
HAL Id: hal-01777489
https://hal.science/hal-01777489

Submitted on 15 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exchange Enhancement of the Electron–Phonon
Interaction: The Case of Weakly Doped

Two-Dimensional Multivalley Semiconductors
Betül Pamuk, Paolo Zoccante, Jacopo Baima, Francesco Mauri, Matteo

Calandra

To cite this version:
Betül Pamuk, Paolo Zoccante, Jacopo Baima, Francesco Mauri, Matteo Calandra. Exchange En-
hancement of the Electron–Phonon Interaction: The Case of Weakly Doped Two-Dimensional
Multivalley Semiconductors. Journal of the Physical Society of Japan, 2018, 87 (4), pp.041013.
�10.7566/JPSJ.87.041013�. �hal-01777489�

https://hal.science/hal-01777489
https://hal.archives-ouvertes.fr


ar
X

iv
:1

71
2.

00
36

6v
1 

 [
co

nd
-m

at
.s

up
r-

co
n]

  1
 D

ec
 2

01
7

Journal of the Physical Society of Japan

Exchange Enhancement of the Electron-Phonon Interaction: the Case of

Weakly Doped Two-Dimensional Multivalley Semiconductors

Betul Pamuk1, Paolo Zoccante2, Jacopo Baima,2, Francesco Mauri3,4 and Matteo Calandra2

1School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853,

USA

2Sorbonne Universités, UPMC, CNRS-UMR 7588, Institut des NanoSciences de Paris,

F-75005, Paris, France
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The effect of the exchange interaction on the vibrational properties and on the electron-

phonon coupling were investigated in several recent works. In most of the case, exchange

tends to enhance the electron-phonon interaction, although the motivations for such behaviour

are not completely understood. Here we consider the class of weakly doped two-dimensional

multivalley semiconductors and we demonstrate that a more global picture emerges. In partic-

ular we show that in these systems, at low enough doping, even a moderate electron-electron

interaction enhances the response to any perturbation inducing a valley polarization. If the

valley polarization is due to the electron-phonon coupling, the electron-electron interaction

results in an enhancement of the superconducting critical temperature. We demonstrate the

applicability of the theory by performing random phase approximation and first principles

calculations in transition metal chloronitrides. We find that exchange is responsible for the

enhancement of the superconducting critical temperature in LixZrNCl and that much larger

Tcs could be obtained in intercalated HfNCl if the synthesis of cleaner samples could remove

the Anderson insulating state competing with superconductivity.

1. Introduction

Calculations of superconducting properties of materials require the knowledge of the elec-

tronic structure, the vibrational spectrum and a good description of the electron-phonon in-

teraction. In state-of-the-art electronic structure approaches, density functional perturbation

theory1, 2) with local functionals (local density approximation or generalized gradient approx-
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imation) is used. However, recently it has been shown that in several case the treatment of the

electron-electron interaction in this framework is unsatisfactory and it becomes necessary to

include a certain amount of exact exchange in the calculations. This is often the case in 2D

or layered systems with weak Van der Waals out-of-plane interactions such as Graphene,3, 4)

transition metal chloronitrides5–8) or transition metal dichalcogenides.9) However, enhance-

ment of the electron-phonon coupling due to the electron-electron interaction has also been

shown to occur in diamond10) and in molecules like C60 in gas phase.11, 12) Despite all these

recent calculations, there is not a clear understanding of when and why in a given system

the exchange interaction or, more generally, the electron-electron interaction has important

consequences for the electron-phonon coupling.

In the special case of a weakly doped multivalley two dimensional semiconductor, a more

general picture of why the electron-electron interaction has important consequences in the

renormalization of the electron-phonon coupling and of vibrational properties has been de-

veloped.5–7) It relies on the general fact that at weak doping (few electrons/holes per valley)

manybody effects enhance the response to any perturbation inducing a valley polarization. A

physical realization of a multivalley 2D electron gas are Al/AS quantum wells. It has been

shown that in this case a strain deformation acts as a pseudo magnetic field inducing a valley

polarization , as it was shown in Ref.13) Another form of a pseudo-magnetic field could be

an intervalley phonon, namely a phonon with a momentum coupling two different valleys,

inducing a change in the occupation of the valleys. In this case the pseudo magnetic field is

simply the modulus of the deformation potential associated to this vibration. In all case, the

response to the pseudo magnetic field is enhanced by the electron-electron interaction.

