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Poisson statistics at the edge of Gaussian β-ensemble
at high temperature

Cambyse Pakzad

Abstract

We study the asymptotic edge statistics of the Gaussian β-ensemble, a collection
of n particles, as the inverse temperature β tends to zero as n tends to infinity. In a
certain decay regime of β, the associated extreme point process is proved to converge
in distribution to a Poisson point process as n→ +∞. We also extend a well known
result on Poisson limit for Gaussian extremes by showing the existence of an edge
regime that we did not find in the literature.
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1 Introduction

The study of spectral statistics in Random Matrix Theory has gathered a consequent vol-
ume of the research attention during the last decades. For several reasons, theses statistics
are considered in the asymptotic regime : as the size of the matrix (and hence the number
of eigenvalues) goes to infinity. One can inquiry about the behaviour of the whole spectrum
(such as linear statistics), this is called global statistics (or regime). The main object to
study in this context is the empirical spectral measure and the goal is to obtain a limiting
distribution and give fluctuations around this limit. On the other hand, one can seek for
more subtle, precise informations, like the spacing between two consecutive eigenvalues, or
the nature of the largest eigenvalues; more generally, the joint distribution of eigenvalues
in an interval of length o(1). Such statistics are called local. In this particular regime, we
differentiate between the bulk and the edge statistics. The bulk regime focuses on intervals
inside the support of the limiting spectral measure while the edge regime at the bound-
ary. In this article, we are mainly interested in the asymptotic local edge regime, which
corresponds to the largest eigenvalues.

Among random matrix models, two matrix ensembles are distinguished : Wigner matri-
ces and invariant ensembles. The first one indicates matrices with independent components
while the second gathers matrices whose law is invariant by symmetry group action. Their
intersection is known as the GOE, GUE and GSE. Their origin trace back to the pioneer
Wigner. He wanted to model complex highly correlated systems with (or lacking) different
kind of symmetries (see [12, 10]) and considered Hamiltonians as large random matrices.
The name stems from the invariance under certain group actions. The joint density of the
eigenvalues can be derived (see [2]) and is proportional to :

P (λ1, ..., λn) ∝ exp

(
−1

4

n∑

i=1

λ2
i

)
|∆n(λ)|β

n∏

i=1

dλi.

The Vandermonde determinant is noted |∆n(λ)|β :=
n∏

i<j

|λj − λi|β, and β ∈ {1, 2, 4}. The

case β = 1 is the GOE which models Hamiltonians with time-reversal symmetry, β = 2
is the GUE which models Hamiltonians lacking time-reversal symmetry and β = 4 is the
GSE which models Hamiltonians with time-reversal symmetry but no rotational symmetry
(see [12]). Let us mention that when β = 2, the correlation functions, which will be our
prime object, describe a determinantal process (see Gaudin-Mehta formula). The idea that
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β taking different values gives rise to different models is known as the Dyson’s Threefold-
Way [8].

We can extend the model in two directions, allowing other values of β and other po-
tentials, by writing for β > 0 :

Pn,β,V (dλ1, ..., dλn) :=
1

Zn,β,V
exp

(
−1

2

n∑

i=1

V (λi)

)
|∆n(λ)|β

n∏

i=1

dλi.

We refer this as the general β-ensemble. If the potential is quadratic V (x) :=
1

2
x2, it

reduces to the Gaussian β-ensemble which is the object of our work.

In this context, Dumitriu and Edelmann [5] made a major breakthrough by construct-
ing a matrix model for such β-ensemble with any β > 0, hence extending the Dyson’s
Threefold-Way β ∈ {1, 2, 4}. It states that the Gaussian β-ensemble (viewed as a density
probability function) is exactly the joint law of the spectrum of a certain matrix. The latter
is obtained from successive Househölder transformations and has a symmetric tridiagonal
form. This representation of the Gaussian β-ensemble by a matrix model [5] led the way
for many progresses [9, 15, 13, 16] on the understanding of the asymptotic local eigenvalue
statistics for general β > 0. In particular, the authors of [9], leaning on the symmetric
tridiagonal structure of the Gaussian β-ensemble matrix model, gave multiple indications
on how renormalized random matrices can be viewed as finite difference approximations
to stochastic differential operators. This conjecture was investigated in [13] where the
properly renormalized largest eigenvalues are shown to converge jointly in distribution to
the low-lying eigenvalues of a one-dimensional Schrödinger operator, namely the stochastic

Airy operator SAOβ := − d2

dx2
+ x+

2√
β
b′x, : for k ≥ 1 fixed, denoting λβ1 ≥ λβ2 ≥ ... ≥ λβk

the k largest eigenvalues of Hβ
n and Λβ

0 ≤ Λβ
1 ≤ ... ≤ Λβ

k−1 the k smallest eigenvalues of
SAOβ :

(nβ)
2
3

(
2− λβi√

nβ

)

1≤i≤k

law−−→
n∞

(
Λβ
i

)
0≤i≤k−1

.

Since the minimal eigenvalue Λ0 of SAOβ has distribution minus TWβ, this work thereby
enlarges Tracy-Widom law to all β > 0, that is :

(nβ)
2
3

(
λβi√
nβ
− 2

)
law−−→
n∞

TWβ.

The Tracy-Widom law (with parameter β) is qualified as universal, in the sense that such
local statistics hold for various matrix models (but also for objects outside of the random
matrix field) and arises from highly correlated systems (such as modeled by some random
matrices).
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For finite dimension n, one can choose β = 0 in the joint law P of the Gaussian β-
ensemble, which displays a lack of repulsion force as the Vandermonde factor vanishes,
hence the correlation decreases, which means that randomness increases. In a Gibbs inter-
pretation (which besides makes us refer to Zn,β,V and its counterparts as partition func-
tions), it comes down to consider an infinite temperature in such log-gas (terminology due
to Dyson [8]). Readily, the joint density for β = 0 is the density of n i.i.d. Gaussian random
variables whose maximum is known [14] to converge weakly, as n → +∞, when properly
renormalized, to the Gumbel distribution, one of the three universal distributions classes
of the classical Extreme Value Theory. One deduces (see [4, Th 7.1]) Poisson limit for the
Gaussian (ie: when β = 0) extreme point process as the number n of particles grows to
infinity. This qualitative statistic is special to us since it is essentially our purpose in this
article. It also carries more information and implies the limiting Gumbel distribution.

As the Gumbel law governs the typical fluctuations of the maximum of independent
Gaussian variables, which corresponds to the case β = 0, and the Tracy-Widom law stems
from complicated (highly dependent) systems such as the largest particles in the case
β > 0 fixed and n→ +∞, it is thus natural to ask for an interpolation between these two
phases. The authors of [1] answer this question by proving that the properly renormalized
Tracy-Widomβ converges in distribution to the Gumbel law as β → 0. They use the char-
acterization of the distribution of the bottom eigenvalues of the stochastic Airy operator
in terms of the explosion times process of its associated Riccati diffusion (see [13]). Re-
garding to our motivation, they could unfortunately not prove Poissonian statistics for the

minimal eigenvalues
(

Λβ
i

)
, distributed according to the Tracy-Widomβ law, in the limit

β → 0. This procedure would exactly reverse the order of the limits β → 0, n → +∞
considered previously. Nonetheless, the authors investigated the weak convergence of the
top eigenvalues in the double limit β := βn −−→

n∞
0 by heuristic and numeric arguments.

They alluded to the idea that one can achieve Poissonian statistics for β-ensemble using
the same techniques as [13, 9], at high temperature within the regime nβ −−→

n∞
+∞. Con-

cerning the bulk statistics, such work has been accomplished in the regime β ∼ n−1, that

is Poisson convergence of the point process
n∑

i=1

δn(λi−E) with E ∈ (−2, 2) an energy level

in the Wigner sea (see [7, 6]).

The goal of this paper is to understand the behavior of the largest particles of the
Gaussian β-ensemble as the inverse temperature βn converges to 0 as n goes to infinity. To
this purpose, we study the limiting process of the extremes of the Gaussian β-ensemble.
Since β can decay with any arbitrary rate, we restrict ourselves to the regime nβ −−→

n∞
0.

More precisely, our main result gives the convergence as n→ +∞ of the extreme process
toward a Poisson point process on R, which can be inhomogeneous or not, according to
the scaling sequences. Roughly speaking, the rescaled extreme eigenvalues approximate a
Poisson point process which means that adjacent top particles are statistically independent.
Our work also applies when β is set to 0 and de facto includes asymptotics (n → +∞)
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of extremes of Gaussian variables (β = 0). While the outcomes are identical for both β
cases, we want to stress out that the models are intrinsically distinct. We investigate this
question in the subsequent Remark 1.2. Doing such simultaneous double scaling limit, we
fulfill the corresponding task addressed by Allez and Dumaz in [1] within another regime
mentioned in their work and by other means.

For u = un and v = vn two sequences, we adopt the notation u� v ⇐⇒ u

v
−−→
n∞

0 and

state our main result :

Theorem 1.1. Let β = βn be such that 0 ≤ β � 1

n log(n)
. Let (λ1, ..., λn) a family of

random variables with joint law Pn,β :

Pn,β(dλ1, ..., dλn) :=
1

Zn,β
exp

(
−1

2

n∑

i=1

λ2
i

)
|∆n(λ)|β

n∏

i=1

dλi,

with normalization constant Zn,β and Vandermonde determinant |∆n(λ)|β :=
n∏

i<j

|λj − λi|β.

