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Increasing energy efficiency of high-speed parallel robots by using variable stiffness springs and optimal motion generation

The classical approach to decrease the energy consumption of high-speed robots is by lowering the moving elements mass in order to have a lightweight structure. Even if this allows reducing the energy consumed, the lightweight architecture affects the robot stiffness, worsening the accuracy of the mechanism. Recently, variable stiffness actuators (VSAs) have been used in order to reduce the energy consumption of high-speed pick-andplace robots. The idea is to smartly tune online the stiffness of VSA springs so that the robot is put in near a resonance mode, thus considerably decreasing the energy consumption during fast pseudo-periodic pick-and-place motions. However, the serial configuration of springs and motors in the VSA leads to uncontrolled robot deflections at high-speeds and, thus, to a poor positioning accuracy of its end-effector.

In order to avoid these drawbacks and to increase the energy efficiency while ensuring the accuracy, this paper proposes the use of parallel arrangement of variable stiffness springs (VSS) and motors, combined with an energybased optimal trajectory planner. The VSS are used as energy storage for carrying out the reduction of the energy consumption and their parallel configuration with the motors ensure the load balancing at high-speed without los-ing the accuracy of the robot. Simulations of the suggested approach on a five-bar mechanism are performed and show the increase on energy efficiency.

INTRODUCTION

It is well-known that in industrial applications, such as high-speed pick-and-place operations, parallel robots are widely used [START_REF] Krut | A high-speed parallel robot for scara motions[END_REF]2]. Repeatability and accuracy are typically the most important criteria to measure their performance. Nevertheless, the design trends to operate at high speeds are shifting to the design of robots with lightweight architectures [3] in order to decrease the energy consumed by the motors, and measure as well the robot performance based on its energy efficiency [4].

For slow motions, gravity-balancing techniques [START_REF] Baradat | Design and Prototyping of a New Balancing Mechanism for Spatial Parallel Manipulators[END_REF][START_REF] Briot | A New Energyfree Gravity-compensation Adaptive System for Balancing of 4-DOF Robot Manipulators with Variable Payloads[END_REF][START_REF] Agrawal | Reactionless Space and Ground Robots: Novel Designs and Concept Studies[END_REF][START_REF] Wang | Static Balancing of Spatial Three-Degree-of-Freedom Parallel Mechanisms[END_REF] have been proposed in order to compensate the input efforts required to move the links of a pick-and-place robot, and thus to avoid consuming energy. Even if these methods have shown their effectiveness at slow speeds, it is not the case for high-speed operations in which the inertial effects are preponderant. A first solution introduced the series elastic actuators (SEAs) [START_REF] Pratt | Series elastic actuators[END_REF] to cope with the energy storage issues. The SEAs are compliant actuators composed by a motor which is linked to a spring in series that serves as energy storage, and whose stiffness is set by the spring constant. SEAs were first used to absorb contact shocks and to reduce the peak forces due to the impacts in bipedal walking robots [START_REF] Pratt | Virtual model control: an intuitive approach for bipedal locomotion[END_REF]. The limitation of the SEAs is that the stiffness is fixed and cannot be altered during motion, thus limiting the level of compliance to adapt for different tasks. Therefore, a recent second solution proposed the use of variable stiffness actuators (VSAs) [START_REF] Van Ham | Compliant actuator designs: review of actuators with passive adjustable compliance/controllable stiffness for robotic applications[END_REF][START_REF] Vanderborght | Variable impedance actuators: moving the robots of tomorrow[END_REF][START_REF] Wolf | Variable stiffness actuators: Review on design and components[END_REF] to handle with energy storage issues. VSAs consist of a motor which is connected to the output link by a spring in series and whose stiffness is variable and can be controlled. These springs are called Variable Stiffness Springs (VSS) [START_REF] Hollander | Concepts for compliant actuation in wearable robotic systems[END_REF]. Such actuators were first introduced for human-robot interaction applications [START_REF] Tsagarakis | A compact soft actuator unit for small scale human friendly robots[END_REF], for decreasing contact shocks and for efficiently actuate legged locomotion systems [START_REF] Van Ham | MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot[END_REF][START_REF] Vanderborght | Overview of the lucy project: dynamic stabilization of a biped powered by pneumatic artificial muscles[END_REF]. Recently, they have been used for considerably decreasing the energy consumption of a pick-and-place robot in [START_REF] Uemura | Resonancebased motion control method for multi-joint robot through combining stiffness adaptation and iterative learning control[END_REF][START_REF] Goya | Realization of high-energy efficient pick-and-place tasks of scara robots by resonance[END_REF]. Even if the results seem to be impressive, their power consumption models do not consider the energetic losses from the motors that actuate the VSS, thus missing the losses of the full actuation chain. Furthermore, the serial arrangement of springs and motors would limit their operational speeds due to uncontrolled robot deflections when performing high-speed tasks.

