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Abstract

The classical approach to decrease the energy consump-
tion of high-speed robots is by lowering the moving el-
ements mass in order to have a lightweight structure.
Even if this allows reducing the energy consumed, the
lightweight architecture affects the robot stiffness, wors-
ening the accuracy of the mechanism. Recently, vari-
able stiffness actuators (VSAs) have been used in order
to reduce the energy consumption of high-speed pick-and-
place robots. The idea is to smartly tune online the stiff-
ness of VSA springs so that the robot is put in near a
resonance mode, thus considerably decreasing the energy
consumption during fast pseudo-periodic pick-and-place
motions. However, the serial configuration of springs and
motors in the VSA leads to uncontrolled robot deflections
at high-speeds and, thus, to a poor positioning accuracy
of its end-effector.

In order to avoid these drawbacks and to increase the
energy efficiency while ensuring the accuracy, this paper
proposes the use of parallel arrangement of variable stiff-
ness springs (VSS) and motors, combined with an energy-
based optimal trajectory planner. The VSS are used as en-
ergy storage for carrying out the reduction of the energy
consumption and their parallel configuration with the mo-
tors ensure the load balancing at high-speed without los-

ing the accuracy of the robot. Simulations of the sug-
gested approach on a five-bar mechanism are performed
and show the increase on energy efficiency.

1 INTRODUCTION
It is well-known that in industrial applications, such as
high-speed pick-and-place operations, parallel robots are
widely used [1, 2]. Repeatability and accuracy are typi-
cally the most important criteria to measure their perfor-
mance. Nevertheless, the design trends to operate at high
speeds are shifting to the design of robots with lightweight
architectures [3] in order to decrease the energy consumed
by the motors, and measure as well the robot performance
based on its energy efficiency [4].

For slow motions, gravity-balancing techniques [5–8]
have been proposed in order to compensate the input ef-
forts required to move the links of a pick-and-place robot,
and thus to avoid consuming energy. Even if these meth-
ods have shown their effectiveness at slow speeds, it is
not the case for high-speed operations in which the iner-
tial effects are preponderant. A first solution introduced
the series elastic actuators (SEAs) [9] to cope with the
energy storage issues. The SEAs are compliant actuators
composed by a motor which is linked to a spring in se-
ries that serves as energy storage, and whose stiffness is
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set by the spring constant. SEAs were first used to ab-
sorb contact shocks and to reduce the peak forces due to
the impacts in bipedal walking robots [10]. The limita-
tion of the SEAs is that the stiffness is fixed and cannot be
altered during motion, thus limiting the level of compli-
ance to adapt for different tasks. Therefore, a recent sec-
ond solution proposed the use of variable stiffness actua-
tors (VSAs) [11–13] to handle with energy storage issues.
VSAs consist of a motor which is connected to the output
link by a spring in series and whose stiffness is variable
and can be controlled. These springs are called Variable
Stiffness Springs (VSS) [14]. Such actuators were first
introduced for human-robot interaction applications [15],
for decreasing contact shocks and for efficiently actuate
legged locomotion systems [16, 17]. Recently, they have
been used for considerably decreasing the energy con-
sumption of a pick-and-place robot in [18, 19]. Even if
the results seem to be impressive, their power consump-
tion models do not consider the energetic losses from the
motors that actuate the VSS, thus missing the losses of
the full actuation chain. Furthermore, the serial arrange-
ment of springs and motors would limit their operational
speeds due to uncontrolled robot deflections when per-
forming high-speed tasks.

A novel type of actuation for pick-and-place operations
has been presented in [20], where the authors proposed
the use of constant stiffness springs in parallel to the mo-
tors in order to reduce the energy consumption. The main
idea is to place the constant stiffness springs in parallel
so that the required torque to move the output load is dis-
tributed between the motor and the parallel spring. This is
possible since the constant stiffness spring in parallel sup-
plies part of the required input effort to move the output
load, thus reducing the energy consumption. Even if the
results are impressive, the level of compliance to adapt to
fast pseudo-periodic pick-and-place tasks is restricted due
to the fixed stiffness.

