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ON THE CLT FOR ROTATIONS AND BV FUNCTIONS

JEAN-PIERRE CONZE AND STEPHANE LE BORGNE

IRMAR - UMR 6625, F-35000 Rennes, France

ABSTRACT. Let z — x + « be a rotation on the circle and let ¢ be a step function. We
denote by ¢, (x) the corresponding ergodic sums Z;l;()l ¢(x+ ja). Under an assumption
on «, for example when « has bounded partial quotients, and a Diophantine condition
on the discontinuity points of ¢, we show that ¢, /|¢n|l2 is asymptotically Gaussian for
n in a set of density 1. The method is based on decorrelation inequalities for the ergodic
sums taken at times ¢x, where the ¢’s are the denominators of a.
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1. Introduction

Let us consider an irrational rotation z — = + a mod 1 on X = R/Z. By the Denjoy-
Koksma inequality, the ergodic sums ¢ (x) = ZOL*l o(x+ ja) of a centered BV (bounded
variation) function ¢ are uniformly bounded along the sequence (g,) of denominators of «.
But, besides, one has a stochastic behaviour at a certain scale along other sequences (L,,).
In a sense the process defined by the above sums Spp(z) presents more complexity than
the ergodic sums under the action of hyperbolic maps for which a central limit theorem
is often satisfied. We propose a quantitative analysis of this phenomenon.

Several papers have been devoted to this topic. M. Denker and R. Burton (1987), M. Lacey
(1993), M. Weber (2000) and other authors proved the existence of functions whose ergodic
sums over rotations satisfy a CLT after self-normalization. D. Volny and P. Liardet in
1997 showed that, when o has unbounded partial quotients, for a dense Gy set of functions
f in the class of absolutely continuous, or Lipschitz continuous or differentiable functions,
the distributions of the random variables c; ! Z?:_& foTi ¢, oo and ¢,/n — 0, are
dense in the set of all probability measures on the real line.

Most often in these works the functions that are dealt with are not explicit. Here we
consider ergodic sums of simple functions such as step functions. Let us mention the
following related papers. For ¢ := 1y 1= 1[% o I'- Huveneers [Hu09| studied the exis-
tence of sequences (L, ),en such that Sy, 1 after normalization is asymptotically normally
distributed. In [ColsLel7| it was shown that, when « has unbounded partial quotients,
along some subsequences the ergodic sums of some step functions ¢ can be approximated

by a Brownian motion.

Here we will use as in [Hu09| a method based on decorrelation inequalities which applies in
particular to the bounded type case (bpq), i.e. when the sequence (a,) of partial quotients
of v is bounded. It relies on an abstract central limit theorem valid under some suitable
decorrelation conditions. If ¢ is a step function, we give conditions which insure that for
n in a set of density 1, the distribution of S, ¢/[|S,¢||2 is close to a normal distribution.

Beside the remarkable recent “temporal” limit theorems for rotations (see [Bel0|, [BrU117],
[DoSal6]), this shows that, even if it is in a weak sense, a “spatial” asymptotic normal
distribution can also be observed.

The results are presented in Section 2. There are based on the decorrelation of the ergodic
sums taken at times ¢, and on an abstract central limit theorem, whose proofs are given
in Sections 4 and 5.

An important point is the control of the variance |S,pl||3 for n belonging to a set of
density 1, at least in the case of o with bounded partial quotients. In the special case
where « is the golden ratio, this information can be improved.

2. Variance of the ergodic sums

Notation The uniform measure on T! identified with X = [0, 1] is denoted by u. The
arguments of the functions are taken modulo 1. For a 1-periodic function ¢, we denote
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by V(¢) the variation of ¢ computed for its restriction to the interval [0, 1] and use the
shorthand BV for “bounded variation”. BV, denotes the space of BV functions ¢ on the
circle such that u(p) = 0. By C' we denote a numerical constant whose value may change
from a line to the other or inside a line.

The number o = [0; ay, as, . . .| is an irrational number in [0, 1[, with partial quotients (a,)
and denominators (g,,): Let C be the class of centered BV functions. If ¢ belongs to C,
its Fourier coefficients ¢, () satisfy:

O ale) =220, with K(g) = sup by (g)] < +oo.

r r#£0
The class C contains the step functions with a finite number of discontinuities.

The ergodic sums ij:_ol o(z + ja) will be denoted by ¢y (x). Their Fourier series are

=

(2) QON(I‘) = (p T + jO{ Z f'}/r ﬂi(N—l)T‘a
J 740

sinTtNro J2rira
sin Tro

Il
o

If ¢ belongs to C, then so do the sums ¢y and we have

K sinTtNro NK
Ir|  |sin7ral 7|

If ¢ is a BV function, then so is ¢y and V(py) < NV (p).

1. Reminders on continued fractions.

For u € R, ||u|| denotes its distance to the integers: ||u| := inf,cz |u —n| = min({u}, 1 —
{u}) € [0, 5]. Recall that

2||z|| < |sinwz| < 7||x||, Yz € R.

n O
Let o € [0,1] be an irrational number. Then, for each n > 1, we write o = _ Dn + —
dn I’
where p, and ¢, are the numerators and denominators of a. Recall that
1 Gn Gn Gn 1

(3) < < Gullgnal| = ga0n] < = < ’

An41 + 2 qn+1 + dn qn+1 An4+19n + qn—1 Qp+1

1

4) kol = llgn-all = > — for 1 <k <qy,

Gn + Gn—1 2Qn

n Pn n lgnc]
G)  ligmel = (=1)"(gne = pn), On = (=1)"[[gnall, @ == . +(-1) T
For n > 1 we put
(6) m=m(n):=4{, ifn € [q, qp1|

If a has bounded partial quotients (K = supa, < o0), then there is a constant A > 0
€ [\, In(K +1)].

such that Inn

m(n)
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Thereafter we will need the following assumption which is satisfied by a.e. «a:
Hypothesis 1. There are two constants A > 1, p > 0 such that
(7) a, < AnP,¥n > 1.

Recall that every integer n > 1 can be represented as follows (Ostrowski’s expansion):
m(n)

8) n= Zbqu,withOSbo <ar—1,0< by <apifor 1 <k<m, 1<by, < anii-
k=0

Indeed, if 7 € [gm, @ms1, Wwe can write n = b,qm, + 7, with 1 < b, < i1, 0 <7 < .

and by iteration, we get (8).

In this way, we can associate to every n its coding, which is a word by...b,,, with b; €
{0,1,...,a;}, 7 =0,...,m. Let us call “admissible” a finite word by...b,,, b; € {0,1, ..., a;},
with b, # 0, such that for two consecutive letters b;,b; 11, we have b;b; 11 # ua;ji1, with
u # 0.

Let us show that the Ostrowski’s expansion of an integer n is admissible. The proof is by
induction. Let n be in g, gmy1][- We start the construction of the Ostrowski’s expansion
of n as above. Now the following steps of the algorithm yield the Ostrowski’s expansion of
Nn—bmqm (excepted some zero’s which might be added at the end). Since n—b,,¢m € [0, G|,
the Ostrowski’s expansion of n—b,,q,, is admissible. It remains to check that, if b,,, = a1,
then b,, 1 = 0. If b,,_1 # 0, we would have n > a1 1Gm +U¢n—1 > Cmi1Gm+Gm-1 = Gm+1,
a contradiction.

Therefore, if we associate to an admissible word the integer n = by + b1g1 + ... + b,
there is a 1 to 1 correspondence between the Ostrowski’s expansion of the integers n,
when n runs in N, and the set of (finite) admissible words starting with by < a; — 1.

For n given by (8), putting ng = by, ny = Zf:o by qi, for k < m(n) and

by—1
(9) fr(x) = Z Pqp (T + (np-1 + igr) ),
i=0
the ergodic sum ¢,, reads:
m(n) ng—1 m(n) by, qr—1
Z Z (x + ja) :Z o(r + np_1a + ja)
k=0 j=ng_1 k=0 7=0
m(n) bp—1 m(n)
(10) =3 Y ot (s Higda) = 3 fela)
k=0 i=0 k=0

By convention, the expression Z ’“0 ©q (4 (ng—1 + igr)a) is taken to be 0, if by, = 0.

If ¢ is a denominator of & and ¢ is a BV function, one has (Denjoy-Koksma inequality) :

q—1

(11)  lpgllee = sup | Zw(ﬂf +ia)| < V(p).
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One can also show that if ¢ satisfies (1) then |pg,[l2 < 27 K(¢). By Denjoy-Koksma
inequality, we have || fi|| < bV () < ar1V (.

2.2. Lower bound for the variance.

Let n be in [gs_1, g¢[. The variance at time n is

) (sin mnka)? 2 (sinTng;a)?
= 2 § > 9 § Rl bt Al
lnllz el (sin mka) (sinThka)? leq, () (sinmgjor)?
k>1
¢
8 Z Ing;el®
> 2 W75 § : all?.
= r2 — |qu | qua”g = 7T2 |7q1 j+1 ||n% ||

In the previous inequahtles we kept only indices that belong to the sequence (g,) .

