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QUASI-STATIC LARGE DEVIATIONS

ANNA DE MASI AND STEFANO OLLA

Abstract. We consider the symmetric simple exclusion with open
boundaries that are incontact with particle reservoirs at different
densities. The reservoir densities changes at a slower time scale
with respect the natural time scale the system reach the station-
ary state. This gives rise to a quasi static hydrodynamic limit
proven in [6]. We study here the large deviations with respect to
this limit for the particle density field and the total current. We
identify explicitely the large deviation functional and prove that it
satisfies a fluctuation relation.

1. Introduction

In usual hydrodynamic limits it is studied the macroscopic evolu-
tion of the conserved quantities of a large microscopic system, under a
space-time scaling such that the time scale is the typical one where the
system reaches equilibrium. When the system is open and connected to
thermal or particle reservoirs, the parameters of these reservoirs give
the boundary conditions for the partial differential equations which
describe the macroscopic evolution of the conserved quantities.
When the parameters of the boundary reservoirs (for example the

particle density or the temperature) are not constant but change in time
at a scale slower than the time to relaxation at equilibrium, rescaling
the time at this slower scale give a quasi static macroscopic evolution
for the conserved quantities: at each macroscopic time the profile of
the conserved quantity is equal to the stationary one corresponding
to the given boundary condition at that time. When these stationary
profiles are of equilibrium, this limit models the thermodynamic quasi
static transformations, where the Clausius equality holds, i.e. the work
done by the boundaries.
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In [1], [11] and [10], quasi static transformations are obtained from
a time rescaling of the macroscopic diffusive equation.
In [6] we have started to analyse, for various stochastic particle sys-

tems whose macroscopic evolution is described by a diffusive equation,
the direct hydrodynamic quasi static limit by rescaling properly space
and time in the microscopic dynamics,
We study here the large deviation for one of these models, the sym-

metric simple exclusion process.
The system we consider is composed by 2N + 1 sites (denoted by

−N, . . . , N) where particles move like symmetric random walks with
exclusion. At the boundaries the system is connected to given reser-
voirs with time changing densities ρ−(t) on the left and ρ+(t) on the
right. We refer at macroscopic time scale the scale at which boundary
conditions change. The particles jumps or are created and annihilated
at the boundaries with rate of the order N2+α. When α = 0 the empir-
ical density converges , as N → ∞, to the solution of the linear heat
equation with Dirichlet slowly varying boundary conditions ρ±(t). In
the case ρ± constants the result is known since the ’80’s, [7]. As proved
in [6], when α > 0, at each time t the empirical density converges, as
N → ∞, to the solution of the stationary heat equation with boundary
conditions ρ±(t):

ρ̄(t, y) =
1

2
[ρ+(t)− ρ−(t)]y +

1

2
[ρ+(t) + ρ−(t)] , y ∈ [−1, 1] (1.1)

and a space homogeneous (time integrated) current

J̄(t, y) = −

∫ t

0

1

2
[ρ+(s)− ρ−(s)] ds. (1.2)

Thus the quasi-static limit gives the evolution of macroscopic profile,
completely driven by the boundary conditions.
In [6] it is also proven that the distribution of the process is close

to a product Bernoulli measure with parameter ρ̄(t, y). Stronger re-
sults are proved by controlling the correlation functions with the same
techniques used in [5]. First order corrections have been studied in [4].
Observe that if ρ+(t) = ρ−(t) then the above result says that the

stochastic process at any macroscopic time is close to equilibrium but
the order parameter changes in time thus performing a quasi static
transformation.
We study in this article the the joint large deviations of the density

and the current with respect to this quasi-static limit. We prove that
the probability to observe a profile of density ρ(t, y) that satisfies the
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boundary conditions ρ±(t) and a total current J(t) is asymptotically

P (ρ, J) ∼ e−N1+αI(J,ρ) where

I(J, ρ) =
1

4

∫ T

0

∫ 1

−1

(J ′(t) + ∂yρ(t, y))
2

φ(ρ(t, y))
dy dt. (1.3)

See section 4 for a precise statement. Notice that J(t) is space constant:
in the quasi static limit the total current must be homogeneous in space.
Clearly I(J̄ , ρ̄) = 0, and I statisfy the fluctuation relation

I(J, ρ)− I(−J, ρ) =

∫ T

0

J ′(t)(z+(t)− z−(t))dt, (1.4)

where z±(t) = log ρ±(t)
1−ρ±(t)

. Notice that I(−J̄ , ρ) does not depend on ρ

(as long as ρ satisfy the boundary conditions). We also prove that the
large deviations do not depend on the initial configuration.
From our analysis it follows that when imposing a smooth density

profile ρ that satisfies the boundary conditions ρ±(t) and a differen-
tiable current J(t) with bounded derivative, the “typical path” for the
process is obtained as follows. First find H(t, y) so that

∂xρ(t, x)− ρ(t, x)(1 − ρ(t, x))∂yH(t, x) = −J ′(t) (1.5)

Then the process follows a weakly asymmetric exclusion process with
asymmetry given by 1

N
∂yH( x

N
, t), see Section 8.

The main scheme of the proof goes along the lines of [9] and [2],
but with the further feature of controlling also the deviations of the
current. Using a variational characterization of I, for deviations such
that I(J, ρ) < +∞, it is possible to find suitable regular approxima-
tions Jε and ρε such that I(ρε, Jε, ρε) → I(J, ρ). For regular J, ρ, it
is possible to construct the weakly asymmetric exclusion dynamics as
described above such that the corresponding quasi-static limit is given
by J and ρ and whose relative entropy with respect to the original pro-
cess converges to I(J, ρ). This takes care of the lower bound. For the
upper bound we use suitable exponential martingales that control also
the current, and a superexponential estimate adapted from the original
idea in [9].

