
HAL Id: hal-01777397
https://hal.science/hal-01777397v1

Submitted on 24 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical validation in quadruple precision using
stochastic arithmetic

Stef Graillat, Fabienne Jézéquel, Romain Picot, François Févotte, Bruno
Lathuilière

To cite this version:
Stef Graillat, Fabienne Jézéquel, Romain Picot, François Févotte, Bruno Lathuilière. Numerical val-
idation in quadruple precision using stochastic arithmetic. TNC’18. Minisymposium on Trusted
Numerical Computations. International Conference on Emerging Trends in Applied Mathematics and
Mechanics, Jun 2018, Krakow, Poland. pp.38-53, �10.29007/5c91�. �hal-01777397�

https://hal.science/hal-01777397v1
https://hal.archives-ouvertes.fr

Numerical validation in quadruple precision using

stochastic arithmetic

S. Graillat1, F. Jézéquel1,2, R. Picot1,3, F. Févotte3, and B. Lathuilière3

1 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005 Paris, France
{Stef.Graillat,Fabienne.Jezequel,Romain.Picot}@lip6.fr

2 Université Panthéon-Assas, 12 place du Panthéon, 75231 Paris CEDEX 05, France
3 EDF R&D, 7 boulevard Gaspard Monge, 91120 Palaiseau, France

{Francois.Fevotte,Bruno.Lathuiliere}@edf.fr

Abstract

Discrete Stochastic Arithmetic (DSA) enables one to estimate rounding errors and to
detect numerical instabilities in simulation programs. DSA is implemented in the CADNA
library that can analyze the numerical quality of single and double precision programs.
In this article, we show how the CADNA library has been improved to enable the esti-
mation of rounding errors in programs using quadruple precision floating-point variables,
i.e. having 113-bit mantissa length. Although an implementation of DSA called SAM
exists for arbitrary precision programs, a significant performance improvement has been
obtained with CADNA compared to SAM for the numerical validation of programs with
113-bit mantissa length variables. This new version of CADNA has been sucessfully used
for the control of accuracy in quadruple precision applications, such as a chaotic sequence
and the computation of multiple roots of polynomials. We also describe a new version of
the PROMISE tool, based on CADNA, that aimed at reducing in numerical programs the
number of double precision variable declarations in favor of single precision ones, taking
into account a requested accuracy of the results. The new version of PROMISE can now
provide type declarations mixing single, double and quadruple precision.

Keywords: accuracy, floating-point arithmetic, IEEE 754-2008 standard, numerical vali-
dation, quadruple precision, rounding errors, stochastic arithmetic.

1 Introduction

Most numerical simulation programs use the single or double precision binary floating-point
format, respectively defined in the IEEE 754-2008 standard [12] as binary32 and binary64.
However quadruple or arbitrary precision may be required for unstable problems, such as the
computation of a chaotic sequence or the approximation of multiple roots of a polynomial. The
IEEE 754-2008 standard also defines a quadruple precision binary floating-point format, named
binary128, with 113-bit mantissa length, including one implicit bit.

The numerical stability of programs in single or double precision can be controlled using the
CADNA1 library [3, 13] that implements Discrete Stochastic Arithmetic (DSA) [20]. CADNA
enables one to estimate rounding errors in a simulation program and to detect numerical insta-
bilities that occur during its execution. CADNA has been successfully used for the numerical
validation of academic and industrial simulation codes in various domains. Another library
called SAM2 [7] uses DSA to control the numerical stability of arbitrary precision programs.
SAM is based on the MPFR3 [5] arbitrary precision library.

1http://cadna.lip6.fr
2http://www-pequan.lip6.fr/~jezequel/SAM
3http://www.mpfr.org

http://cadna.lip6.fr
http://www-pequan.lip6.fr/~jezequel/SAM
http://www.mpfr.org

Numerical validation in quadruple precision using stochastic arithmetic Graillat et al.

In this paper we show how to estimate with CADNA rounding errors in quadruple pre-
cision programs. Although the numerical validation of simulations in quadruple precision is
possible using SAM with 113-bit mantissa length numbers, the performance cost of arbitrary
precision features makes the improvement of CADNA preferable. We describe in this paper the
functionalities added to the CADNA library for the control of accuracy of binary128 results.
Furthermore we show how these modifications have enabled the improvement of the PROMISE4

software [8, 9] that is based on CADNA and aims at optimizing the precision of variables in
numerical codes. Indeed, from a required accuracy of the results, PROMISE automatically
determines the appropriate precision for each floating-point variable in a code. Thanks to the
CADNA improvement described in this paper, PROMISE can now provide mixed-precision
programs with not only declarations in single and double, but also in quadruple precision.

This paper is organized as follows. In Sect. 2 we briefly present the principles of DSA and
describe software tools related to DSA: CADNA, SAM, and PROMISE. In Sect. 3 we compare
several solutions for performing numerical simulation in quadruple precision: the binary128
floating-point type, the MPFR arbitrary precision library and the QD5 package [10] that pro-
vides a double-double data type. In Sect. 4 we describe the new functionalities of CADNA
related to the accuracy estimation of quadruple precision results. In Sect. 5 that is devoted
to numerical experiments, we present results obtained in quadruple precision with CADNA for
the computation of a chaotic sequence, the Hénon map, and the approximation of multiple
roots of polynomials. In Sect. 5, we also show the mixed precision configurations provided by
PROMISE from quadruple precision programs and the speedups obtained. Finally, we conclude
and discuss future works in Sect. 6.

