
HAL Id: hal-01777360
https://hal.science/hal-01777360

Submitted on 24 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QoS Instrumentation to Support Cloud Computing SLA
Assurance

Mustapha Ait-Idir, Nazim Agoulmine, Rafael Tolosana Calasanz, Javier
Baliosian

To cite this version:
Mustapha Ait-Idir, Nazim Agoulmine, Rafael Tolosana Calasanz, Javier Baliosian. QoS Instrumenta-
tion to Support Cloud Computing SLA Assurance. 6th International Workshop on ADVANCEs in ICT
Infrastructures and Services (ADVANCE 2018), Jan 2018, Santiago, Chile. pp.1–12. �hal-01777360�

https://hal.science/hal-01777360
https://hal.archives-ouvertes.fr


1

QoS Instrumentation to Support Cloud

Computing SLA Assurance

Mustapha Ait-Idir1, Nazim Agoulmine1, Rafael Tolosana Calasanz2, and Javier
Baliosian3

1 IBISC Lab, University of Evry Val d’Essonne, Evry Val d’Esssonne, France
[maitidir, nazim.agoulmine]@ibisc.univ-evry.fr

2 Universidad de Zaragoza, Zaragoza, Spain
rafaelt@unizar.es

3 Universidad de la Repblica de Uruguay, Montevideo, Uruguay
baliosian@fing.edu.uy

Abstract. Today, organizations and individuals are moving from pro-
prietary servers to the cloud computing to benefit from the powerful ad-
vantages of the theoretical unlimited resources and computation power.
The principle of PAYG (Pay As You Go) makes this new paradigm more
attractive and provides a rapid growing and extension. However, using
a multi-tenancy environment brings new challenges in terms of security,
reliability and QoS (Quality of Service). Thus, to fulfill cloud customer
expectations in cloudified applications, a relationship must be formalized
in a signed contract (i.e. SLA or Service Level Agreement). The service
provider monitors the application components to prevent breaches dur-
ing the SLA life cycle and guarantees the enforcement of the promised
QoS. Usually a service is monitored as a whole instead of considering each
component in the service individually for a best intervention and an opti-
mized scaling. In this paper, we propose a component-based application
monitoring mechanism. We have adopted the OCCI (Open Cloud Com-
puting Interface) framework to model our agreement and instrument a
response-time metric for SLA enforcement. The goal is to prevent latency
and SLA violation by identifying responsible components involved in the
request chain. Our priority is to take actions to prevent the breaches or
at least act for a resolution when a problem manifests.

1 Introduction

Based on the best of our knowledge, there is a lack of clear specifications of
a clear Quality of Service (QoS) framework in cloud computing. This concept
actually varies from one IT domain to another. QoS is often applied to a system,
a service or a component and is defined in [22] as the overall service performance
from the end user perspective. Popularity of Internet services has required the
need to provide customers with more than best-effort support allowing them to
choose between providers based on the level of the provided services. QoS has al-
ways been one of the key differentiation factors among service providers and this
is also true in Cloud Computing (CC). CC QoS could be Functional (function-
ality and behavior) or Non Functional (criteria for evaluation and operation). A

Proceedings ADVANCE 2018 ISBN 978-2-9561129

1



QoS metric could also be qualitative (e.g. user experience) or quantitative (e.g.
response-time). There is therefore a need to define what needs to be monitored
and analyzed to assess whether the level of QoS is satisfactory in the signed SLA
contract as well as if is respected.

1.1 Problem Statement

Cloud Computing QoS is a very important aspect as a customer will only expe-
rience the launching and the resuming of a service provisioning request regard-
less how many underlying components and/or services are actually activated
to provision the customer application. In case of resources shortage, the Cloud
Computing scaling mechanism may only impact the overloaded components in-
stead of the overall application. Often, when scaling an application we scale
a VM (Virtual Machine) regardless of which component in the application is
causing a bottleneck or a latency that may add an overhead (time and cost) for
resource provisioning and releasing. For this reason, in this paper, we propose
to accurately identify and monitor all the components status to achieve a better
decision-making based on the collected information. Always, when processing
a client request, several components may interact together to handle it, con-
sequently increasing the complexity of investigating any QoS attribute failure.
The more the accuracy in monitoring, the faster the resolution of any detected
problem is. By using this approach, it will be possible to improve the perfor-
mance of the provided service by reducing outage, MTSO (Mean-Time Switch
Over) and MTSR (Mean-Time System Recovery) duration. For instance, in case
of response-time performance QoS, the requester component will be tightly cou-
pled with the requested component. Therefore, the more the requested compo-
nent fulfills the SLA, the more the requester component will process a request in
time. In this paper, we propose to put an enforcement framework in place in or-
der to monitor the response-time performance of these components using smart
data monitoring and decision-making algorithm, either to prevent any latency
or to intervene immediately after a detected problem. We will describe how to
measure a response-time metric based on acceptable QoS values defined in the
SLA and how to pinpoint potential failing components.

