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. We study here the large deviations with respect to this limit for the particle density field and the total current. We identify explicitely the large deviation functional and prove that it satisfies a fluctuation relation.

Introduction

In usual hydrodynamic limits it is studied the macroscopic evolution of the conserved quantities of a large microscopic system, under a space-time scaling such that the time scale is the typical one where the system reaches equilibrium. When the system is open and connected to thermal or particle reservoirs, the parameters of these reservoirs give the boundary conditions for the partial differential equations which describe the macroscopic evolution of the conserved quantities.

In this paper we consider the case in which the parameters of the boundary reservoirs (for example the particle density or the temperature) are not constant but change in time on a slower scale than that of relaxation at equilibrium. Rescaling the time at this slower scale give a quasi static macroscopic evolution for the conserved quantities: at each macroscopic time the profile of the conserved quantity is equal to the stationary one corresponding to the given boundary condition at that time. When these stationary profiles are of equilibrium, this limit models the thermodynamic quasi static transformations, where the Clausius equality holds, i.e. the work is done by the boundaries.

In [START_REF] Bertini | Clausius inequality and optimality of quasistatic transformations for nonequilibrium stationary states[END_REF], [START_REF] Olla | Microscopic derivation of an isothermal thermodynamic transformation[END_REF] and [START_REF] Letizia | Non-equilibrium isothermal transformations in a temperature gradient from a macroscopic dynamics[END_REF], quasi static transformations are obtained from a time rescaling of the macroscopic diffusive equation.

In [START_REF] Masi | Quasi Static Hydrodynamic Limits[END_REF] we studied, for various stochastic particle systems whose macroscopic evolution is described by a diffusive equation, the direct hydrodynamic quasi static limit by rescaling properly space and time in the microscopic dynamics,

We study here the large deviation for one of these models, the symmetric simple exclusion process.

The system we consider is composed by 2N + 1 sites (denoted by -N, . . . , N) where particles move like symmetric random walks with exclusion. We add birth and death processes at the left and right boundaries that describe the interaction with reservoirs. These reservoirs have densities ρ -(t) on the left and ρ + (t) on the right, that are time dependent. The time scale at which these density ρ ± change defines the macroscopic time scale. If the particles jump and are created and destroyed at rate N 2 , the macroscopic density profile evolves following a linear diffusive equation with boundary conditions ρ ± (t). This is the usual hydrodynamic limit and for ρ ± constant this result is known since the '80's, [START_REF] Galves | Non equilibrium measures which exhibt a temperature gradient: study of a model[END_REF].

In the quasi static limit particles jump (or are created and destroyed at the boundaries) with rate on order N 2+α with α > 0. As proved in [START_REF] Masi | Quasi Static Hydrodynamic Limits[END_REF], at each time t, the empirical density converges, as N → ∞, to the solution of the stationary heat equation with boundary conditions ρ ± (t):

ρ(t, y) = 1 2 [ρ + (t) -ρ -(t)]y + 1 2 [ρ + (t) + ρ -(t)] , y ∈ [-1, 1], (1.1) 
and the total current through any bond will converge to

J(t) = - t 0 1 2 [ρ + (s) -ρ -(s)] ds. (1.2)
Thus the quasi-static limit gives the evolution of macroscopic profile, completely driven by the boundary conditions.

In [START_REF] Masi | Quasi Static Hydrodynamic Limits[END_REF] it is also proven that the distribution of the process is close to a product Bernoulli measure with parameter ρ(t, y). Stronger results are proved by controlling the correlation functions with the same techniques used in [START_REF] Masi | Truncated correlations in the stirring process with births and deaths[END_REF]. First order corrections have been studied in [START_REF] Chavez | A Correction to the Hydrodynamic Limit of Boundary Driven Weakly Asymmetric Exclusion Processes in a Quasi-Static Time Scale[END_REF].

Observe that if ρ + (t) = ρ -(t) then the above result says that the stochastic process at any macroscopic time is close to equilibrium but the order parameter changes in time thus performing a quasi static transformation.

We study in this article the joint large deviations of the density and the current with respect to this quasi-static limit. We prove that the probability to observe a density profile ρ(t, y) that satisfies the boundary conditions ρ ± (t) and a total current J(t) is asymptotically P (ρ, J) ∼ e -N 1+α I(J,ρ) where

I(J, ρ) = 1 4 T 0 1 -1 (J ′ (t) + ∂ y ρ(t, y)) 2 ρ(t, y)[1 -ρ(t, y)] dy dt. (1.3)
See section 4 for a precise statement. Notice that J(t) is space constant: in the quasi static limit the total current must be homogeneous in space. Notice also that I does not depend on the initial configuration. We also prove that I statisfies the fluctuation relation

I(J, ρ) -I(-J, ρ) = T 0 J ′ (t)(z + (t) -z -(t))dt, (1.4) 
where z ± (t) = log ρ ± (t) 1-ρ ± (t) . There are two interesting consequences of (1.4): the first one is that the difference I(J, ρ) -I(-J, ρ) does not depend on ρ (as long as ρ satisfy the boundary conditions). The other is that, since I( J, ρ) = 0,

I(-J , ρ) = T 0 1 2 [ρ + (t) -ρ -(t)](z + (t) -z -(t)) dt = 1 2 T 0 [H(ρ + (t), ρ -(t)) + H(ρ -(t), ρ + (t))] dt,
where

H(ρ, ν) = ρ log ρ ν + (1 -ρ) log 1-ρ 1-ν .
Thus the cost to invert the Fick's law is explicetely computable in terms of the boundary conditions.

The formula (1.3) looks similar to the fundamental formula of the Macroscopic Fluctuation Theory [START_REF] Bertini | Macroscopic current fluctuations in stochastic lattice gases[END_REF] [3], but differs in some important points. In the usual hydrodynamic scaling, i.e. for α = 0, the probability to observe a density profile ρ(t, y) (satisfying the boundary conditions ρ(t, ±1) = ρ ± (t)) and a current field J(t, y), which must be related by the conservation law ∂ t ρ(t, y) = -∂ y ∂ t J(t, y), behaves like e -N I 0 (J,ρ) with

I 0 (J, ρ) = 1 4 T 0 1 -1 (∂ t J(t, y) + ∂ y ρ(t, y)) 2 ρ(t, y)[1 -ρ(t, y)] dy dt+ 1 -1
H(ρ(0, y), ν 0 (y))dy.