2 DSA and related software

2.1 Principles and validity of DSA

Discrete Stochastic Arithmetic (DSA) [20] enables one to estimate rounding errors during nu-
merical simulations. It consists in executing each arithmetic operation three times with the
random rounding mode: each result obtained is randomly rounded up or down with the proba-
bility 1/2. Then the number of exact significant digits in the computed result is estimated with
a 95% confidence interval using Student’s test.

DSA is based on a model that assumes that rounding errors are independent centered
uniformly distributed random variables. With the random rounding mode, rounding errors are
random variables, but in practice they are not rigorously centered and Student’s test may give a
biased estimation of the computed result. However it has been proved [1] that, even if rounding
errors are not rigorously centered, the estimation obtained with DSA can be considered correct
up to one digit.

The accuracy estimation may be invalid if both operands in a multiplication or a divisor
are not significant [1]. Therefore during the execution of a program with DSA, the accuracy
of all multiplication operands and divisors should be controlled. This dynamical control of
multiplications and divisions is the so-called self-validation of DSA.

4http://promise.lip6.fr
5http://crd-legacy.lbl.gov/~dhbailey/mpdist/

2

http://promise.lip6.fr
http://crd-legacy.lbl.gov/~dhbailey/mpdist/

Numerical validation in quadruple precision using stochastic arithmetic Graillat et al.

2.2 Implementation of DSA

The CADNA [3, 13] library enables one to use DSA in programs written in C, C++, or For-
tran. CADNA provides new numerical types: the stochastic types. A stochastic variable is
composed of three perturbed floating-point values and an integer to store its accuracy. The
CADNA library contains the definition of arithmetic operations, order relations, and mathemat-
ical functions involving stochastic variables. Operations can be performed on combinations of
integers, classical floating-point variables and stochastic variables. However only the accuracy
of stochastic variables can be estimated.

The SAM library [7] enables one to estimate with DSA rounding errors in arbitrary precision
programs. SAM is based on the MPFR [5] arbitrary precision library and can be used in
programs written in C/C++. SAM with 24-bit (resp. 53-bit) mantissa length numbers is
similar to CADNA in single (resp. double) precision, except the range of the exponent is only
limited by the machine memory. In a program using SAM, the number of exact significant
digits in a result can be estimated with the probability 95%, whatever its precision.

Because of the definition of arithmetic operations, mathematical functions, and order re-
lations for stochastic variables in CADNA and SAM, a few modifications are required in user
programs to be controlled with DSA: mainly changes in variable declarations and in input/out-
put statements. Both CADNA and SAM can detect numerical instabilities that occur during
the program execution. Those instabilities are of different types: some are related to the
self-validation of DSA, some are due to numerical noise involved in an order relation or a
mathematical function, some are due to a cancellation, i.e. a severe loss of accuracy due to
the subtraction of two nearly equal numbers. At the end of the run, each type of instability
together with its occurrence is printed.

In the current C/C++ CADNA version, two stochastic types are available: float st and
double st, respectively associated with single and double precision. The numerical stability of
simulations in quadruple precision can be controlled with SAM using 113-bit mantissa length.
However our aim is to add features to CADNA in order to enable the use of stochastic vari-
ables in quadruple precision, without the performance cost of an arbitrary precision library.
Indeed this new CADNA version will provide a quadruple precision stochastic type based on
the binary128 type defined in the IEEE 754-2008 standard.

2.3 The PROMISE software

The PROMISE (PRecision OptiMISE) software [8, 9] is based on CADNA and aims at opti-
mizing floating-point type declarations in simulation codes. The sequel relies on Definition 1
that makes clear the notion of decimal significant digits in common between two numbers.

Definition 1. The number of decimal significant digits in common between two real numbers

a and b is defined in R by: for a 6= b, Da,b = log10

∣∣∣∣ a+ b

2(a− b)

∣∣∣∣ and for all a ∈ R, Da,a = +∞.

Then |a− b| =
∣∣a+b

2

∣∣ 10−Da,b . For instance, if Da,b = 3, the relative difference between a
and b is of the order of 10−3, which means that a and b have three significant decimal digits in
common.

In the following, we denote by C a set of variables to optimize in a program. A configuration
is a bipartition (Cs, Cd) of C. The set of all possible configurations is denoted by R.

A configuration (Cs, Cd) is said to be admissible if, when all variables in Cs (resp. Cd) are
declared in single (resp. double) precision, the resulting program satisfies the following criteria:
(i) it is compilable, (ii) it runs without error, and (iii) it yields results meeting accuracy

3

Numerical validation in quadruple precision using stochastic arithmetic Graillat et al.

requirements. A testing function τ : R → {3,7} determines if a configuration is admissible
(3) or not (7).

The implementation of PROMISE relies on the Delta-Debugging (DD) algorithm [21], and
more specifically its DDmax variant: being given a set of variables C and a testing function τ ,
calling DDmax(C, τ) yields a configuration (Cs, Cd) which is admissible and locally maximal
in the sense that no variable in Cd can be moved to Cs without causing the configuration to
become inadmissible.

PROMISE is implemented in two versions, which differ in how the source code is modified
and how the accuracy requirements are checked for in the testing function. For n required exact
significant digits, the testing function τ can be defined in two ways:

Full stochastic: for every tested configuration, a fully CADNA-instrumented version of the
code is generated. A configuration is admissible if the number of exact significant digits
estimated using DSA is at least n, and if these digits are in common, in the sense of
Definition 1, with a reference DSA computation in double precision.

Stochastic reference: only the reference result is computed in high-precision DSA. The eval-
uation of every tested configuration is performed in standard floating-point arithmetic. A
configuration is admissible if it produces results which have at least n significant digits in
common, in the sense of Definition 1, with the reference results.