2. Simple exclusion with boundaries

We consider the exclusion process in {0, 1}ΛN , ΛN := {−N, .., N}
with reservoirs at the boundaries with density ρ±(t) ∈ [a, 1 − a] for
some a > 0. We assume that ρ±(t) ∈ C1.
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Denoting by η(x) ∈ {0, 1} the occupation number at x ∈ ΛN we
define the dynamics via the generator

LN,t = N2+α[Lexc + Lb,t], t ≥ 0, α > 0 (2.1)

where for a given γ > 0,

Lexcf(η) = γ

N−1
∑

x=−N

(

f(η(x,x+1))− f(η)
)

=:

N−1
∑

x=−N

∇x,x+1f(η) (2.2)

η(x,y) is the configuration obtained from η by exchanging the occupation
numbers at x and y, and

Lb,tf(η) =
∑

=±

ρ(t)
1−η(N)(1− ρ(t))

η(N)[f(ηN)− f(η)] (2.3)

where ηx(x) = 1− η(x), and ηx(y) = η(y) for x 6= y.
We recall the quasi-static hydrodynamic limit proven in [6]:

Theorem 2.1. For any α > 0 and for any macroscopic time t > 0 the

following holds. For any initial configuration η0, for any r ∈ [−1, 1]
and for any local function ϕ

lim
N→∞

Eη0

(

θ[Nr]ϕ(ηt)
)

=< ϕ(η) >ρ̄(r,t)=: ϕ̂(ρ(r, t)) (2.4)

where [·] denotes integer part, θ is the shift operator, < · >ρ is the

expectation with respect to the product Bernoulli measure of density ρ,
and

ρ̄(y, t) =
1

2
[ρ+(t)− ρ−(t)]r +

1

2
[ρ+(t) + ρ−(t)] , y ∈ [−1, 1] (2.5)

is the quasi-static profile of density at time t. In particular for any

t > 0 and any y ∈ [−1, 1]

lim
N→∞

Eη0

[

ηt([Ny])
]

= ρ̄(y, t) (2.6)

In the following we will use the notation

φ(ρ) = ρ(1− ρ). (2.7)

Define the following counting processes: for x = −N − 1, . . . , N

h+(t, x) = {number of jumps x → x+ 1 up to time t},

h−(t, x) = {number of jumps x+ 1 → x up to time t},

h(t, x) = h+(t, x)− h−(t, x)

(2.8)

When x = −N − 1 the corresponding h+(t,−N − 1) is the number of
particles that enters on the left boundary, and h+(t, N) is the number
of particles that exit at the right boundary.
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The conservation law is microscopically given by the relation

ηt(x)− η0(x) = h(t, x− 1)− h(t, x), x = −N, . . . , N (2.9)

For y ∈ [−1, 1], define

hN(t, y) =
1

N1+α
h(t, [Ny]).

Notice that, for any x, x′ ∈ {−N, . . . , N}, by (2.9) we must have
|h(t, x)− h(t, x′)| ≤ 2N , that implies

|hN(t, y)− hN(t, y
′)| ≤ (2N)−α, ∀y, y′ ∈ [−1, 1]. (2.10)

We have then

1

N1+α
Eη0

(

h(t, x)
)

=
1

N1+α

1

2N
Eη0

(

N−1
∑

x′=−N

h(t, x′)
)

+O(N−α)

=
1

N1+α

1

2N
Eη0

(

γN2+α

∫ t

0

N−1
∑

x′=−N

(ηs(x
′)− ηs(x

′ + 1))
)

+O(N−α)

=
γ

2
Eη0

(

∫ t

0

(ηs(−N)− ηs(N)) ds
)

+O(N−α)

Thus from (2.6)

lim
N→∞

Eη0

(

hN(t, y)
)

= h̄(t) := −
γ

2

∫ t

0

[ρ+(s)− ρ−(s)]ds. (2.11)

Observe that the total current depends on γ while the quasi-static
profile does not. In the sequel we will set γ = 1.

3. The rate function

We denote byM = {ρ(t, y) measurable, t ∈ [0, T ], y ∈ [−1, 1], 0 ≤ ρ(t, y) ≤ 1}.
We endow M of the weak topology, i.e. for any continuous function

G ∈ C ([0, T ]× [−1, 1]), ρ 7→
∫ T

0
dt
∫ 1

−1
dyρ(t, y)G(t, y) is continuous on

M. Note that M is compact under this topology.
Let ρ(t, y) ∈ M and J(t) ∈ D ([0, T ],R), with J(0) = 0. The rate

function is defined by:

I(J, ρ) = sup
H∈C1,2([0,T ]×[−1,1]),

H(·,−1)=0

{

L(H ; J, ρ)−

∫ T

0

dt

∫ 1

−1

dy (∂yH(t, y))2 φ(ρ(t, y))
}

(3.1)
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where

L(H ; J, ρ) := H(1, T )J(T ) +

∫ T

0

dt
(

− ∂tH(t, 1)J(t)−

∫ 1

−1

∂yyH(t, y)ρ(t, y)dy

+ (∂yH(t, 1)ρ+(t)− ∂yH(t,−1)ρ−(t))
)

(3.2)

Observe that if ∂yρ and J ′ exist and are regular enough and ρ(t,±1) =
ρ±(t), then I(J, ρ) is given by

I(J, ρ) =
1

4

∫ T

0

∫ 1

−1

(J ′(t) + ∂yρ(t, y))
2

φ(ρ(t, y))
dy dt, (3.3)

and the maximum is reached on the function

H̄(t, y) =
1

2

∫ y

−1

J ′(t) + ∂yρ(t, y
′)

φ(ρ(t, y′))
dy′. (3.4)

Define

H+ = clos
{

H(t, y) ∈ C1,2([0, T ]× [−1, 1]), H(·,−1) = 0 :

‖H‖2ρ,+ =

∫ T

0

dt

∫ 1

−1

dy (∂yH(t, y))2 φ(ρ(t, y)) < +∞
}

.

and the dual space

H− = clos
{

H(t, y) ∈ C1,2([0, T ]× [−1, 1]) :

‖H‖2ρ,− =

∫ T

0

dt

∫ 1

−1

dy (∂yH(t, y))2 φ(ρ(t, y))−1 < +∞
}

.

Proposition 3.1. If I(J, ρ) < ∞ then the weak derivatives J ′(t) and

∂yρ(t, y) exists in H− and ρ(t,±1) = ρ±(t), furthermore

I(J, ρ) =
1

4

∫ T

0

∫ 1

−1

(J ′(t) + ∂yρ(t, y))
2

φ(ρ(t, y))
dy dt. (3.5)

Proof. Choose H(t, y) = z(t)(1 + y) for a given smooth function z(t)
on [0, T ] in the variational formula (3.1). Then defining

Q(J, ρ) = sup
z∈C1([0,T ])

{

2z(T )J(T )−

∫ T

0

(2z′(t)J(t)dt + z(t)(ρ+(t)− ρ−(t)))

−

∫ T

0

z(t)2
∫ 1

−1

φ(ρ(t, y))dy
}

:= sup
z

{

L̃(J, z)−

∫ T

0

dt z(t)2
∫ 1

−1

φ(ρ(t, y))dy
}

(3.6)
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we have that Q(J, ρ) ≤ I(J, ρ) < +∞. It follows that

|L̃(J, z)|2 ≤ 2Q(J, ρ)

∫ T

0

dt z(t)2
∫ 1

−1

φ(ρ(t, y))dy.