(1.5)

The second term on the right hand side of (1.5) is due to the large deviations of the initial profile, if the initial distribution of the process is an inhomodeneous Bernoulli distribution with ν 0 (y) as macroscopic profile of density.

Formula (1.5) appears first in [START_REF] Bertini | Macroscopic current fluctuations in stochastic lattice gases[END_REF], while a time homogeneous version was previously introduced in [START_REF] Bodineau | Current Fluctuations in Nonequilibrium Diffusive Systems: An Additivity Principle[END_REF]. More precisely, in the case ρ ± constant in time and α = 0, the probability to observe a total and time averaged current

Q(T ) T = 1 T 1 -1 J(T, y)dy = 2q behaves like e -N T I BD (q) with I BD (q, ρ + , ρ -) = inf ρ(•):ρ(±1)=ρ ± 1 4 1 -1 (q + ρ ′ (y)) 2 ρ(y)[1 -ρ(y)] dy (1.6)
In [START_REF] Bodineau | Current Fluctuations in Nonequilibrium Diffusive Systems: An Additivity Principle[END_REF] such large deviations behaviour is obtained under the assumption that the optimal density profile to obtain the total current q is independent of time. This is true in the symmetric simple exclusion case but not in all dynamics, and the existence of time dependent optimal profile is related to the existence of dynamical phase transitions (cf. [2] [7]). Notice that if we look at the large deviation such that ∂ t J(t, y) = 2q (for all t and y), then the minimizing density must satisfy the continuity equation and consequently it is constant in time.

For these space-homogeneous deviations of the current field, I BD gives the right rate function.

In the quasistatic case, α > 0, the current field J(t, y) has to be constant in y: we cannot have large deviations where the intensity of the current is not constant in space, see (2.10). Consequently there is no continuity equation to be satisfied between J(t) and ρ(t, y).

This gives a direct connection with the Bodineau-Derrida functional I BD : minimising the rate function I(J, ρ) defined in (1.3) over ρ(t, y) in order to obtain the large deviation in the quasistatic limit of the current J we have (cf. (3.28) at the end of section 3)

I(J) = T 0 I BD (J ′ (t), ρ + (t), ρ -(t)) dt.
(1.7)

For simplicity we have restricted our attention to the symmetric simple exclusion, but in principle the result can be extended to other dynamics (like weakly asymmetric exclusion, zero range, KMP models etc.). Since in the symmetric simple exclusion I BD (J) is convex, we do not expect in the quasi static case the existence of dynamical phase transitions (cf. [START_REF] Bertini | Macroscopic current fluctuations in stochastic lattice gases[END_REF], [START_REF] Bertini | Non Equilibrium Current Fluctuations in Stochastic Lattice Gases[END_REF]). In the other dynamics this remain an interesting question to be investigated.

The main scheme of the proof goes along the lines of [START_REF] Kipnis | Hydrodynamics and large deviation for simple exclusion processes[END_REF] and [START_REF] Bertini | Dynamical large deviations for the boundary driven weakly asymmetric exclusion process[END_REF], but with the further feature of controlling also the deviations of the current. Using a variational characterization of I, for deviations such that I(J, ρ) < +∞, it is possible to find suitable regular approximations J ε and ρ ε such that I(J ε , ρ ε ) → I(J, ρ). For regular J, ρ, it is possible to construct the weakly asymmetric exclusion dynamics as described above such that the corresponding quasi-static limit is given by J and ρ and whose relative entropy with respect to the original process converges to I(J, ρ). This takes care of the lower bound. For the upper bound we use suitable exponential martingales that control also the current, and a superexponential estimate adapted from the original idea in [START_REF] Kipnis | Hydrodynamics and large deviation for simple exclusion processes[END_REF].

Simple exclusion with boundaries

We consider the exclusion process in {0, 1} Λ N , Λ N := {-N, .., N} with reservoirs at the boundaries with density ρ ± (t) ∈ [a, 1a] for some a > 0. We assume that ρ ± (t) ∈ C 1 .

Denoting by η(x) ∈ {0, 1} the occupation number at x ∈ Λ N we define the dynamics via the generator

L N,t = N 2+α [L exc + L b,t ], t ≥ 0, α > 0 (2.1)
where for a given γ > 0, y) is the configuration obtained from η by exchanging the occupation numbers at x and y, and

L exc f (η) = γ N -1 x=-N f (η (x,x+1) ) -f (η) =: N -1 x=-N ∇ x,x+1 f (η) (2.2) η (x,
L b,t f (η) = =± ρ  (t) 1-η(N ) (1 -ρ  (t)) η(N ) [f (η N ) -f (η)] (2.3) 
where η x (x) = 1η(x), and η x (y) = η(y) for x = y. We recall the quasi-static hydrodynamic limit proven in [START_REF] Masi | Quasi Static Hydrodynamic Limits[END_REF]:

Theorem 2.1. For any α > 0 and for any macroscopic time t > 0 the following holds. For any initial configuration η 0 , for any y ∈ [-1, 1] and for any local function ϕ

lim N →∞ E η 0 θ [N y] ϕ(η t ) =< ϕ(η) > ρ(y,t) =: φ(ρ(y, t)) (2.4)
where [•] denotes integer part, θ is the shift operator, < • > ρ is the expectation with respect to the product Bernoulli measure of density ρ, and

ρ(y, t) = 1 2 [ρ + (t) -ρ -(t)]y + 1 2 [ρ + (t) + ρ -(t)] , y ∈ [-1, 1] (2.5)
is the quasi-static profile of density at time t. In particular for any t > 0 and any y ∈

[-1, 1] lim N →∞ E η 0 η t ([Ny]) = ρ(y, t) (2.6) 
In the following we will use the notation

φ(ρ) = ρ(1 -ρ). (2.7)
Define the following counting processes:

for x = -N -1, . . . , N h + (t, x) = {number of jumps x → x + 1 up to time t}, h -(t, x) = {number of jumps x + 1 → x up to time t}, h(t, x) = h + (t, x) -h -(t, x) (2.8) When x = -N -1 the corresponding h + (t, -N -1)
is the number of particles that enters on the left boundary, and h + (t, N) is the number of particles that exit at the right boundary.