Let (δn) a positive sequence and the modified Gaussian scaling :

bn :=
√

2 log(n)− 1

2

log log(n) + 2 log(δn) + log(4π)√
2 log(n)

, an := δn
√

2 log(n).

• Assume δn −−→
n∞

δ > 0. Then the random point process
n∑

i=1

δan(λi−bn) converges in

distribution to an inhomogeneous Poisson point process with intensity e−
x
δ dx.

• Assume δn � 1 such that log(δn)�
√

log(n). Then the random point process
n∑

i=1

δan(λi−bn)

converges in distribution to a homogeneous Poisson point process with intensity 1.

• When β = 0, the condition on (δn) is weakened to : log(δn)� log(n).

Let us first discuss the assumptions and conclusions of the theorem. We prove conver-
gence of extreme point processes

Pn :=
n∑

i=1

δan(λi−bn)

toward a Poisson point process on R with intensity dµ as n → +∞ for suitably chosen
scaling sequences (an), (bn) and intensity µ. This convergence occurs regardless to β > 0
or β = 0 although this gives rise to two different models. The scaling sequences are exactly
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the same in both cases and are derived from the classical Gaussian scaling (see [14]), except
that we increase the scale an by a multiplicative term δn and lower down the center bn by
an additive term involving δn. We then observe two regimes : first, when

δn −−→
n∞

δ > 0,

the limiting process is an inhomogeneous Poisson process with intensity e−
x
δ dx (which is

a classical result in the purely Gaussian setting, when β = 0). When δn � 1, even in the
purely Gaussian setting (β = 0), we obtain a result that we did not find in the literature
[4, 11, 14] : in this case, even though the interval considered (centered at bn and with
width of order an) goes to +∞, the limiting process is a homogeneous Poisson process. An
illustration of these phenomena is given in Figure 1 below.

Remark 1.2. As previously mentionned, the Poissonian description of the extreme process,
along with the normalizing constants (an), (bn) which display no dependence on β, is valid
for both cases βn = 0 and βn > 0. The question of how close both models are is then raised.
Therefore, we need to measure the impact of the decay rate of βn upon the model. In this
direction, one can compare the normalization constants Zn,β between different βn regimes.
This idea emerges from equilibrium statistical mechanics where the Zn,β is seen as the
partition function in the Gibbs interpretation. The computations show a transition : when
β � n−2, both models are equivalent. As soon as β � n−2, the repulsion is significant.
We state this result in the forthcoming Lemma 1.3 whose proof is postponed to Section
2.2. It indicates that our main theorem gains value when compelling

n−2 � β � (n log(n))−1 ,

which corresponds to the regime where both models are truly distinct. The critical role of
n2 in this description is consistent with the fact that one can write

log |∆n(λ)|β = exp

(
β

n∑

i<j

log |λj − λi|
)

with the sum having n2 (1 + o(1)) terms.

Lemma 1.3. Let β ≥ 0 and β′ > 0.

• Assume 0 ≤ β � β′ � 1

n2
, then Zn,β′ ∼ Zn,β.

• Assume 0 ≤ β � β′ � 1

n
and β′ � 1

n2
, then Zn,β′ � Zn,β.

The convergence toward a Poisson process for the extreme process is a much stronger
information than the limiting distribution of the maximum. Indeed, one can deduce the
limiting distribution as follows, but we postpone the proof to Section 2. Also, one can
derive the limiting distribution for the kth largest eigenvalue for fixed k ≥ 1.
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R

√
2 log(n)− bn � 1

√
2 log(n)bn when δn � 1 bn when δn → δ

zoom by δn
√
2 log(n)

n

∞
× × × × × × × ×××××× × ×

x 7→ 1 x 7→ exp
(
−xδ
)

Figure 1: The centering at bn for both cases δn → δ > 0 and δn → ∞ are represented on the
main line. We zoom in around each bn by a factor δn

√
2 log(n) and let n go to ∞. For δn � 1,

the limiting object is a Poisson point process with intensity 1. For δn −−→
n∞

δ, it leads to a Poisson

point process with intensity e−
x
δ .

Corollary 1.4. Let β = βn be such that 0 ≤ β � 1

n log(n)
. Let (λ1, ..., λn) with joint law

Pn,β. Let (an), (bn) from Theorem 1.1 for δ = 1. Then,

Pn,β (an (λmax − bn) ≤ x) −−→
n∞

exp (− exp (−x)) .

Remark 1.5. This result shows that we recover the Gumbel law as limiting distribution
of the largest particle from the Poisson limit, so that we retrieve the result of [1] cor-
responding to our setup. Besides, in view of (1) in the next section, we know that the
largest eigenvalue is unbounded when n goes to infinity since the Gaussian distribution has
unbounded support. In addition to this observation, our main result provides the explicit
order and Gumbel fluctuations for the maximum eigenvalue.

The paper is organized as follows : first, we introduce and comment our model. To
derive Poisson statistics, our method is the study of the correlation functions associated
to the extreme point process. We refer to this as our main tool and explain how it is
exploited. Since the computations involve various estimates and quantities, we exhibit
them as independent claims outside the main proof. The other sections are devoted to the
precise proof of our result. We treat the inhomogeneous case first as it plainly describes
the method used. It naturally includes the case β = 0 as the computations are similar. In
a second time, we transpose our work to the homogeneous case and give a peculiar proof of
the statement when β = 0. This is done by other means and displays a wider asymptotic
regime for the perturbation (δn), so we present it as an independent result.

Remark 1.6. We consider two cases : δn = O(1) and δn � 1. For the second case,

the assumption required is (δn) such that log(δn)�
√

log(n). Nonetheless, most of our
results remain valid under both regimes and with a weaker growth restriction. For this
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reason, in this text, the reader will encounter a less restrictive hypothesis on (δn), namely

log(δn)� log(n). It ensures that bn is equivalent to
√

2 log(n) for any such (δn) as n goes
to infinity.

Acknowledgements : I would like to express my gratitude to my supervisor Florent
Benaych-Georges for his guidance throughout this work, his careful reading of the paper
and the numerous advices he brought to me.

2 General model of the Gaussian β-ensemble for β � 1

and α > 0

For any α > 0, β ≥ 0, and n ≥ 1, we define :

Zn,α,β :=

∫

Rn
exp

(
−α

2

n∑

i=1

λ2
i

)
|∆n(λ)|β

n∏

i=1

dλi

with the Vandermonde determinant factor :

|∆n(λ)|β :=
n∏

i<j

|xi − xj|β ,

and consider an exchangeable family (λ1, ..., λn) of random variables with joint law

Pn,α,β(dλ1, ..., dλn) :=
1

Zn,α,β
exp

(
−α

2

n∑

i=1

λ2
i

)
|∆n(λ)|β

n∏

i=1

dλi.

When α = 1, we adopt the following notation :

Zn,β :=

∫

Rn
exp

(
−1

2

n∑

i=1

λ2
i

)
|∆n(λ)|β

n∏

i=1

dλi

Pn,β(dλ1, ..., dλn) :=
1

Zn,β
exp

(
−1

2

n∑

i=1

λ2
i

)
|∆n(λ)|β

n∏

i=1

dλi.

In the sequel, the parameter α is always assumed to be 1 except in some specific cases which
will be mentionned. The reason of this choice shall be clear after incoming explanations.

Remark 2.1. For β = 0, we retrieve the density of n i.i.d. Gaussian random variables,
which form a system of uncorrelated particles. The partition function in this case is just
Zn,β=0 = (2π)

n
2 . Allowing β > 0, the Vandermonde factor vanishes when λi = λj and

acts as a repulsion (long range) force between the particles, which thereby constitutes a
correlated system. The smaller β is, the weaker repulsion operates.
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From the crucial matrix model [5], we endow the Gaussian β-ensemble with a matrix

structure. Recall that χ(k) =

√
Γ

(
k

2
,
1

2

)
where a Γ(a, b)-distributed random variable has

density
baxa−1e−bx

Γ(a)
on (0,+∞). We state the corresponding result for our setup :

Theorem 2.2. Let H := Hn,α,β the tridiagonal symmetric random matrix defined as :

1√
α




g1
1√
2
Xn−1

1√
2
Xn−1 g2

1√
2
Xn−2

1√
2
Xn−2 g3

1√
2
Xn−3

. . . . . . . . .
. . . . . . 1√

2
X1

1√
2
X1 gn




,

with (gi)1≤i≤n ∼ N (0, 1) i.i.d. sequence, (Xi)1≤i≤n−1 an independent sequence such that
Xi ∼ χ(iβ) and independent overall entries up to symmetry.

For any α > 0, β ≥ 0, the joint law of the eigenvalues (λ1, ..., λn) of H is Pn,α,β.

It makes the connection between the particles of law Pn,α,β and the spectrum of H.

By trace invariance, we can easily access to further information : when α ∼ 1 +
nβ

2
, the

empirical spectral distribution Ln :=
1

n

n∑

i=1

δ{λi} of Hn,α,β has asymptotic first moment 0

and second moment 1. In our setting β � 1

n
, it reduces to consider α ∼ 1.