For o = ¢° = {.} — 1, we have |cq.(g00)\ = %; hence, for ¢, the lower bound

(12) lenlls > Z ag+1 Ing;el* > _5 Z Ljng;al>s, for 0 <4 < 5
7=1
More generally, with the numerical constant ¢ = %,

14
(13)  lnlls > ¢6? Z s (D)% @511 Lngyalizs = €67 D gy (0)1” Ujngjazs-

7j=1
Bounds for the mean variance

An upper bound for the variance and a lower bound for the mean of the variance are
shown in [ColsLel7]):

Proposition 2.1. There are constants C,c > 0 such that, if v satisfies (1), then
¢

(1) llealls < CE(9)* Y afer, Y € [ar, gen,
=0
and the mean of the variances (Dy), := %Z:;é |loxll3 satisfies:
-1

(15> <D90 > CZ "Vq] |2 2+17 Vn € [QZ7QZ+1[
7=0

The proposition implies that, if v, < g4 is an integer such that ||, ||; = maxz<q,,, |[@xll2,
then ||¢,,[|3 > ¢ Zf;é Ak ]+1 If the partial quotients of a are bounded, under a condi-
tion on the sequence (), using the results below, it can be deduced that the behaviour
of Sy, /|| S, ||2 for the indices giving the record variances is approximately Gaussian. But
our goal is to obtain such a behaviour for a large set of integers n. To do it, we need to
obtain a lower bound of the variance for such a large set.

Bounds for the variance for a large set of integers
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We will assume that ¢ satisfies the condition:

(16) 3n,mo > 0 such that Card{j < N : [y, (©)] >n} >no N, VN > 1.

This condition is satisfied for example by the following functions:

SOO<) = {}_ %7 @(%7 ) = 1[0,%[_ ga fOI' r,s €N70 <r< S,

©(B, -) = s — B, for almost every 8 (by an argument of equirepartition).

For j < ¢, we estimate how many times for n < ¢, we have {ng;a} € I5 :=[0,5] U[1—9, 1].
Since ||ng;a| = {nga} or 1 — {ng;a}, depending whether {ng;a} € [0, 1[ or €]3,1], we
have 1jq,a)<s = Is({ng;a}).

Remark: We are looking for values of n such that 25:1 17,({ng; a}) is small. Of course

there are special values of n, like n = ¢, such that this quantity is big, as shown by
Denjoy-Koksma inequality Let us check it directly.

Recall that for any irrational «, there are A €]0, 1] and C' > 0 such that

(17) Gn/Qm < CX"7" Nm > n.

We have [[gq;all < gjllaell < ¢;/qu, for j < ¢, and |lqgall < qllgall < g/, for
j > t. By (17), this implies ||g; ¢;a| < CA*I! V5 ¢; hence, for § > 0, ||g; g;|| < § if
[t —j| > M :=In(1)/In(C~1d71).

For the complementary I§ of I5 on the circle, it follows: >, 1re({g: gy a}) < M, Vt > 1.
This gives a bound for n = ¢; when j varies, as expected.

Nevertheless, we will show that 25:1 17,({ng; a}) is small for a large set of values of n.

Lemma 2.2. For every § €]0, 5[ and every interval of integers I = [Ny, No[ of length L,

we have
Na—1

(18) Z 1,({ngja}) <2000+ q;}y) L,Vj such that g1 < 2L.
n=N1

Proof. For a fixed j and 0 < N; < Ns, let us describe the behaviour of the sequence
(Ilngjer]|,n = Ny, ..., Ny — 1).
Recall that (modulo 1) we have g;a = 6;, with 6; = (—=1)?||g;|| (see (5)). We treat the

case j even (hence §; > 0). The case j odd is analogous.

Therefore the problem is to count how many times, for j even, we have {n6;} < ¢ or
1-6< {’I’L 0]}

We start with n = n; := Ny. Putting w(j, 1) := {n, 6,}, we have {n6;} = w(j,1) + (n —
n1)d;, for n = ny,ny +1,...,n9 — 1, where ny is such that w(j,1)+ (ng —1—mny)0; <1 <
w(j, 1) + (n2 — 1) 6;.

Putting w(j,2) := {n26,}, the previous inequality shows that w(j,2) = w(j,1) + (ng —
TLl) Hj —1< 0]‘.
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Starting now from n = ny, we have {n6;} = w(j, 2)+(n—ng)d; for n = ny, no+1, ..., ng—1,
where ns is such that:

w(j,2) + (15— 1= 1) 6; < 1< w(},2) + (ny — ) 6.

Again we put w(y,3) :={nz0;} = {w(j,2) +(ng—n2) 0;} = w(j,2)+ (ng—mng) 0; — 1 < 6;.
We iterate this construction and obtain a sequence n; < ny < ..ngg)-1 < NRg() (with
NR(j)-1 < Ny < TLR(]')) such that

{nej} = w(]v Z) + (TL - ni)eja Vn € [niani-i—l[a

U}(j, ’l) + (niﬂ —1-— nl) ‘9]' <1l< ’IU(j, Z) + (nHl — nl) 9j
where (w(j,7),i = 1,..., R(j)) is defined recursively by w(j, i+1) = {w(j, 1)+ (niy1—ni) 6;}
and satisfies w(j, ) < 6;, for every i.
Since (n41 —n; +1)0; > w(j, i) + (nig1 —n;)6; > 1 for i # 1 and ¢ # R(j), we have

L
Niy1 — Ny > Qj_l — 1, for each i # 1, R(j). This implies R(j) < T + 2.
T

For each ¢, the number of integers n € [n;, n;41 — 1] such that {nf,} € [0,6[U]1 —4,1] is
bounded by 2(1 + 56’]._1). (This number is less than 2 if § < 6;.)
Altogether, the number of integers n € I such that {nf;} € [0,d[U]1 — ¢, 1[ is bounded
by

2R(j)(1+606;") < 2( +2) (14667

L
01 —1
<A(L+07")(6+0;5) <4(L+2q11) 0+ q; )
If ¢j+1 < L, the previous term at right is less than 20 L (6 + q];ll). This shows (18). O

Lemma 2.3. Suppose that ¢ satisfies Condition (16). Then there are positive constants
1,02 (not depending on §) such that, if I is an interval [Ny, N] of length L and ¢ such
that qp < 2L, for every § €]0, %[, the subset of 1

(19) V(I,0) :={neI:|pnll2>cdVi)}
has a complementary in I satisfying:
(20) Card V(I,6) < cy (6 4+ 471 L.

Proof. Let ¢ = 3no, where 1 is the constant in (16), and let

A=A(,6)={nel: leé({nqja}) < (1.

Let us bound the density L™ Card A(I, §)¢ of the complementary of A(I,d) in I by count-
ing the number of values of n in I such that |ng;a|| < ¢ in an array indexed by (j,n).
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By summation of (18) for j = 0 to ¢ — 1 and the definition of A([,¢), the following
inequalities are satisfied:

2000+ Y gh)L> > 1,({nga})

0<j<e-1 0<j<t—1, nel
> Z Z 1,({ng;a}) > Z ¢l = (¢Card A“.
neAe 0<j<f—1 neAe

Let C be the finite constant C':= > qj_l. Then the set A = A(I, ) satisfies:

(21) Card A°<20¢ (6 +Ce YL
(22) ne A= Card{j </{—1:|ngj| >0} > (1 -0

In view of (22) and Condition (16), we have, for n € A:

Card({j < €~ 15 gz 2 8} (V45 < Py @) 2 1)) 2 (1 = (C+ 1= m) €= S

Putting ¢, := 20 (' max(1,C) and ¢; = 2c¢n? o (c1, c2 do not depend on 6), this implies
by (13):

(23) lonlls > 5052 ol =c*6*0, ¥ne A, and CardA > 1 —cy (6 4+ 071 L

hence A = A(I,6) C V(I,9) and therefore V (I, 9) satisfies (26). O
Lemma 2.4. Suppose that ¢ satisfies Condition (16). The subset W of N defined by
(24) W= {neN: [guls > e v/m(m)/v/inm(m)

satisfies

(25) A}me Card (WNﬂ [0, N[) .

Proof. By (17), there is a fixed integer g such that gmv)—u < 3@m(n), for ug < u < m(N).