This means that z → L̃(J, z) is a bounded linear functional on the
Hilbert space N+, where

N± = clos

{

z ∈ C1([0, T ]) : ‖z‖2 =

∫ T

0

z(t)2φ̄(t)±1dt

}

where φ̄(t) =
∫ 1

−1
φ(ρ(t, y))dy. Applying Riesz representation theorem,

there exists a function g(t) ∈ N+ such that

L̃(J, z) =

∫ T

0

g(t)z(t)φ̄(t)dt.

This implies the existence of the weak derivative J ′(t) such that 2J ′(t)+
(ρ+(t)− ρ−(t)) ∈ N−. Furthermore g(t)φ̄(t) = 2J ′(t) + (ρ+(t)− ρ−(t))
and

Q(J, ρ) =
1

4

∫ T

0

[2J ′(t) + (ρ+(t)− ρ−(t))]
2
φ̄(t)−1 dt. (3.7)

The linear functional L(H ; J, ρ) defined in (3.2) is bounded by

|L(H ; J, ρ)|2 ≤ 2I(J, ρ)

∫ T

0

dt

∫ 1

−1

dy (∂yH(t, y))2 φ(ρ(t, y)), (3.8)

and it can be extended to a bounded linear functional on H+. By Riesz
representation there exists a function G ∈ H+ such that

L(H ; J, ρ) =

∫ T

0

dt

∫ 1

−1

dy ∂yH(t, y)∂yG(t, y) φ(ρ(t, y)). (3.9)

Since we have already proven that I(J, ρ) < +∞ implies the exis-
tence of the weak derivative J ′(t) ∈ N−, we can rewrite the variational
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formula (3.1) as

I(J, ρ) = +∞ if J(t) is not differentiable.

I(J, ρ) = sup
H∈C1,2([0,T ]×[−1,1]),

H(·,−1)=0

{

∫ T

0

dtH(t, 1)J ′(t)

+

∫ T

0

dt (∂yH(t, 1)ρ+(t)− ∂yH(t,−1)ρ−(t))

−

∫ T

0

dt

∫ 1

−1

dy
[

∂yyH(t, y)ρ(t, y) + (∂yH(t, y))2 φ(ρ(t, y))
]

}

= sup
H

{

L(H ; J, ρ)−

∫ T

0

dt

∫ 1

−1

dy (∂yH(t, y))2 φ(ρ(t, y))
}

.

(3.10)

Notice that we can rewrite

L(H ; J, ρ) = −

∫ T

0

dt
[

∫ 1

−1

∂yyH(t, y) (J ′(t)y + ρ(t, y)) dy

−∂yH(t, 1)
(

ρ+(t) + J ′(t)
)

− ∂yH(t,−1)
(

ρ−(t)− J ′(t)
)

]

Let us first show that I(J, ρ) < ∞ implies that ρ(t,±1) = ρ±(t), in the
sense that, for any continuous function g(t) on [0, T ],

lim
δ→0

1

δ

∫ T

0

dt

∫ −1+δ

−1

dyρ(t, y)g(t) =

∫ T

0

ρ−(t)g(t)dt,

lim
δ→0

1

δ

∫ T

0

dt

∫ 1

1−δ

dyρ(t, y)g(t) =

∫ T

0

ρ+(t)g(t)dt.

In fact assume that these boundary conditions are not satisfied, and
choose the functions H(s, y) such that

∂yH(t, y) = A

(

1−
1− y

δ

)

1[1−δ,1](y)g(t)

This function is not smooth, but it can smoothened up by some con-
volution without changing the argument. On this function we have

L(H ; J, ρ) = −
A

δ

∫ T

0

dt g(t)

∫ 1

1−δ

dy (J ′(t)y + ρ(t, y)) + A

∫ T

0

g(t)
(

ρ+(t) + J ′(t)
)

dt

= −
1

2
Aδ

∫ T

0

g(t)J ′(t)dt−A

∫ T

0

dtg(t)

(

δ−1

∫ 1

1−δ

dy ρ(t, y)− ρ+(t)

)
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while we have
∫ T

0

dt

∫ 1

−1

dy (∂yH(t, y))2 φ(ρ(t, y))

= A2

∫ T

0

dt g(t)2
∫ 1

1−δ

dy

(

1−
1− y

δ

)2

φ(ρ(t, y))

≤ CA2Tδ.

(3.11)

Then if the boundary condition in y = 1 is not satisfied, one can
construct a sequence of functions H such that I(J, ρ) = +∞. The
other side is treated in a similar way.
Now that the boundary conditions must be satisfied, it follows from

(3.9) that I(J, ρ) < ∞ implies the existence of the weak derivative
∂xρ(t, x) such that we can identify ∂xG(t, x)φ(ρ(t, x)) = J ′(t)+∂xρ(t, x).
Notice that, from this identification we can rewrite I as

I(J, ρ) =
1

4

∫ T

0

∫ 1

−1

J ′(t)2 + ∂yρ(t, y)
2

φ(ρ(t, y))
dy dt

+
1

2

∫ T

0

J ′(t) log

(

ρ+(t)(1− ρ−(t))

ρ−(t)(1− ρ+(t))

)

dt

(3.12)

that proves that J and ρ are in H−, since ρ±(t) are assumed bounded
away from 0 and 1. �

Proposition 3.2. If I(J, ρ) < ∞, there exists an approximation by

bounded functions Jε(t) and x-smooth ρε(t, x) of J and ρ, such that

ρε(t,±1) = ρ±(t) and

lim
ε→0

I(Jε, ρε) = I(J, ρ). (3.13)

Proof. We follow a similar argument used in [2].
We proceed in two steps. We first define an approximation ρ̃ε(t, x)

bounded away from 0 and 1 such that φ(ρ̃ε(t, x)) ≥ Cε2 and I(J, ρ̃ε) −→
I(J, ρ). Then assuming that φ(ρ(t, x)) ≥ a > 0, we construct a smooth
approximation ρε(t, x) such that I(J, ρε) −→ I(J, ρ). The conclusion
follows then by a diagonal argument.
For the first step, define (recall (2.5))

ρ̃ε(t, x) = (1− ε)ρ(t, x) + ερ̄(t, x). (3.14)

Notice that ρ̃ε(t,±1) = ρ±(t) and

φ(ρ̃ε(t, x)) ≥ ε2 (ρ−(t) ∧ ρ+(t)) (1− (ρ−(t) ∨ ρ+(t))) .

