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Abstract

Given a partially ordered set S, we define, for a linear extension P of S, a multivariate
polynomial, counting certain reverse partitions on S called P -pedestals. We establish a
remarkable property of this polynomial: it does not depend on the choice of P . For S a
Young diagram, we show that this polynomial generalizes the hook polynomial.

1 Introduction

Let S be a partially ordered set. In this work we associate to S a multivariate polynomial
h. When S is a Young diagram, the principal specialization of h coincides with the hook
polynomial, see section 4.

Our construction of h begins with defining a polynomial hP , where P is an arbitrary linear
extension of S. Then we show that in fact hP does not depend on P . The proof uses the
equality (4) (precise definitions are given in sections 2 and 3 ), which is implied by the bijection
between the set of reverse partitions on S and the product of the set of P -pedestals on S and
the set of Young diagrams with at most |S| rows.

To facilitate the exposition we take for S the set of nodes of a Young diagram λ. In
this situation, linear extensions of S correspond to standard Young tableaux of shape λ, see
Definition 1. Our results and proofs work in the same way for general S (and linear extensions
of S instead of standard Young tableaux).

After this work was completed, we were informed that the coefficients of our polynomial
are values of the “β-function”, in the terminology of Stanley’s book [3], theorem 3.13.1. Our
approach uses very different ideas, in particular, the factorization property (4).

2 Main result

Let λ = (λ1, . . . , λl) ⊢ n, λ1 ≥ · · · ≥ λl > 0, be a partition of n, λ1 + · · ·+ λl = n. We identify
λ with its Young diagram, that is, the set of nodes

α = (i, j) with j = 1, . . . , λi for each i = 1, . . . , l .

A standard Young tableau of shape λ is a bijection Q : λ → {1, . . . , n} such that the function
Q(i, j) increases in i and j. We denote the set of these standard Young tableaux by stλ.

1Also at Lebedev Institute, Moscow, Russia.
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Definition 1 . Let 4 be the minimal transitive partial order on λ, containing (i, j) ≺ (i+1, j)
and (i, j) ≺ (i, j+1) for all possible (i, j). A standard Young tableau of shape λ can be identified

with a linear extension of 4, that is, a linear order, compatible with the partial order 4. We

denote by 4P the linear order associated to a standard tableau P .

Let Z>0 be the set of non-negative integers. A reverse plane partition of shape λ is a function
Q : λ → Z>0, non-decreasing in i and j. It is column-strict if it increases in j. We visualize
reverse plane partitions by placing the number Q(i, j) in the node (i, j) for each (i, j) ∈ λ. We
denote by |Q| the volume of Q, |Q| =

∑

(i,j)∈λ Q(i, j).

Let S̄λ be the set of reverse plane partitions of shape λ, and Sλ ⊂ S̄λ the subset of reverse
column-strict plane partitions of shape λ. Recall that the Schur function sλ is the formal power
series in infinitely many variables x = (x0, x1, x2, ...) , given by

sλ (x) =
∑

Q∈Sλ

∏

α∈λ

xQ(α) .

We need the similarly defined formal power series s̄λ,

s̄λ (x) =
∑

Q∈S̄λ

∏

α∈λ

xQ(α) .

The Schur function sλ (x), unlike our ‘wrong’ Schur function, s̄λ (x) , is symmetric (see, e.g.
[4]).

To define the pedestal polynomial we proceed as follows. Let P,Q ∈ stλ be two standard
Young tableaux of shape λ. We are going to compare the corresponding linear orders 4P and
4Q on the set of the nodes of λ. Let α1 = (1, 1) ≺Q α2 ≺Q · · · ≺Q αn be the list of all the nodes
of λ, enumerated according to the order 4Q. We say that a node αk is a (P,Q)-disagreement
node, if αk+1 ≺P αk (while, of course, αk ≺Q αk+1). We define the reverse plane partition q

P,Q

of shape λ by

q
P,Q

(αk) = ♯ {l : l < k , αl is a (P,Q) -disagreement node} . (1)

Indeed, the function q
P,Q

is non-decreasing with respect to the order 4Q, hence qP,Q
is a reverse

plane partition.
The reverse plane partition q

P,Q
thus defined is called P -pedestal of Q, see [2]. Let λM be

the matrix, whose rows and columns are indexed by the standard tableaux of shape λ, with
the entries

(λM)P,Q :=
∏

α∈λ

xq
P,Q

(α) . (2)

We finally define the polynomial hP (x) by

hP (x) =
∑

Q∈stλ

(λM)P,Q . (3)

The set (as Q runs over stλ) of P -pedestals depends on P . However, the polynomial hP has
the following surprising property.
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Theorem 2 . The function hP (x) does not depend on P from stλ.

Definition 3 . We call the function

hλ (x) = hP (x) ,

where P is any standard Young tableau P of shape λ, the pedestal polynomial.

Our theorem states that the pedestal polynomial is well-defined. For example, h(3,2) (x) =
x5
0 + x4

0x1 + x3
0x

2
1 + x2

0x
3
1 + x2

0x
2
1x2.