The use of parallel elastic actuation seems to be a
promising solution for increasing the energy efficiency.
Therefore, the aim of this paper is to propose a strategy
for reducing the energy consumed in high-speed pick-
and-place robots by studying the concept of using VSS in
parallel to the motors, contrary to [18, 19] in which they
were mounted in series, as said previously. By placing
the VSS in parallel, we will ensure direct power connec-
tion between the motor and links of the robot (and thus

to have accuracy at high-speeds), and also to have tunable
energy storage through the VSS. Additionally, contrary to
what was done in [18, 19], we deal with the minimiza-
tion of the energetic losses from the full actuation chain,
i.e., both the parallel robot joints motors and the variable
stiffness springs motors, by finding the optimal robot tra-
jectory thanks to an optimization problem.

This paper is divided as follows: Section 2 presents
some recalls on the computation of the dynamic model
of parallel robots. In addition to that, the dynamic model
of parallel robots with VSS is shown. Then, the model of
power losses is formulated considering the overall motor
drive system. Section 3 shows the optimal problem for-
mulation including the trajectory definition, cost function
and decision variables. Section 4 presents the results of
the proposed approach on a five-bar mechanism. In order
to show the effectiveness of the approach presented in this
paper, four cases are analyzed and compared:

1. Nominal case, which consists of the parallel robot
without any compliant element, and with a classical
fifth-degree polynomial trajectory;

2. Nominal case, with the proposed optimal trajectory
planning algorithm;

3. Use of fixed stiffness springs in parallel with the ac-
tuated links of the robot, and with optimal motion
planner;

4. Use of VSS in parallel with the robot with optimal
motion planner.

Finally, the conclusions and future works on this topic are
given.

2 PHYSICAL BACKGROUND
The paper aims at providing a strategy for increasing the
energy efficiency of high-speed robots based on the con-
cept of parallel VSS, it is thus necessary to make first
some recalls on physical preliminaries of parallel robots,
elastic actuation and motors modeling.

2.1 Dynamic modeling of parallel robots
Let us briefly recall the dynamic modeling of parallel

robots presented in [21]. We will assume a parallel robot
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Figure 1: ON THE LEFT, A FIVE-BAR MECHANISM
WITH VARIABLE STIFFNESS LINEAR SPRINGS
IN PARALLEL ARRANGEMENT WITH THE AC-
TUATED LINKS IS SHOWN. ON THE RIGHT THE
SAME PARALLEL ROBOT WITH VARIABLE STIFF-
NESS TORSIONAL SPRINGS IS PRESENTED (THE
GREY CIRCLES DENOTE THE ACTUATED JOINTS).

composed of n degrees of freedom. The actuation is given
by n active joints. The position and velocity of the parallel
robot can be described by using:

• q and q̇ representing the n-dimensional vectors of
active joint variables and of active joint velocities,
respectively.

• x and ẋ representing the n-dimensional vectors of
platform pose and of its time derivatives, respec-
tively.

The input-output kinematic constraint that relates ẋ with
the active joint velocities q̇ is:

Aẋ + Bq̇ = 0 (1)

where A and B are the (n × n) parallel and serial kine-
matic Jacobian matrices, respectively [22]. Then, by us-
ing the Lagrange formalism, the dynamic model of the
robot can be written as follows:

τ = τta −BTλ (2)

wp = ATλ (3)

where:

• τ is the n-dimensional vector of the robot input ef-
forts;

• λ is the n-dimensional vector of Lagrange multipli-
ers;
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Figure 2: POWER TRANSMISSION SYSTEM OF
VARIABLE STIFFNESS SPRINGS IN PARALLEL TO
THE MOTORS. qi AND qsj REPRESENT THE PAR-
ALLEL ROBOT JOINTS AND VARIABLE STIFFNESS
JOINTS COORDINATES, RESPECTIVELY, AND i =
1, ..., n, j = 1, ..., ns.

• τta and wp are the n-dimensional vectors related to
the Lagrangian L of the robot defined as the differ-
ence between the kinetic energy E and the potential
energy U of the system:

τta =
d
dt

(
∂L

∂q̇

)T

−
(
∂L

∂q

)T

(4)

wp =
d
dt

(
∂L

∂ẋ

)T

−
(
∂L

∂x

)T

(5)

From equations (2) and (3), considering matrix A to be
full rank, the dynamic model of a parallel robot is ob-
tained:

τ = τta −BTA−Twp (6)

which, according to [21], can also be written under the
form:

τ = Mq̈ + h(q, q̇) (7)

where M is an (n × n) definite positive matrix of inertia
depending on the active joints coordinates q and platform
coordinates x. h is an ns-dimensional vector of Coriolis,
centrifugal and gravitational effects and its value depends
on the active joint coordinates q, and their time derivatives
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q̇.