Since I(J, ρ) is convex in ρ, we have

I(J, ρ̃ε) ≤ (1− ε)I(J, ρ) + εI(J, ρ̄) −→
ε→0

I(J, ρ), (3.15)
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while by lower semicontinuity

lim inf
ε→0

I(J, ρ̃ε) ≥ I(J, ρ), (3.16)

that concludes the first approximation step.
Now assuming that φ(ρ(t, x)) ≥ φ(a) > 0, i.e. a < ρ(t, x) < 1 − a,

we construct a smooth approximation ρε(t, x) such that

ρε(t, x) −→
ε→0

ρ(t, y), ρε(t,±1) = ρ±(t).

and such that I(J, ρε) −→ I(J, ρ).
Let be ∆D the laplacian on [−1, 1] with Dirichlet boundary condi-

tions, and

RD
ε (x, y) = (I − ε∆D)

−1 (x, y).

Then define

ρε(t, x) = ρ̄(t, x) +

∫ 1

−1

RD
ε (x, y) (ρ(t, y)− ρ̄(t, y))dy. (3.17)

We next prove that there exist a∗ > 0 such that

φ(ρε(t, x)) ≥ φ(a∗). (3.18)

In fact notice that 0 ≤ ρ̄(t, x) −
∫ 1

−1
RD

ε (x, y)ρ̄(t, y)dy ≤ 1, that
implies

ρε(t, x) ≥

∫ 1

−1

RD
ε (x, y)ρ(t, y)dy ≥ a

∫ 1

−1

RD
ε (x, y)dy ≥ a′,

for some positive a′ < a.
Similarly we have

1− ρε(t, x) = 1− ρ̄(t, x)−

∫ 1

−1

RD
ε (x, y)(1− ρ̄(t, y)dy +

∫ 1

−1

RD
ε (x, y)(1− ρ(t, y))dy

≥

∫ 1

−1

RD
ε (x, y)(1− ρ(t, y))dy ≥ (1− a)

∫ 1

−1

RD
ε (x, y)dy ≥ (1− a′′).

Then choosing a∗ = a′ ∧ a′′ we obtain (3.18).
Since ρε is smooth, by (3.10), we have:

I(J, ρε) =
1

4

∫ T

0

dt

∫ 1

−1

dy (J ′(t) + ∂yρε(t, y))
2
φ(ρε(t, y))

−1 (3.19)

Let RN
ε (x, y) = (I − ε∆N )

−1 (x, y) the resolvent for the laplacian
with Neumann boundary conditions, then we have the property that

∂xR
D
ε (x, y) = −∂yR

N
ε (x, y), (3.20)
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that implies

∂xρε(t, x) =

∫ 1

−1

RN
ε (x, y)∂yρ(t, y)dy := (RN

ε ∂yρ)(t, x). (3.21)

Furthermore RN
ε (x, y) is a probability kernel:

∫ 1

−1
RN

ε (x, y)dy = 1.

Since RN
ε (x, y) ≤ 1, by convexity we have

(J ′(t) + ∂yρε(t, y))
2
≤

∫ 1

−1

RN
ε (x, y) (J

′(t) + ∂yρ(t, x))
2
dx

≤

∫ 1

−1

(J ′(t) + ∂yρ(t, x))
2
dx ≤

1

4
I(J, ρ)

(3.22)

Then we have

(J ′(t) + ∂yρε(t, y))
2

φ(ρε(t, y))
≤

1

4φ(a∗)
I(J, ρ) (3.23)

Then by dominated convergence we have

lim
ε→0

I(J, ρε) = I(J, ρ).

It remains to prove the J ′ approximation by bounded functions. Let
us define

Jk(t) =

∫ t

0

J ′(s) ∧ k ∨ (−k) ds (3.24)

and let us assume that ρ(t, x) is smooth in x and bounded away from
0 and 1. Then it is clear that

(J ′(t) ∧ k ∨ (−k) + ∂yρ(t, y))
2

φ(ρ(t, y))

is not decreasing in k for k large enough. Then by monotone conver-
gence I(Jk, ρ) → I(J, ρ). �

Notice that the minimum of I(J, ρ) is correctly achieved for J ′(t) =
J̄ ′(t) = −1

2
[ρ+(t)− ρ−(t)] and ρ(t, y) = ρ̄(t, y).

Furthermore, from (3.12), we have that for any given ρ, I(J, ρ) is a
quadratic function of J ′. In particular we have the following Gallavotti-
Cohen type of symmetry:

I(−J, ρ) = I(J, ρ)−

∫ T

0

J ′(t) log
ρ+(t)(1− ρ−(t))

ρ−(t)(1− ρ+(t))
dt, (3.25)

The rate function for hN alone is obtained, by contraction principle
(cf. [12]), minimizing over all possible ρ satisfying the given boundary
conditions:

I(J) = inf
ρ
I(J, ρ), (3.26)
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and also satisfy the symmetry relation

I(−J) = I(J)−

∫ T

0

J ′(t) log
ρ+(t)(1− ρ−(t))

ρ−(t)(1− ρ+(t))
dt. (3.27)

For ρ+, ρ− and current J ′ constant in time, and the stationary profile
ρ̄(·), we have

I(J, ρ̄) =
T

4

(

J ′ +
1

2
[ρ+ − ρ−]

)2 ∫ 1

−1

(ρ̄(y))(1− ρ̄(y))−1dy (3.28)

in particular

I(−J̄ , ρ̄) =
T

4
(ρ+ − ρ−)

2

∫ 1

−1

(ρ̄(y))(1− ρ̄(y))−1dy, (3.29)

while from (3.28)

I(−J̄) =
T

2
(ρ+ − ρ−) log

ρ+(1− ρ−)

ρ−(1− ρ+)
. (3.30)

3.1. Relation with the Bodineau-Derrida functional. Boudineau
and Derrida [3] write the LD rate for the density field ρ(t, y) and a
current field j(t, y) such that ∂tρ(t, y) = −∂yj(t, y) (the conservation
law), as