Let us take uy = L%m(N)J and let Ny := @m(n)—uy- By this choice of Ny, the condition

of Lemma (2.3) is satisfied by [Ny, N] and ¢ = m( ) for N big enough, since
Gn(N) = 2dm(v) = Gm(V)-uy) < 2N = N1).
If n € [Ny, N], then m(N) — uy = m(Ny) < m(n) < m(N).
Let B = {n € [Ny, N : lgulls > e /m(n)//Im(n))
If n is in the complementary B¢ of B in [Ny, N], then we have:
leallz < cov/m(n)//Inm(n) < cav/m(N)/+/Inm(N,).
Therefore, by Lemma (2.3) with § = (Inm(N;)) "2, we have

(26) Card B° < ¢ (Inm(N;)) "2 + m(N)"1) (N — Ny)
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Now, Wen [0, N[C [0, N7[|J B¢, hence: given ¢ > 0, for N big enough,

Col (WAOND < Xy (am(y +m(3) )
= BB oy ((m(N) = uy))F +m(N) ) <6 O

Remark: if a is bpq, then m(n) is of order Inn and the density of W satisfies, for some
constant C' > 0,

Card (W N[0, N|)

~ >1—C(Inln N)"2.

(27)

2.3. A special case: the golden ratio.

For a special class of quadratic irrationals, the previous results can be reinforced. Suppose
that « is in the class Qg of irrationals such that for some integer a > 1, a,, = a,Vn > 1,
or equivalently that « is the root > 1 of the equation 22 — az — 1 = 0. Then the variance
|¢n|l3 has the right order of magnitude for n in a big set of integers. More precisely, the
following bounds hold for the ergodic sums of ¢ under the rotation by a:

Theorem 2.5. If v satisfies Condition (16), there are positive constants (,ny,m2, R such
that, for N big enough:

(28) #{n<N:mpmhn< ||g0n||§§772 lnn}ZN(l—RN_C).

Proof. For simplicity, we write the proof when o = [1;11111...] is the golden ratio. Its
partial quotients are equal to 1 and its denominators are given by the Fibonacci sequence
(gn) : @0 =1,q =1 and ¢,41 = ¢y + ¢u_1 for n > 1. We have:

2 3 — —-1\"
(29) =10+ a<_>'

5 3 a
There exists ¢ > 0 such that 2a™" < ||g,a| < ca™™. The following relations hold:
(30) A"+ (—a) €L, a"=—(—a) "mod 1, d(Z,a") =a",n > 1.

For every integer n € [qs, qoy1], its Ostrowski expansion (corresponding to the Fibonacci
sequence) has the form

¢
(31) n=) bjg, with 0<b; <1for1<j<l by=1,
j=0
and is such that in the “word” by...b, two successive b;’s are not both equal to 1 (“admissible”
word). As we have seen in Subsection 2.1, every admissible word by...b; starting with 0 is
the Ostrowski expansion of an integer n < qp41.

Let us consider the subshift of finite type corresponding to admissible words
X = {b= (b;)ien € {0,1}" such that b;b;;; = 0,Vi}

and the associated dynamical system (X, o, 1), where o is the left shift and p the proba-
bility measure on X with maximal entropy (In(a)).
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Observe that, for n > 3, the measure of a cylinder of length n in X can take three values
a "M /(a+2), a2 /(a +2) and a3 /(a + 2). This implies that, if a subset E of X

is a union of cylinders of length n, then

1
(32) 3 w(E) < #{b cylinder of length n: b C E}a™™ <3 u(E).

We will use it, via an inequality of large deviations, to get an estimate of the number of

values of n < g, giving a big variance.

Let 0 < ko < L. The choice of kg will be specified later. Let 0 < 5 < /.

We have ||gig;al < ¢j/qi < o7 for i > j, and |qigjal < ¢;/q; < o7, for i < j. It

follows:
Jj+ko Jj—ro—1
|HszqzqgaH—H > bigigial| < | Z bigigioll + | Z bigigc|
i=j—kKo 1=j+ko+1
¢ j—C-1
1 2
<33> < Z + it S arotl — qko’
i=j+l€0+1 =1

Using (29) we get the following expression for ¢;g;:

1 2—a [(—1\'"7 (=1), .. .
%49 = 5 Z+j+2+T (—) +u(oﬂ "+ ().

« )
J+ko
It follows that, modulo 1, Z bigigjo = A+ B, with
i=j—kKo
J+rKo b, J+ko 29_q
o Lo itits itj  1—i—j
A= Y0 2o YT b (-1 al
1=7—K0 1=]—ko
_1) ot
B = % Z (b1 k(=D 4 byyj1) a*
k=—kro+1
(_1)] 0 (_1)] Ko+1

- > bk b)) oF + 5 D (hjrr—r(=1)* 4 b)) o

k=—kro+1 k=1
Since (from (30))

Ko+1 Ko+1

Z (bjs1—e (1) + by 1) oF = Z (Bjs1—k + brajo1 (1)) a7 mod 1,

k=1 k=1

modulo + we have B = 7, (j), with

bt

_1 j 0 Ko+1
Yorald) = 2 < > (kD brga) af Y (e by (<1) ) 07

k=—kro+1 k=1

)
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and
Jj+ko

Z bigigie = A+ B = A+ Y5, ()

1=j—kKo

These computations and (33) show that, there is a constant rf such that, for o big
enough and j > ko,

¢
(34) d(z biGidj @ — Yoo (7), Z/5) < ko' (2k0 + 1)a™™ <0,
i=0

For every ¢ €]0, 15[ and every interval [Ny, No] of length L, we have by a slight extension
of Lemma 2.2:

(35)  #{n € [Ny, Ny : d(ngja,Z/5) <0} <100 (6 + qjjrll)L,Vj such that ¢;j4; < 2L.

Consider the set As C X defined by
As .= {b: d(u,(Ko),Z/5) > 26}.
From (35) (for j = ko, Ny = 0, Ny = ¢, — 1), it follows

rko—1

#{b cylinder of length xq : d(z biGiQro v, 2/5) < 36} < 60009¢,,,
i=0

which implies, in terms of measure for the subshift by (32):

ko—1
(36) pdb: d(D bigige,, Z/5) < 35} < 18004,

=0
But if b € X is such that d(3%; " bigiqe,a, Z/5) > 36, then by (34) b € As; hence by (36):
(37) 1(Ay) > 1 — 18006,

For p-almost b € X we have £~ 25:0 14,(07 (b)) — p(As). A more precise information is
given by an inequality of large deviations for irreducible Markov chains with finite state
space (see |Le98|, Theorem 3.3.; here we apply it for the Markov chain deduced from X
with state space the set of words of length 2ko 4+ 1 in X): for € €]0, 1], there are two
positive constants R = R(¢), r = r(e) such that

V4
ol 2 Lo (4) < p(A5) (1 — )} < Re ™,

According to the definition of As, it means that

p(b: #{5 <0 d(we(5), Z/5) 2 26} < u(A5)(1 — ) £) < Re™™
and (by (34) satisfied for j > ko) it implies
¢
pb: #j <01 d_bigiqien, Z/5) > 6} < u(As)(1 — ) £ — kg) < Re™™,

1=0
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so that the number of words b of length ¢ such that

#{j < dObigigien Z/5) < 6} < p(As)(1 — €)l — kg

=0
is smaller than 3Re ‘o’ by (32).
If ¢ > ko/(1W(As)(1 — €)e) the number words b of length ¢ such that

¢
#{j<t: d(Z bigigie, Z/5) < 0} < p(Ag)(1 — €)%

is smaller than 3Re "at.

The gy, first integer numbers n are represented by words of length ¢. The proportion of
them for which ||¢,]|3 > 277%6%u(As)(1 — €)2¢ is thus larger than 1 — 3Re™". We have,
for some ¢ > 0,

Qi #{n < qer o llealls = 2071687 u(A5) (1 — €)%} > 1 = 3Re™™ > 1 - R, ).
More generally, let ¢ € C satisfy Condition (16), i.e.,

o1 )
hmmfz#{J <UL |y (@)] > nF >mn0 > 0.

For a lower bound of the variance we use (13) and (37). We can choose § and ¢ such that
no + 1(As)(1 —¢)? > 1, for £ large enough, the number of integers n < g4 such that

lnll3
14

is larger than gpyq1(1 — Rq{fl). This proves Theorem 2.5. OJ

> cn?6% (no + p(As)(1 —€)* = 1),

3. A central limit theorem and its application to rotations

3.1. Decorrelation and CLT.

Decorrelation between partial ergodic sums

Proposition 3.1. If ¢ and ¢ are BV centered functions, under Hypothesis 1 there are
constants C, 61,604,605 such that the following decorrelation inequalities hold for every 1 <
n<m</:

nf

(33) | /X b G dpt] < CV() V() b,

n

(39) | /X b Conan o dii] < C V() V()

(0
(10) | / P PP ] < CVE VR bubbr
X

n
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The proposition is proved in Section 4. From the proposition we will deduce a convergence
toward a gaussian distribution under a variance condition. The method is like in [Hu09|,
with here a quantitative form, bounding the distance to the normal distribution.