The conservation law is microscopically given by the relation

η t (x) -η 0 (x) = h(t, x -1) -h(t, x), x = -N, . . . , N (2.9) 
Furthermore we have that for x = -N, . . . , N -1:

h(t, x) = γN 2+α t 0 (η s (x) -η s (x + 1)) ds + M(t)
where

M(t) is a martingale. For y ∈ [-1, 1], define h N (t, y) = 1 N 1+α h(t, [Ny]).
Notice that, for any x, x ′ ∈ {-N, . . . , N}, by (2.9) we must have

|h(t, x) -h(t, x ′ )| ≤ 2N, that implies |h N (t, y) -h N (t, y ′ )| ≤ 2 N α , ∀y, y ′ ∈ [-1, 1]. (2.10) It follows that 1 N 1+α E η 0 h(t, x) = 1 N 1+α 1 2N E η 0 N -1 x ′ =-N h(t, x ′ ) + O(N -α ) = 1 N 1+α 1 2N E η 0 γN 2+α t 0 N -1 x ′ =-N (η s (x ′ ) -η s (x ′ + 1)) + O(N -α ) = γ 2 E η 0 t 0 (η s (-N) -η s (N)) ds + O(N -α ) Thus from (2.6) lim N →∞ E η 0 h N (t, y) = h(t) := - γ 2 t 0 [ρ + (s) -ρ -(s)]ds. (2.11)
Observe that the total current depends on γ while the quasi-static profile does not. In the sequel we will set γ = 1.

The rate function

We denote by

M = {ρ(t, y) measurable, t ∈ [0, T ], y ∈ [-1, 1], 0 ≤ ρ(t, y) ≤ 1}.
We endow M of the weak topology, i.e. for any continuous function

G ∈ C ([0, T ] × [-1, 1]), ρ → T 0 dt 1 -1 dyρ(t, y)G(t, y) is continuous on M. Note that M is compact under this topology. Let ρ(t, y) ∈ M and J(t) ∈ D ([0, T ], R), with J(0) = 0.
The rate function is defined by:

I(J, ρ) = sup H∈C 1,2 ([0,T ]×[-1,1]), H(•,-1)=0 L(H; J, ρ)- T 0 dt 1 -1 dy (∂ y H(t, y)) 2 φ(ρ(t, y)) (3.1) 
where

L(H; J, ρ) := H(1, T )J(T ) + T 0 dt -∂ t H(t, 1)J(t) - 1 -1
∂ yy H(t, y)ρ(t, y)dy

+ (∂ y H(t, 1)ρ + (t) -∂ y H(t, -1)ρ -(t)) (3.2)
Observe that if ∂ y ρ and J ′ exist and are regular enough and ρ(t, ±1) = ρ ± (t), then I(J, ρ) is given by

I(J, ρ) = 1 4 T 0 1 -1 (J ′ (t) + ∂ y ρ(t, y)) 2 φ(ρ(t, y)) dy dt, (3.3) 
and the maximum is reached on the function

H(t, y) = 1 2 y -1 J ′ (t) + ∂ y ρ(t, y ′ ) φ(ρ(t, y ′ )) dy ′ . (3.4) 
Define

H + = clos H(t, y) ∈ C 1,2 ([0, T ] × [-1, 1]), H(•, -1) = 0 : H 2 ρ,+ = T 0 dt 1 -1 dy (∂ y H(t, y)) 2 φ(ρ(t, y)) < +∞ .
and the dual space

H -= clos H(t, y) ∈ C 1,2 ([0, T ] × [-1, 1]) : H 2 ρ,-= T 0 dt 1 -1 dy (∂ y H(t, y)) 2 φ(ρ(t, y)) -1 < +∞ . Proposition 3.1. If I(J, ρ) < ∞ then the weak derivatives J ′ (t) and ∂ y ρ(t, y) exists in H -and ρ(t, ±1) = ρ ± (t), furthermore I(J, ρ) = 1 4 T 0 1 -1 (J ′ (t) + ∂ y ρ(t, y)) 2 φ(ρ(t, y)) dy dt. (3.5)
Proof. Choose H(t, y) = z(t)(1 + y) for a given smooth function z(t) on [0, T ] in the variational formula (3.1). Then defining

Q(J, ρ) = sup z∈C 1 ([0,T ]) 2z(T )J(T ) - T 0 (2z ′ (t)J(t)dt + z(t)(ρ + (t) -ρ -(t))) - T 0 z(t) 2 1 -1 φ(ρ(t, y))dy := sup z L(J, z) - T 0 dt z(t) 2 1 -1
φ(ρ(t, y))dy

(3.6)
we have that Q(J, ρ) ≤ I(J, ρ) < +∞. It follows that

| L(J, z)| 2 ≤ 4Q(J, ρ) T 0 dt z(t) 2 1 -1 φ(ρ(t, y))dy.
This means that z → L(J, z) is a bounded linear functional on the Hilbert space N + , where

N ± = clos z ∈ C 1 ([0, T ]) : z 2 = T 0 z(t) 2 φ(t) ±1 dt where φ(t) = 1 -1 φ(ρ(t, y))dy. Applying Riesz representation theorem, there exists a function g(t) ∈ N + such that L(J, z) = T 0 g(t)z(t) φ(t)dt.
This implies the existence of the weak derivative

J ′ (t) such that 2J ′ (t)+ (ρ + (t) -ρ -(t)) ∈ N -. Furthermore g(t) φ(t) = 2J ′ (t) + (ρ + (t) -ρ -(t)) and Q(J, ρ) = 1 4 T 0 [2J ′ (t) + (ρ + (t) -ρ -(t))] 2 φ(t) -1 dt. (3.7)
The linear functional L(H; J, ρ) defined in (3.2) is bounded by

|L(H; J, ρ)| 2 ≤ 4I(J, ρ) T 0 dt 1 -1 dy (∂ y H(t, y)) 2 φ(ρ(t, y)), (3.8) 
and it can be extended to a bounded linear functional on H + . By Riesz representation there exists a function G ∈ H + such that

L(H; J, ρ) = T 0 dt 1 -1 dy ∂ y H(t, y)∂ y G(t, y) φ(ρ(t, y)). (3.9) 
Since we have already proven that I(J, ρ) < +∞ implies the existence of the weak derivative J ′ (t) ∈ N -, we can rewrite the variational formula (3.1) as

I(J, ρ) = + ∞ if J(t) is not differentiable. I(J, ρ) = sup H∈C 1,2 ([0,T ]×[-1,1]), H(•,-1)=0 T 0 dtH(t, 1)J ′ (t) + T 0 dt (∂ y H(t, 1)ρ + (t) -∂ y H(t, -1)ρ -(t)) - T 0 dt 1 -1 dy ∂ yy H(t, y)ρ(t, y) + (∂ y H(t, y)) 2 φ(ρ(t, y)) = sup H L(H; J, ρ) - T 0 dt 1 -1 dy (∂ y H(t, y)) 2 φ(ρ(t, y)) . (3.10) 
Notice that we can rewrite