In [3], with the choice α ∼ 1 +
nβ

2
, the authors proved under the assumption of si-

multaneous limit nβn −→ 2γ as n → +∞, a continuous asymptotic interpolation for the
empirical spectral measure between the Wigner semicircle law (γ → +∞) and the Gaus-
sian distribution (γ = 0). The latter case is of our interest and particularly to the setting

β � 1

n
, they proved that :

1

n

n∑

i=1

f(λi)
P−−→
n∞

∫

R

1√
2π
f(x)e−

x2

2 dx, ∀f ∈ Cb(R). (1)

It also justifies the choice α = 1 in our model for β � 1

n
.

We now give the proof of Corollary 1.4 mentionned earlier.
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Proof of Corollary 1.4. Let ξn :=
n∑

i=1

δan(λi−bn) the extreme process associated to (λi)1≤i≤n

and ξ a Poisson point process with intensity e−x. By Theorem 1.1, the process ξn converges
weakly to ξ and hence,

Pn,β (an (λmax − bn) ≤ x) = Pn,β (ξn ([x,+∞[) = 0) −−→
n∞

P (ξ ([x,+∞[) = 0) .

The number of points of a Poisson process with intensity λ in an interval (a, b) is a Poisson

distributed random variable with mean

∫ b

a

λ(t)dt. It follows that :

P (ξ ([x,+∞[) = 0) = P
(
P
(∫ +∞

x

e−tdt

)
= 0

)
= exp (− exp (−x)) .

2.1 Main tool

The theorem we intend to prove will stem from the following result, which thereby makes
it the cornerstone of our demonstration. It ensures that under pointwise convergence of
the correlation functions and some uniform bound on it, the initial point process converges
to a Poisson process.

Lemma 2.3. Let X be a locally compact Polish space and µ a Radon measure on X.
Let (λ1, ..., λn) be an exchangeable random vector taking values in X with density ρn with
respect to µ⊗n. For 1 ≤ k ≤ n, we define the k-th correlation function on Xk :

Rn
k(x1, ..., xk) :=

n!

(n− k)!

∫

(xk+1,...,xn)∈Xn−k
ρn(x1, ..., xn)dµ⊗(n−k)(xk+1, ..., xn).

Suppose there exists θ ≥ 0 independent of n such that :

• For k ≥ 1, on Xk, we have the pointwise convergence :

Rn
k(x1, ..., xn) −−→

n∞
θk.

• For each compact K ⊂ X, there exists θK such that for all n, k, on Kk, we have :

1{k≤n}R
n
k(x1, ..., xk) ≤ θkK .

Then, the point process Pn :=
n∑

i=1

δλi converges in distribution to a Poisson point

process with intensity θdµ as n→ +∞.
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The proof can be found in [3, Prop.5.6]. We announce how we use our main tool.

Remark 2.4. We consider the point process Pn =
n∑

i=1

δan(λi−bn) with (λi)i≤n ∼ Pn,α,β,

β := βn �
1

n log(n)
and α = 1.

• For δn = δ + o(1), we will prove Poisson convergence according to the lemma with
µ = e−

x
δ dx and (λ1, ..., λn) with law

ρndµ
⊗n (λ1, ..., λn) = e−

α
2

∑n
i=1 λ

2
i |∆n(λ)|β e 1

δ

∑n
i=1 λi

n∏

i=1

dλi.

• For δn � 1, ρn is just Pn,α,β and the intensity is the Lebesgue measure µ = dλ.

2.2 Partition functions

In this section, we list some identities, bounds and asymptotics involving partition fonc-
tions. They will be used from time to time in the sequel of the text.

First, we give the main formula for the partition functions. From this, we will be able
to compute several asymptotics of partition functions ratio.

Lemma 2.5. For any α, β > 0 and n ≥ 1, the following identity holds :

Zn,α,β = (2π)
n
2 (n!)α−β

n(n−1)
4
−n

2

n−1∏

i=0

Γ
(
(i+ 1) β

2

)

Γ
(
β
2

) .

If β ≥ 0, one has also :

Zn,α,β = (2π)
n
2α−β

n(n−1)
4
−n

2

n∏

i=1

Γ
(
1 + iβ

2

)

Γ
(
1 + β

2

) .

Proof. Let β > 0. By the Selberg integral theorem in [2], we have :
∫

Rn
|∆k(x)|β e− 1

2

∑n
i=1 x

2
i dx1...dxn = (n!)(2π)

n
2

n−1∏

i=0

Γ
(
(i+ 1) β

2

)

Γ
(
β
2

) .

By the change of variable xi = yi
√
α, we get the fundamental identity on partition functions

Zn,α,β = (2π)
n
2 (n!)α−β

n(n−1)
4
−n

2

n−1∏

i=0

Γ
(
(i+ 1) β

2

)

Γ
(
β
2

)

= (2π)
n
2α−β

n(n−1)
4
−n

2

n∏

i=1

Γ
(
1 + iβ

2

)

Γ
(
1 + β

2

) .

The case β = 0 is easily treated.
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We are now ready to prove several results needed later.

Lemma 2.6. Assume nβ � 1. Then, for k fixed, α > 0 and β ≥ 0,

Zn−k,α,β
Zn,α,β

= (1 + o(1)) (2π)−
k
2 α

k
2 .

Proof. For u� 1, recall the equivalence of the Gamma function near the origin :

Γ(u) =
1

u
(1 + o(1))� 1.

By Lemma 2.5, we compute the ratio for β > 0 :

Zn−k,α,β
Zn,α,β

= (2π)−
k
2

(n− k)!

n!
α
k
2

+β
4

(2nk−k(k+1))

n−1∏

i=n−k

Γ
(
β
2

)

Γ
(
(i+ 1) β

2

)

= (1 + o(1)) (2π)−
k
2 n−kα

k
2

n−1∏

i=n−k

Γ
(
β
2

)

Γ
(
(i+ 1) β

2

)

= (1 + o(1)) (2π)−
k
2 n−kα

k
2

(
β

2

)−k n−1∏

i=n−k

1

Γ
(
(i+ 1) β

2

)

= (1 + o(1)) (2π)−
k
2 n−kα

k
2

(
β

2

)−k (
nβ

2

)k

= (1 + o(1)) (2π)−
k
2 α

k
2 .

If β = 0, the identity claimed is readily computed from the main formula on partition
functions.

Lemma 2.7. Let any (δn) positive real sequence such that log(δn)� log(n). Let β ∈ (0, 2),

α > 0 and n ≥ 2 such that αb2
n −

β

4
> 0, then :

Zn−1,αb2n−
β
4
,β

Zn,β
≤ 1√

2π

(√
αbn
)−β (n−1)(n−2)

2
−n+1

.

Proof. From the identity :

Zn,α,β = (2π)
n
2α−β

n(n−1)
4
−n

2

n∏

i=1

Γ
(
1 + iβ

2

)

Γ
(
1 + β

2

) ,

we have :

Zn−1,αb2n−
β
4
,β = (2π)

n−1
2

(
αb2

n −
β

4

)−β (n−1)(n−2)
4

−n−1
2

n−1∏

i=1

Γ
(
1 + iβ

2

)

Γ
(
1 + β

2

)

12



and we can compute the ratio :

Zn−1,αb2n−
β
4
,β

Zn,β
=

(2π)
n−1
2

(
αb2

n − β
4

)−β (n−1)(n−2)
4

−n−1
2
∏n−1

i=1

Γ(1+ iβ
2 )

Γ(1+β
2 )

(2π)
n
2

∏n
i=1

Γ(1+ iβ
2 )

Γ(1+β
2 )

=
1√
2π

(
αb2

n −
β

4

)−β (n−1)(n−2)
4

−n−1
2 Γ

(
1 + β

2

)

Γ
(
1 + nβ

2

)

=
1√
2π

(√
αbn
)−β (n−1)(n−2)

2
−n+1

(
1− β

4αb2
n

)−β (n−1)(n−2)
4

−n−1
2 Γ

(
1 + β

2

)

Γ
(
1 + nβ

2

) .

We apply the following inequality :

1

1− x ≤ 4x, x ∈ [0,
1

2
],

with x =
β

4αb2
n

≤ 1

2
⇐⇒ β

2
≤ αb2

n (which is obvious for β � 1). Thus,

Zn−1,b2n−
β
4
,β

Zn,β
≤
(

1

4

)β2(n−1)(n−2)

16αb2n
+
β(n−1)

8αb2n Γ
(
1 + β

2

)
√

2πΓ
(
1 + nβ

2

)
(√

αbn
)−β (n−1)(n−2)

2
−n+1

≤ Γ
(
1 + β

2

)
√

2πΓ
(
1 + nβ

2

)
(√

αbn
)−β (n−1)(n−2)

2
−n+1

.

Gamma function has local minimum at ∼ 0.8 with value ≈ 1.44, it follows that for β � 1,

Γ
(
1 + β

2

)
√

2πΓ
(
1 + nβ

2

) ≤ Γ
(
1 + β

2

)
√

2π
≤ Γ (2)√

2π
=

1√
2π
.

Lemma 2.8. Let any (δn) positive real sequence such that
log(δn)

log(n)
� 1. Assume β � 1

n
.