A novel type of actuation for pick-and-place operations has been presented in [START_REF] Barreto | The concept of natural motion for pick and place operations[END_REF], where the authors proposed the use of constant stiffness springs in parallel to the motors in order to reduce the energy consumption. The main idea is to place the constant stiffness springs in parallel so that the required torque to move the output load is distributed between the motor and the parallel spring. This is possible since the constant stiffness spring in parallel supplies part of the required input effort to move the output load, thus reducing the energy consumption. Even if the results are impressive, the level of compliance to adapt to fast pseudo-periodic pick-and-place tasks is restricted due to the fixed stiffness.

The use of parallel elastic actuation seems to be a promising solution for increasing the energy efficiency. Therefore, the aim of this paper is to propose a strategy for reducing the energy consumed in high-speed pickand-place robots by studying the concept of using VSS in parallel to the motors, contrary to [START_REF] Uemura | Resonancebased motion control method for multi-joint robot through combining stiffness adaptation and iterative learning control[END_REF][START_REF] Goya | Realization of high-energy efficient pick-and-place tasks of scara robots by resonance[END_REF] in which they were mounted in series, as said previously. By placing the VSS in parallel, we will ensure direct power connection between the motor and links of the robot (and thus to have accuracy at high-speeds), and also to have tunable energy storage through the VSS. Additionally, contrary to what was done in [START_REF] Uemura | Resonancebased motion control method for multi-joint robot through combining stiffness adaptation and iterative learning control[END_REF][START_REF] Goya | Realization of high-energy efficient pick-and-place tasks of scara robots by resonance[END_REF], we deal with the minimization of the energetic losses from the full actuation chain, i.e., both the parallel robot joints motors and the variable stiffness springs motors, by finding the optimal robot trajectory thanks to an optimization problem.

This paper is divided as follows: Section 2 presents some recalls on the computation of the dynamic model of parallel robots. In addition to that, the dynamic model of parallel robots with VSS is shown. Then, the model of power losses is formulated considering the overall motor drive system. Section 3 shows the optimal problem formulation including the trajectory definition, cost function and decision variables. Section 4 presents the results of the proposed approach on a five-bar mechanism. In order to show the effectiveness of the approach presented in this paper, four cases are analyzed and compared: 1. Nominal case, which consists of the parallel robot without any compliant element, and with a classical fifth-degree polynomial trajectory;

2. Nominal case, with the proposed optimal trajectory planning algorithm;

3. Use of fixed stiffness springs in parallel with the actuated links of the robot, and with optimal motion planner;

4. Use of VSS in parallel with the robot with optimal motion planner.

Finally, the conclusions and future works on this topic are given.

PHYSICAL BACKGROUND

The paper aims at providing a strategy for increasing the energy efficiency of high-speed robots based on the concept of parallel VSS, it is thus necessary to make first some recalls on physical preliminaries of parallel robots, elastic actuation and motors modeling.

Dynamic modeling of parallel robots

Let us briefly recall the dynamic modeling of parallel robots presented in [START_REF] Briot | Dynamics of Parallel Robots: From Rigid Bodies to Flexible Elements[END_REF]. We will assume a parallel robot composed of n degrees of freedom. The actuation is given by n active joints. The position and velocity of the parallel robot can be described by using:

• q and q representing the n-dimensional vectors of active joint variables and of active joint velocities, respectively.

• x and ẋ representing the n-dimensional vectors of platform pose and of its time derivatives, respectively.

The input-output kinematic constraint that relates ẋ with the active joint velocities q is:

A ẋ + B q = 0 (1) 
where A and B are the (n × n) parallel and serial kinematic Jacobian matrices, respectively [START_REF] Merlet | Parallel Robots[END_REF]. Then, by using the Lagrange formalism, the dynamic model of the robot can be written as follows:

τ = τ ta -B T λ (2) 
w p = A T λ (3) 
where:

• τ is the n-dimensional vector of the robot input efforts;

• λ is the n-dimensional vector of Lagrange multipliers; • τ ta and w p are the n-dimensional vectors related to the Lagrangian L of the robot defined as the difference between the kinetic energy E and the potential energy U of the system:

q s j q i Motor Robot Link Motor VSS Robot Link
τ ta = d dt ∂L ∂ q T - ∂L ∂q T ( 4 
)
w p = d dt ∂L ∂ ẋ T - ∂L ∂x T (5) 
From equations (2) and (3), considering matrix A to be full rank, the dynamic model of a parallel robot is obtained:

τ = τ ta -B T A -T w p (6) 
which, according to [START_REF] Briot | Dynamics of Parallel Robots: From Rigid Bodies to Flexible Elements[END_REF], can also be written under the form:

τ = Mq + h(q, q) ( 7 
)
where M is an (n × n) definite positive matrix of inertia depending on the active joints coordinates q and platform coordinates x. h is an n s -dimensional vector of Coriolis, centrifugal and gravitational effects and its value depends on the active joint coordinates q, and their time derivatives q.