This effect can be justified by using a model Hamiltonian with SU(2gv) valley-spin sym-

metry,14–16) with gv being the number of valleys. This symmetry enforces the constrain that

the interacting spin and valleys susceptibilities must be identical. As the spin susceptibility

is enhanced by manybody effects in the low doping limit,15) the same must occurs to the

valley susceptibility. In real systems, the SU(2gv) symmetry holds for an isotropic mass ten-

sor and at low doping. Indeed in this case, the Fermi momentum κF , as measured from the

valley bottom, is much smaller than the valley separation and, consequently, the intravalley

electron-electron interaction dominates over the intervalley one. This will be shown in more

details in sec. 2.

A class of systems where these assumptions hold are the transition metal chloronitrides

(examples are HfNCl and ZrNCl) that are semiconductors crystallizing in hexagonal struc-

tures and having almost perfect parabolic conduction bands at the high symmetry points K
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and 2K. The interlayer interaction is extremely weak so that intercalation leads to an almost

perfect realization of a 2D multivalley electron-gas.5, 17) Intercalation with alkali metals or al-

kaline earths induces a metal insulator transition at doping ranging from x = 0.05 to x = 0.14,

depending on the system. In the metallic state and at low temperature a superconducting state

occurs with Tc that can be as high as 25K.18–21) The behaviour of Tc versus doping is very

peculiar as Tc decreases with increasing doping, in contrast with their doping independent

density of states (2D parabolic bands).20) We will show in the sections below that this anoma-

lous behaviour is due to the fact that the exchange interaction enhances the electron-phonon

coupling in the low doping limit.

2. Spin and valley susceptibilities in a 2D multivalley electron gas

We consider a two dimensional multivalley electron gas composed by an isolated band

partially filled with electrons, namely

H0 =
∑

κvσ

~
2κ2

2m∗
c†
κvσcκvσ (1)

where v = 1, ..., gv is a valley index with gv being the valley degeneracy, σ = ± is a spin

index and c,c† are fermion creation and destruction operators. The vector κ is measured from

the bottom of each valley. In two dimensions, the Fourier transform of the electron-electron

interaction within this band reads

v(q) =
2πe2

ǫMq
(2)

where q is the exchanged momentum between the two interacting electrons, and the effect

of the screening of other (empty) conduction and (filled) valence bands is included via the

environmental dielectric constant ǫM . The electron-electron interaction has two contributions:

(i) The intravalley scattering with q ∼ κF ( κF being the Fermi momentum measured from

the valley bottom).

(ii) The intervalley scattering with q ∼ |K−K′| = |K|where K and K′ = 2K are the positions

of the valley bottoms in the Brillouin zone.

The intravalley contribution conserves the valley index of the electrons while the intervalley

contribution does not.

In the low doping limit, namely for κF ≪ |K − K′|, because of the divergence of the

Coulomb repulsion for q → 0, the intravalley scattering is dominant and the intervalley

scattering can be neglected. Under this hypothesis, the valley and spin index are conserved

by the Coulomb interaction. The valley index can then be treated as a pseudospin and the
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manybody Hamiltonian has exact SU(2gv) spin and valley symmetry, namely (see e. g. Eq.

3.35 of Ref.14))

H =
∑

κvσ

~
2κ2

2m∗
c†
κvσcκvσ +

+
∑

κvσ

∑

κ
′v′σ′

∑

q

v(q)c†
κvσc

†
κ
′v′σ′cκ′−qv′σ′cκ+qvσ (3)

The Hamiltonian in Eq. 3 holds as long as (i) the screening of the other bands can be included

in the environmental dielectric constant, (ii) intervalley scattering can be neglected. If these

two conditions are satisfied, then it holds regardless of the number of valleys and of their

position in the Brillouin zone.

As the Hamiltonian in Eq. 3 has exact SU(2gv) spin and valley symmetry, it follows that:

χv = χs (4)

where the relation holds both for the interacting and non interacting susceptibilities. As a

consequence, the knowledge of the interacting spin susceptibility is equivalent to the determi-

nation of the interacting valley susceptibility. In the absence of electron-electron interaction
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Fig. 1. Ratio between the interacting susceptibility calculated with several approximations and the bare sus-

ceptibility χ0s for a two dimensional 1 (1V) and 2 (2V) valley electron gas as a function of rs =
m∗e2

ǫM~
2
√
πn

(

HF= Hartree-Fock, RPA=Random Phase Approximation, QMC=Quantum Monte Carlo). Figure adapted with

permission from Ref.15) Copyrighted by the American Physical Society
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the non interacting spin susceptibility is χ0s = µS N(0) = gvm
∗/π~2 independent of doping

and of the electron-gas parameter rs =
m∗e2

ǫM~2
√
πn

, with n being the electron-density .