L(H; J, ρ) = - T 0 dt 1 -1 ∂ yy H(t, y) (J ′ (t)y + ρ(t, y)) dy +∂ y H(t, 1) ρ + (t) + J ′ (t) -∂ y H(t, -1) ρ -(t) -J ′ (t)
Let us first show that I(J, ρ) < ∞ implies that ρ(t, ±1) = ρ ± (t), in the sense that, for any continuous function g(t) on [0, T ],

lim δ→0 1 δ T 0 dt -1+δ -1 dyρ(t, y)g(t) = T 0 ρ -(t)g(t)dt, lim δ→0 1 δ T 0 dt 1 1-δ dyρ(t, y)g(t) = T 0 ρ + (t)g(t)dt.
In fact assume that these boundary conditions are not satisfied, and choose the functions H(s, y) such that

∂ y H(t, y) = A 1 - 1 -y δ 1 [1-δ,1] (y)g(t)
This function is not smooth, but it can smoothened up by some convolution without changing the argument. On this function we have

L(H; J, ρ) = - A δ T 0 dt g(t) 1 1-δ dy (J ′ (t)y + ρ(t, y)) + A T 0 g(t) ρ + (t) + J ′ (t) dt = 1 2 Aδ T 0 g(t)J ′ (t)dt -A T 0 dtg(t) δ -1 1 1-δ dy ρ(t, y) -ρ + (t)
while we have

T 0 dt 1 -1 dy (∂ y H(t, y)) 2 φ(ρ(t, y)) = A 2 T 0 dt g(t) 2 1 1-δ dy 1 - 1 -y δ 2 φ(ρ(t, y)) ≤ CA 2 T δ. (3.11) 
Then if the boundary condition in y = 1 is not satisfied, one can construct a sequence of functions H such that I(J, ρ) = +∞. The other side is treated in a similar way. Thus I(J, ρ) < ∞ implies that the boundary conditions must be satisfied and that there exist the weak derivative ∂ x ρ(t, x) and from (3.9) we can identify

∂ x G(t, x)φ(ρ(t, x)) = J ′ (t) + ∂ x ρ(t, x).
Notice that, from this identification we can rewrite I as

I(J, ρ) = 1 4 T 0 1 -1 J ′ (t) 2 + ∂ y ρ(t, y) 2 φ(ρ(t, y)) dy dt + 1 2 T 0 J ′ (t) log ρ + (t)(1 -ρ -(t)) ρ -(t)(1 -ρ + (t)) dt (3.12)
that proves that J and ρ are in H -, since ρ ± (t) are assumed bounded away from 0 and 1.

Proposition 3.2. If I(J, ρ) < ∞, there exists an approximation by bounded functions J ε (t) and x-smooth ρ ε (t, x) of J and ρ, such that ρ ε (t, ±1) = ρ ± (t) and

lim ε→0 I(J ε , ρ ε ) = I(J, ρ). (3.13)
Proof. We follow a similar argument used in [START_REF] Bertini | Dynamical large deviations for the boundary driven weakly asymmetric exclusion process[END_REF].

We proceed in two steps. We first define an approximation ρε (t, x) bounded away from 0 and 1 such that φ(ρ ε (t, x)) ≥ Cε 2 and I(J, ρε ) -→ I(J, ρ). Then assuming that φ(ρ(t, x)) ≥ a > 0, we construct a smooth approximation ρ ε (t, x) such that I(J, ρ ε ) -→ I(J, ρ). The conclusion follows then by a diagonal argument.

For the first step, define (recall (2.5))

ρε (t, x) = (1 -ε)ρ(t, x) + ερ(t, x). (3.14) 
Notice that ρε (t, ±1) = ρ ± (t) and

φ(ρ ε (t, x)) ≥ ε 2 (ρ -(t) ∧ ρ + (t)) (1 -(ρ -(t) ∨ ρ + (t))) .
Notice that I(J, ρ) is convex and lower semicontinuous in ρ since it is a sup of continuous and convex functions of ρ. Consequently we have

I(J, ρε ) ≤ (1 -ε)I(J, ρ) + εI(J, ρ) -→ ε→0 I(J, ρ), (3.15) 
while by lower semicontinuity

lim inf ε→0 I(J, ρε ) ≥ I(J, ρ), (3.16) 
that concludes the first approximation step. Now assuming that φ(ρ(t, x)) ≥ φ(a) > 0, i.e. a < ρ(t, x) < 1a, we construct a smooth approximation ρ ε (t, x) such that

ρ ε (t, x) -→ ε→0 ρ(t, y), ρ ε (t, ±1) = ρ ± (t).
and such that I(J, ρ ε ) -→ I(J, ρ). Let ∆ D be the laplacian on [-1, 1] with Dirichlet boundary conditions, and

R D ε (x, y) = (I -ε∆ D ) -1 (x, y). Then define ρ ε (t, x) = ρ(t, x) + 1 -1 R D ε (x, y) (ρ(t, y) -ρ(t, y)) dy. (3.17)
We next prove that there exist a * > 0 such that

φ(ρ ε (t, x)) ≥ φ(a * ). ( 3 

.18)

In fact notice that 0 ≤ ρ(t, x) -

1 -1 R D ε (x, y)ρ(t, y)dy ≤ 1, that implies ρ ε (t, x) ≥ 1 -1 R D ε (x, y)ρ(t, y)dy ≥ a 1 -1 R D ε (x, y)dy ≥ a ′ ,
for some positive a ′ < a.