1.2 Quality of Service Concept

Most existing state of art contributions on QoS assurance have focused on two
main aspects:QoS modeling using Ontology andQoS Instrumentation. QoS mod-
eling using ontology aims to provide definition, terminology, metrics unit and all
areas where QoS should be applied [4, 11, 7, 13, 6, 10, 12, 17]. QoS instrumenta-
tion is related to measurement, enforcement techniques and monitoring [20, 3,
9, 21]. Ontology is very important when defining a common understanding of
SLS (Service Level [Agreement] Specifications) parameters. To enforce this con-
cept, the NIST (National Institute of Standards and Technology) has proposed
an abstract overview for metrics definitions and measurements [18]. The cloud
popularity pushes service providers to offer more QoS metrics monitoring and

Proceedings ADVANCE 2018 ISBN 978-2-9561129

2



reporting by exposing transparently their semantics. Thus, several authors em-
phasized their importance for CC adoption and attractiveness.

1.3 Paper Structure

The remaining of the paper is organized as follows: Section 2 presents the related
works mainly in the areas of QoS instrumentation and enforcement. Section 3
presents the proposed solution. The implementation and use case are presented
in Section 4. Finally, Section 5 concludes this work present some important future
directions.

2 Related Work on QoS Enforcement

Understanding the semantics of QoS metrics is very important. The QoS Ontol-
ogy model gathers standardization, definition and terminology in this area while
instrumentation is more focused on the metrics for monitoring and measure-
ments. Monitoring is mandatory for QoS validation, such as verifying whether a
QoS metric instance is within acceptable thresholds, as specified in the SLS of the
SLA. Oftentimes QoS parameters are specified in the SLA and are monitored
by the provider to assess whether SLA is violated. To achieve this objective,
the monitoring and SLA management systems should collect performance data
from the underlying monitored resources and map them to the target QoS pa-
rameters. SLA monitoring is one of the seven functions of SLM (Service Level
Management: creation, negotiation, provisioning, monitoring, maintenance, re-
porting and assessment) even if QoS properties may differ from one service to
another. User experience is itself considered as a QoS such as QoBiz (Quality of
Business) metric. The work done in [4] provides a reasonable specification range
for the QoS metrics values and describes the service operations (e.g. migration)
to keep the overall QoS acceptable. In the work presented in [11], authors as-
sessed the QoSS (Quality of Security Service) concept to verify whether it may
improve security and system performance in a QoS-Aware distributed environ-
ment. Security is studied as a dimension of QoS and it is related to a system
that was deployed in several sites. In such a case, a managed resource may
have a predictable and efficient allocation and utilization. Hence, if a resource is
overloaded, the provider can define priority actions such as postponing tasks or
even canceling and terminating jobs. Authors in [7] proposed another approach
based on the W3C (World Wide Web Consortium) QoS specifications for Web
services to identify relevant attributes when selecting a service provider. The con-
sidered QoS attributes include: Performance, Scalability, Reliability, Accuracy,
Integrity, Robustness, Availability, Interoperability, Accessibility and Security.
Current standards in Web services such as WSDL (Web Service Definition Lan-
guage) mostly supports the description of functional aspects of interfaces rather
than QoS specification and the used terminology is somehow ambiguous when
defining quality attributes. Authors in[7] have therefore proposed an interesting
classification for QoS attributes and sub-attributes as depicted in the Table 1.

Proceedings ADVANCE 2018 ISBN 978-2-9561129

3



Attribute Sub Classes

Functionality Suitability, Accuracy (or Correctness), Security , Interoperability, Compliance.