Ibd(j, ρ) =
1

4

∫ T

0

∫ 1

−1

(j(t, y) + ∂yρ(t, y))
2

φ(ρ(t, y))
dy dt. (3.31)

The formula (3.3) looks similar, but differs in an important point.
In the quasistatic case the current field (instantaneous currents) j(t, y)
has to be constant in y and it is not related to the time derivative of
ρ: we cannot have large deviations where the intensity of the current
is not constant in space, see (2.10).
A direct connection with the Bodineau-Derrida functional can be

found when the boundary conditions ρ± do not change in time, min-
imizing over ρ(t, y) in order to obtain the rate function I(J) for the
large deviation of the only current hN , If one looks at deviation such
that J ′ is constant in time, the the minimizing ρ will also time indepen-
dent and the rate I(J) will coincide, up to a factor T , to the expression
given in [3] formula (3.2) for the large deviations of the total current
averaged in time.
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4. The Large Deviation Theorem

Let us define the empirical density profile

πN (t, y) =

N−1
∑

x=−N

ηx(t)1[x,x+1)(Ny), y ∈ [−1, 1] (4.1)

that has values on M, so that the couple (hN , πN) has values on Ξ =
D ([0, T ],R)×M.

Theorem 4.1. Under the dynamics generated by (2.1), starting with

an arbitrary configuration η, the couple (hN , πN) satisfy a large devia-

tion principle with rate function I(J, ρ), i.e.

• For any closed set C ⊂ Ξ

lim sup
N→∞

1

N1+α
logPη ((hN , πN) ∈ C) ≤ − inf

(J,ρ)∈C
I(J, ρ), (4.2)

• For any open set O ⊂ Ξ

lim inf
N→∞

1

N1+α
logPη ((hN , πN ) ∈ O) ≥ − inf

(J,ρ)∈O
I(J, ρ), (4.3)

5. The superexponential estimate

One of the main steps in the proof of Theorem 4.1 is a super-
exponential estimate which allows the replacement of local functions
by functionals of the empirical density. Define

VN,ε(t, η) =

N−1
∑

x=−N

G(t, x/N) (η(x)(1− η(x+ 1))− φ(η̄N,ε(x/N)))

(5.1)
The local averages are defined in the bulk as

η̄N,ε(x/N) =
1

2Nε+ 1

∑

|x′−x|≤εN

η(x′), |x| < N(1 − ε), (5.2)

and at the boundaries as

η̄N,ε(x/N) = ρ+(t) x ≥ N(1− ε),

η̄N,ε(x/N) = ρ−(t) x ≤ −N(1 − ε).
(5.3)

Notice that VN,ε(t, η) depends on t not only by the function G(t, y)
but also by the special definition (5.3).
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In the following we use as reference measures the inhomogeneous
product measures

µt(η) =
N
∏

x=−N

ρ̄(
x

N
, t)η(x)[1− ρ̄(

x

N
, t)]1−η(x). (5.4)

Observe that, since ρ±(t) are uniformly away from 0 and 1, there is
C > 0 so that

sup
t

sup
η

µt(η) ≥ e−CN . (5.5)

Proposition 5.1. For any δ > 0 and initial configuration η

lim
ε→0

lim sup
N→∞

1

N1+α
log Pη

(∫ T

0

VN,ε(t, ηt)dt ≥ Nδ

)

= −∞. (5.6)

Proof. By (5.5), it is enough to prove (5.6) for the dynamics with initial
distribution given by µ0. By exponential Chebichef inequality we have
for any a > 0:

Pµ0

(
∫ T

0

VN,ε(t, ηt)dt ≥ Nδ

)

≤ e−N1+αδa
Eµ0

(

eN
α
∫ T
0 aVN,ε(t,ηt)dt

)

All we need to prove is that there exists K < +∞ such that for all
a > 0

lim sup
ε→0

lim sup
N→∞

1

N1+α
logEµ0

(

eN
α
∫ T
0 aVN,ε(t,ηt)dt

)

≤ KT

To simplify notations, denote Ṽ (t, η) = NαaVN,ε(t, η). Consider the
equation

∂su(η, s) = LN,T−su(η, s)+Ṽ (T−s, η)u(η, s), u(η, 0) = 1, 0 ≤ s ≤ T.
(5.7)

By Feynman-Kac formula

u(η, T ) = Eη

(

e
∫ T
0 Ṽ (s,ηs)ds

)

(5.8)

Then

d

ds

1

2

∑

η

u(η, s)2µT−s(η) =
1

2

∑

η

u(η, s)2
dµT−s(η)

ds

+
∑

η

(

u(η, s)LN,T−su(η, s) + Ṽ (T − s, η)u2(η, s)
)

µT−s(η)

(5.9)
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and, since
∣

∣

∣

dµT−s(η)
ds

∣

∣

∣
≤ CNµT−s(η), this is bounded by

≤ (CN + Γ(s))
∑

η

u(η, s)2µT−s(η),

where, setting ‖f‖2s =
∑

η f(η)
2µT−s(η),

Γ(s) = sup
f,‖f‖s=1

{

∑

η

Ṽ (T − s, η)f 2(η)µT−s(η) +
∑

η

f(η)LN,T−sf(η)µT−s(η)

}

.

(5.10)
By Gronwall inequality and (5.9) we have

∑

η

u(η, T )2µ0(η) ≤ e2
∫ T

0
Γ(s)ds+TCN

∑

η

u(η, 0)2µT (η) = e2
∫ T

0
Γ(t)dt+TCN .

(5.11)
Then using Schwarz inequality we get

Eµ0

(

e
∫ T
0 Ṽ (η(t)dt

)

≤ e
∫ T
0 Γ(t)dt+TCN . (5.12)

The Dirichlet forms associated to the generator are

Dx,t,ρ(f) =
1

2

∑

η

ρ1−η(x)(1− ρ)η(x)[f(ηx)− f(η)]2µt(η), x = ±N

Dex,t(f) =
1

2

∑

η

N−1
∑

x=−N

(∇x,x+1f(η))
2 µt(η) (5.13)

and we define

Dt(f) = −
∑

η

f(η)LN,tf(η)µt(η) = D−N,t,ρ−(t)(f)+DN,t,ρ+(t)(f)+Dex,t(f).