3 Quadruple precision arithmetic

3.1 The binary128 format and its implementation

Several binary types are specified in the IEEE 754-2008 standard, such as binary32, binary64,
and binary128, defined respectively on 32, 64, and 128 bits. A binary128 floating-point number
consists of a sign bit s, a 15-bit long exponent e, and a 112-bit long mantissa m. Although 112
bits are explicitly stored to represent the mantissa, its precision is actually 113 bits. Indeed
like for binary32 and binary64 numbers, binary128 numbers benefit from an implicit bit that is
set to 1, except for the representation of zero or subnormal numbers.

A few 128-bit processors exist: up to our knowledge, only SPARC V8 [18] or V9 [19] and
IBM POWER9 [17] processors feature 128-bit registers. On other architectures, the binary128
floating-point type is emulated. We describe in this section how the binary128 format is imple-
mented by the GCC compiler6 on a 64-bit processor.

In the GCC compiler, a binary128 number is defined as a bit field structure that consists
of a sign bit, a 15-bit long integer for the exponent, a 48-bit long integer for the high part
of the mantissa, and a 64-bit long integer for its low part. As already mentioned, although
the mantissa length is physically 112 bits, its actual length is 113 bits. Arithmetic operations
on binary128 numbers require several steps. First, the 4 elements that define each binary128
number are extracted from the bit field structure. From the exponents, particular cases specified
in the IEEE 754 standard may be identifed: some operations involving ±0, ±∞, or NaN (Not
a Number) that is associated with an undefined or unrepresentable value. In such cases, the
result is rapidly returned. Otherwise arithmetic operations are carried out on the integers
representing the binary128 numbers. Rounding is performed before the creation of the bit field
structure of the result. If an exception such as overflow or underflow occurs, a status flag may
be raised.

6GCC, the GNU Compiler Collection: http://gcc.gnu.org

4

http://gcc.gnu.org

Numerical validation in quadruple precision using stochastic arithmetic Graillat et al.

3.2 The double-double format and its implementation

A double-double number a is a pair (ah, al) of IEEE-754 floating-point numbers where ah and al
do not overlap, i.e. a = ah + al with |al| ≤ 2−53|ah|. Algorithms for arithmetic operations in-
volving double-double numbers rely on error-free transformations. It is known that for the basic
operations +,−,×, the approximation error of a floating-point operation is still a floating-point
number (see for example [2]). From a pair of floating-point operands, an error-free transfor-
mation provides both the result of the floating-point operation and the associated rounding
term. However double-double results are not necessarily rounded as specified in the IEEE 754
standard.

There are several implementations for the double-double library. The difference lies in the
fact that the lower-order terms are treated in different ways. The main reference is the QD
library [10] that is used in the performance comparison presented in Sect. 3.3. In the QD library
there exist several implementations of double-double operations, in particular, for addition and
division, the sloppy version that performs better, at the price of a possibly higher error. These
sloppy algorithms should be used with parcimony. Indeed with the sloppy version of the ad-
dition, there is no proof that the relative error on the result is bounded if the operands have
opposite signs [14].

3.3 Performance comparison of quadruple precision programs

Performance comparison is performed on an Intel Xeon E5-2660 processor at 2.2 GHz and 32 GB
RAM with the GNU compiler G++ 4.8.5 and the Intel compiler ICC 17. The MPFR arbitrary
precision library, version 3.1.1, is used with 113-bit mantissa length numbers. Performances of
two C++ codes are measured. Matrix performs a naive multiplication of two square matrices
of size 1,000. Map computes the sequence defined by U0 = 1.1 and for i = 1,..., n, Ui = (0.1×
Ui−1−(1/3+Ui−1)2)/(1−Ui−1)3 with n = 128, 000, 000. This sequence has been defined in order
to perform all arithmetic operations while avoiding optimizations such as vectorization. In this
code, no raising to power is computed using the pow mathematical function, multiplications are
performed instead. Figure 1 presents the performance ratio w.r.t. double precision (binary64)
of the binary128 type provided by GCC or ICC, the double-double type of the QD library, and
MPFR with 113-bit mantissa length. Compilation is performed with the O0 or the O3 option.

Whatever the compiler and the compilation option, MPFR version 3.1.1 with 113-bit man-
tissa length performs the worst. Its performance ratio w.r.t. binary128 varies from 4 to 13.
As a remark, since our performance measurements, MPFR has benefited from performance
improvements [15]. In particular, from version 3.1.5 to version 4.0-dev, the number of cycles for
arithmetic operations (+,−,×, /) on numbers with 113-bit mantissa length has been divided
by at most 2. However in the performance tests presented in this section, MPFR 4 would still
be costful compared to the binary128 type of GCC or ICC, or the double-double type of the QD
library.

From Figures 1a and 1b, if the compilation option O0 is chosen, binary128 performs the
best. However, in our experiments, its average cost w.r.t. binary64 is approximately a factor 12.
Its performance ratio with respect to the double-double type varies from 1.5 to 4. It can be
noticed that with the double-double type, the performance gain of the sloppy version is low:
from 0.5% to 13%.