Reliability
Maturity, Fault Tolerance, Recovery, Compliance, Robustness, Availability,
Integrity.

Efficiency
Time Behavior (or Performance) (Latency and Throughput), Resource Behav-
ior, Compliance, Scalability. Accessibility.

Maintainability
Analyzability, Changeability or Modifyability, Stability, Testability, Compli-
ance.

Portability Adaptability, Install-ability, Co-existence, Replace-ability, Regulatory.

Usability
Understandability, Learn-ability, Operability, Attractiveness, Compliance,
Documentation.

Table 1: QoS Attributes Classification

In the commercial area, Appirio Cloud Metric [1] is used to monitor and man-
age Saleforce.com by delivering reports. It helps customers to identify the most
important factors impacting the production environment and let them focus on
the performance enhancement. This kind of reports help clients detecting QoS
breaches in their services and managing them accordingly. SAS Environment
Manager [21] is used to track the performance of middle-tier component dur-
ing run-time. Potential bottlenecks and breaches can be identified by collecting
the relevant measurements. This requires to know more precisely when, what,
how and where to collect relevant information. DevOps also Brought the notion
of rapid deployment, configuration and scaling. In this area, AWS Fargate [8]
helps customers to deploy applications using containers on AWS by leveraging
containers instead of VM as a compute primitive. In this case a knowledge of
the application is mandatory for well sizing each container image. Kubernetes
[2] is another open-source framework used to manage centralized application for
automated deployment, configuration and scaling. The containers are grouped
in a logical units to build an application. Hence by considering a component
as an application will increase drastically the number of containers. Finally, the
state of the art also shows that the concept of QoS monitoring is omnipresent,
and often focuses on either the middle-tier infrastructure or the whole system
(in case of cloudified application). The more the monitoring accuracy (specific
component), the stronger the SLA enforcement is.

3 Proposed Solution & Architecture

From this state of the art analysis, it appears that just monitoring the system
as a whole, rather than also monitoring the specific constituent component of a
system, does not lead to accurate SLA management. We argue that it is necessary
to have a more fine grained monitoring of the system. Therefore, we propose a
solution that aims to provide QoS modeling and its associated algorithm SLA

Proceedings ADVANCE 2018 ISBN 978-2-9561129

4



breach detection and assurance. We focus mainly on the response-time QoS in
the performance category [19], as it is the most visible metric for the end user.

3.1 Solution Architecture and Design

The proposed solution is based on components monitoring by analyzing dynam-
ically the monitoring data produced by these components. The monitoring data
should respect specific protocol and structure that will be described later in this
section. The goal of the monitoring data analysis is to survey response-time QoS
(date-time metric). As specified in [12], a response-time is a minimum elapsed
time in a service request. It is measured by date-time metric (often in millisec-
onds) and it may be expressed with an average or a min-max interval. In our
case, the response-time of a component is the time used by a component to
process a request from the time it received it to the time it sent the response.
In a request chain, we will use the term requester for a component Ci sending
a request and the term requested for a component Cj receiving a request. The
idea behind is to trigger an alert whenever the component is not capable to
process the request in the specified time and therefore exhibiting response-time
exceeding a predefined threshold derived from the SLA. Two types of alert can
be triggered:

– Proactive Alert: As an alert triggered by a component and serves to mit-
igate potential SLA violation.

– Emergency Alert: Is an alert triggered by the application and requires
an immediate intervention since it will eventually break the SLA terms and
lead to penalties for the provider.

Parametrization and Hypothesis: After a few long running performed tests
and benchmarks on a real deployed service, we have measured the average
response-time thresholds to apply service components. In addition, we have ob-
served that useful alerts happen after three defects of a component to respond
within an acceptable threshold. Thus, if a component triggers three consecutive
alerts in the same hour, it is reasonable to consider it as a component violation
(not a SLA violation). We derive then the following conclusions for a customer
request on a service that involve n components:

– RTmax =
∑n

i=0 RTmax(i) Pessimistic response-time for n components

– RTmin =
∑n

i=0 RTmin(i) Optimistic response-time for n components

– RTavg =
∑n

i=0 RTavg(i) Average response-time for n components

– Alertmax Number of occurrences before triggering an emergency alert set to
3. Each component Ci has its maximum alert occurrence Alert(i)max