3 Proof of Theorem 2

Let Rn be the component of degree n of the ring of formal power series in variables x =
(x0, x1, x2, ...) with integer coefficients. The element u (x) of Rn is a sum,

u (x) =
∑

i1≤i2≤...≤in

ai1i2...inxi1,i2,...,in , xi1,i2,...,in := xi1xi2 ...xin ,

where i1, i2, ..., in are non-negative integers, and the coefficients ai1i2...in are integer. For example,
the functions sλ (x) and s̄λ (x) belong to Rn.

The function s̄(n), corresponding to the one-row partition λ = (n),

s̄(n) (x) =
∑

i1≤i2≤...≤in

xi1,i2,...,in ∈ Rn

will play a special role in our argument.

We define the ∗-product on monomials by

xi1,i2,...,in ∗ xj1,j2,...,jn := xi1+j1,i2+j2,...,in+jn

and extend it by linearity to the ring structure on Rn. The ring (Rn, ∗) is isomorphic to a
subring of the ring C [[y1, ..., yn]] of formal power series in n variables, via the monomorphism
ϕn : Rn → C [[y1, ..., yn]], defined by

ϕn (xi1,i2,...,in) = yi11 ...y
in
n .

In particular, (Rn, ∗) inherits from C [[y1, ..., yn]] the property of having no zero divisors.

Fix a standard Young tableau P ∈ stλ. We will prove now the identity

s̄λ (x) = hP (x) ∗ s̄(n) (x) , (4)

which implies, due to the absence of zero divisors in (Rn, ∗), the assertion of the theorem, since
the first and the last terms in the identity do not depend on P .

The bijective proof of the identity (4) follows from [2]. Relations (46), (48) and (50) of that
paper describe bijections bSt , b

−1
St between the set of reverse plane partitions of shape λ and the

product of the set of P -pedestals and the set of Young diagrams with at most n rows. Let Q be
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a reverse plane partition and bSt (Q) = (q, µ), where q is a P -pedestal and µ a Young diagram.
The construction of bSt (see below) implies that the monomial, corresponding to Q in s̄λ (x) is
the ∗-product of the monomial corresponding to q in hP (x) and the monomial corresponding
to µ in s̄(n) (x), and the proof of (4) follows. A particular case of these bijections was used
earlier by D. Knuth in [1].

The bijections bSt , b
−1
St are defined as follows.

Let Q be a reverse plane partition of shape λ. We define the partition Π (Q) of |Q| by just
listing all the entries of the two-dimensional array of values of Q in the non-increasing order.
Note that Π (Q) has at most n rows.

To every reverse plane partition Q we associate the standard Young tableau Q (Q) ∈ stλ as
follows. Define the linear order 4Q on the nodes of λ by

α′ ≺Q α′′ if Q (α′) < Q (α′′) or if Q (α′) = Q (α′′) and α′ ≺P α′′ .

Then Q (Q) is defined by the relation: 4Q(Q) =4Q . Now the bijection bSt is defined by

bSt (Q) =
(

q
P,Q(Q)

,Π
(

Q − q
P,Q(Q)

))

,

where the reverse plane partition Q − q
P,Q(Q)

is given by

(

Q − q
P,Q(Q)

)

(α) = Q (α) − q
P,Q(Q)

(α) , α ∈ λ .

To construct the inverse bijection, b−1
St , we first associate to every standard Young tableau

Q ∈ stλ and every partition p = (Λ1,Λ2, . . . ,Λn) the reverse plane partition QQ,p of shape λ,

by
QQ,p (i, j) = ΛQ(i,j) .

Then
b−1
St

(

q
P,Q

, p
)

= q
P,Q

+ QQ,p .

The proof is finished. �

4 Discussion

The identity (4) is of independent interest. The principal specialization, xi 7→ xi, turns the
‘wrong’ Schur function s̄λ (x) into the generating function σλ(x) for the number of reverse plane
partitions of shape λ, given by the Mac-Mahon–Stanley formula

σλ(x) =
1

∏

α∈λ (1− xhα)
,

where hα is the hook length of a node α of λ. The term s̄(n) (x) turns into the generating
function of Young diagrams with at most n rows:

σ(n)(x) =
1

(1− x) (1− x2) ... (1− xn)
.
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Finally, the function hλ(x) turns into the generating polynomial πλ (x) of the sequence {pλ,k}
with pλ,k the number of P -pedestals of volume k ≥ 0 (for any P ∈ stλ). We obtain

1
∏

α∈λ (1− xhα)
=

πλ (x)

(1− x) (1− x2) ... (1− xn)
. (5)

It follows from (3) that the function

πλ (x) =
∑

Q∈stλ

x| q
P,Q

| (6)

does not depend on the choice of P while the contribution of an individual standard Young
tableau Q does.

The formula (5) can be found in [4], but there the polynomial πλ (x) is given by any of two
other expressions:

πλ (x) = x−l(λ)
∑

Q∈stλ

xmaj(Q) and πλ (x) = x−l(λ)
∑

Q∈stλ

xcomaj(Q) ,

where l (λ) =
∑

(i,j)∈λ(i − 1). It is interesting to note that in general neither of the two

functions on stλ, maj(·)− l(λ) and comaj(·)− l(λ), nor their partners for the transposed to λ

Young diagram, belong to our family
{

vol
(

q
P,∗

)

: P ∈ stλ
}

. For example, take λ = (3, 2, 1).
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