Recall that, if XY are two r.r.v.’s defined on the same probability space, their mutual
(Kolmogorov) distance in distribution is defined by: d(X,Y) = sup,cp |[P(X < 2)-P(Y <
x)|. Below Y] denotes a r.v. with a normal distribution N (0, 1).

Proposition 3.2. Let (qx)1<k<n be an increasing sequence of positive integers satisfying
the lacunary condition: there exists p < 1 such that

41)  qu/gn <Cp™* 1<k<m<n.
Let (fr)1<k<n be real centered BV functions and uy constants such that || fi|lco < ux and
(42)  V(fx) <Cupqr, 1 <k <n.

Suppose that there are finite constants C' > 0 and 6 € R such that the following conditions
hold for every centered BV function:

k:G
@) | e SOV wE 1<h<n
X dk
mP
@) | 0fadi £CV@ " 1< k< m <
X k
t@
(45) | [ 6 fdnfidil <OV urtmu s 1S hEm<i<n
X k
Then, for every 6 > 0, there is a constant C(0) > 0 such that
f1++fn maX?:luj 2 1.5
46 d ,Y §05 3pit
WO A Y = O T

The proposition is proved in Section 5.

We apply this abstract proposition to an irrational rotation: the g;’s will be the denomi-
nators of a and the functions f; (defined by (9)) will be translated ergodic sums of a BV
function ¢.

More precisely, let ¢ € C and ¢,, the ergodic sum Z;L:_Ol o(z + ja). We use the decom-
position ¢, = >,y [ given by (10), with the notation m(n) = ¢, where £ is such
that n € [qs, qo11[- (The notation n in Proposition 3.2 has been replaced by ¢ and in the
application we have ¢ = m(n)).

As already observed, we have ||fy|| < 0V (p) < ars1V(p). Up to a fixed factor, the
constant u in the statement of the proposition can be taken to be ag,q < kP, for some
constant p > 0, by Hypothesis 1.

Therefore, in (46), we have max”" w; /|| fi + - - + fongm[l2 < m(n)?/||@n]l2- Tt follows:

]=

2
3

©n 1.2 -
A2 ) < OO mm) T3 o
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If we restrict to a set of values of n such that the b;’s in the Ostrowski expansion of n are
uniformly bounded, or (without restriction on n) if we take a bpq, we get the bound:

©n ) _%
A < CO) mm) onlly ™

Therefore, in order to have an effective rate in the previous formula, we need to bound

from below the variance ||©,]|3-

For example, when « is bpq, we have the implication: if ||©,]|5 > e¢m(n) for a constant
1

¢ >0, then d(£2—, Y1) < ¢3 C(6) m(n) 2",

llonll2?

As we have seen, there are two methods to obtain a lower bound for the variance. This
leads to the following applications to the CLT.

1) From (14) and (15) one can get an information on the density of a set of integers n for
which ||¢,||3 is large.

For a given BV function ¢, define ¢y > 0 by

£—1 2 2

cy v as
(47) Cop = Co(QO, O{) = hm lnf E]_O |;Yqj <f> ;+1
=1 CK(p) ijo LYES]

9

where ¢ and C' are the constants in (14) and (15). The a;’s depend on « and so does c¢y.

Theorem 3.3. Let « be an irrational number satisfying Hypothesis 1. Let ¢ be a BV cen-
tered function such that co(p, ) > 0. Then there is a set Ey(€) in [1, q,] with é#Eo(f) >

%co(cp, a) such that, for n € Ey({), the ergodic sums @, for the rotation by « satisfy:

1
lenll3 > 500 C K ()" D as.

Jj=1

Moreover, for every § > 0, there is a constant Cy(d) > 0 such that

©“n j=1% 2 ;1.5
d(—2"— V1) < Co(8) (—2=L2 )3 030 € Ey(0).
T ST "

In particular, if mauxgz1 a;/ minfz1 a;, < CU7, with v < é, then

d(ﬁ,m < Co(8) €720 << 1, ¥n € By(0).

If a is bpq, the above bound holds with v = 0.

Proof. Let Eo({) be the set {k < q¢ : |l@xll3 = co(p, ) C K(p)? Zﬁzo a?,,}. For { big
enough, its density satisfies q—ll#Eo(E) > Leo(ip, ).
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Indeed, let ¢; be such that ¢y — 13 < ¢1 < ¢o. For ¢ big enough, by (14), (15) and the
definition of ¢y(¢, ), we have for Fy(¢) denoted simply by Ey:

l /—1
aCK(@)P Y ay<cd g@lfd, < Z lpkll3,
— g
1 qe # )
—> " llepkll3 <
qe 4=
hence: ¢ < q—ll#Eo ql THE; = 1#E0 + o 9 (@ — #Ep), which implies: #ho >

qe
(01 — %CQ)/(]_ — %CQ) > CQ

Now the conclusion of the theorem follow from the discussion after Proposition 3.2. [J

l

HEC ¢ ‘
K()? ) ad, +2 ” OCK( ) ddy;
§=0

§=0

The drawback of this first method is that it yields only a subset of integers of positive
density.

2) Another method to show a CLT is to use 2.4 or, for an irrational « like the golden
ratio, Theorem 2.5.

We state the result in an increasing order of generality for o and decreasing strength of
the conclusion.

Theorem 3.4. Let ¢ be a function in C satisfying Condition (16).
1) Let o be in Qq (for example the golden ratio). For a constant b > 0, let

Vo :={n>1: [[pnll2 > b/logn}.
Then, if b is small enough, the density of V,, satisfies:
(48) Card(V; ()[L,N]) > N(1— RN).

and the following CLT with rate holds along Vy: for & €]0, 5[, there is a constant K (do)
such that for n € Vj,

(49) d(ﬁ,m < K(d) log ™+,
n|l2

2) Suppose that o is bpg. For a constant b > 0, let

Wy:={n>1: ||gu2>b(loglogn) _%\/logn}

Then, if b is small enough, Wy, has density 1 in the integers and the following CLT with
rate holds along W: for &y €]0, 5[, there is a constant K (&) such that (49) holds for
n e Wb.

3) Suppose that av is such that a,, < CnP. For a constant b > 0, let

(50) Zy:={neN: |pull2 2 by/m(n)//Inm(n)}
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satisfies

_ Card (W N[0, NJ)
(51) ]\;1_1;%0 N =1

If b is small enough, Z, has density 1 in the integers and for §q €0, %[, there is a constant
K (6o) such that, if p < %, the following CLT with rate holds along Zy:

(52) d(H"LH, Y1) < K(8o) m(n)~ 300 v € 7,
@nll2

Proof. We use Proposition 3.2 with f, defined by (9) (see comments after the statement
of Proposition 3.2).

For a lower bound of the variance we use Theorem 2.5 in case 1) and Lemma 2.4 in case
2).

For 3), we have, if n € Z,,

N[

p
lnll2 lnll2
< C(8)m(n)~ 237 (Inm(n))s << 1.

The factor (Inm(n))s can be absorbed in the factor m(n)® by taking & smaller. O

< C(6) ( )5 m(n) 1+ < C(8) (m(n)?~% (Inm(n))?)s m(n) 1+

Remark 1. The previous CLT are written with a self-normalisation. In the first case
(i.e., when the a;’s are fixed), let us consider the sequence of variables (¢, /y/n), with
a fixed normalisation. Then, for n € V}, the accumulation points of the sequence of
its distributions are Gaussian non degenerated with variances belonging to a compact
interval.

3.2. Application to step functions, examples and counter-example.

If ¢ belongs to the class C of centered BV functions, with Fourier series ), £0 2:(e) e2mir-

T

to be able to apply Theorems 3.3 and 3.4 we have to check Condition (16), that is:
In,no > 0 such that Card{j < N : |v,,(p)| > n} >no N, VN > 1.

This is clear for ¢° below. For step functions, the behaviour of the variance is linked to
the diophantine properties of the discontinuities with respect to «.

Ezxample 1 Consider the function ¢°(z) = {a} — 5 = 5% > o+ €. In this example,

the numbers ~, are all equal and no discussion on the relations between the v;’s and the
ay’s is necessary.

Ezample 2 Let ¢ := 1jg 11— 1i1 ;= >, 7m'(23+1) 2™+ (here v, = 0 if g is even, =

2 if gy, is odd). Clearly, (16) is satisfied.

Let us consider now more general step functions. Let ¢ := 3, ;v; (11, — p(I;)), with
I; = [u;,w;[. Its Fourier coefficients are
—2mirw; —2miru;
_ .6 7—€ ’ _ Uj —mir(ujtw;) o3 ) )
Cp = ZUJ Sy = Z e i) sin(wr(u; — wy)), T # 0.

jeJ jeJ
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4

(53) @ <n<qe1 = (Dp)y > CZ | Zvj e Pmiaty (2t —1)%af ).
k=1 jeJ

If the ai’s are bounded, then an argument of equirepartition for almost every choice of
the parameters (u;, w;) implies the bound (Dy),, > clnn and Condition (16). Let us
show it for particular cases.