Similarly we have

1 -ρ ε (t, x) = 1 -ρ(t, x) - 1 -1 R D ε (x, y)(1 -ρ(t, y)dy + 1 -1 R D ε (x, y)(1 -ρ(t, y))dy ≥ 1 -1 R D ε (x, y)(1 -ρ(t, y))dy ≥ (1 -a) 1 -1 R D ε (x, y)dy ≥ (1 -a ′′ ).
Then choosing a * = a ′ ∧ a ′′ we obtain (3.18). Since ρ ε is smooth, by (3.5), we have: y) the resolvent for the laplacian with Neumann boundary conditions, then we have the property that

I(J, ρ ε ) = 1 4 T 0 dt 1 -1 dy (J ′ (t) + ∂ y ρ ε (t, y)) 2 φ(ρ ε (t, y)) -1 (3.19) Let R N ε (x, y) = (I -ε∆ N ) -1 (x,
∂ x R D ε (x, y) = -∂ y R N ε (x, y), (3.20) 
that implies

∂ x ρ ε (t, x) = 1 -1 R N ε (x, y)∂ y ρ(t, y)dy := (R N ε ∂ y ρ)(t, x), (3.21) 
because R N ε (x, y) is a probability kernel: y) ≤ 1 and symmetric, by convexity we have

1 -1 R N ε (x, y)dy = 1. Since R N ε (x,
(J ′ (t) + ∂ y ρ ε (t, y)) 2 ≤ 1 -1 R N ε (x, y) (J ′ (t) + ∂ x ρ(t, x)) 2 dx ≤ 1 -1 (J ′ (t) + ∂ x ρ(t, x)) 2 dx ≤ I(J, ρ) (3.22)
Then we have (J

′ (t) + ∂ y ρ ε (t, y)) 2 φ(ρ ε (t, y)) ≤ 1 φ(a * ) I(J, ρ) (3.23) 
Then by dominated convergence we have

lim ε→0 I(J, ρ ε ) = I(J, ρ).
It remains to prove the J ′ approximation by bounded functions. Let us define

J k (t) = t 0 J ′ (s) ∧ k ∨ (-k) ds (3.24)
and let us assume that ρ(t, x) is smooth in x and bounded away from 0 and 1. Then it is clear that

(J ′ (t) ∧ k ∨ (-k) + ∂ y ρ(t, y)) 2 φ(ρ(t, y))
is not decreasing in k for k large enough. Then by monotone convergence I(J k , ρ) → I(J, ρ).

Notice that the minimum of I(J, ρ) is correctly achieved for

J ′ (t) = J′ (t) = -1 2 [ρ + (t) -ρ -(t)
] and ρ(t, y) = ρ(t, y). Furthermore, from (3.12), we have that for any given ρ, I(J, ρ) is a quadratic function of J ′ . In particular we have the following Gallavotti-Cohen type of symmetry:

I(-J, ρ) = I(J, ρ) - T 0 J ′ (t) log ρ + (t)(1 -ρ -(t)) ρ -(t)(1 -ρ + (t)) dt, (3.25) 
The rate function for h N alone is obtained, by contraction principle (cf. [START_REF] Varadhan | Large Deviations and Applications[END_REF]), minimizing over all possible ρ satisfying the given boundary conditions:

I(J) = inf ρ(t,y):ρ(t,±1)=ρ ± (t) I(J, ρ), (3.26) 
and also satisfy the symmetry relation

I(-J) = I(J) - T 0 J ′ (t) log ρ + (t)(1 -ρ -(t)) ρ -(t)(1 -ρ + (t)) dt. (3.27) 
Since in (3.12) there is no relation between J(t) and ρ(t, y), it is possible to exchange the inf ρ with the time integral and obtain

I(J) = T 0 dt inf ρ(y):ρ(±1)=ρ ± (t) 1 -1 (J ′ (t) + ρ ′ (y)) 2 φ(ρ(y)) dy, (3.28) 
that proves (1.7).

The Large Deviation Theorem

Let us define the empirical density profile

π N (t, y) = N -1 x=-N η x (t)1 [x,x+1) (Ny), y ∈ [-1, 1] (4.1)
that has values on M, so that the couple (h 

N (1), π N ) has values on Ξ = D ([0, T ], R) × M.
N →∞ 1 N 1+α log P η ((h N (1), π N ) ∈ C) ≤ -inf (J,ρ)∈C I(J, ρ), (4.2) 
• For any open set O ⊂ Ξ lim inf

N →∞ 1 N 1+α log P η ((h N (1), π N ) ∈ O) ≥ -inf (J,ρ)∈O I(J, ρ), (4.3) 

The superexponential estimate

One of the main steps in the proof of Theorem 4.1 is a superexponential estimate which allows the replacement of local functions by functionals of the empirical density. Define

V N,ε (t, η) = N -1 x=-N G(t, x/N) (η(x)(1 -η(x + 1)) -φ(η N,ε (x/N))) (5.1)
The local averages are defined in the bulk as

ηN,ε (x/N) = 1 2Nε + 1 |x ′ -x|≤εN η(x ′ ), |x| < N(1 -ε), (5.2) 
and at the boundaries as ηN,ε (

x/N) = ρ + (t) x ≥ N(1 -ε), ηN,ε (x/N) = ρ -(t) x ≤ -N(1 -ε). (5.3) 
Notice that V N,ε (t, η) depends on t not only by the function G(t, y) but also by the special definition (5.3).

In the following we use as reference measures the inhomogeneous product measures

µ t (η) = N x=-N ρ x N , t η(x) 1 -ρ x N , t 1-η(x)
.

(5.4)

Observe that, since ρ ± (t) are uniformly away from 0 and 1, there is C > 0 so that sup

t sup η µ t (η) ≥ e -CN .
(5.5) Proposition 5.1. For any δ > 0 and initial configuration η

lim ε→0 lim sup N →∞ 1 N 1+α log P η T 0 V N,ε (t, η t )dt ≥ Nδ = -∞. (5.6)
Proof. By (5.5), it is enough to prove (5.6) for the dynamics with initial distribution given by µ 0 . By exponential Tchebychev inequality we have for any a > 0:

P µ 0 T 0 V N,ε (t, η t )dt ≥ Nδ ≤ e -N 1+α δa E µ 0 e aN α | T 0 V N,ε (t,ηt)dt|
By using that e |x| ≤ e x + e -x , all we need to prove is that there exists K < +∞ such that for all a ∈ R lim sup ε→0 lim sup

N →∞ 1 N 1+α log E µ 0 e N α T 0 aV N,ε (t,ηt)dt ≤ KT
To simplify notations, denote Ṽ (t, η) = N α aV N,ε (t, η). Consider the equation 

∂ s u(η, s) = L N,T -s u(η, s)+ Ṽ (T -s, η)u(η, s), u(η, 0) = 1, 0 ≤ s ≤ T. ( 5 
1 2 η u(η, s) 2 µ T (η) = 1 2 η u(η, s) 2 dµ T -s (η) ds + η u(η, s)L N,T -s u(η, s) + Ṽ (T -s, η)u 2 (η, s) µ T -s (η) (5.9)
and, since dµ T -s (η) ds ≤ CNµ T -s (η), this is bounded by