Fix α > 0 and k ≤ n. Then,

Zn−k,α− kβ

4b2n
,β

Zn−k,α,β
= 1 + o(1).

Proof. For α > 0, we have :

Zn−k,α− kβ

4b2n
,β = (2π)

n−k
2 (n− k!)α−β

(n−k)(n−k−1)
4

−n−k
2

(
1− kβ

4αb2
n

)−β (n−k)(n−k−1)
4

−n−k
2

n−k−1∏

i=0

Γ
(
(i+ 1) β

2

)

Γ
(
β
2

) .

13



Thus by a Taylor expansion of x 7→ log(1− x) around 0 :

Zn−k,α− kβ

4b2n
,β

Zn−k,α,β
=

(
1− kβ

4αb2
n

)−β (n−k)(n−k−1)
4

−n−k
2

= exp

((
−β (n− k)(n− k − 1)

4
− n− k

2

)
log

(
1− kβ

4αb2
n

))

= exp

((
−β (n− k)(n− k − 1)

4
− n− k

2

)(
− kβ

4αb2
n

+O

(
− kβ

4αb2
n

)2
))

.

The last term converges to 1 under our hypothesis.

Lemma 2.9. Let β ≥ 0 and (δn) positive real sequence such that log(δn)� log(n). Assume

β � 1

n
. Fix k ≤ n. Then,

Zn−k,1− kβ

4b2n
,β

Zn−k,β
≤ 4k

Zn−k,β
Zn,β

≤
(√

2

π

)k

.

Proof. Since the case β = 0 can be easily treated, we only consider β > 0. From our
hypothesis, kβ is less than 1 and :

kβ

4b2
n

≤ 1

2
⇐⇒ kβ ≤ 2b2

n which is true.

kβ

4b2
n

(
β

(n− k)(n− k − 1)

4
+
n− k

2

)
≤ (nβ)2

16b2
n

+
nβ

8b2
n

≤ 1.

So by applying the inequality (1− x)−1 ≤ 4x on [0,
1

2
], we compute :

Zn−k,1− kβ

4b2n
,β

Zn−k,β
=

(2π)
n−k
2 (n− k!)

(
1− kβ

4b2n

)−β (n−k)(n−k−1)
4

−n−k
2 ∏n−k−1

i=0

Γ((i+1)β
2 )

Γ(β2 )

(2π)
n−k
2 (n− k!)

∏n−k−1
i=0

Γ((i+1)β
2 )

Γ(β2 )

=

(
1− kβ

4b2
n

)−β (n−k)(n−k−1)
4

−n−k
2

≤ exp

(
kβ

4b2
n

(
β

(n− k)(n− k − 1)

4
+
n− k

2

)
log (4)

)

≤ 4k.

14



We prove the second statement. Since

Zn,β = (2π)−
n
2

n∏

i=1

Γ(1 + β
2
)

Γ(1 + iβ
2

)
,

then,

Zn−k,β
Zn,α,β

= (2π)−
k
2

n∏

i=n−k+1

Γ(1 + β
2
)

Γ(1 + iβ
2

)
.

The Gamma function has local minimum at ≈ 1.46 with value ≈ 0.8, it follows that for
any i ≤ n, since β � 1,

1

2
≤ Γ

(
1 +

iβ

2

)
≤ Γ

(
1 +

β

2

)
≤ 1.

Hence,
n∏

i=n−k+1

Γ(1 + β
2
)

Γ(1 + iβ
2

)
≤ 2k.

At last, we prove the previously stated lemma which compares the partition functions
between different regime of β :

Proof of Lemma 1.3. Denoting γ the Euler constant, recall that for x� 1 :

log Γ (1 + x) = −γx+
π2

12
x2 + o(x3).

Remark that for any k ≥ 1, one has :

nkβk−1 � nk+1βk.

We compute the ratios :

Zn,β
Zn,0

=
n∏

i=1

Γ
(
1 + iβ

2

)

Γ
(
1 + β

2

)

= exp

(
−n log Γ

(
1 +

β

2

)
+

n∑

i=1

log Γ

(
1 +

iβ

2

))

and,

Zn,β
Zn,β′

=
n∏

i=1

Γ
(
1 + iβ

2

)

Γ
(
1 + iβ′

2

)

= exp

(
−

n∑

i=1

log Γ

(
1 +

iβ′

2

)
+

n∑

i=1

log Γ

(
1 +

iβ

2

))
.
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Since the quantity iβ converges to 0 uniformly in i ≤ n, we deduce that for some εi,n = o
(
(iβ)3),

thus verifying εi,n = O
(
(nβ)3) for any i ≤ n,

n∑

i=1

log Γ

(
1 +

iβ

2

)
= −γβ

2

n∑

i=1

i+
π2

48
β2

n∑

i=1

i2 +
n∑

i=1

εi,n

= −γβ
8

(n2 + n) +
π2

48
β2

(
n3

3
+
n2

2
+
n

6

)
+

n∑

i=1

εi,n

= −γβ
8

(n2 + n) +
π2

48
β2

(
n3

3
+
n2

2
+
n

6

)
+ nO

(
(nβ)3)

= −γ
8
n2β (1 + o(1)) .

Indeed, if φ = nO
(
(nβ)3), then

φ

n
= O

(
(nβ)3), hence φ = o

(
n4β3

)
and by a previous re-

mark, φ� n2β.

We deduce that :

Zn,β
Zn,0

= exp
(
−γ

8
n2β (1 + o(1))

)

and,

Zn,β
Zn,β′

= exp
(γ

8
n2 (β′ − β) (1 + o(1))

)
.

The claims readily follow.

2.3 Estimates : bulk and largest eigenvalues

In the section, we establish some estimates on the eigenvalues (λi)1≤i≤n of Hn,α,β, which
are Pn,α,β-distributed. Since the particles are exchangeable, every estimate will concern λ1.

We give exponential type bound on the probability of a scaled eigenvalue to be larger
than any arbitrary value. Same-wise, an exponential estimate for the probability of λ1 to
be as close as we want to any value is given.

These estimates will be crucial for the analysis of the integral term R̃n
k , which presents

itself as the expectation of some functional of (λi). The link is made through to the identity

E |X| =
∫ +∞

0

P (|X| ≥ t) dt.

We begin with a technical but fundamental lemma.

16



Lemma 2.10. For any a, b ∈ R and β > 0, one has :

|a+ b|β ≤ 2βeβ
a2+b2

8 .

Proof. First recall two inequalities :

|x| ≤ 2e
x2

16 .

(x+ y)2 ≤ 2x2 + 2y2.

Applying the first inequality with x = a+ b, then using the second one give :

|a+ b|β ≤
(

2e
(a+b)2

16

)β

≤
(

2e
a2+b2

8

)β
.

This inequality is of interest because it roughly allows to gain quadratic sum bound
a2 + b2 from a quantity of type log |a+ b|. It provides an useful algebraic mean to upper-
bound the integral term R̃n

k with a ratio of partition functions.

We show the following estimate on the scaled top eigenvalue :

Lemma 2.11. Let M > 0 such that α ∨ nβ ≤ M . There exists a constant CM > 0 such
that for any n ≥ 1, α, β, t > 0 and u ∈ R,

Pn,α,β

(∣∣∣∣u−
λ1

bn

∣∣∣∣ ≥ t

)
≤ CMb

β(n−1)−4
n

exp

(
−α

2

(
b2
n − nβ

4α

)2
(
t+ b2nu

b2n−
nβ
4α

)2
)

α1+
β(n−1)(n−2)

4
+n

2

(
t+ b2nu

b2n−
nβ
4α

) .

Proof. Let x ∈ R fixed and set u := 1 +
x

anbn
. Let (λ1, ..., λn) an exchangeable family of

random variables distributed according to Pn,α,β. Then, the family
(
λ̃i

)
1≤i≤n

:=

(
λi
bn
− u
)

1≤i≤n
has law :

b
n+β

n(n−1)
2

n

Zn,α,β
|∆n(z)|β e−α2 b2n

∑n
i=1(zi+u)2dz1...dzn.

17



Now for t > 0,

Λn,t,u := Pn,α,β

(∣∣∣∣1 +
x

anbn
− λ1

bn

∣∣∣∣ ≥ t

)

= Pn,α,β

(∣∣∣λ̃1

∣∣∣ ≥ a
)

=
b
n+β

n(n−1)
2

n

Zn,α,β

∫

|z1|≥t

∫

(z2,...,zn)∈Rn−1

|∆n(z)|β exp

(
−αb

2
n

2

n∑

i=1

(zi + u)2

)
dz1...dzn

=
b
n+β

n(n−1)
2

n

Zn,α,β

∫

|z1|≥t

n∏

j=2

|z1 − zj|β e−
αb2n
2

(z1+u)2dz1 × · · ·

· · · ×
∫

Rn−1

|∆n−1(z2, ..., zn)|β e−α2 b2n
∑n
i=1(zi+u)2dz2...dzn.

The product term in the first integral involves every variables. We split this overlapping
term thanks to the fundamental inequality of Lemma 2.10 :

|a+ b|β ≤ 2βeβ
a2+b2

8 .