Example 3 Consider the following functions which depend only on one parameter: ¢° =
Los = B=2 "z Lemmir8 gin(mr3) €. We have

-1 -1
(D) > 1 Zaerl sin” (mq3) > 4C Zaiﬂ laxBl*,  Yn € [ge, qesal-
k=0 k=0

Since (g ) is a strictly increasing sequence of integers, for almost every 3 in T, the sequence
(qxB3) is uniformly distributed modulo 1 in T!. We have:

N
1 1
I%HN gl sin?(rq3) = 1 for a.e. .

Recall that a way to proof it is to use Weyl equirepartition criterium and the law of large
numbers for orthogonal bounded random variables.

More generally, it can be shown that, if 1 < a,, < n?, with v < é, then:

N 2 12
1
lim 2=y G S (i) =5 for almost every .

N
N Zk:l ai

It is an easy consequence of the following lemma:

Lemma 3.5. Let (u,) be a sequence of real numbers such that 1 < u, <n?, with 0 <~y <
%. If (X)) is a sequence of bounded orthogonal random variables on a probability space
(2, ), then

=0, fora.e. w.

. E]kvz up Xy,
(54) hjlvnﬁiu
k=1 “k

fg | Z]kvzl Uk Xk|2dﬂ
(Ohsy u)?

N
Setting Ry (w) := k=t X6 6 i plieg S |Rurll3 < 400, if p(1 —2v) > 1, hence

N
Zk:1 U

lim, R,»(w) =0, for a.e. w, if v <

Proof. By orthogonality, we have < N2

1—-1
5. Therefore, it suffices to show that:

lim sup  |Rupie(w) — Rpp(w)| = 0.

" 0<t<nptlonp
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We have |Rpio(w) — Rop(w)]
Py p
(Ek 1 uk)(Zk w1 Wk X k) — (EZ ;P+1 Uk)(EZ:1 ug Xx)

‘ nP+¢
>k j; uk‘)(Zk:l uy,)
nP4+¢ nP4+¢ npP
_ Zk J’T;p-i-l ug Xy B (Zk :p+1 “k)(Zk:1 ug Xg)

T O W w)
_ |ZZPT€+1 u X a |(ZZPT£+1 k) (s Xk)|
S (R ) (2 )
<C Zp:f7+1 + 8. Zp:fvﬂ Uk 20219”2;1 Uk

S g Sl uk >y Uk

Therefore, SUPg<pcppt1_pp | Ripe(w) — Rpp(w)| < Cpn'~t — 0, if py — 1 < 0.

) =1 O

Taking p=3, It follows that (54) holds if v < min(%) 3

2

Therefore, using Theorem 3.3, we can conclude that for a.e. f, if « is such that a, <

nY, with v < £, then (¢ /||¢5 ||l2) converges in distribution toward A(0,1) along a

subsequence (ny) with positive upper density.

Observe that, if « is not bpq, there are many [’s which do not satisfy the previous
equipartition property. Let g = EnZO b,gna mod 1, b, € Z, be the so-called Ostrowski

expansion of 3, where ¢,, are the denominators of a.. It can be shown that, if > a“’i'l
oo, then limy ||grB|| = 0. There is an uncountable set of §’s satisfying the previous

condition if « is not bpq, but ergodicity of the cocycle holds if 5 is not in the countable
set Za + 7.

Ezample 5. Let ¢ be the step function: ¢ = (8,7, -) = 1o, 5y — 1}y, g4- The Fourier
coefficients are ¢, (¢) = ZLe=™" ) gin(7rB) sin(wry). We have

™7

4 1
18a]l3 = = ;p | sin(rrgB)[* | sin(rrayy)|*.

As above, since (gy) is a strictly increasing sequence of integers, for almost every (3, ) in
T2, the sequence (qx3, qx7y) is uniformly distributed in T?. We have for a.e. (3,7):

1K | sin(mrqrB)|? | sin(mrgpy)|?
lim— 5,3 = Zh;gnnz
k=1

7»2
r#0

_ Z// | sin(7ry) |2 |sm(7rrz)\ iy ds = %

In both last examples, the uniform distribution argument shows that Condition (16) is
satisfied for almost every choice of the parameters.
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A counter-ezample For a parameter v > 0, let the sequence (a,),>1 be defined by
an=|n"]ifne{2F . k>0}, =1ifn¢ {2" : k>0}.

Let a be the number which has (a,), for sequence of partial quotients. In order not to
have to discuss the relations between the ¢, and the v,,, let us take for ¢ the function °
defined above for which the numbers v, = Vk. For a given ¢, let ny, be the largest of
the integers n < qy1 such that

27rz )

Var(p,) = max Var(pyg).

k<qet1

We have

~

-1 [logz(€)]

Var(¢y,) > ¢ Vg Pai, > ¢ Z 257 > ™.
0 =0

B
Il

In the sum ¢, (z) = S5, Ebk %1 o(z + Np_yo + ja) defined in (10), we can isolate
the indices k for which k + 1 is a power of 2 (for the other indices a1 = 1) and write
©n, () = Uy + Vi with

Up = 3,20 S0 ™ ol + Nopsar + ja),
bi qr—1 4
ZkEOEO{ak_H 1} Z L0 e+ Npa + ja).

We will see in (77) that the variance of a sum where b equals 0 or 1 is bounded as follows

by qr—1

Var( Z Z o(x + Npja+ ja)) < Cllog(?).

ke0,0n {aps1=1} j=0

On the other side, we also have

Uogz(fJ bop 1 gap—1—1 [log(€) [log2(€)]
Z Z o(x 4+ Nop_sav + ja)| < Z axV(p) < C Z 20 < C0.
p=1 p=1

The previous bounds nnply that
P, _ UZ + ‘/ﬁ

[enlla Nlenllz  lln,ll2

with ||, lla > 07, ||[Urlleo < OO, ||Vi|l2 < (Cllog(¢))Y2. Thus, if 4 > 1/2, one has

' Us C

T c
and the limit points of the dlstrlbutlons of the ToTa

[—<,€]. It implies that none is gaussian.

c?

(55)

— 0,
2

H%Hz

have all their supports included in

4||

4. Proof of the decorrelation (Proposition 3.1)

To prove the decorrelation properties 3.1, we first truncate the Fourier series of the ergodic
sums ¢,. For functions in C, we easily control the remainders and it suffices to treat the
case of trigonometric polynomials.
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4.1. Some preliminary inequalities.

Lemma 4.1. For each irrational o and n > 1, we have

(56)  Gni1/Gnar < CpF, Yk > 1, with p= (V5 —1)/2,C = (3V/5 + 5)/2.

Proof. For n > 1 fixed, set 1o = qn, ™1 = Qni1, Tkr1 = Tk + 71, for k& > 1. It follows
immediately by induction that ¢, x > i, Yk > 0.

Denote ¢ = \% and let \; = ? + %, Ay = —? + % be the two roots of the polynomial

A2 — X\ — 1. Since )\§+1 = )\g + )\ﬁ_l for each 7 = 1,2 and ¢ > 1, we obtain by induction
that:

(57) qn+k Z T = C)‘]f (Qn-i-l - )‘QQN) - C)‘g (QH—H - >‘1Qn)v k Z 07 n Z 1.

Take k > 1. Since A\ < 0 and ‘1 — 2‘1%

< A1 (as Ay > 1), from (57), we obtain

A A
i 2 X (1220 (D) s = s (1= Pl B1) 2 M1 =

1 1

It follows that, for & > 1, we have g, ip > c1 AV qupq, with ¢ = 3\/150’5, which gives

(56). 0

n+1 and gn+1

For the frequently used quantities In g, 11, we introduce the notation:

n n

(58) a, = qn“, Cp = sty Gni1-
an an

Observe that a), < a,41 + 1.

We will prove the decorrelation inequalities of Lemma 4.3 under Hypothesis 1 on «, that
is: there are two constants A > 1, p > 0 such that a,, < AnP,Vn > 1.

It follows from it: for constants B, C, b, < BnP and, since ¢, < B™ (n!)?,
(59) Ing, <Cnlnn, ¢, < CnPt Inn.

The case when « is bpq corresponds to p = 0 in the previous inequalities and we have
then Ing, < Cn.