2.2 Modeling of VSS in parallel configuration with the actuated links

Let us consider a parallel robot with VSS in parallel to the actuated links (Fig. 1). According to Fig. 2, the actuation of the VSS is given by n s active joints. Their position and velocity are given by q s and qs representing the n s -dimensional vectors of variable stiffness joint variables and of variable stiffness joint velocities, respectively. By considering the effects of the elastic deformation of the springs with their force/displacement relations, the dynamics in [START_REF] Agrawal | Reactionless Space and Ground Robots: Novel Designs and Concept Studies[END_REF], become:

τ = Mq + h(q, q) + τ s ( 8 
)
where τ s is the n s -dimensional vector of elastic torques associated to the VSS coupled to the robot in parallel:

τ s = K(q -q s ) (9) 
where K is the (n s × n s ) stiffness matrix, and the dynamics of the VSS is expressed by:

τ vss = M s qs + h s (q s , qs ) -τ s ( 10 
)
where M s is an (n s × n s ) definite positive matrix of inertia depending on the variable stiffness joints coordinates q s , and h s is an n s -dimensional vector of Coriolis, centrifugal and gravitational effects and its value depends on the variable stiffness joints coordinates q s and their time derivatives qs .

Power consumption model of the full actuation chain

In order to study the energy consumed by the motors during their different operation modes, several energy consumption models have been formulated, such as in [START_REF] Goya | Realization of high-energy efficient pick-and-place tasks of scara robots by resonance[END_REF].

For this work we consider direct-drive three phase brushless motors to actuate the joints of the parallel robot and the variable stiffness joints, therefore avoiding energetic losses due to gearboxes. The electromechanical schematics of such motor drive systems vary from manufacturer to manufacturer depending on the type of driver for energizing each phase of the brushless motor. However, five sections can be identified in their electromechanical sys-tem: (i) three phase rectification, (ii) braking, (iii) sixtransistor-commutable bridge, (iv) the three phase brushless motor, and (v) mechanical coupling between motor and drive shaft (for further details on electromechanical systems and power electronics the reader can refer to [START_REF] Chapman | Electric Machinery Fundamentals, Fifth Edition[END_REF]). Thus, to define the energy consumption model of such brushless motors, five types of power losses are classified:

• Resistive losses: These are heat losses that occur when current flows through the resistances of each phase of the brushless motors and the braking resistances. The mathematical expression is given by:

P motor = R phase I 2 (11) 
P brake = R brake I 2 ( 12 
)
where I is the line-to-line current between each phase of the motor, and R phase and R brake are electrical resistances.

• Damping losses: These are mechanical losses due to the mechanical coupling between the motor and drive shaft modeled by:

P damp = B q2 k ( 13 
)
where B is the damping coefficient and qk is the velocity of the kth motor axis, where k = 1, ..., (n + n s ).

• Conduction losses: The conduction losses are electrical losses due to the current flow through the transistors and diodes occurring in the three phase rectification and the six-transistor-commutable bridge. They are modeled as follows:

P cond = u ce I cav + r c I 2 crms transistors + u D I Dav + r D I 2 Drms diodes (14) 
where u ce is the collector-to-emitter voltage and I cav is the collector current, r c is the on-state resistance and I crms is the RMS value of the collector current. u D is the diode forward voltage and I Dav is the diode current, r D is the on-state resistance and I Drms is the RMS value of the diode current.

• Switching losses: These losses occur due to the continuous switching in the six-transistor-commutable bridge of the motor driver when energizing each phase of the motor. The relationship is given by:

P switch = u ce I cav f sw transistors + u D I Dav f sw diodes ( 15 
)
where f sw is the switching frequency from the sixtransistor-commutable bridge.

• Rectification losses: These are electrical losses generated from the power supply of three phase rectification modeled as follows:

P rectif ier = u DR I DRav + r DR I 2 DRrms ( 16 
)
where u DR is the diode rectifier forward voltage and I DRav is the diode rectifier current, r DR is an onstate resistance and I DRrms is the RMS value of the diode rectifier current.