The interacting spin susceptibility for a two dimensional two valley electron-gas has been

calculated in detail Ref.15) The results of this calculation are reported in Fig. 1. As it can be

seen the Hartree Fock (HF) approximation leads to strongly divergent susceptibilities already

at fairly low values of rs, with the two valley case more divergent than the one valley case.

This means that the exchange interaction leads to a magnetic solution. The Random Phase

Approximation (RPA) removes the divergence, reduces the magnitude of the interacting spin

susceptibility with respect to the HF case and leads to a smaller χs for the 2 valley electron-

gas, in contrast to the HF result. The inclusion of correlation effects with the most accurate

Quantum Monte Carlo (QMC) technique shows that correlation tends to reduce the exchange-

induced enhancement in χS /χ0s. Finally, it can be seen that for a 2 valley electron gas and

rs < 2, the RPA is an excellent approximation to the QMC results. As of Eq. 4, the same

enhancement must occur in χv. In Fig. 2 we plot the interacting spin susceptibility for a two

0.05 0.1 0.15 0.2 0.25 0.3 0.35
x

1

1.5

2

2.5

3

3.5

χ s/χ
0s

RPA (HfNCl)
RPA (ZrNCl)

Fig. 2. (Color online) Ratio between the interacting susceptibility calculated in the Random phase approxi-

mation and the bare susceptibility χ0s for a 2D 2 valley electron gas using relevant parameters of LixZrNCl and

LixHfNCl. For LixZrNCl we use ǫM = 5.59 and m∗ = 0.57me, while for LixHfNCl we used ǫM = 4.93 and

m∗ = 0.615me where me is the electron mass. The larger divergence of the susceptibility in intercalated HfNCl

is mostly due to the smaller environmental dielectric constant.
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valley 2D electron-gas within the RPA (see supplemental materials of5) for more details),

using relevant parameters for ZrNCl and HfNCl compounds.5–7) As it can be seen the spin

susceptibility is enhanced at low doping and large rs =
m∗e2

ǫM~2
√
πn

with respect to the doping-

independent bare (non interacting) susceptibility. The enhancement is entirely due due to the

electron-electron interaction. The enhancement of the spin susceptibility at low doping has

been measured in LixZrNCl20)and it is in perfect agreement with RPA.5)

3. Electronic and vibrational properties of intercalated (Zr,Hf)NCl

3.1 Crystal structure

The primitive unit cell of intercalated (Zr,Hf)NCl has rhombohedral structure (space

group R3̄m, number 166) with 2 formula units per unit cell. It can also be constructed by

a conventional cell of hexagonal structure with 6 formula units per cell with ABC stacking. It

has been shown that the weak interlayer interaction,5, 17, 22–24) makes the stacking order negli-

gible so that simulations with an hexagonal structure and AAA stacking (space group number

164) an 2 formula units unit cell leads to the same results.

3.2 Electronic structure

The electronic structure of intercalated (Zr,Hf)NCl using local functionals has been cal-

culated by many authors.5–8, 17, 25, 26) The general agreement is that the charge transfer from

alkali metals is complete and it acts as a rigid doping, so that it is appropriate to simulate

these systems by using a uniform background doping. This has been explicitly verified both

for the electronic and vibrational properties.17) Under this assumption, the electronic structure

calculated using the generalized gradient approximation (GGA) approximation is shown in

Fig. 3 (top). There are two parabolic bands at special points K and K′ = 2K of the Brillouin

zone (BZ). The degree of trigonal warping is low and it increases by increasing doping, as

shown in the Fermi surface projection on the kx, ky plane in Fig. 4. The effective mass of the

band, in the generalized gradient approximation (GGA) within the PBE parametrization27) ,

is very close in the two compounds and weakly doping dependent. More details are given in

Refs.6, 7)

The static HF exchange interaction can be included in the electronic structure calculation

by using different flavour of hybrid functionals, as shown in Fig. 3 (bottom). Beside increasing

the gap between valence and conduction band, the main effect of the exchange interaction is

to slightly reduce the effective mass of the band (m∗).
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Fig. 3. (Color online) Top:electronic structure of intercalated (Zr,Hf)NCl for several doping (generalized gra-

diend approximation within the PBE parametrization27)). Bottom:effect of the exchange interaction on the elec-

tronic structure of doped HfNCl at x = 1/9.

Fig. 4. In plane projection (kz = 0) of the LixZrNCl Fermi surface as a function of doping.