Lemma 4.2. If q,,q, are denominators of a, we have with an absolute constant C':

1 (|gnje? In
(60) ————— < (C =, forn</.
ﬂzz;nﬂ [je]? Qe

Proof. Observe first that, if f is a nonnegative BV function with integral p(f) and if ¢ is
a denominator of «, then:

= fGa) _ 2ulf) | 2V ()
Z ST YA
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Indeed, by Denjoy-Koksma inequality applied to f — u(f), Z]Ooq u (j]f‘) is less than
o0 Q*l o0 2
1 1 m u(f) V()
Z 7 2/ i+ S—zz—z (N +V() =7+ =)
i=1 r=0 i=1 q q
Taking for f(z) respectively 1, (|x|) and = A TN ((|]), we obtain with L = 1/q,:
1 n 1 n
(61) ~ <t *‘”, Y o <ot

J g} 72 lje|? qz

J:lell<1/gn, 5>qe g llicdl>1/gqn, 5>qe

Now, (60) follows, since for n < ¢:

15 1 llaniol® 1 1 1
27 Sl 2 Ft 2 Flp

2
2 [l At 2
| |> ||J0f|| 1/qn, j>qe liall>1/qn, i>q¢

q + qL + q_" + qL < 4q_”. O
ané Qg Qe Qg qe
4.2. Truncation.

The Fourier coefficients of the ergodic sum ¢, satisfy:

7 ()] = ()] [sinmgujal _ 7 K(@)] [lgajel]
" gl Isinmjal 720 [5] el

Recall also (cf. (11)) that

IA

qn—1

g, lloe = sup | Y ola + La)| < V() et [lpg, |2 < 27 K(p).
T =0

Let Sp f denote the partial sum of order L > 1 of the Fourier series of a function f and
let Ry f = f— S f be the remainder. We will take L = ¢, and bound the truncation error
for the ergodic sums ¢y, 4,-

We use the bound (60) which gives, for ¢, < L = ¢,

o |7 \2 1bngnic* 1
|’RL<)0ann”2 = [Z |(10bnqn Z ’ H]OJ”Q ]2
l71=L lj1=L
2
Y\ anO‘ 1 Gn\1
(62) <ba[ > | ](.2” | : ! E < CK(p)ba ()2
27 el

For every bounded v, we have, for ¢, < ¢,, < ¢, and L = q;:

< € llsollepngnll2 |1 BLLbmgm |2 + 1 RLPb, g, |2 1L L1mg 2]
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and, as ||@p,q. |l2 < Cb, K (p), we have by (62):

< lloolllopngn ll2 1 BLPbmam |2 + 1 BLPbg |2 1| £6mgm 2]

< C K9Pl bubin [(F)2 + (521,

This gives the following truncation error, where the constant C) = C1(v, ¢) is equal to
K (¢)?||¢]ls0, up to a universal factor,

dm 1
(63) | / Y [Pby 40 Pl am = SaePbn an SaePomam] Al < C1 bpbm (5)2 for ¢, < gm < qv.

Using the Fejer kernel, we get

142 1
1S4, gnlloo < 100 g [l oo + Z 17 @ban ()] < CK(p )q_ Z Hj—a
T le

‘J|<QT
and, by (11) and (69),
1546 gulloc < 0V (0) + CK(p) In(gy)-

With this inequality, by computations similar to the ones used to get (63), we have:

(64 | /¢ Spbn Qnsobm quObe qr SQrgobn dn SQTSOmem SQTSObZQZ] d/j’| < Cb b bﬁ( ) ln(qr)

T

when dn S dm S qe S qr-

Lemma 4.3. If apy < AKP.VEk > 1 and n < m </, we have for every A > 1:

lanjell np” Inn
65 C———,
(95) Z 2 lel =
n mk C
(66) Z ||q jaHHq a” < A2p+4(ln A)2,

i k= Tk el Tkl = g

o > lguial lanjol lakal  _ € s

it o 13 + Rk il ]l TRall = urs

Now we apply this lemma which is proved in the next subsection. Let us mention that
Hardy and Littlewood in [HaLi30] considered similar quantities for & bpq. One of their
motivations was to study the asymptotic of the number of integral points contained in
homothetic of triangles.
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Proof of Proposition 3.1
By (65) we have, with K = C'V()V (p),

bngnjo
|/wbnqndu|<2|¢bnqn ) (= |<KZ” I < K oy,

2 22 5ol = guen
This implies (38). We prove now (39).
With L = g,, we have:

/ Y S Pbuge SLbmam A= D Porgn (4) Pl (k) (G — k).

L |kI<L,j#k

In what follows, the constant C is equal to V (1/)V ()? up to a factor not depending on
1 and ¢, which may change.

Recall that, by (56), there is a constant B such that m < Blng,,, Ym > 1.
By (66), it holds

\/wSL%nqn SPbman W S Y P D P (R 190 = F)]

7L |k|<L,j#k

ananO‘H ”bmgm /{:Oz” Cbybp, 2p+4 2
<C — < A?PT4(1In A)2.
2 Yookl Thall S gy X700 )

1<j,k<L

Putting it together with (63) and replacing g,.1 by gn, we get, for n <m <A,

A2p+4 InA 2 m\ 1
| /X 6 o Porsan At < Oy [P Al

An ga
AZPH(IR A
(68) < Choby, [% +p 2"

Let us take A —m of order 2(In %)*1 In g,, i.e., such that the second term in the RHS in
(68) is of order 1/gq,. The first term is then less than

C C
= max( (In g, ), m**°) < =2 max( (Ing,)*"°, (Ing,,)**") < G (In g, )% *°.
4n an 4n
As Ing, < Cnlnn by Hypothesis 1, we have max((Ing,)?, m?) < Cm/*!
This shows (39) with 6 = 2p + 5. O
In the same way, (40) follows from (64) and (67).

4.3. Proof of Lemma 4.3.

As already mentioned, Lemma 4.3 is a consequence of the good repartition of the num-
bers ||ka|| when k varies between 1 and ¢,. We will use this information through two
inequalities given in the following lemma, which will be used several times.
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Lemma 4.4. We have

gr+1—1 1 qe+1—1
(69) Z Tl Z < COqq1 Ingpy, VE >0,
2 el = & el
1 T
(70) Z —0 < C £l Ing, =C Z ¢, Vr > 0.
o dlliel —~
= r+1
Proof. For 1 < j < g441, one has ||ja| > qt+11+qt > thlﬂ. There is exactly one value of
jamod 1, for 1 < j < g;41, in each interval [q -, 5;:11[ ¢=1,..,q141 — 1. This implies:

qt+1—1 qt+1—1

Z 2qi11 + Z E/Qtﬂ < Cqq1 Ingeyq.

Jj=1

From (69), applied for ¢t = 1, ..., 7, we deduce (70):

Z Z Z r 1 Z ! _CZ Get1 In gy 1.

ll7ell

1< ! HJO‘” =0 e ”‘70‘| kN ] a
4.3.1. Bound (65) in Lemma 4.3.
q—1 .
llgnial [gnge] .
We want to bound » 7%, 2iap- For n < {, we write Z 2 jal = (A) + (B), with
gn+1—1 . qn+1—1
L llgnjel _ 1 1 1
<A> = T S - N
; Joglliedl = g 2 J el
L dk+1
+
In 11, by (70);
Qn+1 kZOCJk ]Zq ||]04|| C]n+1 ;
(B) := T
it < Y

-1 Gr+1—1 -
1

Sy LS Loy ! I g, by (69)

- ”] b1

By (56), we know that q’;“ < Cpk—, with p < 1, for k > n + 1. By hypothesis,
arr1 < AkP. It follows with the notation (58):

n

n?21nn

cp <
dn+1 k=0 dn+1

(4) <
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and, for (B), with a bound which doesn’t depend on ¢ > n:

Z it Gt N Q1 < CZP] G+n+1PTIn(G+n+1) <Cn™ Inn. O
qr gk
k=n+1 J=0

4.3.2. Bounding (66) of the lemma 4.3. We want to bound the sum:

3 gngarllllgmball

k=gl kg el [kl

1<j,k<qn,j#k

We cover the square of integers [1, ga[x[1, ga[ by rectangles R, s = [gr, ¢r+1[X[s, ¢s+1] for r
and s varying between 0 and A —1 and then we bound the sum on each of these rectangles.