It should be mentioned that the currents I cav , I crms , I Dav , I Drms , I DRav and I DRrms , associated to the conduction, switching and rectification losses due to the diodes and transistors, are functions of the line-to-line currents I of the motor and thus, by using the model of the brushless motor in [START_REF] Pillay | Modeling, simulation, and analysis of permanent-magnet motor drives. Part II. The brushless DC motor drive[END_REF], and functions of the motor electromagnetive torque τ e , and input torque τ . The expressions linking all these variables are not given here due to page limitations, but can be found in [START_REF] Millman | Microelectronics: Digital and Analog Circuits and Systems[END_REF]. Finally, by grouping the aforementioned power losses, the following model of losses results:

P losses = P motor + P brake + P damp

P cond + P switch + P rectif ier (17) 
By investigating the mathematical formulations (modeling the dynamics of parallel robots and the power losses of their motor drive systems) it is not evident to see how to minimize the energy consumption. For this reason, it is thus necessary to find a strategy to exploit the power consumption model in order to minimize the power losses during the motion.

3 Optimal problem formulation for minimizing the energetic losses on parallel robots

In order to cope with an optimal approach to minimize the energetic losses presented in section 2, an optimal trajectory planning algorithm is designed. The main idea is to define a motion generator such that the energetic losses, computed from numerical integration of ( 17), are minimized, i.e. to find an optimal trajectory q(t) (or x(t) if expressed in Cartesian space) and optimal spring coordinates q s (t) that minimizes the energetic losses during the motion.

For a pick-and-place manipulator, there is no restriction for the robot on how to go from the initial to the final positions, except eventual collisions within the robot links, external environment or singularity loci. That is why, similar to what it was done in [START_REF] Saravana Perumaal | Automated trajectory planner of industrial robot pickand-place task[END_REF], our trajectory planning algorithm finds a path sequence of via points (intermediate points) between the initial and final positions (Fig. 3 and4), which are then interconnected by the motion profiles defined thereafter.

Our proposed energy-based optimal trajectory planner is thus an algorithm which minimizes an objective function that computes the energy consumed during the motion by finding optimal sequence of via points between initial and final robot positions. In order to do so, we first need to define a trajectory planner that fully exploits the dynamic performances of the modified high-speed parallel robot so that the cost function based on the power losses can be minimum. It is described thereafter.

Trajectory definition

In order to develop the motion planners, we decided to denote as M s the total number of via points along the variable stiffness joints trajectory and as M the total number of via points along the parallel robot joints trajectory. The total duration of the trajectory is denoted as t f and we impose the duration of the motion between two successive via-points to be equal to δt s = t f /(M s + 1) for the variable stiffness joints trajectory and to δt = t f /(M +1) for the robot joint trajectory.

Variable stiffness joints trajectories

Different to what it has been done in [START_REF] Van Ham | Compliant actuator designs: review of actuators with passive adjustable compliance/controllable stiffness for robotic applications[END_REF][START_REF] Wolf | Variable stiffness actuators: Review on design and components[END_REF], in which the authors proposed to find motion profiles for the stiffness rather than the variable stiffness joints, this paper generates directly the joint trajectories for the motors that actuate the VSS. This avoids to handle further computations for calculating the stiffness and allows the use of a classical position controller, avoiding the issue of measuring the stiffness in the feedback. In order to generate the variable stiffness joint motion planner let us express q s from (8) as follows:

q s = -K -1 (τ -Mq -h(q, q)) + q (18)
Based on expression [START_REF] Uemura | Resonancebased motion control method for multi-joint robot through combining stiffness adaptation and iterative learning control[END_REF], it is possible to observe that the variable stiffness joint dynamics in [START_REF] Pratt | Virtual model control: an intuitive approach for bipedal locomotion[END_REF], and therefore the optimal spring stiffness, is dependent, not only on q s and its time derivatives qs and qs but also on the configuration of the parallel robot joints q, and their velocities q and accelerations q.