2.2 Modeling of VSS in parallel configura-
tion with the actuated links

Let us consider a parallel robot with VSS in parallel to
the actuated links (Fig. 1). According to Fig. 2, the
actuation of the VSS is given by ns active joints. Their
position and velocity are given by qs and q̇s represent-
ing the ns-dimensional vectors of variable stiffness joint
variables and of variable stiffness joint velocities, respec-
tively. By considering the effects of the elastic deforma-
tion of the springs with their force/displacement relations,
the dynamics in (7), become:

τ = Mq̈ + h(q, q̇) + τs (8)

where τs is the ns-dimensional vector of elastic torques
associated to the VSS coupled to the robot in parallel:

τs = K(q− qs) (9)

where K is the (ns×ns) stiffness matrix, and the dynam-
ics of the VSS is expressed by:

τvss = Msq̈s + hs(qs, q̇s)− τs (10)

where Ms is an (ns×ns) definite positive matrix of iner-
tia depending on the variable stiffness joints coordinates
qs, and hs is an ns-dimensional vector of Coriolis, cen-
trifugal and gravitational effects and its value depends on
the variable stiffness joints coordinates qs and their time
derivatives q̇s.

2.3 Power consumption model of the full ac-
tuation chain

In order to study the energy consumed by the motors dur-
ing their different operation modes, several energy con-
sumption models have been formulated, such as in [19].
For this work we consider direct-drive three phase brush-
less motors to actuate the joints of the parallel robot and
the variable stiffness joints, therefore avoiding energetic
losses due to gearboxes. The electromechanical schemat-
ics of such motor drive systems vary from manufacturer
to manufacturer depending on the type of driver for ener-
gizing each phase of the brushless motor. However, five
sections can be identified in their electromechanical sys-

tem: (i) three phase rectification, (ii) braking, (iii) six-
transistor-commutable bridge, (iv) the three phase brush-
less motor, and (v) mechanical coupling between mo-
tor and drive shaft (for further details on electromechan-
ical systems and power electronics the reader can refer
to [23]). Thus, to define the energy consumption model
of such brushless motors, five types of power losses are
classified:

• Resistive losses: These are heat losses that occur
when current flows through the resistances of each
phase of the brushless motors and the braking resis-
tances. The mathematical expression is given by:

Pmotor = RphaseI
2 (11)

Pbrake = RbrakeI
2 (12)

where I is the line-to-line current between each
phase of the motor, and Rphase and Rbrake are elec-
trical resistances.

• Damping losses: These are mechanical losses due
to the mechanical coupling between the motor and
drive shaft modeled by:

Pdamp = Bq̇2k (13)

where B is the damping coefficient and q̇k is the ve-
locity of the kth motor axis, where k = 1, ..., (n +
ns).

• Conduction losses: The conduction losses are elec-
trical losses due to the current flow through the tran-
sistors and diodes occurring in the three phase rec-
tification and the six-transistor-commutable bridge.
They are modeled as follows:

Pcond = uceIcav
+ rcI

2
crms︸ ︷︷ ︸

transistors

+uDIDav
+ rDI

2
Drms︸ ︷︷ ︸

diodes

(14)
where uce is the collector-to-emitter voltage and Icav

is the collector current, rc is the on-state resistance
and Icrms

is the RMS value of the collector current.
uD is the diode forward voltage and IDav

is the diode
current, rD is the on-state resistance and IDrms is the
RMS value of the diode current.

• Switching losses: These losses occur due to the con-
tinuous switching in the six-transistor-commutable
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bridge of the motor driver when energizing each
phase of the motor. The relationship is given by:

Pswitch = uceIcavfsw︸ ︷︷ ︸
transistors

+uDIDavfsw︸ ︷︷ ︸
diodes

(15)

where fsw is the switching frequency from the six-
transistor-commutable bridge.