We use the inequalities

- for j < g4, [ldarall/i < llgrall <1/ qe,

- for j > qg41 the (trivial) inequality [|jgra|| < 1

- and the inequality (which is direct consequence of ||(k — j)al| < |7l + [|kal])
1 1 1

TR < : : — + : : .
k= glllgedl [[kadll = [k = g1k = gall el [k =l = gall |kl

On one hand, we have, distinguishing different cases according to the positions of r and
s with respect to n + 1 and m + 1:

lgnjell llgmkel  _ 1 1
k=gl kg el kel ™ max(rn+1)dmax(sm+1) [& = Gl e[kl

On the other hand, by (69) and (70), we have

1
2 [k = jllliell[ka|

(4,k)ERr,s
1 1
B S T
RZ: <|k‘ —JHIk =Dl llzell [k =gk =)ol [k
max(r,s)
< qmax(r,s)+1 hl(Qmax(r,s)Jrl) Z Ct.
t=0
It follows
. max(r,s)
gnjo ka& Gmax r,s)+1
Z Lk ” jk HH - ’]L < st 1 Qmaxrs +1 Z Ct

(j,k)ERr.s ‘ _.7| J H]OZ” H Oé” max(r,n+1)9max(s,m+1)

A

1
In(ga+1) E ct max ay,.
Qn-‘,-l 17 7A
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The square [1, ga[x[1, go[ is covered by A? rectangles R, ; and the sums on these rectangles
are bounded by the same quantity. It follows

A

Z ||qy0z||||q af < A? ln(q/\+1)ZCt max aj,
1<j,k<qn, j#k |k —jlkjljal ||kl qn+1 F=lA

t=0

and, with Hypothesis 1,

Z HQn]aHHkaaH < ¢ A2p+4ln(A)2. (]
o T 1R Ll Tkall =

4.3.3. Bounding (67) in Lemma 4.3.

We want to bound the sum

ik s 1+ KT K il [l ol
Here we consider sums with three indices ¢, 7, k. Though we do not write it explicitly
these sums are to be understood on non zero indices ¢, j, k such that i + j + k # 0. We
cover the set of indices by sets of the form

R:I:r,:l:s,:l:t = {(%]7 k) / ti€ [qT7 qr+1[7 :l:j S [qéh qSJrl[u +k € [Qt7 QtJrl[}

Distinguishing different cases according to the positions of r, s and t with respect to n+1,
we get: if (i,j, /{Z) € R:l:r,:l:s,:l:ta

iy lialllansollakal
0+ 5 +klijklic| || || kol
1 1
Gmax(rn+1)dmax(s,n+1)max(t,n+1) |Z +J+ k| HZQH H]aH HkaH
We have
1 1 1
. . < — . + .
il el [[kedll = 1[0+ 5 + k)all il kall [+ 7+ k)al| [lie| || kel
1

i .
16+ 5+ F)al| lliafl |7

We then use (69) and (70) three times, sum over R, i, +; and get:

1
2 i+ 5 + Kl il el |kl

(4.3:k)E R, s, ¢
3 max(r,s,t

)
<( Z Cy) 1n2(qmax(r,s,t)+1) (@s+1041 + Gr1G41 + Grr1Gst1) -
v=0
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By (72) we then have:

3 gnialllgmicllgekell
i 45+ ki gk [lial 7ol [[kall

3 max(r,s,
(Evzo () CU) 1n2(Qmax(r,s,t)) (
Gmax(r,n+1)Qmax(s,n+1)dmax(t,n+1)
C 3A
< C(3 e W o) max o)

qn+1 o =1,...,

Rir ts 4t

<C

Qs+19t+1 + Gra1Ge1 + Grr1Gs+1)

One needs 8A® boxes R, 1 to cover the set {—qa < 1,7,k < qp, 1 +j + k # 0}. This
implies that there exists C' such that

> lgpiollgmiollakol  _ C o o

ik s 13+ TR il el TRaTl = Gues

5. Proof of the CLT (Proposition 3.2)

The difference Hxy (M) := |[E(e**) — E(e"*Y)| can be used to get an upper bound of the
distance d(X,Y’) thanks to the following inequality (|Fe|, Chapter XVI, Inequality (3.13)):
if X has a vanishing expectation, then, for every U > 0,

24 1 1
7Ta\/27rU.

Using (73), we get an upper bound of the distance between the distribution of X and the
iAXY) _ —10? ,\2|.

(73)  d(X,Y) < % / . Hx,y(A)% +

normal law by bounding |E(e e

We will use the following remarks:

(74)  V(f9) < [[fllV(9) + gl V(f), VF, g BV,
(75)  if g € CY(R,R) and u is BV, then V(gou) < ||¢'|lec V().

Let wy, := max¥_, u;, where u; is larger than || f;||o (see the proposition 3.2).

Since V(fx) < C|| frlloo qx, (43) implies

(76) |/ fefmdp| < O 2 0 w? , for k < m.
X m

5.1. Bounding the moments.

Lemma 5.1. There is C such that, for allm,¢ > 1,

m—+L

(77 I _AlB<Cilim+0 Y wl <Ciwl,, L In(m+0).

k=m jE€[m,m+L]
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Proof. The computation is as in [Hu09|. Let ro := Lﬁ In(m +¢)| + 1, so that (m +
0)° pro < 1. We have | 57 fl|3 < 2(A) + 2(B),with

m

W=y 3 | / £y fedil,

0<r<ro je€[m,m+4 N [m—rm+L—r]

B= ¥ S | / f; fyerdlp]

ro<r<m+£ je[m,m+€N[m—rm+L—r]
From (76) and (41), then by the choice of ry, it follows:

B)<C ), > pr(m + 0) ujus

ro<r<m+£ je[m,m+L N [m—rm+L—r]

<3¢ ¥ > e

ro<r<m-+£ je€[m,m+L€ N [m—rm+l—r]

<C Z Z pr—ro u? < TC(p Z U?

ro<r<m4L je[m,m+/] JE[M,m~+4]
For (A) we have:

(A= > > |/fj Fivrdpl,
]

0<r<ro je[m,m+€N[m—rm+L—r

<5 > ) 2+,

0<r<ro j€[m,m+€N[m—rm+l—r]

2 4 2
< Z Z u; < In(1/) In(m + ¢) Z u;.

0<r<ro j€[m,m-+¢] JE[m,m+¢]
Therefore we get,
m+£
20 2C
< (1 0) +—— 20O
I3 Fell < (g mlm+ 0+ =) E[ZM} u
=m jemm

We will also need a bound for the terms of degree 3.

Lemma 5.2. Under the assumption of Proposition 3.2, there exists C' > 0 such that
m~+£

(78) /X(Z fi)? < Clwd , n*(m+¢), Vm,n > 1.

k=m
Proof. It suffices to show the result for the sum Z | / fsfifudpl.
m<s<t<u<m-+¢ X
Replacing f, by w;,}, fr, we will deduce the bound (78) from the inequalities (42), (43),
(44) when wy <1, for 1 <k <m+ (. By (42) and (74), we have

| /X fofifudil < C and V(£f)) < Clas + ) < 3Cq.
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From (43) and (41), we obtain | [, (fsfe).fudp| < C’g—iue < Cp=Duland | [ fo-(fifu) dpl <
Cp(tfs) 0
Set k =

ln l/p In(¢+ m). If one of the two differences ¢t — s or u — ¢ is larger than x then

\/ fofifudp| < Cpu® < (04+m)™ 70’ < C(l+m)~
X
This gives
Z ‘/ fofefudp| < CEU4+m) < C.
m<s<t<u<m-+~L:max(t—s,u—t)>
We have also

) | / fofibadul < CO2,

m<s<t<u<m+L:max(t—s,u—t)<

hence the result. O

5.2. Proof of Proposition 3.2.

We divide the proof in several steps.

5.2.1. Defining blocks. We split the sum S, := f; + --- + f, into several blocks, small
ones and large ones. The small ones will be removed, providing gaps and allowing to take
advantage of the decorrelation properties assumed in the statement of the proposition.

Let § be a parameter (which will be chosen close to 0) such that 0 < § < % We set
(79)  n1=ni(n) == [n77],ny = na(n) := [n°], n > 1,

(80) v=v(n):=n;+ng, p(n):=|n/v(n)]+1,n>1

We have:

(81) p(n)=n2"+h, ~n2° with |h,| <1.

For 0 < k < p(n), we put (with f; =0,if n < j<n+v)

(82)  Fop= fever T+ fovin, Gnp = frvimer + -+ fes1)vs

p(n)—-1
(83) vk = vy = (/ F?.dp)z, S, = Z Fo k.
0

k=
. 1
The sums F,, j, G, have respectively n; ~ nzt9 ny ~ n® terms and S,, reads

p(n)—1

(84)  Su= > (Fuk+Guu).

k=0

The following inequalities are implied by (77):

[}
2

(85)  Un = | Furlle < Cnit2(Inn) 2w, ||Gullz < Cnz(Inn)?w,, 1<k < p(n).
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Lemma 5.3.

p(n)—1 p(n)—1
3
(86) (ISl — D vl = lSalE— Y B3 < Cninw,
k=0 k=0
p(n)—1 )
(87) 1S = SiE=1 Y Gill? <Cntmnu?.
k=0

Proof. We write simplyFy, = F, x, Gr = G, . The following inequality follows easily from
(76) and (41):

b d
C _
|/X(qu><2ft>dﬂ|g (1_pp)2pc b w2 Ya<b<c<d
u=aqa t=c

Therefore, we have, with C; = 12—22 > im0 P,

C ,
|/F Fydu| < q :0)2 n® w? Z prvH1-Gvim)
P

0<j<k<p(n) 0<j<k<p(n)
S : CP : TLG wi png Z p(k—l)u—ju
(1=p) 0<j<k<p(n)
Cp iv nd
§<1 p)2p 2nf w? p(n Zp <Cn2 Ow? p™.
>0

The same bound holds for
\/G Frdpl, |/F Grdp|, ) |/G’ijdM.
0<_]<k 1<p(n 0<j<k<p(n) 0<j<k<p(n)

The LHS of (86) is less than

n)l
/@WH/%&M+M@&WM

+22 3 |/ Fk+de,u|+|/Gde,u|

k=0 0<j<k<p(n
p(n)—1

+2 ) > /GdeM

k=0 0<j<k—1<p(n

The first term is bounded by C'n2z=9n? Innw? = Cns Innw?, the second one and the
third one by Cn2dpits Innw? = Cni Innw?. For the other terms, a gap of length n?

is available and we use the previous bounds which are of the form nz =00 g 2p"

Therefore the LHS of (86) is less than Cnz 0 Innw2+2Cni Innw?+3C; nz 0+ w? p”6
The biggest term in this sum is 2C ni Innw?, which gives (86).