We build the variable stiffness joint motion planner as follows. For the jth component of the vector q s denoted as q sj , let us consider a sequence of two successive viapoints q sj k = q sj (t s,k ) and q sj k+1 = q sj (t s,k+1 ) on the time interval t ∈ [t s,k , t s,k+1 ] with t s,k = t 0 + k δt s (k = 0, ..., M s ) and t s,k+1 = t s,k + δt s (one of the viapoints can be replaced by the initial or final point of the trajectory). Taking advantage of model [START_REF] Uemura | Resonancebased motion control method for multi-joint robot through combining stiffness adaptation and iterative learning control[END_REF], we connect the via-point q sj k and q sj k+1 (Fig. 4) thanks to the following expression defined by means of several polynomials, valuable on the time interval t ∈ [t s,k , t s,k+1 ]:

q sj (t) = p (k) 1j (q j (t)) + p (k) 2j ( qj (t)) + p (k) 3j (q j (t)) + p (k) 4j (t) (19) where p (k) 1j (q j (t)) is a polynomial of q j (t), p (k) 2j ( qj (t)) is a polynomial of qj (t), p (k) 3j (q j (t)
) is a polynomial of qj (t), and finally p (k) 4j (t) is a polynomial of time that is used to model the effects of τ on q sj . The motion profile used for q j (t) will be defined later in Section 3.1.2.

In order to obtain the explicit form of each polynomial, we follow a heuristic approach of experimentally testing different functions until obtaining the best polynomial form based on the energy consumed during the motion. After trials and errors, we found the best results q j s f q j0 q j k q j k+1 q j M q j f when:

Start

p (k) 1j (q j (t)) = 0, p (k) 2j ( qj (t)) = 0 (20) 
p (k) 3j (q j (t)) = K jk q3 j + K j(k+1) q2 j + K j(k+2) qj + K j(k+3) (21) 
p (k) 4j (t) = (q sj k+1 -q sj k )(α 0sjk + α 1sjk t + α 2sjk t 2 + α 3sjk t 3 + α 4sjk t 4 + α 5sjk t 5 ) (22) 
Parameters (K jk , ..., K j(k+3) ) are set as decision vari-ables of the optimization problem, as well as the parameters q sj k , v sj k and a sj k for k = 1, ..., M s . Note that, in our case, in order to simplify the resolution of the optimization problem, we decide to use the same values of the parameters (K jk , ..., K j(k+3) ) for any segment between two consecutive via-points.

The boundary and continuity conditions between each portion of motion are defined as follows:

                  
q sj (t s,k ) = q sj k and q sj (t s,k+1 ) = q sj k+1 qsj (t s,k ) = v sj k and qsj (t s,k+1 ) = v sj k+1 qsj (t s,k ) = a sj k and qsj (t s,k+1 ) = a sj k+1 q sj (t 0 ) = q sj0 and q sj (t f ) = q sj f qsj (t 0 ) = 0 and qsj (t f ) = 0 qsj (t 0 ) = 0 and qsj (t f ) = 0 [START_REF] Chapman | Electric Machinery Fundamentals, Fifth Edition[END_REF] where v sj k and a sj k (v sj k+1 and a sj k+1 , resp.) represent the velocity and acceleration of the variable stiffness joint j at via-point k (k + 1, resp.). For a given set of parameters v sj k , v sj k+1 , a sj k , a sj k+1 , (K jk , ..., K j(k+3) ) and robot joint trajectory q j (t), the boundary and continuity conditions [START_REF] Chapman | Electric Machinery Fundamentals, Fifth Edition[END_REF] are used in order to compute the coefficients α lsjk in [START_REF] Merlet | Parallel Robots[END_REF].

Parallel robot trajectory generation

Since our motion planner for q s is a function of q and because Eq. ( 10) depends on qs , it is necessary to constrain jerks and the derivative of the jerks of q. For the jth component of the vector q denoted as q j , let us consider a sequence of two successive via-points q j k = q j (t k ) and q j k+1 = q j (t k+1 ) on the time interval t ∈ [t k , t k+1 ] with t k = t 0 + k δt (k = 0, ..., M ) and t k+1 = t k + δt (one of the via-points can be the initial or final point of the trajectory). The trajectory for q j between via-points q j k and q j k+1 is thus defined by using ninth-degree timedependent polynomials which can fix the position, velocities, accelerations, jerks and derivatives of the jerks at both via-points. The expression of the polynomial on the time interval t ∈ [t k , t k+1 ] is given by:

q j (t) = (q j k+1 -q j k )(α 0jk + α 1jk t + α 2jk t 2 + α 3jk t 3 + α 4jk t 4 + α 5jk t 5 + α 6jk t 6 + α 7jk t 7 + α 8jk t 8 + α 9jk t 9 ) (24) 
The boundary and continuity conditions are defined as follows:

                  
q j (t k ) = q j k and q j (t k+1 ) = q j k+1 qj (t k ) = v j k and qj (t k+1 ) = v j k+1 qj (t k ) = a j k and qj (t k+1 ) = a j k+1 q j (t 0 ) = q j0 and q j (t f ) = q j f qj (t 0 ) = 0 and qj (t f ) = 0 qj (t 0 ) = 0 and qj (t f ) = 0 [START_REF] Millman | Microelectronics: Digital and Analog Circuits and Systems[END_REF] and q