3.3 Vibrational properties and electron-phonon interaction

The phonon dispersions of Lix(Zr,Hf)NCl at the doping fraction of x = 2/9 calculated

using Wannier interpolation as in Ref.28) are shown in Fig. 5. The high energy modes are

very similar in the two compounds, as shown in Fig. 5. These modes are composed of Ni-

trogen vibrations and are separated from all the others. Thus they are weakly affected by the
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replacement of Zr with Hf. (Hf, Zr) and Cl modes are located in the low energy region below

40 meV. Hf modes are softened due to the larger Hf mass.
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Fig. 5. (Color online) Phonon dispersion, Eliashberg functionα2F(ω) and integrated Eliashberg function λ(ω)

for Lix(Zr,Hf)NCl at x = 1/9. The intervalley contribution to α2F(ω) and λ(ω) are also shown.

The electron-phonon coupling of a given mode ν at a phonon-momentum q reads:

λ̃qν =
2

ω2
qνN(0)Nk

∑

k

|d̃νk,k+q|2δ(ǫk)δ(ǫk+q), (5)

where ǫk is the quasiparticle energy of the partially occupied band. The electron-phonon

matrix elements are defined such that d̃ν
k,k+q

= 〈k|δṼ/δuqν|k + q〉, uqν is the phonon displace-

ment of the mode ωqν, and Ṽ is the single particle potential that is fully screened by charge,

spin, and valley exchange and correlation effects (see Eq. 2 in Ref.5) for more details). In the

standard implementation of GGA/LDA functionals, there is no screening due to valley ex-

change effects and Ṽ is simply the Kohn-Sham potential calculated with this approximation

(Ṽ = VKS ).

The contribution of each mode to the electron-phonon interaction is better understood by

looking at the Eliashberg function, namely:

α̃2F(ω) =
1

2Nq

∑

qν

λ̃qνωqνδ(ω − ωqν) (6)

and the integral λ̃(ω) = 2
∫ ω

0
dω′α̃2F(ω′)/ω′.
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We first calculate the electron-phonon interaction and the Eliashberg function using the

GGA approximation. Then we decompose the electron-phonon coupling into intravalley and

intervalley contributions. This can be easily done as the two valleys are located in different

regions of the Brillouin zone and are disjoined. It is then sufficient to select the proper electron

and phonon momenta involving only intra or intervalley scattering. The same decomposition

is carried out on the Eliashberg function via Eq. 6.

At the GGA level, the Eliashberg function is composed of two main peaks, namely one

at high energy due to N vibrations and mostly related to intervalley phonons (although a

intravalley component is present) and a second one at lower energy mostly of intervalley

character. The magnitude of the integrated total and intervalley electron-phonon couplings

averaged over the Brillouin zone are shown in Fig. 5. It is clear that the electron-phonon in-

teraction is dominated by intervalley phonons. The doping dependence of the electron phonon

0

0.2

0.4

0.6

0.8

1

tot. ( ZrNCl )
inter. ( ZNCl )
intra. ( ZrNCl )
tot. ( HfNCl )
inter. ( HfNCl )
intra. (HfNCl)

20

25

30

35

40

45

50

 λ
 ω

lo
g(m

eV
)

x

Fig. 6. (Color online) Electron-phonon coupling and logarithmic average of the phonon frequencies as a

function of doping decomposed in the intervalley and intravalley contributions.

coupling is represented for the two systems in Fig. 6. The total electron-phonon coupling is

almost twice as large in LixHfNCl than in LixZrNCl. This is mostly due to the increased in-

tervalley electron-phonon interaction for the former compound. The intravalley coupling is
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Fig. 7. (Color online) (a, b) Phonon pattern of the twofold degenerate intervalley phonon responsible for one

of the prominent high-energy intervalley peaks in the Eliashberg function. The pattern is plotted in a
√

3 ×
√

3

supercell. (Hf,Zr) big grey balls, Cl greenish balls and N cyan balls with arrows. The effect of the phonon

patterns on the ZrNCl electronic structure (c) and Fermi surface (d) is shown in the bottom panels (c, d). The

two valleys at K and K′ in the Brillouin zone of the unit cell are folded at Γ in the Brillouin zone of the supercell.

Intervalley phonons reduce the occupation of one valley and increase the occupation of the other one, acting as

a pseudo-magnetic field on the valley degrees of freedom. Phonon displacements associated to other intervalley

vibrations contributing to the electron-phonon interaction display an analogous behaviour.

roughly the same in both compounds.

As the band structures for the two compounds are very similar, the enhancement of the

intervalley electron-phonon coupling is not due to a band structure effect, but it is partly due

the larger deformation potential for intervalley phonons in HfNCl and partly due to the soft-

ening of the main peaks of the intervalley Eliashberg function in HfNCl and the consequent

dependence ω−2 in λinter.