• Rectification losses: These are electrical losses gen-
erated from the power supply of three phase rectifi-
cation modeled as follows:

Prectifier = uDRIDRav
+ rDRI

2
DRrms

(16)

where uDR is the diode rectifier forward voltage and
IDRav

is the diode rectifier current, rDR is an on-
state resistance and IDRrms

is the RMS value of the
diode rectifier current.

It should be mentioned that the currents Icav , Icrms , IDav ,
IDrms , IDRav and IDRrms , associated to the conduction,
switching and rectification losses due to the diodes and
transistors, are functions of the line-to-line currents I of
the motor and thus, by using the model of the brushless
motor in [24], and functions of the motor electromagne-
tive torque τe, and input torque τ . The expressions link-
ing all these variables are not given here due to page lim-
itations, but can be found in [25].
Finally, by grouping the aforementioned power losses, the
following model of losses results:

Plosses = Pmotor + Pbrake + Pdamp

Pcond + Pswitch + Prectifier

(17)

By investigating the mathematical formulations (mod-
eling the dynamics of parallel robots and the power losses
of their motor drive systems) it is not evident to see how
to minimize the energy consumption. For this reason, it
is thus necessary to find a strategy to exploit the power
consumption model in order to minimize the power losses
during the motion.

3 Optimal problem formulation for
minimizing the energetic losses on
parallel robots

In order to cope with an optimal approach to minimize the
energetic losses presented in section 2, an optimal trajec-
tory planning algorithm is designed. The main idea is to
define a motion generator such that the energetic losses,
computed from numerical integration of (17), are mini-
mized, i.e. to find an optimal trajectory q(t) (or x(t) if
expressed in Cartesian space) and optimal spring coordi-
nates qs(t) that minimizes the energetic losses during the
motion.

For a pick-and-place manipulator, there is no restriction
for the robot on how to go from the initial to the final po-
sitions, except eventual collisions within the robot links,
external environment or singularity loci. That is why, sim-
ilar to what it was done in [26], our trajectory planning al-
gorithm finds a path sequence of via points (intermediate
points) between the initial and final positions (Fig. 3 and
4), which are then interconnected by the motion profiles
defined thereafter.

Our proposed energy-based optimal trajectory planner
is thus an algorithm which minimizes an objective func-
tion that computes the energy consumed during the mo-
tion by finding optimal sequence of via points between
initial and final robot positions. In order to do so, we first
need to define a trajectory planner that fully exploits the
dynamic performances of the modified high-speed par-
allel robot so that the cost function based on the power
losses can be minimum. It is described thereafter.

3.1 Trajectory definition

In order to develop the motion planners, we decided to de-
note as Ms the total number of via points along the vari-
able stiffness joints trajectory and as M the total number
of via points along the parallel robot joints trajectory. The
total duration of the trajectory is denoted as tf and we
impose the duration of the motion between two succes-
sive via-points to be equal to δts = tf/(Ms + 1) for the
variable stiffness joints trajectory and to δt = tf/(M+1)
for the robot joint trajectory.
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3.1.1 Variable stiffness joints trajectories

Different to what it has been done in [11,13], in which the
authors proposed to find motion profiles for the stiffness
rather than the variable stiffness joints, this paper gener-
ates directly the joint trajectories for the motors that actu-
ate the VSS. This avoids to handle further computations
for calculating the stiffness and allows the use of a clas-
sical position controller, avoiding the issue of measuring
the stiffness in the feedback. In order to generate the vari-
able stiffness joint motion planner let us express qs from
(8) as follows:

qs = −K−1(τ −Mq̈− h(q, q̇)) + q (18)

Based on expression (18), it is possible to observe that the
variable stiffness joint dynamics in (10), and therefore the
optimal spring stiffness, is dependent, not only on qs and
its time derivatives q̇s and q̈s but also on the configuration
of the parallel robot joints q, and their velocities q̇ and
accelerations q̈.