Proceedings ADVANCE 2018 ISBN 978-2-9561129

5



Response-Time Model: A set of components are deployed and logically con-
nected together to provide an end-to-end service. Each triggered component
receives a request, performs specific computation and processing on the request
and finally delivers a response to the requester component or another component
in the component chain. A response-time for a request RTreq is tightly bound
with all involved components in the request chain. Thus, the final response-time
RTreq can be calculated as follows:

RTreq =



















∑n

i=0 T (i), n+1 involved components

where,

RTreq ≤ RTmax, RT QoS in SLA

T (i) = Tout(i)− Tin(i), RT of the ith component

Monitoring Data Structure: The monitoring tool requires a specific data
structure. We used JSON format [14] to represent it and REST API [23] render
it as these two technologies are widely used today. The data structure is depicted
in the Table 2.

Data Type Attribute Description

Identification
message-Id Message Id identifier across the request.

component-Id Component Id identifier across the application.
instance-Id Container instance Id identifier in the VM.

Measurements
time-stamps Operating System timestamps in milliseconds.
start-time Represents a component request T (i)in in seconds.
end-time Represents a component response T (i)out in seconds.

Table 2: Monitoring Data Structure

3.2 SLA Enforcement Algorithm

The algorithm we propose is based on two major events that could trigger two
types of alerts. The first type of alert (Proactive) is used to alert about a partic-
ular component performance that may cause a SLA violation if not mitigated.
The second type (Emergency) is for immediate intervention because it eventually
causes SLA violation. Each time a performance violation is detected for a partic-
ular component, the Alert occurrence is incremented. When a maximum allowed
number of alerts Alert(i)max is reached within the same hour for a particular
component, a proactive alert is sent. If the RTreq is not met and a maximum
number of alerts Alertmax is reached within the same hour then an emergency
alert is triggered. Emergency alert should satisfy these conditions:

Emergency











RTreq > RTmax RT exceeds the limit.

and

Alertmax = 3 Maximum number of QoS violation during the same hour.

Proceedings ADVANCE 2018 ISBN 978-2-9561129

6



A system is reset if one hour has elapsed or an emergency alert has been triggered.

3.3 SLA Modeling

The corresponding SLA model is specified using OCCI Service Level Agreement
[16]. OCCI is used both for SLA specification as well as for modeling the mon-
itoring tasks [15, 5]. The proposed SLA is divided into two major parts. The
first part is related to services specification (e.g. Application Components) and
the second part is related to the modeling of the QoS objectives or SLO (or
Service Level Objectives). In our case, the SLO are related to services perfor-
mances (e.g. response-time). The Figure 1 depicts the resulting Service Level
Agreement model for one customer application (user service). The QoSSLA is

depends

AgreementTerms:Mixin

aterm=agreement_terms

scheme=http://schemas.ogf.org/occi/sla#

depends

AppPerformance:Mixin

term = service_performance

scheme = http://ibisc.fr/terms#

attributes:Set

application_performance.terme.type = SLO-TERM

application_performance.term.state = Undefined

application_performance.term.desc = “Response Time”

application_performance.term.rt.max = 3 s

application_performance.term..rt.min = 1 s

QoSSLA:Agreement

occi.agreement.state = accepted

occi.agreement.agreedAt = 2017-04-30T14:00:00+00:00

occi.agreement.effectiveFrom = 2017-05-01T00:01:00+00:00

occi.agreement.effectiveUntil = 2017-07-01T00:01:00+00:00

QoSSLALink:AgreementLink

Application Resource

Instance

AgreementTemplate:Mixin

term = agreement_tpl

scheme = http://schemas.ogf.org/occi/sla#

LocalisationTemp:Mixin

term = localisation_fr

scheme = http://ibisc.fr/templates#

attributes:Set

fr.ibisc.region = ile-de-france

fr.ibisc.incountries = Europe

Fig. 1: Application OCCI SLA Model

the agreement related to the application resource and is linked to it using the
QoSSLALink link. The QoS response-time is represented by the AppPerfor-

mance Mixin (a concept in OCCI that allows to add properties dinamically to a
particular concept) with its OCCI AgreementTerms Mixin and set of attributes
including the response-time limit condition. A LocalisationTemp Mixin is also
added using OCCI AgreementTemplate Mixin with its attributes set. The sec-
ond model is for the monitoring representation as depicted in the Figure 2. The
AppMonitoring resource is linked with the monitored application using the
AppMonitoringLink link. The AppMonitoringData Mixin represents the
performance condition while the AppMonitoringCollector Mixin defines the