[3]

j (t k ) = 0 and q [4]
k (t k ) = 0 at any via-point or at the initial and final points. In [START_REF] Millman | Microelectronics: Digital and Analog Circuits and Systems[END_REF], v j k and a j k (v j k+1 and a j k+1 , resp.) represent the velocity and acceleration of the robot joint joint j at via-point k (k + 1, resp.). For given values of parameters v j k , v j k+1 , a j k , a j k+1 , the boundary and continuity conditions [START_REF] Millman | Microelectronics: Digital and Analog Circuits and Systems[END_REF] are used in order to compute the coefficients α ljk in [START_REF] Pillay | Modeling, simulation, and analysis of permanent-magnet motor drives. Part II. The brushless DC motor drive[END_REF].

Parameters q j k , v j k and a j k for k = 1, ..., M are set as decision variables of the optimization problem.

Optimization Problem Formulation: Cost function and decision variables

The optimization problem aims to minimize the energetic losses of the modified parallel robot that considers the full actuation chain, taking into account physical constraints of the robot and the motors. The cost function of the optimization problem corresponds to the power losses of the motors that actuate the parallel robot joints and the variable stiffness joints since the manipulator must be as energy efficient as possible. The cost function for the optimizing process is thus defined as follows:

J = t f 0 n+ns k=1 P losses k dt ( 26 
)
where P losses k represents the power losses of the kth motor of the full actuation chain from expression [START_REF] Vanderborght | Overview of the lucy project: dynamic stabilization of a biped powered by pneumatic artificial muscles[END_REF].

Based on the description of the trajectory planner in the previous sections, the decision variable vector of the optimization problem, denoted as x DecVar , contains all aforementioned parameters q j k , q sj k , v j k , v sj k , a j k , a sj k and (K jk , ..., K j(k+3) ).

The optimal trajectory through via-points problem aims at finding the decision variable vector x DecVar that minimizes the power losses of the (n + n s ) motors while re-specting physical constraints, such as motor limits and collisions. In this paper, we handle the collision avoidance of virtual obstacles, which represents singularity loci of the parallel robot. This to prevent of finding via-points in the neighborhood of the parallel robot singularities.

The optimization problem was solved by means of MATLAB f mincon function and it is formulated as follows:

minimize J over x DecVar subject to |τ e k | ≤ τ e max |κ| < (27) 
where τ e k is the electromagnetive torque of the kth motor and κ represents the condition of proximity to the singularity with denoting a threshold tuned experimentally. For a detailed overview on singularities of parallel robots the reader can refer to [START_REF] Gosselin | Singularity analysis of closed-loop kinematic chains[END_REF][START_REF] Conconi | A new assessment of singularities of parallel kinematic chains[END_REF].

CASE STUDY

Five-bar mechanism with variable parallel elastic actuation

The proposed optimization approach for increasing the energy efficiency was validated in a five-bar mechanism with variable stiffness torsional springs in parallel, as shown in Fig. 5. The actuation of the parallel robot is provided by q = [q 11 , q 21 ] T . The vector of passive joints is given by q d = [q 12 , q 22 , q 13 ] T . The vector of moving platform pose is given by x = [x, y] T . a is the distance between the actuated joints. All link lengths l are identical. The actuation for the variable stiffness joints is given by q s = [q s1 , q s2 ] T . The numerical values of the five-bar mechanism geometric and dynamic parameters were defined according to a real parallel robot called RobEcolo in [START_REF]Project RobEcolo[END_REF] [30], and have the following values:

• inertia of the two proximal links zz 11 = 0.133 kg/m 2 and zz 21 = 0.122 kg/m 2 ;

• Coulomb friction terms of the actuated joints f s1 = 0.659 Nm and f s1 = 0.225 Nm;

• end-effector mass m = 1.84 kg;

• inertias of the couplings between the motors and springs J 1 = J 2 = 0.0051 kg/m 2 ;

• stiffness constants of the springs k 11 = k 21 = 4 Nm/rad;

• link lengths of the two proximal links l 1 = l 2 = 0.28 m;

• link lengths of the two distal links l 3 = l 4 = 0.4 m;

• distance between the axes of the actuated links a = 0.250 m.

The motor parameters used to examine the energetic performance with the proposed approach were defined according to the motor specifications found in [START_REF] Siemens | The performance-optimized and easy-touse servo drive system[END_REF] by the following values:

• electrical resistances R phase = 0.2 Ω, R brake = 18 Ω;

• damping coefficient B = 0.005 Nm/s;

• on-state resistances r c = r D = r DR = 0.003 Ω;

• forward and collector-to-emitter voltages u D = u DR = u ce = 0.8 V;

• switching frequency f sw = 20 KHz.