Observe that

∑

η

f(η)(LN,tf)(η)µt(η) =−N2+α
∑

η

N−1
∑

x=−N

∇x,x+1f(η)∇x,x+1(fµt)(η)

−N2+α
(

DN,t,ρ+(t)(f) +D−N,t,ρ−(t)(f)
)

(5.14)
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and

∑

η

N−1
∑

x=−N

∇x,x+1f(η)∇x,x+1(fµt)(η) =
∑

η

N−1
∑

x=−N

(∇x,x+1f)
2 µt(η)

+
∑

η

N−1
∑

x=−N

f(ηx,x+1)∇x,x+1f(η)∇x,x+1µt(η)

= 2Dex,t(f) +
1

N
B̃N (t) + O(N−1) (5.15)

where

B̃N(t) =
∑

η

N−1
∑

x=−N

f(ηx,x+1)∇x,x+1f(η) (η(x)− η(x+ 1))B(
x

N
, t)µt(η)

and

B(
x

N
, t) =

ρ̄′( x
N
, t)

ρ̄( x
N
, t)(1− ρ̄( x

N
, t))

, ‖B‖∞ ≤ c‖ρ′‖∞ (5.16)

where c > 0 since ρ±(t) are uniformly away from 0 and 1. By an
elementary inequality we have:

∣

∣

∣
B̃N(t)

∣

∣

∣
≤

N

2
Dex,t(f) +

2

2N

∑

η

N−1
∑

x=−N

f(ηx,x+1)2 (η(x)− η(x+ 1))2B(
x

N
, t)2µt(η)

≤
N

2
Dex,t(f) +

1

N

N−1
∑

x=−N

B(
x

N
, t)2

∑

η

f 2(η)µt(η
x,x+1)

Since µt(η
x,x+1) = F (x, t)µt(η) with F (x, t) a uniformly bounded func-

tion of ρ̄( x
N
, t) and ρ̄(x+1

N
, t) and η, using (5.16) we get

∣

∣

∣
B̃N(t)

∣

∣

∣
≤

N

2
Dex(f) + C ≤

N

2
Dt(f) + C (5.17)

From (5.14), (5.15) and (5.17) we get

Γ(s) ≤ sup
f

{

Nαa
∑

η

VN,ε(T − s, η)f 2(η)µT−s(η)−N2+α 1

2
DT−s(f)

}

+N1+αC

≤ N1+α sup
f

{

a

N

∑

η

VN,ε(T − s, η)f 2(η)µT−s(η)−N
1

2
DT−s(f)

}

+N1+αC

(5.18)
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Then we are left to prove that for any a > 0 and any t > 0:

lim sup
ε→0

lim sup
N→∞

sup
f

{

1

N

∑

η

aVN,ε(t, η)f
2(η)µt(η)−

N

2
Dt(f)

}

≤ C ′

(5.19)
This follows by proving that, for a suitable constant C

lim sup
ε→0

lim sup
N→∞

sup
Dt(f)≤CN−1

1

N

∑

η

VN,ε(t, η)f
2(η)µt(η) ≤ 0 (5.20)

The rest of the proof is identical as in theorem 3.1 in [6] (see pages
1051-2). �

With a similar argument follows also the super-exponential control
of the densities at the boundaries:

Proposition 5.2. For any δ > 0 we have

lim sup
ε→0

lim sup
N→∞

1

N1+α
log Pη





∫ T

0

∣

∣

∣

∣

∣

∣

1

εN

±N(1∓ε)
∑

±N

ηt(x)− ρ±(t)

∣

∣

∣

∣

∣

∣

≥ δ



 = −∞

(5.21)

6. The exponential martingales

We use the following notations: for x = −N, . . . , N − 1

φ−(η, x) = η(x+ 1)(1− η(x)), φ+(η, x) = η(x)(1− η(x+ 1)), (6.1)

and at the boundaries

φ−(η,−N − 1, t) := (1− ρ−(t))η(−N)

φ+(η,−N − 1, t) := ρ−(t))(1− η(−N))

φ−(η,N, t) := ρ+(t)(1− η(N))

φ+(η,N, t) := (1− ρ+(t))η(N).

(6.2)

Given two function z±(t, y), we associate the following exponential
martingales, for x = −N − 1, . . . , N

E±(z±, x, T ) =

exp
{

∫ T

0

z±(t, x/N) dh±(t, x)−

∫ T

0

N2+α
(

ez±(t,x/N) − 1
)

φ±(ηt, x) dt
}

= exp
{

z±(T, x/N) h±(T, x)

−

∫ T

0

[

∂tz±(t, x/N)h±(t, x) +N2+α
(

ez±(t,x/N) − 1
)

φ±(ηt, x)
]

dt
}

(6.3)
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We now choose a smooth functionH(t, y), y ∈ [−1, 1] such thatH(t,−1) =
0 and we set

z+(t, y) = H(t, y + 1/N)−H(t, y) = −z−(t, y),

and furthermore

z+(t,−1−y) := −y∂yH(t,−1), z+(t, 1+y) := y∂yH(t, 1)−H(t, 1), y ≥ 0.

The martingales defined by (6.3) are orthogonal, consequently taking
the product we still have an exponential martingale equal to

N
∏

x=−N−1

∏

σ=±

Eσ(zσ, x, T ) =

exp
{

N
∑

x=−N−1

[

z+(T, x/N) h(T, x)−

∫ T

0

∂tz+(t, x/N)h(t, x)dt

−N2+α

∫ T

0

((

ez+(t,x/N) − 1
)

φ+(ηt, x) +
(

e−z+(t,x/N) − 1
)

φ−(ηt, x)
)

dt
] }

(6.4)

For large N we use Taylor approximation, for x = −N, . . . , N − 1,

(

ez+(t,x/N) − 1
)

φ+(ηt, x) +
(

e−z+(t,x/N) − 1
)

φ−(ηt, x)

= −z+(t, x/N) (ηt(x+ 1)− ηt(x)) +
1

2
z+(t, x/N)2(φ+(ηt, x) + φ−(ηt, x)) +O(z+(t, x/N)3).

and on the boundaries

(

ez+(t,−1−1/N) − 1
)

φ+(ηt,−N − 1, t) +
(

e−z+(t,−1−1/N) − 1
)

φ−(ηt,−N − 1, t)

= −z+(t,−1− 1/N) (ηt(−N)− ρ−(t))

+
1

2
z+(t,−1− 1/N)2(φ+(ηt,−N − 1, t) + φ−(ηt,−N − 1, t)) +O(z+(t,−1− 1/N)3).