Given the dominant role of the intervalley electron-phonon interaction, it is interesting to
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show the displacement pattern of these phonon modes and its effect on the electronic struc-

ture. For this reason, we consider a
√

3 ×
√

3 supercell and we displace the atoms according

to the patterns of the intervalley phonons generating the most prominent peaks in the interval-

ley Eliashberg function. We then calculate the electronic structure and Fermi surface for the

displaced and undisplaced atomic configurations. There are several intervalley phonon modes

contributing to α2F(ω), both at low energy and high energy. As they have qualitatively sim-

ilar effects on the electronic structure, we just show in Fig. 7 (a,b) the action of the twofold

degenerate high-energy mode mostly involving N vibrations.

The effect of intervalley vibrations on the electronic structure is to induce an unbalance

in the occupation of the two valleys, as shown in Fig.7. This means that each intervalley

phonon acts as a pseudo magnetic field on the valley degrees of freedom. In more details,

if we assume a constant intravalley electron-phonon matrix element (|dν
k,k+K
| ≈ |dν

K,2K
|), the

action of a small phonon displacement uKν on the electronic structure can be described by the

following one body Hamiltonian in the basis formed by the 2-component spinors |K + κ〉 and

|2K + κ〉, with κ = k −K:

Hν
κ
=
~

2κ2

2m∗
Î + Bνext µS σ̂x, (7)

where Î and σ̂x are the 2 × 2 identity and the Pauli matrix along the x-direction, respectively,

Bνext = |dνK,2K
|uKν/µS

As it happens in the magnetic case for χs, the response to the pseudo magnetic field,

χv, is enhanced by the intervalley exchange-correlation, as predicted by Eq. 4. This effect is

however absent in our DFT calculation, due to the lack of dependence of the exchange cor-

relation functional on intervalley densities (see Supplemental of5) for more details), but it is

normally present in hybrid-functional calculations via the dependence of the exact exchange

on electronic wavefunctions.6, 7)

As the total magnetization due to the pseudo magnetic field Bνext is written either as M =

χsB
ν
ext or as M = χ0sB̃

ν, where now B̃ν is the total magnetic field, sum of the external plus the

exchange-correlation field, we have,

B̃ν

Bνext

=
|d̃ν

K,2K
|

|dν
K,2K
|
=
χs

χ0s

(8)

namely the electron-phonon coupling at q = K is renormalized by the electron-electron in-

teraction exactly in the same way as the spin susceptibility with an enhancement that is inde-

pendent from the phonon index ν. Assuming again a constant intervalley matrix element we

11/15



J. Phys. Soc. Jpn.

have that:

λ̃inter =

(
χs

χ0s

)2

λinter (9)

so that λ̃ = λintra + λ̃inter. Thus the total electron-phonon interaction is enhanced in a way

that is proportional to the ratio between the fully interacting valley susceptibility and the non

interacting one. The occurrence of this effect in ZrNCl and HfNCl can be explicitly verified

by using hybrid functional calculations with different components of exact exchange.6, 7) In

the framework of our RPA model we can just renormalize the intervalley electron-phonon

interaction with the ration of the χs/χ0s in Fig. 1.

4. Conclusions
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Fig. 8. (Color online) Superconducting critical temperatures calculated with different approximations and

compared with experiments.21, 29) The grey region marks the occurrence of an insulating region detected in

experiments and due to disorder (Anderson transition).
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The superconducting properties for both compounds as a function of doping/intercalation

are shown in Fig. 8. In experiments, a metal insulator transition occurs at low doping due

to the occurrence of disorder. In intercalated HfNCl the Anderson insulating state persists to

doping as large as x = 0.14, hindering the detection of a Tc enhancement in HfNCl.

Density functional theory calculations based on gradient corrected functionals lead to

an estimate of Tc
30) that is too low compared to experiments and it also has the incorrect

behaviour of Tc versus doping. Indeed within the PBE parametrization,27) Tc increases by

increasing doping. Electron-electron interaction included within the RPA and via renormal-

ization of the intervalley electron-phonon interaction leads to the correct Tc versus doping be-

haviour and, for the case of LixZrNCl, to an excellent agreement with experiments. In HfNCl

the comparison with experiments is complicated by the more persistent Anderson transition

and the difficulties of obtaining very good ordered samples in the low doping limit. Our re-

sults predict that removal of the Anderson transition or better control of doping in LixHfNCl

could lead to emergence of a high Tc superconducting state.
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