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Plane partitions and their pedestal polynomials

Given a partially ordered set S, we define, for a linear extension P of S, a multivariate polynomial, counting certain reverse partitions on S called P -pedestals. We establish a remarkable property of this polynomial: it does not depend on the choice of P . For S a Young diagram, we show that this polynomial generalizes the hook polynomial.

Introduction

Let S be a partially ordered set. In this work we associate to S a multivariate polynomial h. When S is a Young diagram, the principal specialization of h coincides with the hook polynomial, see section 4.

Our construction of h begins with defining a polynomial h P , where P is an arbitrary linear extension of S. Then we show that in fact h P does not depend on P . The proof uses the equality (4) (precise definitions are given in sections 2 and 3 ), which is implied by the bijection between the set of reverse partitions on S and the product of the set of P -pedestals on S and the set of Young diagrams with at most |S| rows.

To facilitate the exposition we take for S the set of nodes of a Young diagram λ. In this situation, linear extensions of S correspond to standard Young tableaux of shape λ, see Definition 1. Our results and proofs work in the same way for general S (and linear extensions of S instead of standard Young tableaux).

After this work was completed, we were informed that the coefficients of our polynomial are values of the "β-function", in the terminology of Stanley's book [START_REF] Stanley | Enumerative combinatorics[END_REF], theorem 3.13.1. Our approach uses very different ideas, in particular, the factorization property (4).

Main result

Let λ = (λ 1 , . . . , λ l ) ⊢ n, λ 1 ≥ • • • ≥ λ l > 0, be a partition of n, λ 1 + • • • + λ l = n.
We identify λ with its Young diagram, that is, the set of nodes α = (i, j) with j = 1, . . . , λ i for each i = 1, . . . , l .

A standard Young tableau of shape λ is a bijection Q : λ → {1, . . . , n} such that the function Q(i, j) increases in i and j. We denote the set of these standard Young tableaux by st λ .

Definition 1 . Let be the minimal transitive partial order on λ, containing (i, j) ≺ (i + 1, j) and (i, j) ≺ (i, j +1) for all possible (i, j). A standard Young tableau of shape λ can be identified with a linear extension of , that is, a linear order, compatible with the partial order . We denote by P the linear order associated to a standard tableau P .

Let Z 0 be the set of non-negative integers. A reverse plane partition of shape λ is a function Q : λ → Z 0 , non-decreasing in i and j. It is column-strict if it increases in j. We visualize reverse plane partitions by placing the number Q(i, j) in the node (i, j) for each (i, j) ∈ λ. We denote by |Q| the volume of Q, |Q| = (i,j)∈λ Q(i, j).

Let Sλ be the set of reverse plane partitions of shape λ, and S λ ⊂ Sλ the subset of reverse column-strict plane partitions of shape λ. Recall that the Schur function s λ is the formal power series in infinitely many variables x = (x 0 , x 1 , x 2 , ...) , given by

s λ (x) = Q∈S λ α∈λ x Q(α) .
We need the similarly defined formal power series sλ ,

sλ (x) = Q∈ Sλ α∈λ x Q(α) .
The Schur function s λ (x), unlike our 'wrong' Schur function, sλ (x) , is symmetric (see, e.g. [4]).

To define the pedestal polynomial we proceed as follows. Let P, Q ∈ st λ be two standard Young tableaux of shape λ. We are going to compare the corresponding linear orders P and Q on the set of the nodes of λ. Let

α 1 = (1, 1) ≺ Q α 2 ≺ Q • • • ≺ Q α n
be the list of all the nodes of λ, enumerated according to the order Q . We say that a node α k is a (P, Q)-disagreement node, if α k+1 ≺ P α k (while, of course, α k ≺ Q α k+1 ). We define the reverse plane partition q P,Q of shape λ by

q P,Q (α k ) = ♯ {l : l < k , α l is a (P, Q) -disagreement node} . (1) 
Indeed, the function q P,Q is non-decreasing with respect to the order Q , hence q P,Q is a reverse plane partition. The reverse plane partition q P,Q thus defined is called P -pedestal of Q, see [START_REF] Shlosman | The Wulff construction in statistical mechanics and in combinatorics[END_REF]. Let λ M be the matrix, whose rows and columns are indexed by the standard tableaux of shape λ, with the entries

( λ M) P,Q := α∈λ x q P,Q (α) . (2) 
We finally define the polynomial h P (x) by

h P (x) = Q∈st λ ( λ M) P,Q . (3) 
The set (as Q runs over st λ ) of P -pedestals depends on P . However, the polynomial h P has the following surprising property.

Theorem 2 . The function h P (x) does not depend on P from st λ .

Definition 3 . We call the function

h λ (x) = h P (x) ,
where P is any standard Young tableau P of shape λ, the pedestal polynomial.