≤ (CN + Γ(s)) η u(η, s) 2 µ T -s (η),
where, setting

f 2 s = η f (η) 2 µ T -s (η), Γ(s) = sup f, f s=1 η Ṽ (T -s, η)f 2 (η)µ T -s (η) + η f (η)L N,T -s f (η)µ T -s (η) .
(5.10) By Gronwall inequality and (5.9) we have

η u(η, T ) 2 µ 0 (η) ≤ e 2 T 0 Γ(s)ds+T CN η u(η, 0) 2 µ T (η) = e 2 T 0 Γ(t)dt+T CN .
(5.11) Then using Schwarz inequality we get

E µ 0 e T 0 Ṽ (η(t))dt ≤ e T 0 Γ(t)dt+T CN .
(5.12)

The Dirichlet forms associated to the generator are

D x,t,ρ (f ) = 1 2 η ρ 1-η(x) (1 -ρ) η(x) [f (η x ) -f (η)] 2 µ t (η), x = ±N D ex,t (f ) = 1 2 η N -1 x=-N (∇ x,x+1 f (η)) 2 µ t (η) (5.13)
and we define

D t (f ) = D -N,t,ρ -(t) (f ) + D N,t,ρ + (t) (f ) + D ex,t (f ). 
Observe that

η f (η)(L N,t f )(η)µ t (η) = - 1 2 N 2+α η N -1 x=-N ∇ x,x+1 f (η)∇ x,x+1 (f µ t )(η) -N 2+α D N,t,ρ + (t) (f ) + D -N,t,ρ -(t) (f ) (5.14) and η 
N -1 x=-N ∇ x,x+1 f (η)∇ x,x+1 (f µ t )(η) = η N -1 x=-N (∇ x,x+1 f ) 2 µ t (η) + η N -1 x=-N f (η x,x+1 )∇ x,x+1 f (η)∇ x,x+1 µ t (η) = 2D ex,t (f ) + 1 N BN (t) + O(N -1 ) (5.15) 
where

BN (t) = η N -1 x=-N f (η x,x+1 )∇ x,x+1 f (η) (η(x) -η(x + 1)) B( x N , t)µ t (η)
and

B( x N , t) = ρ′ ( x N , t) ρ( x N , t)(1 -ρ( x N , t)) , B ∞ ≤ c ρ ′ ∞ (5.16)
where c > 0 since ρ ± (t) are uniformly away from 0 and 1. By an elementary inequality we have:

BN (t) ≤ N 2 D ex,t (f ) + 2 2N η N -1 x=-N f (η x,x+1 ) 2 (η(x) -η(x + 1)) 2 B( x N , t) 2 µ t (η) ≤ N 2 D ex,t (f ) + 1 N N -1 x=-N B( x N , t) 2 η f 2 (η)µ t (η x,x+1 )
Since µ t (η x,x+1 ) = F (x, t)µ t (η) with F (x, t) a uniformly bounded function of ρ( x N , t) and ρ( x+1 N , t) and η, using (5.16) we get

BN (t) ≤ N 2 D ex (f ) + C ≤ N 2 D t (f ) + C (5.17)
From (5.14), (5.15) and (5.17) we get

Γ(s) ≤ sup f N α a η V N,ε (T -s, η)f 2 (η)µ T -s (η) -N 2+α 1 2 D T -s (f ) + N 1+α C ≤ N 1+α sup f a N η V N,ε (T -s, η)f 2 (η)µ T -s (η) -N 1 2 D T -s (f ) + N 1+α C (5.18)
Then we are left to prove that for any a and any t > 0:

lim sup ε→0 lim sup N →∞ sup f 1 N η aV N,ε (t, η)f 2 (η)µ t (η) - N 2 D t (f ) ≤ C ′ (5.19) 
This follows by proving that, for a suitable constant C lim sup ε→0 lim sup

N →∞ sup Dt(f )≤CN -1 1 N η V N,ε (t, η)f 2 (η)µ t (η) ≤ 0 (5.20)
The rest of the proof is identical as in theorem 3.1 in [START_REF] Masi | Quasi Static Hydrodynamic Limits[END_REF] (see pages 1051-2).

With a similar argument follows also the super-exponential control of the densities at the boundaries: Proposition 5.2. For any δ > 0 we have

lim sup ε→0 lim sup N →∞ 1 N 1+α log P η   T 0 1 εN ±N (1∓ε) x=±N η t (x) -ρ ± (t) ≥ δ   = -∞ (5.21)

The exponential martingales

We use the following notations: for x = -N, . . . , N -1 (6.1) and at the boundaries

φ -(η, x) = η(x + 1)(1 -η(x)), φ + (η, x) = η(x)(1 -η(x + 1)),
φ -(η, -N -1, t) := (1 -ρ -(t))η(-N) φ + (η, -N -1, t) := ρ -(t))(1 -η(-N)) φ -(η, N, t) := ρ + (t)(1 -η(N)) φ + (η, N, t) := (1 -ρ + (t))η(N). (6.2) 
Given two functions z ± (t, y), we associate the following exponential martingales, for x = -N -1, . . . , N

E ± (z ± , x, T ) = exp T 0 z ± (t, x/N) dh ± (t, x) - T 0 N 2+α e z ± (t,x/N ) -1 φ ± (η t , x) dt = exp z ± (T, x/N) h ± (T, x) - T 0 ∂ t z ± (t, x/N)h ± (t, x) + N 2+α e z ± (t,x/N ) -1 φ ± (η t , x) dt (6.3)
We now choose a smooth function H(t, y), y ∈ [-1, 1] such that H(t, -1) = 0 and we set z + (t, y) = H(t, y + 1/N) -H(t, y) = -z -(t, y), -1 ≤ y ≤ 1 -1/N (6.4) and at the boundaries

z + (t, -1 -1/N) := 1 N ∂ y H(t, -1), z + (t, 1) := 1 N ∂ y H(t, 1 
). (6.5)

The martingales defined by (6.3) are orthogonal, consequently taking the product we still have an exponential martingale equal to

