 2δ} ≤ C2 δq2κ0+2α
−2κ0−2 ≤ C3 δ.

Let C4 be a constant > C3 and ε = C4δ. Observe that we can chose ` large enough
so that µ(Aδ) (` − κ0) ≥ (1 − ε) `: indeed, we have µ(Aδ) − (1 − ε) > 0 and by taking
` > µ(Aδ)κ0/(µ(Aδ)− (1− ε)) we obtain the required inequality.

Now we use
∑L−1

k=0 1Aδ(σ
kb) = Card {k < L : d(Γ(σkb, κ0),Z/5) ≥ 2δ} and (90). Accord-

ing (94) with j = k+ κ0 and Lemma 5.1 with A = Aδ and ε = C4δ (we assume δ < C−1
4 ),

there are two positive constants R = R(ε), ξ = ξ(ε) such that

µ{b ∈ X : Card {j ∈ [κ0, L+ κ0[: d(Γ(b, j),Z/5) ≥ 2δ} ≤ µ(Aδ)(1− ε)L} ≤ R(ε) e−ξL.

Using �⇒� in (94), we have therefore, taking L = `− κ0, for `− κ0 ≥ j ≥ κ0,

µ{b ∈ X : Card {j ∈ [κ0, `[: d(nb,`qjα,Z/5) ≥ δ} ≤ µ(Aδ)(1− ε)(`− κ0)} ≤ Re−ξ (`−κ0).

By (85), the previous inequality translated in terms of cardinal yields for a constant C5:

Card {b0 . . . b` : Card {j < ` : d(nb,`qjα,Z/5) ≥ δ} ≤ (1− C4δ)
2`} ≤ C5e

−ξ`q`+1.

If δ is taken small enough to get (1 − ε0) ≤ (1 − C4δ)
2 and using that eξ` is equivalent

to a power of q`+1 (because (q`)` is equivalent to a geometric progression), the previous
inequality shows (20) of Proposition 1.4. �
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♦ 4b) End of the proof of Proposition 1.4 for a general quadratic number

As for the golden number, we take a positive number δ whose value will be �xed later.
By (14), if κ0 is large enough, we have for some C1 > 0

Card {n ∈ [1, q`+1[: d(nqjα,Z/r) ≤ 3δ} ≤ C1 δq`+1,∀j ∈ [n0 + κ0, `];

hence, in terms of admissible words b0 . . . b`, if j ∈ [n0 + κ0, `],

Card{b0 . . . b` : d(nb,`qjα,Z/r) ≤ 3δ} ≤ C1 δq`+1.(97)

Let Γj,Γ
0
j be the functions on Y

Γj(b) :=

n0+(ηj+κ0)p−1∑
i=n0+(ηj−κ0)p

bi
[
T (i, j)ληi−ηj + U(i, j)ληi−ηj

]
,

Γ0
j(b) :=

n0+2κ0p−1∑
i=n0

bi
[
T (i, j)ληi−κ0 + U(i, j)λκ0−ηi

]
.

Remark that the sums on the right can be viewed as functions of y through the bi's.
Letting yk := bn0+kp . . . bn0+kp+p−1, we see that the sum inside the de�nition of Γj is a
function of yηj−κ0 . . . yηj+κ0−1.

Let Aδ be the subset of Y de�ned by

Aδ := {y : d(Γ0
j(y),Z/r) ≥ 2δ, for j = 0, . . . , p− 1}.

By (92) in Lemma 5.3, if κ0 is su�ciently large, we have the implication

d(nb,`qjα,Z/r) ≥ 3δ ⇒ d(Γj(b),Z/r) ≥ 2δ.(98)

As j = j − p, ηj+p = ηj + 1 and ηi+p = ηi + 1, we obtain by ηj − κ0 iterations:

n0+(ηj+κ0)p−1∑
i=n0+(ηj−κ0)p

biT (i, j)ληi−ηj =

n0+(ηj−1+κ0)p−1∑
i=n0+(ηj−1−κ0)p

bi+pT (i+ p, j)ληi+p−ηj

=

n0+(ηj−p+κ0)p−1∑
i=n0+(ηj−p−κ0)p

bi+pT (i, j)ληi+1−ηj =

n0+(ηj−p+κ0)p−1∑
i=n0+(ηj−p−κ0)p

bi+pT (i, j)ληi−ηj−p

= ... =

n0+ηj−(ηj−κ0)p+κ0p−1∑
i=n0+(ηj−(ηj−κ0)p−κ0)p

bi+(ηj−κ0)pT (i, j)λ
ηi−ηj−(ηj−κ0)p .