Our theorem states that the pedestal polynomial is well-defined. For example,

h (3,2) (x) = x 5 0 + x 4 0 x 1 + x 3 0 x 2 1 + x 2 0 x 3 1 + x 2 0 x 2 1 x 2 .
3 Proof of Theorem 2

Let R n be the component of degree n of the ring of formal power series in variables x = (x 0 , x 1 , x 2 , ...) with integer coefficients. The element u (x) of R n is a sum,

u (x) = i 1 ≤i 2 ≤...≤in a i 1 i 2 ...in x i 1 ,i 2 ,...,in , x i 1 ,i 2 ,...,in := x i 1 x i 2 ...x in ,
where i 1 , i 2 , ..., i n are non-negative integers, and the coefficients a i 1 i 2 ...in are integer. For example, the functions s λ (x) and sλ (x) belong to R n . The function s(n) , corresponding to the one-row partition λ = (n),

s(n) (x) = i 1 ≤i 2 ≤...≤in x i 1 ,i 2 ,...,in ∈ R n
will play a special role in our argument. We define the * -product on monomials by 

x i 1 ,i 2 ,...,
ϕ n (x i 1 ,i 2 ,...,in ) = y i 1 1 ...y in n .
In particular, (R n , * ) inherits from C [[y 1 , ..., y n ]] the property of having no zero divisors. Fix a standard Young tableau P ∈ st λ . We will prove now the identity

sλ (x) = h P (x) * s(n) (x) , (4) 
which implies, due to the absence of zero divisors in (R n , * ), the assertion of the theorem, since the first and the last terms in the identity do not depend on P . The bijective proof of the identity (4) follows from [START_REF] Shlosman | The Wulff construction in statistical mechanics and in combinatorics[END_REF]. Relations (46), ( 48) and (50) of that paper describe bijections b St , b -1

St between the set of reverse plane partitions of shape λ and the product of the set of P -pedestals and the set of Young diagrams with at most n rows. Let Q be a reverse plane partition and b St (Q) = (q, µ), where q is a P -pedestal and µ a Young diagram. The construction of b St (see below) implies that the monomial, corresponding to Q in sλ (x) is the * -product of the monomial corresponding to q in h P (x) and the monomial corresponding to µ in s(n) (x), and the proof of (4) follows. A particular case of these bijections was used earlier by D. Knuth in [START_REF] Knuth | A note on solid partitions[END_REF].

The bijections b St , b -1 St are defined as follows. Let Q be a reverse plane partition of shape λ. We define the partition Π (Q) of |Q| by just listing all the entries of the two-dimensional array of values of Q in the non-increasing order. Note that Π (Q) has at most n rows.

To every reverse plane partition Q we associate the standard Young tableau Q (Q) ∈ st λ as follows. Define the linear order Q on the nodes of λ by

α ′ ≺ Q α ′′ if Q (α ′ ) < Q (α ′′ ) or if Q (α ′ ) = Q (α ′′ ) and α ′ ≺ P α ′′ . Then Q (Q) is defined by the relation: Q(Q) = Q . Now the bijection b St is defined by b St (Q) = q P,Q(Q) , Π Q -q P,Q(Q) ,
where the reverse plane partition Qq P,Q(Q) is given by

Q -q P,Q(Q) (α) = Q (α) -q P,Q(Q) (α) , α ∈ λ .
To construct the inverse bijection, b -1 St , we first associate to every standard Young tableau Q ∈ st λ and every partition p = (Λ 1 , Λ 2 , . . . , Λ n ) the reverse plane partition Q Q,p of shape λ, by Q Q,p (i, j) = Λ Q(i,j) .

Then b -1

St q P,Q , p = q P,Q + Q Q,p . The proof is finished.

Discussion

The identity (4) is of independent interest. The principal specialization, x i → x i , turns the 'wrong' Schur function sλ (x) into the generating function σ λ (x) for the number of reverse plane partitions of shape λ, given by the Mac-Mahon-Stanley formula

σ λ (x) = 1 α∈λ (1 -x hα )
, where h α is the hook length of a node α of λ. The term s(n) (x) turns into the generating function of Young diagrams with at most n rows:

σ (n) (x) = 1 (1 -x) (1 -x 2 ) ... (1 -x n ) .
Finally, the function h λ (x) turns into the generating polynomial π λ (x) of the sequence {p λ,k } with p λ,k the number of P -pedestals of volume k ≥ 0 (for any P ∈ st λ ). We obtain

1 α∈λ (1 -x hα ) = π λ (x) (1 -x) (1 -x 2 ) ... (1 -x n ) . (5) 
It follows from (3) that the function

π λ (x) = Q∈st λ x | q P,Q | (6)
does not depend on the choice of P while the contribution of an individual standard Young tableau Q does.

The formula (5) can be found in [4], but there the polynomial π λ (x) is given by any of two other expressions:

π λ (x) = x -l(λ) Q∈st λ
x maj(Q) and π λ (x) = x -l(λ)

Q∈st λ x comaj(Q) ,
where l (λ) = (i,j)∈λ (i -1). It is interesting to note that in general neither of the two functions on st λ , maj(•)l(λ) and comaj(•)l(λ), nor their partners for the transposed to λ Young diagram, belong to our family vol q P, * : P ∈ st λ . For example, take λ = (3, 2, 1).
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