N x=-N -1 σ=± E σ (z σ , x, T ) = exp N x=-N -1 z + (T, x/N) h(T, x) - T 0 ∂ t z + (t, x/N)h(t, x)dt -N 2+α T 0 e z + (t,x/N ) -1 φ + (η t , x) + e -z + (t,x/N ) -1 φ -(η t , x) dt (6.6)
For large N we use Taylor approximation, for x = -N, . . . , N -1,

e z + (t,x/N ) -1 φ + (η t , x) + e -z + (t,x/N ) -1 φ -(η t , x) = -z + (t, x/N) (η t (x + 1) -η t (x)) + 1 2 z + (t, x/N) 2 (φ + (η t , x) + φ -(η t , x)) + O(z + (t, x/N) 3 ).
and on the boundaries

e z + (t,-1-1/N ) -1 φ + (η t , -N -1, t) + e -z + (t,-1-1/N ) -1 φ -(η t , -N -1, t) = -z + (t, -1 -1/N) (η t (-N) -ρ -(t)) + 1 2 z + (t, -1 -1/N) 2 (φ + (η t , -N -1, t) + φ -(η t , -N -1, t)) + O(z + (t, -1 -1/N) 3 ). e z + (t,1) -1 φ + (η t , N) + e -z + (t,1) -1 φ -(η t , N) = -z + (t, 1) (ρ + (t) -η(t, N)) + 1 2 z + (t, 1) 2 (φ + (η t , N) + φ -(η t , N)) + O(z + (t, 1) 3 ).
We can rewrite the exponential martingale (6.6) as

N x=-N -1 σ=± E σ (z σ , x, T ) = exp N x=-N -1 z + (T, x/N) h(T, x) - T 0 ∂ t z + (t, x/N)h(t, x)dt + N 2+α T 0 N x=-N -1 z + (t, x/N) (η t (x + 1) -η t (x)) - 1 2 z + (t, x/N) 2 (φ + (η t , x) + φ -(η t , x)) dt + O(N α ) (6.7)
where in the above expression we set the convention η t (N + 1) := ρ + (t) and η t (-N -1) := ρ -(t). After a summation by parts we have exp

N x=-N -1 z + (T, x/N) h(T, x) - T 0 ∂ t z + (t, x/N)h(t, x)dt + N 2+α T 0 N x=-N z + (t, x -1 N ) -z + (t, x N ) η t (x) - 1 2 z + (t, x/N) 2 (φ + (η t , x) + φ -(η t , x)) dt + N 2+α T 0 (z + (t, 1)ρ + (t) -z + (t, -1 -1/N)ρ -(t)) dt + O(N α ) (6.8)
Using (2.9) and the special expression for z + , we have for the logarithm of (6.8)

N x=-N H(T, x/N) [η T (x) -η 0 (x)] + H(T, 1) + 1 N ∂ y H(t, 1) h(T, N) + 1 N ∂ y H(T, -1)h(T, -N -1) - T 0 N x=-N ∂ t H(t, x/N)[η t (x) -η 0 (x)]dt - T 0 ∂ t H(t, 1) + 1 N ∂ t ∂ y H(t, 1) h(t, N) + 1 N ∂ t ∂ y H(t, -1)h(t, -N -1) dt -N α T 0 N x=-N -1 ∂ yy H(t, x N )η t (x) + 1 2 ∂ y H(t, x N ) 2 (φ + (η t , x) + φ -(η t , x)) +N [∂ y H(t, 1)ρ + (t) -∂ y H(t, -1)ρ -(t)] dt + O(N α )
Since we are interested only in the terms that have order N 1+α , we can forget all terms of order N in the above expression, and the exponential martingale has the form:

exp N 1+α H(T, 1)h N (T, 1) - α∧1) ) .

T 0 ∂ t H(t, 1)h N (t, 1) dt - T 0 1 N N x=-N -1 ∂ yy H(t, x N )η t (x) + ∂ y H(t, 1)ρ + (t) -∂ y H(t, -1)ρ -(t) + 1 2N N x=-N -1 ∂ y H(t, x N ) 2 (φ + (η t , x) + φ -(η t , x)) dt + O(N -(
(6.9)

After the superexponential estimate proved in the previous section, that also fix the densities at the boundaries, it follows the variational formula for the rate function given by (3.1). 

The upper bound

L in D([0, T ], R) such that lim L→∞ lim N →∞ 1 N 1+α log P η (h N (1) ∈ K c L ) = -∞. (7.1)
7.2. Proof of the upper bound. By (6.9) we can rewrite the exponential martingale defined by (6.7) as

M H N = exp N 1+α H(T, 1)h N (T, 1) - T 0 ∂ t H(t, 1)h N (t, 1) dt - T 0 1 -1 π N (t, y)∂ yy H(t, y)dy + ∂ y H(t, 1)ρ + (t) -∂ y H(t, -1)ρ -(t) + 1 2N N x=-N -1 ∂ y H(t, x N ) 2 (φ + (η t , x) + φ -(η t , x)) dt + O(N -(α∧1) ) . (7.2) 
where lim

N →∞ E Pη O(N -(α∧1) ) = 0.
After applying the superexponential estimates of section 5, we have

M H N = exp N 1+α H(T, 1)h N (T, 1) - T 0 ∂ t H(t, 1)h N (t, 1) dt - T 0 1 -1 π N (t, y)∂ yy H(t, y)dy + ∂ y H(t, 1)ρ + (t) -∂ y H(t, -1)ρ -(t) + 1 -1 (∂ y H(t, y)) 2 φ(η N,ε (t, y))dy dt + O ε,N + O(N -(α∧1) ) .
Then for every set A ⊂ Ξ we have

1 = E Pη M H N ≥ e N 1+α sup H inf (J,ρ)∈A I(H,J,ρ) P η ((h N (1), π N ) ∈ A) where I(H, J, ρ) =H(T, 1)J(T ) - T 0 ∂ t H(t, 1)J(t) dt - T 0 1 -1 ρ(t, y)∂ yy H(t, y)dy + ∂ y H(t, 1)ρ + (t) -∂ y H(t, -1)ρ -(t) + 1 -1 (∂ y H(t, y)) 2 φ(ρ(t, y))dy dt.
Using the lower semicontinuity of I(J, ρ) and a standard argument (see [START_REF] Varadhan | Large Deviations and Applications[END_REF], lemma 11.3 or [START_REF] Kipnis | Scaling Limits of Interacting Particle Systems[END_REF] lemma A2.3.3) we have for a compact set

C ⊂ Ξ: lim sup N →∞ 1 N 1+α log P η ((h N (1), π N ) ∈ C) ≤ -inf (J,ρ)∈C I(J, ρ).
The extension to closed set follows from the exponential compactness proved in (7.1), see [START_REF] Kipnis | Scaling Limits of Interacting Particle Systems[END_REF] pag.271.