We build the variable stiffness joint motion planner as
follows. For the jth component of the vector qs denoted
as qsj , let us consider a sequence of two successive via-
points qsjk = qsj(ts,k) and qsjk+1

= qsj(ts,k+1) on the
time interval t ∈ [ts,k, ts,k+1] with ts,k = t0 + k δts
(k = 0, ...,Ms) and ts,k+1 = ts,k + δts (one of the via-
points can be replaced by the initial or final point of the
trajectory). Taking advantage of model (18), we connect
the via-point qsjk and qsjk+1

(Fig. 4) thanks to the follow-
ing expression defined by means of several polynomials,
valuable on the time interval t ∈ [ts,k, ts,k+1]:

qsj(t) = p
(k)
1j (qj(t)) + p

(k)
2j (q̇j(t)) + p

(k)
3j (q̈j(t)) + p

(k)
4j (t)

(19)
where p(k)1j (qj(t)) is a polynomial of qj(t), p(k)2j (q̇j(t)) is a

polynomial of q̇j(t), p(k)3j (q̈j(t)) is a polynomial of q̈j(t),

and finally p(k)4j (t) is a polynomial of time that is used to
model the effects of τ on qsj . The motion profile used for
qj(t) will be defined later in Section 3.1.2.

In order to obtain the explicit form of each polyno-
mial, we follow a heuristic approach of experimentally
testing different functions until obtaining the best poly-
nomial form based on the energy consumed during the
motion. After trials and errors, we found the best results

Start

Via point

End

Start
End

Via point

qsj

t

Figure 3: SCHEMATIC OF VIA-POINT TRAJECTORY
FOR PARALLEL ROBOT AND VARIABLE STIFF-
NESS JOINTS.
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q
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tk tk+1 tMt0 tf
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qsjk+1
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s,k s,k+1t

sj

s,Ms

q js f

qj0

qjk
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qjM
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Figure 4: ON THE TOP A VIA-POINT TRAJECTORY
FOR THE PARALLEL ROBOT JOINTS WITH M VIA-
POINTS. ON THE BOTTOM A VIA-POINT TRAJEC-
TORY FOR THE VARIABLE STIFFNESS JOINT MO-
TION PLANNER WITH MS VIA-POINTS.

when:

p
(k)
1j (qj(t)) = 0, p

(k)
2j (q̇j(t)) = 0 (20)

p
(k)
3j (q̈j(t)) = Kjkq̈

3
j +Kj(k+1)q̈

2
j +Kj(k+2)q̈j +Kj(k+3)

(21)

p
(k)
4j (t) = (qsjk+1

− qsjk)(α0sjk + α1sjkt+ α2sjkt
2+

α3sjkt
3 + α4sjkt

4 + α5sjkt
5)

(22)

Parameters (Kjk, ...,Kj(k+3)) are set as decision vari-
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ables of the optimization problem, as well as the param-
eters qsjk , vsjk and asjk for k = 1, ...,Ms. Note that,
in our case, in order to simplify the resolution of the opti-
mization problem, we decide to use the same values of the
parameters (Kjk, ...,Kj(k+3)) for any segment between
two consecutive via-points.

The boundary and continuity conditions between each
portion of motion are defined as follows:

qsj(ts,k) = qsjk and qsj(ts,k+1) = qsjk+1

q̇sj(ts,k) = vsjk and q̇sj(ts,k+1) = vsjk+1

q̈sj(ts,k) = asjk and q̈sj(ts,k+1) = asjk+1

qsj(t0) = qsj0 and qsj(tf ) = qsjf
q̇sj(t0) = 0 and q̇sj(tf ) = 0

q̈sj(t0) = 0 and q̈sj(tf ) = 0

(23)

where vsjk and asjk (vsjk+1
and asjk+1

, resp.) represent
the velocity and acceleration of the variable stiffness joint
j at via-point k (k + 1, resp.). For a given set of param-
eters vsjk , vsjk+1

, asjk , asjk+1
, (Kjk, ...,Kj(k+3)) and

robot joint trajectory qj(t), the boundary and continuity
conditions (23) are used in order to compute the coeffi-
cients αlsjk in (22).