From Figure 1, for matrix multiplication, the performance ratio of binary128 over binary64
is 4 or 8 times higher, depending on the compiler, with the O3 option than with O0. Indeed,
on the one hand, matrix multiplication is particulary well optimized with the O3 option for the
binary32 or the binary64 format. On the other hand, whatever the optimization option, each

5

Numerical validation in quadruple precision using stochastic arithmetic Graillat et al.

binary128 MPFR DD DD sloppy
1

10

100

1000

10.4

42.2

18.9 18.816.9

107.3

64.2 62.9

Matrix

Map

ov
er

he
ad

(a) GCC with O0

binary128 MPFR DD DD sloppy
1

10

100

1000

8.6

41.5

14.7 12.710.7

103.8

38.7 36.7
Matrix

Map

ov
er

he
ad

(b) ICC with O0

binary128 MPFR DD DD sloppy
1

10

100

1000

41.4

166.3

13.4
9.5

14.0

138.1

13.2 12.1

Matrix

Map

ov
er

he
ad

(c) GCC with O3

binary128 MPFR DD DD sloppy
1

10

100

1000

68.7

406.9

46.7
38.1

10.5

139.1

10.2
6.7

Matrix

Map

ov
er

he
ad

(d) ICC with O3

Figure 1: Performance ratio w.r.t double precision (binary64) of binary128, MPFR with 113-bit
mantissa length, and double-double

arithmetic operation in binary128 implies to access data structures to read the operands and
write the result.

From Figures 1c and 1d , because the double-double program for matrix multiplication also
benefits from a particularly good optimization with the O3 option, it performs 1.5 or 3 times
better, depending on the compiler, than its binary128 counterpart. However, with the Map
application, performances of binary128 and double-double are similar. With double-double, the
performance gain of the sloppy version is higher with the O3 option than with O0. With O3,
it varies from 8% to 34%.

Although double-double performs better, in particular for matrix multiplication, than bi-
nary128 with the O3 option, it must be pointed out that the binary128 format is defined in the
IEEE 754-2008 standard, whereas the double-double type of the QD library does not adhere
to that standard. Indeed double-double computation cannot be performed with the rounding
modes defined in that standard. Therefore, as described in Sect. 4, the quadruple precision
extension of CADNA is based on the binary128 format of the IEEE 754-2008 standard.

4 DSA and related software in quadruple precision

4.1 Extension of CADNA to quadruple precision

In order to extend CADNA to quadruple precision, i.e. in order to define a new quad st

stochastic type associated to quadruple precision, a few non-trivial aspects need to be taken
care of. First, a utility library is incorporated into CADNA, that allows manipulating quadru-

6

Numerical validation in quadruple precision using stochastic arithmetic Graillat et al.

ple precision numbers as easily as other standard floating-point numbers. Quadruple precision
floating-point numbers are named differently in GCC (float128) and Intel (Quad) compil-
ers. In order to provide uniform access to these types, we use the float128 type from the
Boost::Multiprecision library. This type is a thin wrapper around the underlying quadruple
precision floating-point type, and incurs no overhead with respect to the performance of native
types. Moreover, all mathematical functions working on quadruple precision are suffixed with
the letter q (e.g. logq or cosq). In order to allow to access mathematical functions under their
usual names, we also provide overloaded definitions of standard functions for the float128

type.

With this being in place, stochastic arithmetic can be implemented for quadruple precision
in the same way as single and double precision. Since version 2.0.0 of CADNA, for performance
reasons, no explicit rounding mode switching is performed during program execution [3]. The
CPU rounding mode is set towards plus infinity during program initialization, and rounding
mode towards minus infinity is emulated taking advantage of properties such as a ⊕−∞ b =
− (−a⊕+∞ −b) and a ⊗−∞ b = − (a⊗+∞ −b) where ⊕+∞ and ⊗+∞ (resp. ⊕−∞ and ⊗−∞)
are the floating-point operations rounded towards +∞ (resp. −∞). Such a technique can
easily be applied to quadruple precision numbers, provided that an efficient implementation
is available to flip the sign of a number. In CADNA, this operation is performed by bitwise
XORing the floating-point number with an appropriate mask.

Like in the single and double precision version of CADNA, arithmetic operations involving
any combination of numerical types with at least one stochastic type are overloaded. Indeed it is
possible to mix in arithmetic operations integers, classical floating-point or stochastic variables,
in single, double or quadruple precision.

A last detail which must be accounted for is the formatting of quadruple precision numbers
for output. Standard printf-like C functions and the standard C++ streaming operator (<<)
indeed do not properly handle quadruple precision floating-point numbers. Therefore CADNA
has been modified in order to enable to print quadruple precision classical or stochastic variables
using the printf C function and the C++ streaming operator. These new functionalities are
based on the specialized quadmath snprintf function.

4.2 Performance of CADNA in quadruple precision

The performance of CADNA is measured on the workstation already mentioned in Sect. 3.3
with the same compilers and the compilation option O3. Table 1 presents the performance ratio
of CADNA execution w.r.t. classic floating-point execution for both codes Matrix and Map
previously described in Sect. 3.3. Three instability detection levels are chosen with CADNA:
detection of no instability (instability detection is deactivated); self-validation (as introduced
in Sect. 2.1, instabilities in multiplications and divisions are detected); detection of all kinds
of instabilities. As a remark, with both codes, unstable multiplications and cancellations are
detected whatever the precision chosen (single, double or quadruple).