It leads to :

Λn,t,u ≤
b
n+β

n(n−1)
2

n 2nβ

Zn,α,β

∫

|z1|≥t
exp

(
nβ

8
z2

1 − α
b2
n

2
(z1 + u)2

)
dz1 × · · ·

· · · ×
∫

(z2,...,zn)∈Rn−1

|∆n−1(z2, ..., zn)|β exp

(
β

8

n∑

i=2

z2
i − α

b2
n

2

n∑

i=2

(zi + u)2

)
dz2...dzn.

The first integral term will be linked to a Gaussian tail and the second to a partition
function. For this, we need to complete the square.

Using the two following algebraic identities :

β

8

n∑

i=2

z2
i − α

b2
n

2

n∑

i=2

(zi + u)2 = −α
2

(
b2
n −

β

4α

) n∑

i=2

(
zi +

b2
nu

b2
n − β

4α

)2

+ α
b4
nu

2

2
(
b2
n − β

4α

)(n− 1)− αb
2
nu

2

2
(n− 1)

nβ

8
z2

1 − α
b2
n

2
(z1 + u)2 = −α

2

(
b2
n −

nβ

4α

)(
z1 +

b2
nu

b2
n − nβ

4α

)2

+ α
b4u2

2
(
b2
n − nβ

4α

) − αb
2u2

2
,

we can write :

Λn,t,u ≤
b
n+β

n(n−1)
2

n 2nβ

Zn,α,β
e
α b4u2

2(b2n−nβ4α )
−α b

2u2

2

G(t)Z.
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where

G(t) :=

∫

|z1|≥t
exp


−α

2

(
b2
n −

nβ

4α

)(
z1 +

b2
nu

b2
n − nβ

4α

)2

 dz1

Z := e
α
b4nu

2(n−1)

2(b2n− β
4α)
−α b

2
nu

2(n−1)

2

∫

Rn−1

|∆n−1(λ)|β exp


−α

2

(
b2
n −

β

4α

) n∑

i=2

(
λi +

b2
nu

b2
n − β

4α

)2

 dλ2...dλn−1

which is just :

Z = e
α

b4nu
2

2(b2n− β
4α)

(n−1)−α b
2
nu

2

2
(n−1)

Zn−1,αb2n−
β
4
,β.

We treat the Gaussian integral term G(t) in the RHS of :

Λn,t,u ≤
b
n+β

n(n−1)
2

n 2nβ

Zn,α,β
e
α

b4nu
2

2(b2n−β4 )
(n−1)+α

b4nu
2

2(b2n−nβ4 )
−αn b

2
nu

2

2

Zn−1,αb2n−
β
4
,βG(t).

By two successive change of variable,

G(t) =

∫
∣∣∣∣z− b2nu

b2n−
nβ
4α

∣∣∣∣≥t exp

(
−α

2

(
b2
n −

nβ

4α

)
z2

)
dz

=
1

√
α
√
b2
n − nβ

4

∫∣∣∣∣∣ z

α(b2n−nβ4α )
− b2nu

b2n−
nβ
4α

∣∣∣∣∣≥t
exp

(
−z

2

2

)
dz

=
2

√
α
√
b2
n − nβ

4

∫

z

α(b2n−nβ4α )
− b2nu

b2n−
nβ
4α

≥t
exp

(
−z

2

2

)
dz by symmetry

=
2

√
α
√
b2
n − nβ

4α

∫

z≥α(b2n−nβ4α )
(
t+

b2nu

b2n−
nβ
4α

) exp

(
−z

2

2

)
dz

≤ 2

α
√
α

e
−α

2 (b2n−nβ4α )
2
(
t+

b2nu

b2n−
nβ
4α

)2

(
b2
n − nβ

4α

) 3
2

(
t+ b2nu

b2n−
nβ
4α

) .

We used the classical Gaussian bound in the last line :

∫ +∞

y

e−
y2

2 dy ≤ e−
y2

2

y
, y > 0.

Finally,

Λn,t,u ≤ b
n+β

n(n−1)
2

n 2nβ+1e
α

b4nu
2

2(b2n− β
4α)

(n−1)+α
b4nu

2

2(b2n−nβ4α )
−αn b

2
nu

2

2 Zn−1,αb2n−
β
4
,β

Zn,α,β

e
−α

2 (b2n−nβ4α )
2
(
t+

b2nu

b2n−
nβ
4α

)2

α
3
2

(
b2
n − nβ

4α

) 3
2

(
t+ b2nu

b2n−
nβ
4α

) .
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We deal with the ratio of partition functions by Lemma 2.7, so that the upper bound on

Pn,α,β

(∣∣∣∣u−
λ1

bn

∣∣∣∣ ≥ t

)
becomes :

Λn,t,u ≤
b
β(n−1)−1
n 2nβ+1

√
2π
(
b2
n − nβ

4α

) 3
2

e
α

b4nu
2

2(b2n− β
4α)

(n−1)+α
b4nu

2

2(b2n−nβ4α )
−αn b

2
nu

2

2 e
−α

2 (b2n−nβ4α )
2
(
t+

b2nu

b2n−
nβ
4α

)2

α
(
t+ b2nu

b2n−
nβ
4α

) α−β
(n−1)(n−2)

4
−n

2 .

Finally, for M such that nβ ∧ α ≤M :

Λn,t,u ≤ CMb
β(n−1)−4
n

exp

(
−α

2

(
b2
n − nβ

4α

)2
(
t+ b2nu

b2n−
nβ
4α

)2
)

α1+
β(n−1)(n−2)

4
+n

2

(
t+ b2nu

b2n−
nβ
4α

) .

In the very same way, we show the following estimate for bulk eigenvalues :

Lemma 2.12. Let M > 0. There exists a constant CM > 0 such that for any n ≥ 1, α >
0, β > 0, a ∈ R, ε ∈ (0, 1) such that α ∨ nβ ≤M ,

Pn,α,β (|λ1 − a| ≤ ε) ≤ CMε exp

(
nαβ

2(4α− β)
a2

)
.

Proof. We proceed as for the previous estimate.

3 Inhomogeneous Poisson limit for nβ � 1 and α = 1

This section is devoted to the proof of the first statement in our main result when β > 0,
namely, we consider (λ1, ..., λn) ∼ Pn,β and assume δn −−→

n∞
δ > 0, then, for an appropriate

choice of (an), (bn), the random point process
n∑

i=1

δan(λi−bn) converges in distribution to a

Poisson point process with intensity e−
x
δ dx.

The plan, according to the lemma on Poisson convergence, is to first reformulate the
correlation functions, and then establish the pointwise convergence to 1 of the correlation
functions. The last step is to give an uniform upper bound which will end the proof of the
theorem.

The case β = 0 is much simpler. Following the same steps, it does not however involve
the machinery of partition functions and tail bounds. So we will omit in the upcoming
subsections.

20



3.1 Correlation functions

The first step is to give a satisfying formulation of the correlation function Rn
k . From its

definition, we transpose it as product of multiple terms including an integral term R̃n
k .

Unlike the others, this quantity is more complicated and needs careful analysis.

Lemma 3.1. Fix δ > 0. Let α > 0, β ≥ 0 and (λ1, ..., λn) distributed according to Pn,α,β.

The k-th correlation function of the point process
n∑

i=1

δan(λi−bn) is :

Rn
k(x1, ..., xk) =

n!

(n− k)!
a
−k−β

2
k(k−1)

n |∆k(x)|β Zn−k,α,β
Zn,α,β

× · · ·

· · · × exp

(
−α

2

k∑

i=1

(
xi
an

+ bn

)2

+
1

δ

k∑

i=1

xi + kβ(n− k) log(bn)

)
R̃n
k

with

R̃n
k := R̃n

k(x1, ..., xk) =

∫

Rn−k
exp

(
β

k∑

i=1

n−k∑

j=1

log

∣∣∣∣1 +
xi
anbn

− zj
bn

∣∣∣∣

)
dPn−k,α,β(z1, ..., zn−k).

Proof. Let µ = e−
x
δ dx, ie: dµ⊗n(x1, ..., xn) = e−

1
δ

∑n
i=1 xidx1...dxn.

Let (λ1, ..., λn) distributed according to Pn,α,β :

Pn,α,β (λ1, ..., λn) =
1

Zn,α,β
|∆n(λ)|β exp

(
−α

2

n∑

i=1

λ2
i

)
dλ1...dλn.

Set
(
λ̃1, ..., λ̃n

)
i≤n

:= (an (λi − bn))i≤n. By a change of variable in Pn,α,β, we get the joint

density of
(
λ̃1, ..., λ̃n

)
i≤n

:

P̃n,α,β

(
λ̃1, ..., λ̃n

)
=
a
−n(n−1)

2
β−n

n

Zn,α,β
|∆n(λ)|β e−α2

∑n
i=1(

λi
an

+bn)
2

dλ1...dλn

=
a
−n(n−1)

2
β−n

n

Zn,α,β
|∆n(λ)|β e−α2

∑n
i=1(

λi
an

+bn)
2

e
1
δ

∑n
i=1 λidµ⊗n (λ1, ..., λn) .

Hence, we get the k-th correlation function :

Rn
k(x1, ..., xk) =

n!