3.1.2 Parallel robot trajectory generation

Since our motion planner for qs is a function of q̈ and be-
cause Eq. (10) depends on q̈s, it is necessary to constrain
jerks and the derivative of the jerks of q. For the jth com-
ponent of the vector q denoted as qj , let us consider a
sequence of two successive via-points qjk = qj(tk) and
qjk+1

= qj(tk+1) on the time interval t ∈ [tk, tk+1] with
tk = t0 + k δt (k = 0, ...,M ) and tk+1 = tk + δt
(one of the via-points can be the initial or final point of
the trajectory). The trajectory for qj between via-points
qjk and qjk+1

is thus defined by using ninth-degree time-
dependent polynomials which can fix the position, veloc-
ities, accelerations, jerks and derivatives of the jerks at
both via-points. The expression of the polynomial on the
time interval t ∈ [tk, tk+1] is given by:

qj(t) = (qjk+1
− qjk)(α0jk + α1jkt+ α2jkt

2 + α3jkt
3+

α4jkt
4 + α5jkt

5 + α6jkt
6 + α7jkt

7 + α8jkt
8 + α9jkt

9)

(24)

The boundary and continuity conditions are defined as
follows:

qj(tk) = qjk and qj(tk+1) = qjk+1

q̇j(tk) = vjk and q̇j(tk+1) = vjk+1

q̈j(tk) = ajk and q̈j(tk+1) = ajk+1

qj(t0) = qj0 and qj(tf ) = qjf
q̇j(t0) = 0 and q̇j(tf ) = 0

q̈j(t0) = 0 and q̈j(tf ) = 0

(25)

and q[3]j (tk) = 0 and q[4]k (tk) = 0 at any via-point or at
the initial and final points. In (25), vjk and ajk (vjk+1

and
ajk+1

, resp.) represent the velocity and acceleration of the
robot joint joint j at via-point k (k + 1, resp.). For given
values of parameters vjk , vjk+1

, ajk , ajk+1
, the boundary

and continuity conditions (25) are used in order to com-
pute the coefficients αljk in (24).

Parameters qjk , vjk and ajk for k = 1, ...,M are set as
decision variables of the optimization problem.

3.2 Optimization Problem Formulation:
Cost function and decision variables

The optimization problem aims to minimize the energetic
losses of the modified parallel robot that considers the full
actuation chain, taking into account physical constraints
of the robot and the motors. The cost function of the opti-
mization problem corresponds to the power losses of the
motors that actuate the parallel robot joints and the vari-
able stiffness joints since the manipulator must be as en-
ergy efficient as possible. The cost function for the opti-
mizing process is thus defined as follows:

J =

∫ tf

0

n+ns∑
k=1

Plosseskdt (26)

where Plossesk represents the power losses of the kth mo-
tor of the full actuation chain from expression (17).

Based on the description of the trajectory planner in
the previous sections, the decision variable vector of the
optimization problem, denoted as xDecVar, contains all
aforementioned parameters qjk , qsjk , vjk , vsjk , ajk , asjk
and (Kjk, ...,Kj(k+3)).

The optimal trajectory through via-points problem aims
at finding the decision variable vector xDecVar that min-
imizes the power losses of the (n + ns) motors while re-
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specting physical constraints, such as motor limits and
collisions. In this paper, we handle the collision avoid-
ance of virtual obstacles, which represents singularity loci
of the parallel robot. This to prevent of finding via-points
in the neighborhood of the parallel robot singularities.

The optimization problem was solved by means of
MATLAB fmincon function and it is formulated as fol-
lows:

minimize J

over xDecVar

subject to |τek | ≤ τemax

|κ| < ε

(27)

where τek is the electromagnetive torque of the kth motor
and κ represents the condition of proximity to the singu-
larity with ε denoting a threshold tuned experimentally.
For a detailed overview on singularities of parallel robots
the reader can refer to [27, 28].

4 CASE STUDY

4.1 Five-bar mechanism with variable par-
allel elastic actuation

The proposed optimization approach for increasing the
energy efficiency was validated in a five-bar mechanism
with variable stiffness torsional springs in parallel, as
shown in Fig. 5. The actuation of the parallel robot is
provided by q = [q11, q21]T . The vector of passive joints
is given by qd = [q12, q22, q13]T . The vector of moving
platform pose is given by x = [x, y]T . a is the distance
between the actuated joints. All link lengths l are identi-
cal. The actuation for the variable stiffness joints is given
by qs = [qs1, qs2]T .
The numerical values of the five-bar mechanism geomet-
ric and dynamic parameters were defined according to a
real parallel robot called RobEcolo in [29] [30], and have
the following values:

• inertia of the two proximal links zz11 = 0.133 kg/m2

and zz21 = 0.122 kg/m2;

• Coulomb friction terms of the actuated joints fs1 =
0.659 Nm and fs1 = 0.225 Nm;

• end-effector mass m = 1.84 kg;

• inertias of the couplings between the motors and
springs J1 = J2 = 0.0051 kg/m2;

• stiffness constants of the springs k11 = k21 = 4
Nm/rad;

• link lengths of the two proximal links l1 = l2 = 0.28
m;

• link lengths of the two distal links l3 = l4 = 0.4 m;

• distance between the axes of the actuated links a =
0.250 m.

The motor parameters used to examine the energetic per-
formance with the proposed approach were defined ac-
cording to the motor specifications found in [31] by the
following values:

• electrical resistances Rphase = 0.2 Ω, Rbrake = 18
Ω;

• damping coefficient B = 0.005 Nm/s;

• on-state resistances rc = rD = rDR = 0.003 Ω;

• forward and collector-to-emitter voltages uD =
uDR = uce = 0.8 V;

• switching frequency fsw = 20 KHz.

The algorithm validation was performed by using the dy-
namic model of the real parallel robot called RobEcolo
[29] [30], which is a wooden five-bar mechanism whose
dynamic model is given by the following equations:

τ = ZZq̈ + BTλ +

[
fs1sign(q̇1)

fs2sign(q̇2)

]
+ τs (28)

wp = ATλ = mẍ (29)

where A and B are computed from the input-output kine-
matic constraint relation (1), and τs is calculated from
(9). ZZ = diag(zz11, zz21), with zz11 and zz21 repre-
senting the inertia of the two proximal links, and K =
diag(k11, k21), with k11, k21 being the springs constants.
Finally, the VSS dynamics from (10) is given by:

τvss =

[
J1 0

0 J2

][
q̈s1

q̈s2

]
−

[
k11 0

0 k21

][
(q11 − qs1)

(q21 − qs2)

]
︸ ︷︷ ︸

τs

(30)

8



qs2
q21

q11qs1

q22

q12

q13

a

l

l l

l1

2

34

Figure 5: FIVE-BAR MECHANISM PARAMETERIZA-
TION WITH TWO ACTUATED JOINTS q11 AND q21,
AND THREE PASSIVE JOINTS q12, q22 AND q13. THE
VARIABLE STIFFNESS TORSIONAL SPRINGS ARE
LOCATED IN PARALLEL TO THE TWO ACTUATED
JOINTS DEFINED BY qs1 AND qs2.

4.2 Results and comparative energetic anal-
ysis on three cases: nominal, constant
stiffness and variable stiffness actuation

In order to validate the theoretical formulations, the op-
timization algorithm is tested by defining multiple de-
sired points in the workspace of the five-bar mechanism
as shown in Fig. 6. The aim is to go multiple times
to these points by finding the appropriated optimal de-
cision variable vector xDecVar that minimizes the en-
ergetic losses of the full actuation chain. The sections
of trajectories are defined between the points given by:
A = [0.25, 0.3], B = [0, 0.4], C = [0.2, 0.5], D =
[0, 0.45], E = [0.2, 0.4], F = [0, 0.5], G = [0.2, 0.35].
The sequence of the trajectory is defined at Fig. 6. For
showing the effectiveness of the proposed approach, the
input torques and the energy consumption of four differ-
ent types of actuation are analyzed: (i) Nominal actuation,
in which there is no elastic element attached at each joint,
and a fifth-degree polynomial trajectory is used between
each set of two successive points; (ii) nominal actuation
with optimized trajectory; (iii) actuation with fixed stiff-
ness springs in parallel with each joint of the robot, with
spring constants k11 and k21 defined according to sec-
tion 4.1, and with optimized trajectory; (iv) actuation with