If instability detection is deactivated, CADNA overhead in single or in double precision
varies from 7 to 20 depending on the code and the compiler. This overhead is mainly due
to the extra computation inherent to CADNA, and furthermore codes with classic floating-
point types in single or in double precision may benefit from better optimizations than their
CADNA counterparts that use stochastic types. With the same instability detection level,
CADNA overhead is lower in quadruple precision: it varies from 4 to 8. This better overhead in
quadruple precision can be explained by the fact that the binary128 format is implemented as a
data structure. Each arithmetic operation in classic floating-point quadruple precision requires

7

Numerical validation in quadruple precision using stochastic arithmetic Graillat et al.

no instability self-validation all instabilities
GCC ICC GCC ICC GCC ICC

single
matrix 15 16 16 18 34 44
map 10 6.8 15 7.3 20 11

double
matrix 20 11 22 12 35 20
map 11 7.2 14 8.8 20 10

quadruple
matrix 5.0 3.6 5.4 3.8 21 17
map 7.8 5.0 12 7.4 19 8.8

Table 1: CADNA overhead w.r.t. classic floating-point computation

no instability self-validation all instabilities
CADNA SAM CADNA SAM CADNA SAM

GCC
matrix 240 679 251 754 1144 7387
map 133 547 207 2148 409 4684

ICC
matrix 163 698 170 724 791 7593
map 90 597 133 2145 160 4754

Table 2: Execution time in seconds using CADNA in quadruple precision and SAM with 113-bit
mantissa length

accesses to such a structure. Therefore classic floating-point codes in quadruple precision do
not take benefit from the same optimizations as in single or in double precision.

With CADNA, instability detection introduces extra execution time and this cost is not
particularly higher in quadruple precision. The additional execution time due to self-validation
(w.r.t. no instability detection) varies from 7% to 56% depending on the code, the compiler
and the precision chosen. The overhead of the detection of all kinds of instabilities (w.r.t.
no instability detection) is a factor 1.4 to 4.8. This cost is mainly due to the detection of
cancellations that implies to compute for each addition or subtraction the number of correct
digits of the operands and the result.

Table 2 presents the execution time of the codes Matrix and Map compiled with GCC
and ICC using CADNA in quadruple precision and SAM with 113-bit mantissa length. As
expected, whatever the compiler and the code, CADNA performs better than SAM. If instability
detection is deactivated, the performance ratio varies from 3 to 7. This can be explained by the
performance ratio between the binary128 computation and the MPFR library already mentioned
in Sect. 3.3. Self-validation induces extra computation, and as a consequence, the ratio of the
execution time with SAM over the one with CADNA increases and it increases more if all kinds
of instabilities are detected: in this case, it varies from 6 to 30. As a remark, the performance
ratio between CADNA and SAM is higher with ICC than with GCC. This difference is due
to the better performance with ICC than with GCC of the codes using CADNA, whereas the
execution times of the codes using SAM are similar with both compilers. As a remark, in
our performance measurements, SAM is based on MPFR version 3.1.1. As already mentioned
in Sect. 3.3, with 113-bit mantissa length numbers, SAM would benefit from the performance
improvements of MPFR 4 [15]. However CADNA would remain competitive compared to SAM.

8

Numerical validation in quadruple precision using stochastic arithmetic Graillat et al.

4.3 Extension of PROMISE to quadruple precision

The PROMISE tool described in Sect. 2.3 can be extended to handle a third floating-point
number type and optimize variable declarations between single, double and quadruple precision.
The objective now consists in partitioning the full set of variables C into three subsets Cs, Cd

and Cq of variables whose precision can be respectively set to single, double or quadruple
while still producing an accurate enough result. A problem posed by such an extension is
that the DDmax algorithm produces configurations that are bipartitions of the variables set,
whereas in our new setup, tested configurations should be tripartitions of the variables set.
The strategy used in this work to overcome this difficulty is to perform two Delta-Debugging
steps in a row, as presented in Algorithm 1: in a first stage, a DDmax algorithm is used to test
the full set of variables C for downgrade from quadruple to double precision. This allows to
determine a maximal subset Cd0 of variables which can be downgraded to double precision. Its
complement Cq contains variables which must remain in quadruple precision for the result to
meet accuracy requirements. In a second stage, variables in Cd0 are tested for downgrade from
double to single precision.

Algorithm 1 Two-tier Delta-Debugging algorithm

Input: C: set of variables to optimize
Output: (Cs, Cd, Cq): admissible configuration in C

(Cd0 , C
q) = DDmax (C, τq→d)

(Cs, Cd) = DDmax

(
Cd0 , τ

Cq

d→s
)

return (Cs, Cd, Cq)

The same Delta-Debugging algorithm is used for both stages; only the set of variables and
the test functions are adjusted. A global testing function τ , shown in Algorithm 2, defines how
to test the validity of any given configuration (Cs, Cd, Cq). The testing functions used in each
Delta-Debugging stage are simply defined as partial applications of this global test function:
τq→d(C

d, Cq) = τ
(
∅, Cd, Cq

)
and τC

q

d→s(C
s, Cd) = τ

(
Cs, Cd, Cq

)
.

As for the two-precision version, this new version of PROMISE comes in two flavors: “full
stochastic” and “stochastic reference”. These versions are defined in the same way as in
Sect. 2.3, except reference results are now computed in quadruple precision DSA.

5 Numerical experiments

In this section, we first present quadruple precision results obtained with CADNA for the
computation of a chaotic sequence, the Hénon map, and the approximation of multiple roots
of polynomials. Then we show that the PROMISE software can now provide, from initial
numerical programs in C/C++, new programs with type declarations possibly mixing single,
double and quadruple precision, depending on the requested accuracy of the results.

5.1 Hénon map

The Hénon map is a discrete-time dynamical system [11]. It maps a point (xi, yi) ∈ R2 to a
new point defined by xi+1 = 1 + yi − ax2i and yi+1 = bxi. Depending on the parameters a and
b, the system can be regular or chaotic. Here we focus on the values of the classical Hénon map
obtained with a = 1.4 and b = 0.3, starting from x0 = 1 and y0 = 0. With those parameters,
the map is considered as chaotic.