(

ez+(t,1) − 1
)

φ+(ηt, N) +
(

e−z+(t,1) − 1
)

φ−(ηt, N)

= −z+(t, 1) (ρ+(t)− η(t, N)) +
1

2
z+(t, 1)

2(φ+(ηt, N) + φ−(ηt, N)) +O(z+(t, 1)
3).
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We can rewrite the exponential martingale (6.4) as

N
∏

x=−N−1

∏

σ=±

Eσ(zσ, x, T ) =

exp
{

N
∑

x=−N−1

[

z+(T, x/N) h(T, x)−

∫ T

0

∂tz+(t, x/N)h(t, x)dt
]

+N2+α

∫ T

0

N
∑

x=−N−1

[

z+(t, x/N) (ηt(x+ 1)− ηt(x))

−
1

2
z+(t, x/N)2(φ+(ηt, x) + φ−(ηt, x))

]

dt +O(Nα)
}

(6.5)

where in the above expression we set the convention ηt(N +1) := ρ+(t)
and ηt(−N − 1) := ρ−(t).
After a summation by parts we have

exp
{

N
∑

x=−N−1

[

z+(T, x/N) h(T, x)−

∫ T

0

∂tz+(t, x/N)h(t, x)dt
]

+N2+α

∫ T

0

N
∑

x=−N

[

(

z+(t,
x− 1

N
)− z+(t,

x

N
)

)

ηt(x)

+ z+(t, 1)ρ+(t)− z+(t,−1− 1/N)ρ−(t)

−
1

2
z+(t, x/N)2(φ+(ηt, x) + φ−(ηt, x))

]

dt +O(Nα)
}

(6.6)

Using (2.9) and the special expression for z+ , we have for the logarithm
of (6.6)

−
N
∑

x=−N

H(T, x/N) [ηT (x)− η0(x)]

+ [H(T, 1 + 1/N)h(T,N)−H(T,−1− 1/N)h(T,−N − 1)]

+

∫ T

0

N
∑

x=−N

∂tH(t, x/N)[ηt(x)− η0(x)]dt

−

∫ T

0

[∂tH(t, 1 + 1/N)h(t, N)− ∂tH(t,−1− 1/N)h(t,−N − 1)] dt

−Nα

∫ T

0

(

N
∑

x=−N−1

[

∂yyH(t,
x

N
)ηt(x) +

1

2

(

∂yH(t,
x

N
)
)2

(φ+(ηt, x) + φ−(ηt, x))
]

+N (∂yH(t, 1)ρ+(t)− ∂yH(t,−1)ρ−(t))
)

dt+O(Nα)
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=−
N
∑

x=−N

H(T, x/N) [ηT (x)− η0(x)]

+

[

H(T, 1 + 1/N)h(T,N) +
1

N
∂yH(T,−1)h(T,−N − 1)

]

+

∫ T

0

N
∑

x=−N

∂tH(t, x/N)[ηt(x)− η0(x)]dt

−

∫ T

0

[

∂tH(t, 1 + 1/N)h(t, N) +
1

N
∂t∂yH(t,−1)h(t,−N − 1)

]

dt

−Nα

∫ T

0

(

N
∑

x=−N−1

[

∂yyH(t,
x

N
)ηt(x) +

1

2

(

∂yH(t,
x

N
)
)2

(φ+(ηt, x) + φ−(ηt, x))
]

+N (∂yH(t, 1)ρ+(t)− ∂yH(t,−1)ρ−(t))
)

dt+O(Nα)

Since we are interested only in the terms that have order N1+α, we can
forget all terms of order N in the above expression, and the exponential
martingale has the form:

expN1+α
{

H(T, 1)hN(T,N)−

∫ T

0

∂tH(t, 1)hN(t, N) dt

−

∫ T

0

( 1

N

N
∑

x=−N−1

∂yyH(t,
x

N
)ηt(x) + ∂yH(t, 1)ρ+(t)− ∂yH(t,−1)ρ−(t)

+
1

2N

N
∑

x=−N−1

(

∂yH(t,
x

N
)
)2

(φ+(ηt, x) + φ−(ηt, x))
)

dt+O(N−(α∧1))
}

.

(6.7)

After the superexponential estimate proved in the previous section,
that also fix the densities at the boundaries, it follows the variational
formula for the rate function given by (3.1).

7. The upper bound

7.1. Exponential tightness. The following proposition uses stan-
dard arguments and we give a proof for completeness in Appendix
A:

Proposition 7.1. There exist a sequence of compact sets KL in D([0, T ],R)
such that

lim
L→∞

lim
N→∞

1

N1+α
logPN (hN ∈ Kc

L) = −∞. (7.1)
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7.2. Proof of the upper bound. By (6.7) we can rewrite the expo-
nential martingale defined by (6.5) as

MH
N =exp

[

N1+α
{

H(T, 1)hN(T,N)−

∫ T

0

∂tH(t, 1)hN(t, N) dt

−

∫ T

0

(

∫ 1

−1

µN(t, y)∂yyH(t, y)dy + ∂yH(t, 1)ρ+(t)− ∂yH(t,−1)ρ−(t)

+
1

2N

N
∑

x=−N−1

(

∂yH(t,
x

N
)
)2

(φ+(ηt, x) + φ−(ηt, x))
)

dt+O(N−(α∧1))
}]

.

(7.2)

where

lim
N→∞

E
PN
(

O(N−(α∧1))
)

= 0.

After applying the superexponential estimates of section 5, we have

MH
N =exp

[

N1+α
{

H(T, 1)hN(T,N)−

∫ T

0

∂tH(t, 1)hN(t, N) dt

−

∫ T

0

(

∫ 1

−1

πN(t, y)∂yyH(t, y)dy + ∂yH(t, 1)ρ+(t)− ∂yH(t,−1)ρ−(t)

+

∫ 1

−1

(∂yH(t, y))2 φ(η̄N,ε(t, y))dy
)

dt+Oε,N +O(N−(α∧1))
}]

.

Then for every set A ⊂ Ξ we have

1 = E
PN
(

MH
N

)

≥ eN
1+α supH inf(J,ρ)∈A I(H,J,ρ)

P ((hN , πN ) ∈ A)

where

I(H, J, ρ) =H(T, 1)J(T )−

∫ T

0

∂tH(t, 1)J(t) dt

−

∫ T

0

(

∫ 1

−1

ρ(t, y)∂yyH(t, y)dy + ∂yH(t, 1)ρ+(t)− ∂yH(t,−1)ρ−(t)

+

∫ 1

−1

(∂yH(t, y))2 φ(ρ(t, y))dy
)

dt.