(n− k)!

a
−n−β n(n−1)

2
n

Zn,α,β
e−

α
2

∑k
i=1(

xi
an

+bn)
2
+ 1
δ

∑k
i=1 xi × · · ·

· · · ×
∫

Rn−k
e−

α
2

∑n
i=k+1(

xi
an

+bn)
2

|∆n(x)|β e 1
δ

∑k
i=k+1 xidµ⊗(n−k)(xk+1, ..., xn).
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The goal is to extricate the (x1, ..., xk) from the (xk+1, ..., xn), and extract all leading order
terms.

To this end, we begin with splitting the Vandermonde term :

n∏

i<j

|xi − xj|β =

( ∏

1≤i<j≤k

|xi − xj|β
)( ∏

k+1≤i<j≤n

|xi − xj|β
)(

k∏

i=1

n∏

j=k+1

|xi − xj|β
)
.

Note that in the RHS, the first term has k(k−1)
2

elements, the 2nd term has (n−k)(n−k−1)
2

elements and the last term has k(n− k) elements.

Therefore,

Rn
k(x1, ..., xk) =

n!

(n− k)!
|∆k(x)|β a

−n−β n(n−1)
2

n

Zn,α,β
exp

(
−α

2

k∑

i=1

(
xi
an

+ bn

)2

+
1

δ

k∑

i=1

xi

)
Λ.

where :

Λ :=

∫

Rn−k
eβ
∑k
i=1

∑n
j=k+1 log|xi−yj |e−

α
2

∑n−k
i=1 ( yian+bn)

2

|∆n−k(y)|β e 1
δ

∑n−k
i=1 yidµ⊗(n−k)(y1, ..., yn−k).

We introduce the law Pn,α,β in the latter quantity. The change of variable y = an(z − bn)
and little computation give :

Λ =

∫

Rn−k
eβ
∑k
i=1

∑n−k
j=1 log|xi−yj |e−

α
2

∑n−k
i=1 ( yian+bn)

2 ∏

1≤i<j≤n−k

|yi − yj|β
n−k∏

i=1

dyi

= a
n−k+β

(n−k−1)(n−k)
2

n

∫

Rn−k
eβ
∑k
i=1

∑n−k
j=1 log|xi−an(zj−bn)|e−

α
2

∑n−k
i=1 z2j

∏

1≤i<j≤n−k

|zi − zj|β
n−k∏

i=1

dzi

= a
n−k+β

(n−k−1)(n−k)
2

n Zn−k,α,β

∫

Rn−k
eβ
∑k
i=1

∑n−k
j=1 log|xi−an(zj−bn)|dPn−k,α,β(z1, ..., zn−k)

= a
n−k+β

(n−k−1)(n−k)
2

n Zn−k,α,β

∫

Rn−k
eβ
∑k
i=1

∑n−k
j=1 log|xi−anzj+anbn|dPn−k,α,β(z1, ..., zn−k)

= a
n−k+β

(n−k−1)(n−k)
2

n Zn−k,α,βe
kβ(n−k) log(anbn) × · · ·

· · · ×
∫

Rn−k
eβ
∑k
i=1

∑n−k
j=1 log|1+

xi
anbn

−
zj
bn
|dPn−k,α,β(z1, ..., zn−k)

= a
n−k+β

(n−k−1)(n−k)
2

+kβ(n−k)
n Zn−k,α,βe

kβ(n−k) log(bn) × · · ·

· · · ×
∫

Rn−k
eβ
∑k
i=1

∑n−k
j=1 log|1+

xi
anbn

−
zj
bn
|dPn−k,α,β(z1, ., zn−k).

Thus the claim follows.
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3.2 Pointwise convergence of the correlation functions

The goal of this section is to establish the pointwise convergence Rn
k(x1, ..., xk) −−→

n∞
1 for

any fixed δ > 0, k ≥ 1 and (x1, ..., xk) ∈ Rk under the following hypothesis :

β � 1

n log(n)
, α = 1, δn = δ + o(1).

We have already shown the ratio of partition functions converges to (2π)−
k
2 in Lemma 2.6.

The other terms are easily handable, so we begin by proving that the term R̃n
k converges

to 1. To this end, we proceed by double inequality.

Let us show that :
lim sup

n∞
R̃n
k(x1, ..., xk) ≤ 1.

Lemma 3.2. Let any (δn) positive real sequence such that log(δn)� log(n). Assume

β � 1

n
. For (x1, ..., xk) ∈ Rk with k fixed, let

R̃n
k := R̃n

k(x1, ..., xk) =

∫

Rn−k
exp

(
β

k∑

i=1

n−k∑

j=1

log

∣∣∣∣1 +
xi
anbn

− zj
bn

∣∣∣∣

)
dPn−k,β(z1, ..., zn−k)

= EPn−k,β

(
exp

(
β

k∑

i=1

n−k∑

j=1

log

∣∣∣∣1 +
xi
anbn

− λj
bn

∣∣∣∣

))
.

Then,
lim sup

n∞
R̃n
k(x1, ..., xk) ≤ 1.

Proof. Applying the bound |a+ b|β ≤ 2βeβ
a2+b2

8 of Lemma 2.5, we get :

R̃n
k =

∫

Rn−k
e
∑k
i=1

∑n−k
j=1 log|1+

xi
anbn

−
zj
bn
|βdPn−k,β(z1, ..., zn−k)

≤
∫

Rn−k
e
∑k
i=1

∑n−k
j=1 β log 2+β

8 |1+
xi

anbn
|2+β

8 | zjbn |
2

dPn−k,α,β(z1, ..., zn−k)

=

∫

Rn−k
eβk(n−k)β log 2+

β(n−k)
8

∑k
i=1|1+

xi
anbn
|2+ kβ

8

∑n−k
j=1 | zjbn |

2

dPn−k,β(z1, ..., zn−k)

≤ 2knβe
nβ
8

∑k
i=1|1+

xi
anbn
|2
∫

Rn−k
e
kβ
8

∑n−k
j=1 | zjbn |

2

dPn−k,β(z1, ..., zn−k)

= 2knβe
nβ
8

∑k
i=1|1+

xi
anbn
|2
Zn−k,1− kβ

4b2n
,β

Zn−k,β
.

It is now enough to show this ratio of partition functions converges to 1, which is provided
by Lemma 2.8.
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We finish the proof of R̃n
k(x1, ...x,k ) −−→

n∞
1 :

Lemma 3.3. Assume β � 1

n log(n)
. For (x1, ..., xk) ∈ Rk with k fixed, let

R̃n
k(x1, ..., xk) :=

∫

Rn−k
eβ
∑k
i=1

∑n−k
j=1 log|1+

xi
anbn

−
zj
bn
|dPn−k,β(z1, ..., zn−k)

= EPn−k,β

(
e
β
∑k
i=1

∑n−k
j=1 log

∣∣∣1+
xi

anbn
−
λj
bn

∣∣∣)
.

Then
lim inf
n∞

R̃n
k(x1, ..., xk) ≥ 1.

Proof. Since exp is convexe, by Jensen inequality, and exchangeability, it is enough to show
that for any x ∈ R fixed :

β(n− k)EPn−k,β

∣∣∣∣log

∣∣∣∣1 +
x

anbn
− λ1

bn

∣∣∣∣
∣∣∣∣ −−→n∞ 0.

Since k ≥ 1 is also fixed, it is enough to show that for x ∈ R fixed :

nβ EPn,β

∣∣∣∣log

∣∣∣∣1 +
x

anbn
− λ1

bn

∣∣∣∣
∣∣∣∣ −−→n∞ 0.

We next prove the following result :

Lemma 3.4. Let any (δn) positive real sequence such that log(δn)� log(n). Assume

β � 1

n log(n)
. Fix x ∈ R, then :

nβ EPn,β

∣∣∣∣log

∣∣∣∣1 +
x

anbn
− λ1

bn

∣∣∣∣
∣∣∣∣ −−→n∞ 0.

Proof of Lemma 3.4. From the identity

E |X| =
∫ +∞

0

P (|X| ≥ t) dt,

and setting u := 1 +
x

anbn
, we have :

EPn,β

∣∣∣∣log

∣∣∣∣1 +
x

anbn
− λ1

bn

∣∣∣∣
∣∣∣∣ =

∫ +∞

0

Pn−k,β

(∣∣∣∣log

∣∣∣∣u−
λ1

bn

∣∣∣∣
∣∣∣∣ ≥ t

)
dt

=

∫ +∞

0

Pn,α,β

(
log

∣∣∣∣u−
λ1

bn

∣∣∣∣ ≥ t

)
dt+

∫ +∞

0

Pn,β

(
log

∣∣∣∣u−
λ1

bn

∣∣∣∣ ≤ −t
)
dt

=

∫ +∞

0

Pn,α,β

(∣∣∣∣u−
λ1

bn

∣∣∣∣ ≥ et
)
dt+

∫ +∞

0

Pn,β

(∣∣∣∣u−
λ1

bn

∣∣∣∣ ≤ e−t
)
dt

=

∫ +∞

1

1

y
Pn,α,β

(∣∣∣∣u−
λ1

bn

∣∣∣∣ ≥ y

)
dy +

∫ 1

0

1

y
Pn,β

(∣∣∣∣u−
λ1

bn

∣∣∣∣ ≤ y

)
dy.