The lower bound

The proof of the lower bound follows a standard argument, consequently we will only sketch it here, since all the ingredients are already proven. It is enough to prove that given (J, ρ) ∈ Ξ such that I(J, ρ) < ∞, then for any open neighbor O of it we have lim inf

N →∞ 1 N 1+α log P η ((h N (1), µ N ) ∈ O) ≥ -I(J, ρ). (8.1)
By proposition 3.2, we can assume J and ρ such that J ′ (t) exists and is bounded, ρ bounded away from 0 and 1, and ∂ y ρ(t, y) exists and is bounded. Then we consider the weakly asymmetric exclusion dynamics with drift given by

∂ y H(t, y) = 1 2 J ′ (t) + ∂ y ρ(t, y) φ(ρ(t, y)) , (8.2) 
more precisely, recalling the definition of z(t, y) given by (6.4) and (6.5), the jump rate from x to x + 1 at time t is taken to be N 2+α e z(t,x/N ) , and from x + 1 to x is given by N 2+α e -z(t,x/N ) , while at the boundaries the birth rates are given by N 2+α e 1 N ∂yH(t,±1) and the death rates by N 2+α e -1 N ∂yH(t,±1) . We call Q N the law of this weakly asymmetric process that start with the same initial condition η. The Radon-Nykodyn derivative dQ N dPη is given by (6.6).

The quasi static limit for this process is the following:

Proposition 8.1. Let QN the law on Ξ of (h N (1), π N ) under Q N , then QN -→ δ (J,ρ) (8.3)
Proof of proposition 8.1. By (9.1) we can extend the superexponential estimates contained in section 5 to Q N . In fact we have that

E Pη dQ N dP η 2 1/2 ≤ e cN 1+α
and by Schwarz inequality

Q N (A N,ε ) ≤ P η (A N,ε ) e cN 1+α
where A N,ε = { T 0 V N,ε (t, η t )dt ≥ Nδ}, and (5.6) extends immediately to Q N . At this point the proof of the quasi-static hydrodynamic limit follows similar to the one in [START_REF] Masi | Quasi Static Hydrodynamic Limits[END_REF].

We then write

P η ((h N (1), π N ) ∈ O) = E Q N dP η dQ N 1 (h N ,π N )∈O
Since O contains (J, ρ), by Proposition 8.1, under Q N the probability of the event (h N (1), π N ) ∈ O is close to one. By Jensen inequality

1 N 1+α log P η ((h N (1), π N ) ∈ O) ≥ -E Q N 1 N 1+α log dQ N dP η = - 1 N 1+α H(Q N |P η )
where H(Q N |P η ) is the relative entropy of Q N with respect to P η .

The lower bound is then a consequence of the following Proposition. The proof of proposition 8.2 is a direct consequence of (6.6) and of Proposition 8.1.

Appendix A: The exponential tightness

We prove here proposition 7.1. The arguments used here are just slight variations of the standard ones (e.g. section 10.4 in [START_REF] Kipnis | Scaling Limits of Interacting Particle Systems[END_REF]). SInce M is compact, we have only to control that the distribution of h N (1, t) is exponentially tight. This is consequence of the following 2 propositions. x h N (t, x/N) is uniformly small, we have just to prove it for hN (t). For β ∈ R, consider the exponential martingale (6.6) with z + (t, x) = β N , x = -N, . . . , N -1 and z + (t, -N -1) = 0. This is given by 

M t = exp

Theorem 4 . 1 .

 41 Under the dynamics generated by (2.1), starting with an arbitrary configuration η, the couple (h N (1), π N ) satisfy a large deviation principle with rate function I(J, ρ), i.e.• For any closed set C ⊂ Ξ lim sup

. 7 )

 7 By Feynman-Kac formula u(η, T ) = E η e T 0 Ṽ (s,ηs)ds (5.8) Then d ds

7. 1 .Proposition 7 . 1 .

 171 Exponential tightness. The following proposition uses standard arguments and we give a proof for completeness in Appendix A: There exist a sequence of compact sets K

Proposition 8 . 2 .→∞ 1 N

 821 Let H(Q N |P η ) = E Q N log dQ N dPη the relative entropy of Q N with respect to P η . Then lim N 1+α H(Q N |P η ) = I(J, ρ),(8.4)

1 N. 1 ) 9 . 2 .→∞ 1 N

 11921 1+α log P η sup 0≤t≤T |h N (t, 1)| ≥ L = -∞. (9Proposition For any ε > 0:lim δ→0 lim N 1+α log P η sup |t-s|≤δ |h N (t, 1)h N (s, 1)| ≥ ε = -∞. (9.2)Proof of Proposition 9.1 . Since the difference between h N (t, 1) and hN (t) := 1 2N

  N 1+α β hN (t) -A N (β, t)A N (β, t) =N /N -1)φ + (η s , x) + (e -β/N -1)φ -(η s , x) ds Notice that, by expanding the exponentials and using the explicit form of φ ± , we have that 0 ≤ A N (β, t) ≤ CT (|β| + β 2 ) for some constant C. Then for any β > 0 we have, by Doob's inequality,P η sup 0≤t≤T | hN (t)| ≥ L ≤ P η sup 0≤t≤T | log M t | ≥ N 1+α βL -CT (β + β 2 ) ≤ P η sup 0≤t≤T log M t ≥ N 1+α βL -CT (β + β 2 ) = P η sup 0≤t≤T M t ≥ e N 1+α (βL-CT(β+β 2 )) ≤ e -N 1+α (βL-CT(β+β 2 )) ,(9.3)that concludes the proof.Proof of Proposition 9.2 . Since sup|t-s|≤δ | hN (t) -hN (s)| ≥ ε ⊂ [T δ -1 ] k=0 sup kδ≤t≤(k+1)δ | hN (t) -hN (kδ)| ≥ ε/4 Since log P η sup |t-s|≤δ | hN (t) -hN (s)| ≥ ε ≤ max k log P η sup kδ≤t≤(k+1)δ | hN (t) -hN (kδ)| ≥ ε/4 + log([T δ -1 ])By the same estimate made in (9.3) we havelog P η sup kδ≤t≤(k+1)δ | hN (t) -hN (kδ)| ≥ ε/4 ≤ -N 1+α βε/4 -Cδ(β + β 2 )and with a proper choice of β we get the following bound with a constant C ′ independent of k:1 N 1+α log P η sup kδ≤t≤(k+1)δ | hN (t) -hN (kδ)| ≥ ε/4 ≤ -C ′ ε 2 δ .
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