The algorithm validation was performed by using the dynamic model of the real parallel robot called RobEcolo [START_REF]Project RobEcolo[END_REF] [30], which is a wooden five-bar mechanism whose dynamic model is given by the following equations:

τ = ZZq + B T λ + f s1 sign( q1 ) f s2 sign( q2 ) + τ s (28) 
w p = A T λ = mẍ (29) 
where A and B are computed from the input-output kinematic constraint relation (1), and τ s is calculated from [START_REF] Pratt | Series elastic actuators[END_REF]. ZZ = diag(zz 11 , zz 21 ), with zz 11 and zz 21 representing the inertia of the two proximal links, and K = diag(k 11 , k 21 ), with k 11 , k 21 being the springs constants. Finally, the VSS dynamics from ( 10) is given by:

τ vss = J 1 0 0 J 2 qs1 qs2 - k 11 0 0 k 21 (q 11 -q s1 ) (q 21 -q s2 ) τs ( 30 
)
q s2
q 21 q 11 q s1 q 22 q 12 q 13 a l l l l1 2 3 4

Figure 5: FIVE-BAR MECHANISM PARAMETERIZA-TION WITH TWO ACTUATED JOINTS q 11 AND q 21 , AND THREE PASSIVE JOINTS q 12 , q 22 AND q 13 . THE VARIABLE STIFFNESS TORSIONAL SPRINGS ARE LOCATED IN PARALLEL TO THE TWO ACTUATED JOINTS DEFINED BY q s1 AND q s2 .

Results and comparative energetic analysis on three cases: nominal, constant stiffness and variable stiffness actuation

In order to validate the theoretical formulations, the optimization algorithm is tested by defining multiple desired points in the workspace of the five-bar mechanism as shown in Fig. 6. The aim is to go multiple times to these points by finding the appropriated optimal decision variable vector x DecVar that minimizes the energetic losses of the full actuation chain. The sections of trajectories are defined between the points given by: A The sequence of the trajectory is defined at Fig. 6. For showing the effectiveness of the proposed approach, the input torques and the energy consumption of four different types of actuation are analyzed: (i) Nominal actuation, in which there is no elastic element attached at each joint, and a fifth-degree polynomial trajectory is used between each set of two successive points; (ii) nominal actuation with optimized trajectory; (iii) actuation with fixed stiffness springs in parallel with each joint of the robot, with spring constants k 11 and k 21 defined according to section 4.1, and with optimized trajectory; (iv) actuation with VSS in parallel with each actuated link of the robot and with optimized trajectory. Figures 7 and8 show the input torques computed for the four types of actuation in the parallel robot joints along the multiple trajectories from the sequence in Fig. 6 with travel times of 0.2 s between each desired set of two points. It can be seen that in both parallel robot actuated joints, the input torques are reduced by using springs, with fixed stiffness and then with variable stiffness, being the latter the type of actuation with major gain in reduction of input efforts. The torques shown in Fig. 9 correspond to the input torques of the variable stiffness joints. As compared to the parallel robot joint torque magnitudes, the variable stiffness joint torques do not have a major impact on input efforts. Then, Fig. 10 shows the energetic losses from the power consumption model [START_REF] Vanderborght | Overview of the lucy project: dynamic stabilization of a biped powered by pneumatic artificial muscles[END_REF] for the four types of actuation. It can be seen that by using VSS, it is possible to reduce the energy up to 48 % with respect to the nominal case with classical fifth-degree polynomial trajectory. It should be mentioned that this result is far from the gain in energy efficiency of 90 % shown in [START_REF] Goya | Realization of high-energy efficient pick-and-place tasks of scara robots by resonance[END_REF], but this is due to the fact that, in our work, we did not neglect any losses in the actuation chain including the VSS and the motor driver, which was not the case at all in [START_REF] Goya | Realization of high-energy efficient pick-and-place tasks of scara robots by resonance[END_REF].

In addition to that, Fig. 11 shows the energy consumption reduction achieved by using VSS for different pickand-place travel times between the same points. It can be seen that our algorithm has better performance when performing the most high-speed tasks. In Fig. 12, the influence of modifying the number of via-points for the parallel robot and variable stiffness joints is shown. It is observed that the major reduction occurs when the number of via-points is set to two for both the parallel robot joints and variable stiffness joints. This is due to the fact that increasing the number of via-points and having fast pick-and-place travel times complexified the resolution of the optimization algorithm and made it converged towards local minima. Finally, Fig. 13 shows the energy reduction separately for each identified power loss presented in section 2.3. It can be seen that the major reduction occurs on the resistive losses, which is expected since they are affected by the squared of the electric currents, which are functions of the electromagnetive torques, included as a contraint in the optimization problem. 