Since ηj−(ηj−κ0)p = κ0, the last quantity reduces to

n0+2κ0p−1∑
i=n0

bi+(ηj−κ0)pT (i, j)ληi−κ0 .
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The same computation can be done for

n0+(ηj+κ0)p−1∑
i=n0+(ηj−κ0)p

biU(i, j)ληi−ηj . Taking the sum for

the T 's and U 's, we get

Γj(y) = Γ0
j(σ

ηj−κ0y).(99)

From (98), (97) and (99), it follows, if ` ≥ n0 + 2κ0p and j ≥ n0 + κ0,

Card{b0 . . . b` : d(Γj(σ
ηj−κ0y),Z/r) ≤ 2δ} ≤ C1 δq`+1.

But Γ0
j(σ

ηj−κ0y) depends only on the short word bn0+(ηj−κ0)p . . . bn0+(ηj+κ0)p−1, which is a

sub-word of the �long� word b0 . . . b`. By Lemma 5.4 we obtain for constants C2, C3 > 0:

Card{bn0+(ηj−κ0)p . . . bn0+(ηj+κ0)p−1 : d(Γ0
j(σ

ηj−κ0y),Z/r) ≤ 2δ} ≤ C2δλ
2κ0 .(100)

Then, (100) and (86) imply that

(101) µ(Acδ) = µ{y ∈ Y : d(Γ0
m(y),Z/r) < 2δ, m = 0, ..., p− 1} ≤ C3δ.

Now, we have

n−1∑
k=0

1Aδ(σ
ky) = Card{k < n : d(Γ0

m(σky),Z/r) ≥ 2δ, m = 0, ..., p− 1},

Γ0
m(σky) =

n0+(k+2κ0)p−1∑
i=n0+kp

bi
[
T (i,m)ληi−k−κ0 + U(i,m)λk+κ0−ηi

]
,

and, if j = (k + κ0)p+m ∈ [n0 + κ0, `] (i.e., ηj = k + κ0, j = m),

d(Γ0
m(σky),Z/r) ≥ 2δ ⇒ d(nb,`qjα,Z/r) ≥ δ.

In particular:

pCard{k < η` − κ0 : d(Γ0
m(σky),Z/r) ≥ 2δ, m = 0, ..., p− 1}

≤ Card {j < (η` − κ0)p : d(nb,`qjα,Z/r) ≥ δ}.
By Lemma 5.1, for the Markov chain deduced from Y with state space the set of words
of length 2κ0 in Y , we get from (87):

µ{y : Card {j < (η`−κ0)p : d(nb,`qjα,Z/r) ≥ δ} ≤ µ(Aδ)(1−ε)p(η`−κ0)} ≤ Re−ξ(η`−κ0).

This can be translated in terms of cardinal using (86):

Card {y0 . . . yη`−κ0 : Card {j < (η`−κ0)p : d(nb,`qjα,Z/r) ≥ δ} ≤ µ(Aδ)(1− ε)p(η`−κ0)}
is smaller than C4e

−ξ(η`−κ0)λη`−κ0 . It implies

Card {b0 . . . b` : Card {j < ` : d(nb,`qjα,Z/r) ≥ δ} ≤ µ(Aδ)(1−ε)p(η`−κ0)} ≤ C5e
−ξ(η`−κ0)λη`−κ0 .

If η` > (κ0 + 1)/ε (that is ` ≥ p(κ0 + 2)/ε), then p(η` − κ0) ≥ (1 − ε)` and, for some
C6 > 0, there are less than C6e

−ξη`λη` words b of length ` such that

(102) Card {j ≤ ` : d(
∑̀
i=0

biqiqjα,Z/r) ≥ δ} ≤ µ(Aδ)(1− ε)2`.
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By (101), for ε0 > 0, we can choose ε and δ such that µ(Aδ)(1 − ε)2 = 1 − ε0. On the

other hand, since c−1q`+1 ≤ λη` ≤ cq`+1 for some c > 0, C6e
−ξη`λη` ≤ C7q

1−ζ
`+1 , for some

positive constants ζ, C7. Finally, we have obtained (20) (in terms of number of admissible
words):

Card {b0 . . . b` : Card {j < ` : d(nb,`qjα,Z/r) ≥ δ} ≤ (1− ε0)`} ≤ C7q
1−ζ
`+1 . �

4

6. Appendix 2: weighted orthogonal functions

Let (gn) be a sequence of orthogonal real functions in L2 of a probability space (X,µ)
and (un) be a sequence of positive constants. By the Lebesgue dominated convergence
theorem, if the functions gn are uniformly bounded, the following condition

lim
n

∑N
k=1 u

2
k

(
∑N

k=1 uk)
2
→ 0(103)

is necessary for

lim
N

∑N
k=1 uk gk(x)∑N

k=1 uk
= 0, for a.e. x.(104)

(103) is satis�ed if the following condition holds:

1 ≤ un ≤ nγ,∀n ≥ 1, with 0 ≤ γ < 1.(105)

Indeed we have

∑N
k=1 u

2
k

(
∑N

k=1 uk)
2
≤ (

N
max
k=1

uk)

∑N
k=1 uk

(
∑N

k=1 uk)
2
≤ maxNk=1 uk

(
∑N

k=1 uk)
≤ Nγ−1 → 0.

But (103) and the result of Proposition 6.1 can fail if the parameter γ in (105) is taken
≥ 1. Indeed, suppose that ‖gk‖2 = 1, and let us take uk = k if k is a power of 2, else
uk = 1.

Then, we have 1 ≤ uk ≤ k,
∑2n

k=1 u
2
k ≥ 4

3
22n and

∑2n

k=1 uk = 2n+1 − (n+ 1), so that∑2n

k=1 u
2
k

(
∑2n

k=1 uk)
2
≥ 1

3
(1− 2−(n+1)(n+ 1))2 → 1

3
.

Proposition 6.1. Let (gk)k≥1 be a sequence of orthogonal functions in L2(X,µ), bounded
in L2 norm. Under the condition

1 ≤ un ≤ nγ, with 0 ≤ γ <
1

2
,(106)

it holds

lim
N

∑N
k=1 uk gk(x)∑N

k=1 uk
= 0, for a.e. x.(107)
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Proof. 1) Setting RN(x) :=

∑N
k=1 uk gk(x)∑N

k=1 uk
, by orthogonality and the conditions on uk,

there is a constant C such that

∫
X

|RN(x)|2 dµ ≤ C N2γ−1, which implies
∑∞

n=1 ‖Rnp‖2
2 <

+∞, if p(1− 2γ) > 1.

As 1− 2γ > 0, we can choose p such that p(1− 2γ) > 1. We have then: limnRnp(x) = 0,
for a.e. x. Therefore, it su�ces to show that:

lim
n

sup
`∈Jn
|Rnp+`(x)−Rnp(x)| = 0, where Jn = {0, 1, ..., (n+ 1)p − np − 1}.

2) For reals A,C,B`, D`, ` ∈ Jn, with C,D` > 0, it holds:

max
`∈Jn
|A+B`

C +D`

− A

C
| ≤ max`∈Jn |B`|+ |A|

C
.

This implies, withA =
∑np

k=1 uk gk, B` =
∑np+`

k=np+1 uk gk, C =
∑np

k=1 uk, D` =
∑np+`

k=np+1 uk,

max
`∈Jn
|Rnp+`(x)−Rnp(x)| ≤

max`∈J |
∑np+`

k=np+1 uk gk|∑np

k=1 uk
+
|
∑np

k=1 uk gk|∑np

k=1 uk
.(108)

By a lemma of Rademacher-Mensov ([11], p. 156), if Y1, ..., YL are mutually orthogonal
functions in a probability space (X,µ) with �nite variances σ2

1, ..., σ
2
L, then

E[(
L

max
`=1

(
∑̀
j=1

Yj))
2] ≤ C(log(4L))2

L∑
`=1

σ2
` .(109)

If we put Mn,p := max`∈Jn |
∑np+`

k=np ukgk|, then by (109) we have

E(M2
n,p) ≤ C(log(4 p np−1))2

(n+1)p−1∑
j=np

u2
j ≤ C(log(4 p np−1))2

(n+1)p−1∑
j=np

j2γ

≤ C ′(log n)2 np−1 n2pγ = C ′(log n)2 np(2γ+1)−1.

It follows:

E[
(max`∈J |

∑np+`
k=np ukgk|∑np

j=1 uj

)2
] ≤ C ′

(log n)2 np(2γ+1)−1

n2p
= C ′(log n)2 np(2γ−1)−1.

Therefore, since 2γ − 1 < 0, we have∑
n

E[
(max`∈J |

∑np+`
k=np ukgk|∑np

k=1 uk

)2
] < +∞,

so that lim
n

max`∈J |
∑np+`

k=np ukgk|∑np

k=1 uk
= 0, a.e.

Both terms in the right side of (108) converge a.e. to 0, which implies a.e.:

lim
n

max
`∈Jn
|Rnp+`(x)−Rnp(x)| → 0. �
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