VSS in parallel with each actuated link of the robot and
with optimized trajectory. Figures 7 and 8 show the input
torques computed for the four types of actuation in the
parallel robot joints along the multiple trajectories from
the sequence in Fig. 6 with travel times of 0.2 s between
each desired set of two points. It can be seen that in
both parallel robot actuated joints, the input torques are
reduced by using springs, with fixed stiffness and then
with variable stiffness, being the latter the type of actu-
ation with major gain in reduction of input efforts. The
torques shown in Fig. 9 correspond to the input torques
of the variable stiffness joints. As compared to the par-
allel robot joint torque magnitudes, the variable stiffness
joint torques do not have a major impact on input efforts.
Then, Fig. 10 shows the energetic losses from the power
consumption model (17) for the four types of actuation. It
can be seen that by using VSS, it is possible to reduce the
energy up to 48 % with respect to the nominal case with
classical fifth-degree polynomial trajectory. It should be
mentioned that this result is far from the gain in energy
efficiency of 90 % shown in [19], but this is due to the
fact that, in our work, we did not neglect any losses in the
actuation chain including the VSS and the motor driver,
which was not the case at all in [19].

In addition to that, Fig. 11 shows the energy consump-
tion reduction achieved by using VSS for different pick-
and-place travel times between the same points. It can
be seen that our algorithm has better performance when
performing the most high-speed tasks. In Fig. 12, the
influence of modifying the number of via-points for the
parallel robot and variable stiffness joints is shown. It is
observed that the major reduction occurs when the num-
ber of via-points is set to two for both the parallel robot
joints and variable stiffness joints. This is due to the fact
that increasing the number of via-points and having fast
pick-and-place travel times complexified the resolution of
the optimization algorithm and made it converged towards
local minima. Finally, Fig. 13 shows the energy reduction
separately for each identified power loss presented in sec-
tion 2.3. It can be seen that the major reduction occurs
on the resistive losses, which is expected since they are
affected by the squared of the electric currents, which are
functions of the electromagnetive torques, included as a
contraint in the optimization problem.
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Figure 6: MULTIPLE OPTIMAL TRAJECTORIES FOR
THE SEQUENCE: A→ B → C → D → E → F → G
→B→A, WITH TRAVEL TIMES OF 0.2 s BETWEEN
DESIRED POINTS.
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Figure 7: INPUT TORQUES FOR THE FIRST
JOINT OF THE PARALLEL ROBOT FOR THE FOUR
CASES: NOMINAL FIFTH-DEGREE POLYNOMIAL,
NOMINAL WITH OPTIMIZED TRAJECTORY, FIXED
STIFFNESS AND VARIABLE STIFFNESS, 0.2 s AS
PICK-AND-PLACE TRAVEL TIME BETWEEN DE-
SIRED POINTS.

5 CONCLUSIONS
This paper proposes a new approach to increase the
energy efficiency of high-speed pick-and-place parallel
robots by placing variable stiffness springs in parallel with
the motors. An analysis of the energetic losses of the full
actuation chain provided a cost function which is used in
an optimal problem formulation in order to minimize the
power losses. Then, specific trajectories for the parallel
robot joints and for the variable stiffness joints were de-
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Figure 8: INPUT TORQUES FOR THE SECOND
JOINT OF THE PARALLEL ROBOT FOR THE FOUR
CASES: NOMINAL FIFTH-DEGREE POLYNOMIAL,
NOMINAL WITH OPTIMIZED TRAJECTORY, FIXED
STIFFNESS AND VARIABLE STIFFNESS, 0.2 s AS
PICK-AND-PLACE TRAVEL TIME BETWEEN DE-
SIRED POINTS.
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Figure 9: INPUT TORQUES FOR THE JOINTS OF
VARIABLE STIFFNESS, 0.2 s AS PICK-AND-PLACE
TRAVEL TIME BETWEEN DESIRED POINTS.

veloped avoiding to have a nonlinear force/displacement
relation for the elastic torques. Simulations led to the
successful increasing of energy efficiency with multiple-
point trajectories on a five-bar mechanism for four cases:
nominal with a classical fifth-degree polynomial, nomi-
nal with optimized trajectory, use of fixed stiffness and
variable stiffness springs. Results show that the reduction
of energy consumption can reach up to 48 % when us-
ing VSS. Next work on this subject includes experimental
validation of our approach and the design of an alternative
optimization strategy in order to tune the spring coordi-
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nates online, avoiding the pre-computation of the motion
planners.
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