9

Numerical validation in quadruple precision using stochastic arithmetic Graillat et al.

Algorithm 2 Global testing function τn

Inputs: n: requested number of exact significant digits
(Cs, Cd, Cq): configuration to test

Output: admissibility of the given configuration

if (Cs, Cd, Cq) was previously tested then
return the result in cache

end if
Update the source code according to (Cs, Cd, Cq)
if the source code compilation fails then

return 7
end if
Run the modified program
if the execution fails then

return 7
else if the result meets accuracy requirements of n significant digits then

return 3
end if
return 7

Figure 2 shows the number of exact significant digits estimated by CADNA in the results
xi obtained using single, double and quadruple precision. One can observe that the accuracy
of xi regularly decreases with the number i of iterations performed. A similar figure, that is
not displayed here, describes the loss of accuracy of the results yi. At a certain iteration, which
depends on the precision chosen, the results have no more correct digits.

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160 180 200

N
u
m

b
e
r

o
f

e
x
a
ct

 s
ig

n
ifi

ca
n
t

d
ig

it
s

Number of iterations

quad
double
single

Figure 2: Accuracy estimated by CADNA of coordinates xi of the Hénon map a = 1.4, b = 0.3,
x0 = 1, and y0 = 0).

Table 3 presents at different iterations the results (xi, yi) computed using CADNA with
single, double or quadruple precision. CADNA displays only the exact significant digits of
results and @.0 if they have no more correct digits. Numerical noise appears at iteration 30,
75, and 175, respectively in single, double and quadruple precision. As a remark, for any two
precisions, the ratio between these iteration numbers is close to the ratio of the corresponding
mantissa lengths.

10

Numerical validation in quadruple precision using stochastic arithmetic Graillat et al.

iteration precision point (xi, yi) computed using CADNA
30 single xi @.0

yi 0.2E+000
30 double xi -0.13848191E+000

yi 0.2856319104E+000
30 quad xi -0.138481919146792462486489312E+000

yi 0.2856319104003007180980589904E+000

75 double xi @.0
yi -0.1E+000

75 quad xi 0.115649947336564503E+000
yi -0.1839980672458806840E+000

175 quad xi @.0
yi -0.2E+000

Table 3: At different iterations, points (xi, yi) of the Hénon map computed using CADNA with
single, double or quadruple precision (a = 1.4, b = 0.3, x0 = 1, and y0 = 0).

5.2 Multiple roots of polynomials

Newton’s method enables one to compute a root of a function f . From a root approximation x0,

it consists in computing the sequence xn+1 = xn − f(xn)
f ′(xn)

. The stopping criterion usually relies

on a threshold ε and may be for instance |xn+1 − xn| < ε or
∣∣∣xn+1−xn

xn+1

∣∣∣ < ε if xn+1 6= 0. With

DSA, the sequence can be computed until the difference between two successive approximations
xn and xn+1 is not significant. In this case, the transformation of xn into xn+1 is due to rounding
errors and further iterations are useless: the number of iterations has been optimized.

The numerical quality of an approximation provided by Newton’s method depends on the
root multiplicity. The accuracy of a multiple root obtained in double precision may be unsat-
isfactory and quadruple precision may be required. Theorem 1 established in [6] is based on
Definition 1. It gives a relation between the common digits of two successive approximations of
a multiple root computed using Newton’s method and the common digits of an approximation
and the root.

Theorem 1. Let xn and xn+1 be two successive approximations computed using Newton’s
method of a polynomial root α of multiplicity m ≥ 2. Then

Dxn,xn+1 ∼∞ Dxn+1,α + log10(m− 1).

From Theorem 1, if the convergence zone is reached, then the digits common to two succes-
sive approximations xn and xn+1 are also in common with the exact root α, up to log10(m−1).
If iterations are performed until the difference between two sucessive approximations xn and
xn+1 is not significant, then the significant digits of the last approximation xn+1 which are not
affected by rounding errors are in common with the exact root α, up to δ = dlog10(m− 1)e, as
illustrated in Figure 3.

Table 4 presents for each root αi of P (x) = (x−1)2(3x−1)3, the value δi = dlog10(mi−1)e,
the number of significant digits not affected by rounding errors estimated by CADNA of its
approximation by Newton’s method, and the number of significant digits in common with the
exact root according to Definition 1.

In Table 5 are reported, for several polynomials Pm(x) = (x−1)m, the value δ = dlog10(m−
1)e, the number of significant digits not affected by rounding errors estimated by CADNA of its

11

Numerical validation in quadruple precision using stochastic arithmetic Graillat et al.

xn+1

xn

α rounding errorsδ

Figure 3: Representation of the last iterates xn and xn+1 of Newton’s method, and the first
digits of the exact multiple root α: if xn−xn+1 is not significant, then the digits of xn+1 which
are not affected by rounding errors are in common with α, up to δ.

precision
α1 = 1, δ1 = 0 α2 = 1/3, δ2 = 1

CADNA exact CADNA exact
single 4 3.1 3 2.2
double 7 7.3 5 5.0
quad 17 16.6 12 11.0

Table 4: For each root of P (x) = (x− 1)2(3x− 1)3, number of digits not affected by rounding
errors estimated by CADNA and number of digits in common with the exact root.

computed root, and the number of significant digits in common with the exact root according
to Definition 1.

precision
m = 6, δ = 1 m = 8, δ = 1 m = 18, δ = 2

CADNA exact CADNA exact CADNA exact
single 2 1.0 1 0.7 1 0.5
double 3 2.4 2 1.8 1 0.7
quad 7 5.5 5 4.0 3 1.6

Table 5: For Pm(x) = (x− 1)m number of digits not affected by rounding errors estimated by
CADNA and number of digits in common with the exact root.