24



Next, we show that both integrals converge to 0. We set :

Λ1 :=

∫ +∞

1

1

y
Pn,β

(∣∣∣∣u−
λ1

bn

∣∣∣∣ ≥ y

)
dy

Λ2 :=

∫ 1

0

1

y
Pn,β

(∣∣∣∣u−
λ1

bn

∣∣∣∣ ≤ y

)
dy.

Let’s treat the term Λ2.

Since α = 1 and nβ � 1, we fix M = 1, which gives a constant C > 0 independent
of n, k, a, ε such that, we have the bulk estimate following from Lemma 2.12 :

Pn,β (|λ1 − a| ≤ ε) ≤ C exp

(
log(ε) +

αnβ

8
(
1− β

4

)a2

)
.

Then with a = bn +
xi
an

= bnu,

Pn,β

(∣∣∣∣u−
λj
bn

∣∣∣∣ ≤ ε

)
= Pn−k,β (|bnu− λj| ≤ bnε)

≤ Cbnε exp

(
αnβ

8
(
1− β

4

)b2
nu

2

)

Hence,

0 ≤ (n− k)βΛ2 ≤ Cnβbn exp

(
nβ

2(4− β)
b2
nu

2

)

≤ Cnβbn exp

(
nβ

8
b2
n + o(1)

)
.

The latter term goes to 0 if and only if β � 1

n log(n)
. Observe that it is the only time we

need to strengthen the restriction on β � 1

n
.

Now we treat the term Λ1.

By top eigenvalue estimate Lemma 2.11,

Pn,β

(∣∣∣∣u−
λ1

bn

∣∣∣∣ ≥ t

)
≤ CMb

β(n−1)−4
n

e
− 1

2(b2n−nβ4 )
2
(
t+

b2nu

b2n−
nβ
4

)2

(
t+ b2nu

b2n−
nβ
4

) .
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Thus, one has :

Λ1 ≤ CMb
β(n−1)−4
n

∫ +∞

1

e
− 1

2(b2n−nβ4 )
2
(
t+

b2nu

b2n−
nβ
4

)2

(
t+ b2nu

b2n−
nβ
4

) dt

For α −−→
n∞

c ∈]0,+∞[, nβ = O(1), the Lebesgue’s dominated convergence theorem implies

that integral term converges to 0 which leads to nβΛ1 � 1.

We are ready to achieve the goal of this section :

Lemma 3.5. Let (δn) a positive real sequence such that δn −−→
n∞

δ > 0. Assume α = 1,

β � 1

n log(n)
. Let (an), (bn) (modified Gaussian scaling) :

bn :=
√

2 log(n)− log log(n) + 2 log(δn) + log(4π)

2
√

2 log(n)
, an := δn

√
2 log(n).

Fix (x1, ..., xk) ∈ Rk, k ≥ 1. Then the following pointwise convergence holds :

Rn
k(x1, ..., xk) −−→

n∞
1.

Proof. When α = 1, by Lemma 3.1, one has :

Rn
k(x1, ..., xk) =

n!

(n− k)!
a
−k−β

2
k(k−1)

n |∆k(x)|β Zn−k,β
Zn,β

× · · ·

· · · × exp

(
−1

2

k∑

i=1

(
xi
an

+ bn

)2

+
1

δ

k∑

i=1

xi + kβ(n− k) log(bn)

)
R̃n
k

with

R̃n
k := R̃n

k(x1, ..., xk) =

∫

Rn−k
exp

(
β

k∑

i=1

n−k∑

j=1

log

∣∣∣∣1 +
xi
anbn

− zj
bn

∣∣∣∣

)
dPn−k,β(z1, ..., zn−k).

We already proved that R̃n
k(x1, ..., xk) −−→

n∞
1 by Lemma 3.2 and 3.3. Hence, we are reduced

to show :

n!

(n− k)!
a
−k−β

2
k(k−1)

n |∆k(x)|β Zn−k,β
Zn,β

e−
1
2

∑k
i=1(

xi
an

+bn)
2
+
∑n
i=1 xiekβ(n−k) log(bn) −−→

n∞
1.

26



We have the following asymptotics for k ≥ 1 fixed :

Zn−k,β
Zn,β

= (2π)−
k
2 + o(1).

log an =
1

2
log 2 +

1

2
log log n

n!

(n− k)!
= (1 + o(1))nk

a
−β k(k−1)

2
−k

n = exp (−k log an) (1 + o(1))

= exp

(
−k

2
log 2− k

2
log log n

)
(1 + o(1))

ekβ(n−k) log bn = e
k
2
nβ log log(n) (1 + o(1))

∆k(x1, ..., xk)
β =

k∏

i<j

|xi − xj|β = exp

(
β

k∑

i<j

log |xi − xj|
)

= 1 + o(1).

Besides, for δ > 0 fixed,

exp

(
−1

2

k∑

i=1

(
xi
an

+ bn

)2
)

= exp

(
−kb

2
n

2
− αbn

an

k∑

i=1

xi −
1

2a2
n

n∑

i=1

x2
i

)

= exp

(
−kb

2
n

2
− 1

δ

k∑

i=1

xi + o(1)

)
.

Note also that for δn � 1,

exp

(
−1

2

k∑

i=1

(
xi
an

+ bn

)2
)

= exp

(
−kb

2
n

2
− bn
an

k∑

i=1

xi −
1

2a2
n

n∑

i=1

x2
i

)

= exp

(
−kb

2
n

2
+ o(1)

)
.

So putting everything together :

Rn
k(x1, ..., xk) = exp

(
k

(
log(n)− log(an)− 1

2
b2
n + nβ log(bn)− 1

2
log 2π

))
(1 + o(1))

:= ekΛn (1 + o(1)) .

It only remains to show that Λn � 1. Using the following asymptotics :

log(an) =
1

2
log(2) +

1

2
log log(n) + log(δ) + o(1)
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b2
n = 2 log(n)− log log(n)− 2 log(δ)− log(4π) + o(1)

nβ log(bn) = o(1),

we can compute and check the cancelation :

Λn := log(n)− log(an)− 1

2
b2
n −

1

2
log(2π)

= log(n)− 1

2
log(2)− 1

2
log log(n)− log(δ)− log(n) +

1

2
log log(n) + log(δ)

+
1

2
log(4π)− 1

2
log(2π) + o(1)

= o(1).

3.3 Uniform upper-bound on the correlation functions

The goal of this section is to provide an uniform upper bound for the correlation functions.
It constitutes the second hypothesis in the main tool required to show Poisson convergence.

Lemma 3.6. Let K ⊂ R compact and M := supK. Set α = 1. There exists a constant
ΘK independent of n, k such that for all n ≥ 1, k ≤ n and x1, ..., xk ∈ K,

Rn
k(x1, ..., xk) ≤ Θk

K .

Proof. Let K ⊂ R compact, M := supK > 0, n ≥ 1, k ≤ n, x1, ..., xk ∈ K and α = 1.
Note that (δn) converges to δ > 0, hence it is bounded.

Rn
k(x1, ..., xk) =

n!

(n− k)!
a
−k−β

2
k(k−1)

n |∆k(x)|β Zn−k,β
Zn,β

× · · ·

· · · × exp

(
−1

2

k∑

i=1

(
xi
an

+ bn

)2

+
1

δ

k∑

i=1

xi + kβ(n− k) log(bn)

)
R̃n
k .

Note that the ratio of partition functions is bounded by

(
2

π

) k
2

according to Lemma 2.9.

First, we bound by elementary means the simple terms. The leading order terms will
cancel each other in the computation. Then, we tackle the integral term R̃n

k by comparing
it to a ratio of partition functions.
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We begin with the bound of the Vandermonde determinant : since
β(k − 1)

2
≤ 1,

|∆k(x)|β =
k∏

i<j

|xi − xj|β ≤ (2M)β
k(k−1)

2 =
(

(2M)
β(k−1)

2

)k
≤ (2M)k .

We bound the two first terms :

Note that :

a
−k−β

2
k(k−1)

n ≤ a−kn = exp

(
−k
(

log(δn) +
1

2
log log(n) +

1

2
log(2)

))
.

Also, a classical combinaison inequality, for k ≤ n,

(n)k := (n− k + 1)...n =
n!

(n− k)!
≤ nk exp

(
−k(k − 1)

2n

)
.

Indeed, since ∀x ∈ R, 1 + x ≤ ex, we have :

(n)k
nk

=
k−1∏

i=0

(
1− i

n

)
≤

k−1∏

i=0

exp

(
− i
n

)
= exp

(
k−1∑

i=0

− i
n

)
= exp

(
−(k − 1)k

2n

)
.

Let’s now study the exponential terms :

exp

(
−α

2

k∑

i=1

(
xi
an

+ bn

)2
)

= exp

(
−1

2

k∑

i=1

(
xi
an

+ bn

)2
)

= exp

(
−k

2
b2
n −

1

2a2
n

k∑

i=1

x2
i −

bn
an

k∑

i=1

xi

)

≤ exp

(
−k

2
b2
n −

bn
an

k∑

i=1

xi

)

≤ exp

(
−k

2
b2
n + kcδM

)

= exp

(
−k log(n)− k

2
nβ log log(n) +

k

2
log log(n) +

k

2
log(4π) + kcδM

)
.