ON THE CLT FOR ROTATIONS AND BV FUNCTIONS 31

An analogous Computation shows that the LHS of (87) behaves like Zi(jo)_l [ G dp which
gives the bound C'nz 9 Innw?; hence (87). O

5.2.2. Approximation of the characteristic function of the sum (after removing the small
blocks) by a product.

Let I, _1(\) :=1 and, for 0 < k <p(n) — 1 and ¢ € R,

88)  Ju(Q):i= [ €Sndp, Tk(Q):= [ eCFnot ) gy,
( po In, u
X X
Lemma 5.4. For 0 < k < p(n), we have
2
(89) k(O — (1= 5 02) Lur (O] < € (¢ n¥* (m) 4+ Chatn™ Inn)?)
Proof. Let k > 1. For u € R we use the inequality:

- . 15 1 4 . 1
mu — _ _ < —
(90) e 1+u 54 U +u'r(u), with |r(u)| < 51

By (90), one has:

C2

9 sz—_gg k+C F:zlk (CFuk)] dp.

In,k(o _ / e (Fn04+Fn k1) [1 + iCFn,k
X

Recall the inequality A1) : g1+ g+ ... + ¢ < Cgpny1,¥n > 1. Using (75) and hypothesis
(42), one has V(e Um0t i)y < O|C|w, qr—2)v+n,- Using (75) and hypothesis (42),
one obtains

|/ ZC(Fn(H— +Fn k- 1)F dﬂ| <Z|/ Fno++Fpk-1) f(k—l)u—i—jd,u|

ni
q(k—2) v+n .
< C‘d Wn, Z Tl ((k - 1) v +J>9 W((k—2) v+n1)
j=1 (k=1) v+j

<C|§|w ngz (k—2) v+n1

=1 q(k—1) v+j

' C
(91) S@Qwin@ Zp”ﬂ*"l < Tpp‘quﬂnepng
Jj=1
Similarly, we apply (44) to bound f (eietFmot k) — Lnk—1) frfr dp and get:

(92) ‘/ e (Fn0t+Fn k1) Fr%,k dp — T (/ Fs,k d,u) < C|¢| nftato s
X X
Likewise inequality (45) implies
| / (eiC(Fn,o-i-...-i-Fn,k—l) _ E(eiC(Fn,o-l—---—f—Fn,k—l)) Fik dﬂ|

< CV( i (Fn,0++Fn k- 1))n35wzpn
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One deduces
| [t Byl < OV i +| [ Pl
then by the lemma 5.2,
93) | /X el Enot=tFuic) B3yl < C(V (@)n! 0wl p™ + 0!/ wd 1n?(n)).
At last we have
(94) I/ gltEnottlngey) (AEL 1 (CFy ) dp| < C4/ Fypdp < Clwgn'™ In(n)
X

From (91), (92), (93) and ( 4) one deduces

|Ink (1 - —U nk—l(C)|
< Cupp™" (|C|2n9 + |C|3n9+%+6) +[¢[Pwn 024 10 (n) + Cwpn'™*? In(n)?.

In the sum above, we keep only the last two terms, since we can take n big enough such
that the two other terms are smaller than the last ones. O]

If X and Y are two real square integrable random variables, then [E(e'*) — E(e?)| <
| X — Y||2. Therefore, using (87) in claim 1, we have

95)  [30(C) = Lupy (O] < [¢] 1S — Shlla < C'[¢] wpni~2%(Inn) /2,
then, by (95) and (89) of Lemma 5.4, we get

p(n) p(n)— 2

1
13,0 = [T = 51 < 19.00) ~ Ly (O] + Z Lkl€) — (1= & ) Lisa(€)
k=1
< C'[¢] wnn%’%‘;(lnn)l/2 + n5*5|q3w n1/2+5 In? (n) + nz=9 4wnn1+25 ln(n)Q]
(96) < O[[¢|want + [CPwdnin®(n) + Ctwlni* In(n)?).

5.2.3. Approzimation of the exponential by a product.
Below, ¢ will be such that |¢| vy < 1. This condition implies: 0 < 1 — (%07 < 1.
Lemma 5.5. If (px)kes is a finite family of real numbers in [0, 1], then

_ 1
(97)  0< e Zresrh — k]}](l — ) < keszi, if0< pi < 5.k

Proof. We have In(1 — u) = —u — v?v(u), with § <wv(u) <1, for 0 <u < 5.

Writing 1 — pp, = e P~k with e, = —(In(1 — px) + px), the previous inequality implies
0<er<pif0<pp <1 Wehave: e 207 —T],(1— py) = e 207k (1 — g™ 20%%).

Since 0 < > e, < > p2,if 0 < pp, < %, and 1 —e 2 < > ek, if >, e > 0, the following
inequalities hold and imply (97):

Ogefzpk—H(l—pk ) <e” 2 Px Z&tk<zgk Zpk, 1fpk<— VEk. O
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We apply (97) with p, = ngvk The condition (?v? < 1 is satisfied by the assumption on
¢. In view of (85) it follows:

p(n)—1 1 1 (n)— ,
12?2 L 2 + 346
(98)  le2® & ]}_[0 (1= 5¢u)l = ¢ kZ n2"e.

5.2.4. Conclusion. From (96) and (98), it follows:

p(n)—

(99)  |Jn(¢) — e 3Tk < C[|¢| want + |CPwd nIn(n) + CHwtnd T n’(n)].

Replacing ¢ by m, we get:
AT b et
| P @) - T

3 4
nd 4 AP In2(n) + Mon 30 In2(n)).
155113 1513

A
< CggT,

Since |e=® — 7| < |a — b|, for any a,b > 0, we have, by (86):

1 A2 pn) 1,2 1 )\2 p(n)— 2
—IN TR g k0 VR o 2 2 2
e 2" —e < S5 — v A ni lnn
| = oy 15l ;%“ 5.3

Finally we get the bound

y Sn(z) 2
(100) | / T du(z) — e PP < By + By + By + B
2

Sk

1 5 W, 4 W 34 2
nt + |\l n_nln®(n) + A P n2In%(n) + A

A
ClA EATE 151

n4 lnn]

IIS ||2

To summarise we recall the origin of the different terms in the previous bound: E; comes

from neglecting the sums on the small blocks, Fj5 is the error of order 3 in the expansion,

E3 comes from the approximation of the exponential by the product, finally Ej is the
1 a2 02

error from the replacement of 2" by e 215413 = "

Denote by Y; a r.v. with A/(0,1)-distribution. To simplify, we write R, := —=2—. The

[Snll2
bound (100) reads:

(101) o |/ HSnH2 dp(z) — e §A2|
< CA[Rynd + NP RS n(inn)? 4 A Ry n3* 4 N2 B2 ni ],
(102) < C[MRant + AP R n™ £ X Rind ™ 4 X R ni ™).
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Notice that § can be taken arbitrary small. A change of its value modifies the generic
constant C' in the previous inequalities. We have obtained an inequality of the form

n
ISnll2”

4
H s, () <CY A Ry n,
=1

where the exponents are given by the previous inequality. In view of (73), it follows

4
d( Sh ,Yl)SQ_FCZQ;IUSiRzin%-
HSnH2 Un

i=1

Now, we optimize the choice of U = U,,. Under the condition

Wp, _ 7 _5
(103) R, = ”S H2 EC[n 12, 12]’

_2
the largest term in the bound (100) is the fourth one. One choses U,, = n~1R,®. For the
validity of the bounds, recall that we have to check |(|v, < 1. Since vy, < C’niJr%‘;wn,

and in view of the previous choice of U, this condition reduces to R, < n’i";, which

follows from (103).

Finally, under Condition (103), we get
Sh, | 3,

15n]l2

Wn,

Yp) < Cnﬁé(m

d(

It means that the distribution of ﬁ is close to the normal distribution if

_3
x| fille << 0¥ S0l O
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