→ B → C → D → E → F → G → B → A,

CONCLUSIONS

This paper proposes a new approach to increase the energy efficiency of high-speed pick-and-place parallel robots by placing variable stiffness springs in parallel with the motors. An analysis of the energetic losses of the full actuation chain provided a cost function which is used in an optimal problem formulation in order to minimize the power losses. Then, specific trajectories for the parallel robot joints and for the variable stiffness joints were de- nates online, avoiding the pre-computation of the motion planners. [2] Angeles, J., Caro, S., Khan, W., Morozov, A., 2006. Kinetostatic design of an innovative schoenfliesmotion generator. In Proc. of IMechE Part C: Journal of Mechanical Engineering Science, 220 (7), pp. 935-943.
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Figure 1 :

 1 Figure 1: ON THE LEFT, A FIVE-BAR MECHANISM WITH VARIABLE STIFFNESS LINEAR SPRINGS IN PARALLEL ARRANGEMENT WITH THE AC-TUATED LINKS IS SHOWN. ON THE RIGHT THE SAME PARALLEL ROBOT WITH VARIABLE STIFF-NESS TORSIONAL SPRINGS IS PRESENTED (THE GREY CIRCLES DENOTE THE ACTUATED JOINTS).

Figure 2 :

 2 Figure 2: POWER TRANSMISSION SYSTEM OF VARIABLE STIFFNESS SPRINGS IN PARALLEL TO THE MOTORS. q i AND q sj REPRESENT THE PAR-ALLEL ROBOT JOINTS AND VARIABLE STIFFNESS JOINTS COORDINATES, RESPECTIVELY, AND i = 1, ..., n, j = 1, ..., n s .

Figure 4 :

 4 Figure 4: ON THE TOP A VIA-POINT TRAJECTORY FOR THE PARALLEL ROBOT JOINTS WITH M VIA-POINTS. ON THE BOTTOM A VIA-POINT TRAJEC-TORY FOR THE VARIABLE STIFFNESS JOINT MO-TION PLANNER WITH M S VIA-POINTS.

  = [0.25, 0.3], B = [0, 0.4], C = [0.2, 0.5], D = [0, 0.45], E = [0.2, 0.4], F = [0, 0.5], G = [0.2, 0.35].
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 6 Figure 6: MULTIPLE OPTIMAL TRAJECTORIES FOR THE SEQUENCE: A → B → C → D → E → F → G → B → A, WITH TRAVEL TIMES OF 0.2 s BETWEEN DESIRED POINTS.

Figure 10 :

 10 Figure 10: ENERGETIC LOSSES FOR THE FOUR CASES ANALYZED: NOMINAL FIFTH-DEGREE POLYNOMIAL, NOMINAL WITH OPTIMIZED TRA-JECTORY, FIXED STIFFNESS AND VARIABLE STIFFNESS, 0.2 s AS PICK-AND-PLACE TRAVEL TIME BETWEEN DESIRED POINTS.

Figure 11 :

 11 Figure 11: REDUCTION OF ENERGY CONSUMP-TION FOR DIFFERENT PICK-AND-PLACE TRAVEL TIMES BETWEEN DESIRED POINTS WHEN USING VSA.

Figure 12 :

 12 Figure 12: REDUCTION OF ENERGY CONSUMP-TION FOR DIFFERENT NUMBER OF VIA-POINTS WITH 0.2 s AS PICK-AND-PLACE TRAVEL TIME BETWEEN DESIRED POINTS.

Figure 13 :

 13 Figure 13: ENERGY REDUCTION FOR EACH IDEN-TIFIED POWER LOSS.

  Figure 9: INPUT TORQUES FOR THE JOINTS OF VARIABLE STIFFNESS, 0.2 s AS PICK-AND-PLACE TRAVEL TIME BETWEEN DESIRED POINTS.veloped avoiding to have a nonlinear force/displacement relation for the elastic torques. Simulations led to the successful increasing of energy efficiency with multiplepoint trajectories on a five-bar mechanism for four cases: nominal with a classical fifth-degree polynomial, nominal with optimized trajectory, use of fixed stiffness and variable stiffness springs. Results show that the reduction of energy consumption can reach up to 48 % when using VSS. Next work on this subject includes experimental validation of our approach and the design of an alternative optimization strategy in order to tune the spring coordi-
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