We used the fact that, since (δn) is bounded, there exists cδ > 0 such that :

bn
an
≤ 1

δn
≤ cδ.

Also,

kβ(n− k) log(bn) ≤ knβ log(bn)

≤ k

2
nβ log log(n) +

k

2
nβ log(2) since bn ≤

√
2 log(n)

≤ k

2
nβ log log(n) + k
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Hence, the leading order terms cancel :

Rn
k(x1, ..., xk) ≤ e−

k(k−1)
2n (2M)k

(
2

π

) k
2

ek+ k
2

log(4π)+kcδM R̃n
k(x1, ..., xk)

≤ (2M)k ek+3k log(2)+kcδM R̃n
k(x1, ..., xk).

It remains to bound the term R̃n
k .

Applying the bound |a+ b|β ≤ 2βeβ
a2+b2

8 of Lemma 2.10, we get :

R̃n
k(x1, ..., xk) ≤ 2knβe

nβ
8

∑k
i=1|1+

xi
anbn
|2
Zn−k,1− kβ

4b2n
,β

Zn−k,β
.

The ratio of partition functions is bounded by 4k as we proved it in Lemma 2.9.

Besides,

exp

(
nβ

8

k∑

i=1

∣∣∣∣1 +
xi
anbn

∣∣∣∣
2
)
≤ exp

(
1

8

k∑

i=1

(
1 +

x2
i

a2
nb

2
n

+
2xi
anbn

))
≤ exp

(
k

8
+
k

8
M2 +

k

4
cδM

)
.

Thus,

R̃n
k(x1, ..., xk) ≤ 2ke

k
8

+ k
8
M2+ k

4
M4k = 23ke

k
8

+ k
8
M2+ k

4
cδM .

And finally,

Rn
k(x1, ..., xk) ≤ (2M)k ek+3k log(2)+kcδM23ke

k
8

+ k
8
M2+ k

4
M = (ΘK)k .

Where we have set :

ΘK := e1+6 log(2)+cδM+ 1
8(1+M2+2cδM)+log(2M).

4 Homogeneous Poisson limit for nβ � 1 and α = 1

In the sequel, we assume that 0 < β � 1

n
, α = 1 and above all δn � 1.

We shall prove that the random process
n∑

i=1

δan(λi−bn) converges in distribution to a

homogeneous Poisson point process with intensity 1, for the same choices of the Gaussian
modified scaling sequences (an), (bn), under a certain decay rate of β and a restriction on
(δn) which is discussed in the following remark :
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Remark 4.1. The assumptions log(δn)�
√

log(n) and δn � 1 mean that δn = eεn
√

2 log(n)

with
1√

log(n)
� εn � 1. The perturbation by δn corresponds to an increase of the zoom

around the same Gaussian center minus a negligible factor.

4.1 Proof of the theorem

We follow the same scheme of proof but with µ = dλ the Lebesgue measure.

So we compute first :

Rn
k(x1, ..., xk) =

n!

(n− k)!
a
−k−β

2
k(k−1)

n |∆k(x)|β Zn−k,β
Zn,β

e−
1
2

∑k
i=1(

xi
an

+bn)
2

ekβ(n−k) log(bn)R̃n
k(x1, ..., xk)

with

R̃n
k(x1, ..., xk) :=

∫

Rn−k
eβ
∑k
i=1

∑n−k
j=1 log|1+

xi
anbn

−
zj
bn
|dPn−k,β(z1, ..., zn−k).

We already proved that R̃n
k(x1, ..., xk) −−→

n∞
1 in the last section, so that we have to show :

n!

(n− k)!
a
−k−β

2
k(k−1)

n |∆k(x)|β exp

(
−1

2

k∑

i=1

(
xi
an

+ bn

)2

+ kβ(n− k) log(bn)

)
−−→
n∞

1.

We have the following asymptotics :

Zn−k,β
Zn,β

= (2π)−
k
2 + o(1).

log an =
1

2
log 2 +

1

2
log log n+ log(dn)

n!

(n− k)!
= nk(1 + o(1))

a
−β k(k−1)

2
−k

n = exp (−k log(an)) (1 + o(1))

= exp

(
−k

2
log(2)− k

2
log log(n)− k log(δn)

)
(1 + o(1))

exp (kβ(n− k) log bn) = exp

(
k

2
nβ log log(n)

)
(1 + o(1))

∆k(x1, ..., xk)
β =

k∏

i<j

|xi − xj|β = exp

(
β

k∑

i<j

log |xi − xj|
)

= 1 + o(1).
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The main difference with the setup an ∼ bn and µ = e−xdx is the following asymptotic for
an � bn :

exp

(
−1

2

k∑

i=1

(
xi
an

+ bn

)2
)

= exp

(
−kb

2
n

2
− bn

2an

k∑

i=1

xi −
1

2a2
n

n∑

i=1

x2
i

)
= exp

(
−kb

2
n

2
+ o(1)

)
.

Hence,

Rn
k(x1, ..., xk) = nka−kn (2π)−

k
2 exp

(
−k

2
b2
n + knβ log(bn)

)
(1 + o(1))

= exp

(
k

(
log(n)− log(an)− 1

2
b2
n + nβ log(bn)− 1

2
log 2π

))
(1 + o(1))

= ekΛn (1 + o(1)) .

It only remains to show that Λn � 1. We compute the following asymptotics :

nβ log(bn) = o(1) since β � 1

n log(n)

log(an) =
1

2
log(2) +

1

2
log log(n) + log(δn),

b2
n = 2 log(n) +

log2(δn)

2 log(n)
− log log(n)− 2 log(δn)− log(4π) + o(1).

So that, we have :

Λn := log(n)− log(an)− 1

2
b2
n −

1

2
log(2π)

= − log2(δn)

2 log(n)
+ o(1).

The latter quantity converges to 0 under our growth hypothesis on (δn).

To conclude the proof, we have to show the uniform upper-bound analog to Lemma
3.6, which is exactly the same work as done before.

4.2 The Gaussian case : β = 0

In this last subsection, we derive our result on homogeneous limiting Poisson process in
the purely Gaussian case β = 0. Although the correlation functions method also applies
(as we did for the inhomogeneous case when β = 0), it turns out that the classical method
from EVT provides a better regime for the perturbation (δn). We formulate the result and
prove it.
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Lemma 4.2. Let (λi)i≤n an i.i.d. sequence of N (0, 1). Let δn � 1 such that log(δn)� log(n),
and :

an = δn
√

2 log(n)

bn =
√

2 log(n)− 1

2

log log(n) + 2 log(δn) + log(4π)√
2 log(n)

.

Then, the point process
n∑

i=1

δan(λi−bn) converges to a Poisson point process on R with in-

tensity 1.

Proof. We set φn(x) =
x

an
+ bn. Since we consider a collection of n i.i.d. random variables

and a homogeneous limiting Poisson process, that is with intensity proportional to dλ
where λ is the Lesbegue measure on R, it is enough [4, Th 7.1] to show that for any x < y,

Λ := n (P (λ1 ≥ φn(x))− P (λ1 ≥ φn(y))) −−→
n∞

y − x.

By Mill’s ratio, we know that for any u� 1,

P (λ1 ≥ u) =
exp

(
−u2

2

)

u
√

2π
(1 + o(1)) .

Under the hypothesis log(δn)� log(n), one has bn ∼
√

2 log(n), hence φn(x) ∼
√

2 log(n).

We get :

Λ =
n√
2π

(
e−

φn(x)2

2

φn(x)
− e−

φn(y)2

2

φn(y)

)
(1 + o(1))

=
n

φn(x)φn(y)
√

2π

(
φn(y)e−

φn(x)2

2 − φn(x)e−
φn(x)2

2

)
(1 + o(1))

=
ne−

φn(x)2

2√
2 log(n)

√
2π

(
1− eφn(x)2−φn(y)2

2

)
(1 + o(1)) .

A little computation gives :

φn(x)2 − φn(y)2

2
=

x2 − y2

4δ2
n log(n)

+
x− y
δn
−(x− y) log log(n)

2δn log(n)
−(x− y) log(δn)

δn log(n)
−(x− y) log(4π)

2δn log(n)
.

The highest order term is
x− y
δn

. Indeed,

log(δn)

δn log(n)
� 1

δn
⇐⇒ log(δn)� log(n) which is true.
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We deduce that :

Λ =
ne−

φn(x)2

2√
2 log(n)

√
2π

(
1− ex−yδn (1+o(1))

)
(1 + o(1))

=
ne−

φn(x)2

2√
2 log(n)

√
2π

(
y − x
δn

)
(1 + o(1)) .

To conclude, we compute :

ne−
φn(x)2

2√
2 log(n)

√
2π

= δn (1 + o(1)) .

References

[1] Romain Allez and Laure Dumaz. Tracy–Widom at high temperature. Journal of
Statistical Physics, 156(6):1146–1183, 2014.

[2] Greg W Anderson, Alice Guionnet, and Ofer Zeitouni. An introduction to random
matrices, volume 118 of Cambridge studies in advanced mathematics, 2010.

[3] Florent Benaych-Georges and Sandrine Péché. Poisson statistics for matrix ensembles
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