As expected, from Tables 4 and 5, if the root multiplicity increases, the accuracy of the
approximation obtained decreases. Depending on the root multiplicity, quadruple precision
may be required to achieve satisfactory accuracy. From Tables 4 and 5, if δ = dlog10(m− 1)e,
m being the root multiplicity, the result accuracy estimated by CADNA is the exact accuracy,
up to δ in 12 cases out of 15, and up to δ+ 1 in 3 cases out of 15. This remark is in accordance
with Theorem 1 and the fact that the accuracy estimation by CADNA can be considered correct
up to one digit, as mentioned in Sect. 2.

5.3 Autotuning of floating-point types with three possible precisions

The PROMISE tool has already enabled tuning of floating-point types in programs to produce,
taking into account accuracy requirements, mixed-precision configurations, i.e. with single and
double precision variables. PROMISE has been successfully tested on programs implementing
several numerical algorithms including linear system solving and also on an industrial code that
solves the neutron transport equations [8]. In this section, we aim at showing the feasiblity of us-
ing PROMISE to automatically provide modified programs with variable declarations in single,
double, and quadruple precision. Table 6 presents results provided by the “stochastic reference”

12

Numerical validation in quadruple precision using stochastic arithmetic Graillat et al.

version of PROMISE, already mentioned in Sect. 4.3, with the following simple programs: ma-
trix multiplication (MatMul), Babylonian method for square root computation (SquareRoot),
and rectangle method for the computation of integrals (Rectangle). For each program, differ-
ent rows in Table 6 correspond to several accuracy requirements: 4 to 20 (with step 2) exact
significant digits. In the case of matrix multiplication, all elements of the resulting matrix must
satisfy the accuracy criterion.

The performance of PROMISE is measured on the workstation already mentioned in Sect. 3.3
with the same compilers and the compilation option O3. The results reported in Table 6 are:
the number of executions of the transformed programs (# exec); the number of variables which
must be stored in quadruple precision (# quad); the number of variables which can be relaxed
to double precision (# double); the number of variables which can be relaxed to single precision
(# float); the total execution time of PROMISE, including the compilation and the execution
of the transformed codes, as well as the time spent in PROMISE’s own routines; the speedup
of the proposed configuration, when run without CADNA, w.r.t. the initial configuration (all
variables in quadruple precision).

As the number of required digits decreases, the number of variables in single or in double
precision increases and the speedup of the transformed program w.r.t. the quadruple precision
one also increases. This speedup is up to 5.5 if 4 correct digits are requested for matrix
multiplication. In the numerical experiments carried out with the two-precision version of
PROMISE [8], lower speedup has been obtained (up to 1.3). In this case, speedup was measured
w.r.t. the double precision configuration. The better speedup obtained with the three-precision
version of PROMISE can be explained by the heavy overhead of quadruple precision w.r.t.
double or single precision.

6 Conclusion and perspectives

In this article, we have shown how to control the numerical quality of quadruple precision pro-
grams using Discrete Stochastic Arithmetic (DSA). The CADNA library that implements DSA
has been extended to include a new type and thus enable the numerical validation of quadruple
precision computation. CADNA in this case is preferable to the SAM library that implements
DSA in arbitrary precision. The performance cost of the CADNA library in a quadruple preci-
sion program is reasonable: in our experiments with the GCC and ICC compilers, a factor 4 to
8 has been measured if instability detection is deactivated. This new version of CADNA can be
used to control accuracy in programs that require quadruple precision, such as the simulation
of chaotic phenomena or the computation of multiple roots of polynomials. Thanks to the
quadruple precision in CADNA, the PROMISE software has been improved. We have shown
how to automatically determine in a program an appropriate configuration of types that would
possibly mix single, double and quadruple precision and would respect an accuray threshold on
the results.

A straightforward extension to this work would be the control of accuracy in quadruple
precision parallel programs. CADNA can be used for the numerical validation of single or
double precision parallel programs based on OpenMP [4] or MPI [16]. CADNA could be
improved to enable the control of quadruple precision parallel programs: the main new features
would be, with OpenMP the reduction operations with quadruple precision stochastic variables,
and with MPI the exchange of this kind of variables between processors.

With the O3 compilation option, the double-double type of the QD library performs better
than the binary128 type of GCC or ICC. Therefore an implementation of DSA based on the
QD library is another possible extension to this work. Because double-double results are not

13

Numerical validation in quadruple precision using stochastic arithmetic Graillat et al.

Program # digits

MatMul 20
18
16
14
12
10
8
6
4

SquareRoot 20
18
16
14
12
10
8
6
4

Rectangle 20
18
16
14
12
10
8
6
4

exec

quad
-

double
-

float

Time
(seconds)

Speedup

9 1 - 1 - 1 31.3 1.46

8 0 - 2 - 1 24.7 3.67

4 0 - 0 - 3 16.0 5.50

22 6 - 0 - 2 13.1 1.11

25 5 - 1 - 2 13.1 2.42

22 0 - 6 - 2 10.9 2.68

4 0 - 0 - 8 4.7 2.74

18 6 - 1 - 0 11.8 1.07

20 2 - 5 - 0 12.5 1.42

18 1 - 6 - 0 10.3 1.40

16 0 - 7 - 0 10.3 1.40

12 0 - 2 - 5 8.6 1.40

12 0 - 1 - 6 8.6 1.45

4 0 - 0 - 7 4.4 1.45

Table 6: Experimental results of PROMISE with three types on several test cases.

necessarily rounded as specified in the IEEE 754 standard, this perspective will require to
rethink some double-double algorithms in order to compute results with directed rounding.