Using the lower semicontinuity of I(J, ρ) and a standard argument (see
[12], lemma 11.3 or [8] lemma A2.3.3) we have for a compact set C ⊂ Ξ:

lim sup
N→∞

1

N1+α
log P ((hN , πN) ∈ C) ≤ − inf

(J,ρ)∈C
I(J, ρ).

The extension to closed set follows from the exponential compactness
proved in (7.1), see [8] pag.271.
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8. The lower bound

The proof of the lower bound follows a standard argument, conse-
quently we will only sketch it here, since all the ingredients are al-
ready proven. It is enough to prove that given (J, ρ) ∈ Ξ such that
I(J, ρ) < ∞, then for any open neighbor O of it we have

lim inf
N→∞

1

N1+α
logP ((hN , µN) ∈ O) ≥ −I(J, ρ). (8.1)

By proposition 3.2, we can assume J and ρ such that J ′(t) exists and
is bounded, ρ bounded away from 0 and 1, and ∂yρ(t, y) exists and is
bounded. Then we consider the weakly asymmetric excusion dynamics
with drift given by

∂yH̄(t, y) =
1

2

J ′(t) + ∂yρ(t, y)

φ(ρ(t, y))
, (8.2)

more precisely the jump rate from x to x + 1 at time t is taken to be
N2+αez(t,x/N), where

z(t, x/N) = H̄(t, (x+ 1)/N)− H̄(t, x/N) (8.3)

and from x+ 1 to x is given by N2+αe−z(t,x/N). We call QN the law of
this weakly asymmetric process.
The Radon-Nykodyn derivative dQN

dPN
is given by (6.4).

The quasi static limit for this process is the following:

Proposition 8.1. Let Q̃N the law on Ξ of (hN , πN) under QN , then

Q̃N −→ δ(J,ρ) (8.4)

Proof of proposition 8.1. By (9.1) we can extend the superexponential
estimates contained in section 5 to QN . In fact we have that

E
PN

(

(

dQN

dPN

)2
)1/2

≤ ecN
1+α

and by Schwarz inequality

QN (AN,ε) ≤ PN (AN,ε) e
cN1+α

where AN,ε = {
∫ T

0
VN,ε(t, ηt)dt ≥ Nδ}, and (5.6) extends immediately

to QN . At this point the proof of the quasi-static hydrodynamic limit
follows similar to the one in [6]. �

We then write

P ((hN , πN) ∈ O) = E
QN

(dQN

dPN
1(hN ,πN )∈O

)
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Since O contains (J, ρ), by Proposition 8.1, under QN the probability
of the event (hN , πN ) ∈ O is close to one. By Jensen inequality

1

N1+α
logP ((hN , πN) ∈ O) ≥ E

QN

( 1

N1+α
log

dQN

dPN

)

= −
1

N1+α
H(QN |PN)

where H(QN |PN) is the relative entropy of QN with respect to PN .

The lower bound is then a consequence of the following Proposition.

Proposition 8.2. Let H(QN |PN) = E
QN

(

log dQN

dPN

)

the relative en-

tropy of QN with respect to PN . Then

lim
N→∞

H(QN |PN) = I(J, ρ), (8.5)

The proof of proposition 8.2 is a direct consequence of (6.4) and of
Proposition 8.1.

9. Appendix A: The exponential tightness

We prove here proposition 7.1. The arguments used here are just
slight variations of the standard ones (e.g. section 10.4 in [8]). SInce
M is compact, we have only to control that the distribution of hN is
exponentially tight. This is consequence of the following 2 propositions.

Proposition 9.1.

lim
L→∞

lim
N→∞

1

N1+α
log Pη

(

sup
0≤t≤T

|hN(t)| ≥ L

)

= −∞. (9.1)

Proposition 9.2. For any ε > 0:

lim
δ→0

lim
N→∞

1

N1+α
log Pη

(

sup
|t−s|≤δ

|hN(t)− hN(s)| ≥ ε

)

= −∞. (9.2)

Proof of Proposition 9.1 . Since the difference between hN(t) and h̄N(t) :=
1
2N

∑

x hN(t, x) is uniformly small, we have just to prove it for h̄N(t).
For β ∈ R, consider the exponential martingale (6.4) with z+(t, x) =
β
N
, x = −N, . . . , N − 1 and z+(t,−N − 1) = 0. This is given by

Mt =exp
{

N1+α
(

β h̄N(t)−AN (β, t)
)

}

AN(β, t) =N

∫ t

0

N−1
∑

x=−N

(

(eβ/N − 1)φ+(ηs, x) + (e−β/N − 1)φ−(ηs, x)
)

ds
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Notice that 0 ≤ AN (β, t) ≤ CT (|β| + β2) for some constant C. Then
for any β > 0 we have, by Doob’s inequality,

Pη

(

sup
0≤t≤T

|hN(t)| ≥ L

)

≤ Pη

(

sup
0≤t≤T

| logMt| ≥ N1+α
(

βL− CT (β + β2)
)

)

≤ Pη

(

sup
0≤t≤T

logMt ≥ N1+α
(

βL− CT (β + β2)
)

)

= Pη

(

sup
0≤t≤T

Mt ≥ eN
1+α(βL−CT (β+β2))

)

≤ e−N1+α(βL−CT (β+β2)),
(9.3)

that concludes the proof. �

Proof of Proposition 9.2 . Since
{

sup
|t−s|≤δ

|hN(t)− hN(s)| ≥ ε

}

⊂

[Tδ−1]
⋃

k=0

{

sup
kδ≤t≤(k+1)δ

|hN(t)− hN(kδ)| ≥ ε/4

}

Since

logPη

(

sup
|t−s|≤δ

|hN(t)− hN(s)| ≥ ε

)

≤ max
k

logPη

(

sup
kδ≤t≤(k+1)δ

|hN(t)− hN(kδ)| ≥ ε/4

)

+ log([Tδ−1])

By the same estimate made in (9.3) we have

logPη

(

sup
kδ≤t≤(k+1)δ

|hN(t)− hN(kδ)| ≥ ε/4

)

≤ −N1+α
(

βε/4− Cδ(β + β2)
)

and with a proper choice of β we get the following bound with a con-
stant C ′ independent of k:

1

N1+α
logPη

(

sup
kδ≤t≤(k+1)δ

|hN(t)− hN(kδ)| ≥ ε/4

)

≤ −
C ′ε2

δ
.

�
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