References

[1] J.-M. Chesneaux. L’arithmétique stochastique et le logiciel CADNA. Habilitation à diriger des
recherches, Université Pierre et Marie Curie, Paris, France, November 1995.

[2] T.J. Dekker. A floating-point technique for extending the available precision. Numerische Math-
ematik, 18(3):224–242, 1971.

[3] P. Eberhart, J. Brajard, P. Fortin, and F. Jézéquel. High performance numerical validation using
stochastic arithmetic. Reliable Computing, 21:35–52, 2015.

[4] P. Eberhart, J. Brajard, P. Fortin, and F. Jézéquel. Estimation of Round-off Errors in OpenMP
Codes. In IWOMP 2016 - 12th International Workshop on OpenMP, volume 9903 of Lecture Notes
in Computer Science, pages 3–16. Springer International Publishing, 2016.

14

Numerical validation in quadruple precision using stochastic arithmetic Graillat et al.

[5] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-precision
binary floating-point library with correct rounding. ACM Trans. Math. Softw., 33(2):13:1–13:15,
2007.

[6] S. Graillat, F. Jézéquel, and M.S. Ibrahim. Dynamical control of Newton’s method for multiple
roots of polynomials. Reliable Computing, 21, 2016.

[7] S. Graillat, F. Jézéquel, S. Wang, and Y. Zhu. Stochastic Arithmetic in Multiprecision. Mathe-
matics in Computer Science, 5(4):359–375, 2011.

[8] S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuilière. Auto-tuning for floating-point pre-
cision with Discrete Stochastic Arithmetic. https://hal.archives-ouvertes.fr/hal-01331917,
June 2016. working paper or preprint.

[9] S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuilière. PROMISE: floating-point preci-
sion tuning with stochastic arithmetic. In 17th international symposium on Scientific Computing,
Computer Arithmetic and Validated Numerics (SCAN 2016), Uppsala, Sweden, September 2016.

[10] Y. Hida, X.S. Li, and D.H. Bailey. Library for double-double and quad-double arithmetic.
Technical report, NERSC Division, Lawrence Berkeley National Laboratory, USA, 2008. http:

//www.davidhbailey.com/dhbpapers/qd.pdf.

[11] M. Hénon. A two-dimensional mapping with a strange attractor. Comm. Math. Phys., 50(1):69–77,
1976.

[12] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE Standard 754-2008,
August 2008. Available at http://ieeexplore.ieee.org/servlet/opac?punumber=4610933.

[13] F. Jézéquel and J.-M. Chesneaux. CADNA: a library for estimating round-off error propagation.
Computer Physics Communications, 178(12):933–955, 2008.

[14] M. Joldes, J.-M. Muller, and V. Popescu. Tight and Rigorous Error Bounds for Basic Building
Blocks of Double-Word Arithmetic. ACM Trans. Math. Softw., 44(2):15res:1–15res:27, October
2017.

[15] V. Lefèvre and P. Zimmermann. Optimized Binary64 and Binary128 Arithmetic with GNU MPFR.
In 24th IEEE Symposium on Computer Arithmetic (ARITH 24), London, United Kingdom, July
2017.

[16] S. Montan, J.-M. Chesneaux, C. Denis, and J.-L. Lamotte. Towards an efficient implementation of
CADNA in the BLAS: example of DgemmCADNA routine. In 15th GAMM - IMACS International
Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics (SCAN),
December 2012.

[17] OpenPOWER foundation. Power ISA Version 3.0 B, 2017. https://openpowerfoundation.org/
?resource_lib=power-isa-version-3-0.

[18] SPARC International, Inc. The SPARC Architecture Manual, Version 8, 1992. https://web.

archive.org/web/20050204100221/http://www.sparc.org/standards/V8.pdf.

[19] SPARC International, Inc. The SPARC Architecture Manual, Version 9, 1994. https://web.

archive.org/web/20110728044139/http://www.sparc.org/standards/SPARCV9.pdf.

[20] J. Vignes. Discrete Stochastic Arithmetic for validating results of numerical software. Numerical
Algorithms, 37(1–4):377–390, December 2004.

[21] A. Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann, Boston,
second edition, 2009.

15

https://hal.archives-ouvertes.fr/hal-01331917
http://www.davidhbailey.com/dhbpapers/qd.pdf
http://www.davidhbailey.com/dhbpapers/qd.pdf
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0
https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0
https://web.archive.org/web/20050204100221/http://www.sparc.org/standards/V8.pdf
https://web.archive.org/web/20050204100221/http://www.sparc.org/standards/V8.pdf
https://web.archive.org/web/20110728044139/http://www.sparc.org/standards/SPARCV9.pdf
https://web.archive.org/web/20110728044139/http://www.sparc.org/standards/SPARCV9.pdf

	Introduction
	DSA and related software
	Principles and validity of DSA
	Implementation of DSA
	The PROMISE software

	Quadruple precision arithmetic
	The binary128 format and its implementation
	The double-double format and its implementation
	Performance comparison of quadruple precision programs

	DSA and related software in quadruple precision
	Extension of CADNA to quadruple precision
	Performance of CADNA in quadruple precision
	Extension of PROMISE to quadruple precision

	Numerical experiments
	Hénon map
	Multiple roots of polynomials
	Autotuning of floating-point types with three possible precisions

	Conclusion and perspectives