Proceedings ADVANCE 2018 ISBN 978-2-9561129

7



AppMonitoringData:Mixin

scheme = http://schemas.ogf.org/occi/monitoring#

term = service_performance

Title = application monitiring

attributes:Set

application_performance.terme.type = SLO-TERM

application_performance.term.state = Undefined

application_performance.term.desc = “Response Time”

application_performance.term.rt.max = 3 s

application_performance.term..rt.min = 1 s

AppMonitoring:Resource

Entity

attributes:Set

fr.ibisc.support.sms = 

fr.ibisc.support.email = support@ibisc.fr

Fr.ibisc.support.pager =

ProactiveAlert:Mixin

term = alert_proactive

scheme = http://ibisc.fr/alerts#

depends

EmergencyAlert:Mixin

term = alert_emergency

scheme = http://ibisc.fr/alerts#

depends

AppMonitoringLink:Link

AlertTemp:Mixin

term = alert_tpl

scheme = http://ibisc.fr/templates#

AppMonitoringCollector:Mixin

scheme = http://schemas.ogf.org/occi/monitoring#

term = service_performance_data

Title = component data monitiring

attributes:Set

component_monitoring_Id = <string>

component_monitoring_msgId = <string>

component_monitoring_instanceId = <string>

component_monitoring_timestamp = <long>

component_monitoring_starttime = <date-time>

component_monitoring_endtime = <date-time>

Fig. 2: Monitoring OCCI Model

collected data. A set of alert Mixin is defined (EmergencyAlert and Proac-

tiveAlert) based on the AlertTemp template Mixin. Please note that we did
not represent the Decision Agent and the Notification Agent as depicted in the
architecture diagram from the Figure 3.

4 Implementation

We have implemented a proof of concept simulation. It consists of an envi-
ronment hosting two VM(s) with different resources capacity: VM1(CPU :
1, RAM : 3GB,Disk : 30GB) and VM2(CPU : 1, RAM : 2.5GB,Disk :
20GB). We configured each VM with the necessary tools and software to ac-
curately monitor the middleware and executing the application. We have in-
stalled a J2EE based application server that serves as an application container
and we added a MDC (Monitoring Data Collector) and a DNA (Decision and
Notification Agents). The two VM(s) are faced by a local LB (Load Balancer)
in a local network as illustrated in Figure 3. We have specified our complex and
composite application as a set of interacting components. In order to facilitate
our simulation, the MDC tool collects monitoring data from each component
and builds monitoring metrics. This data is then exposed through a REST API
in a JSON format. When we ran the performance tests, we faced an issue with
the CPU consumption that impacted the overall response-time. After running
an RCA (Root Cause Analysis), we discovered that the issue was caused by the
increasing number of REST calls. By tuning the time between two consecutive

Proceedings ADVANCE 2018 ISBN 978-2-9561129

8



Local Network

Load Balancer

Virtual Machine/OS

Virtual Machine/OS

2

1

Monitoring Data 

Collector

End User
Support

Alerts

Application 

Container

...
C
i

C
0

Decision Agent

Config

Notification 

Agent

Fig. 3: Global Architecture Design

calls, we reached an acceptable compromise between the CPU usage and the
number of monitoring calls as illustrated in Figure 4 and Figure 5. This issue is
pinpointed in the SLAMOM project [19] where they recommended a minimum
time interval between two monitoring requests in order not to overload the com-
ponents (around 1 minute). After executing our simulation scenario, we received

0

25

50

75

100

0.00 1.65 3.12 4.77 6.23 7.88 9.35 11.00 11.17 12.65

%
 C

P
U

 U
sa

g
e

Hours

1/2 Second Interval per Call

Fig. 4: CPU Usage (1)

0

25

50

75

100

0.00 1.65 3.12 4.77 6.23 7.88 9.35 11.00 11.17 12.65

%
 C

P
U

 U
sa

g
e

Hours

2 Seconds Interval per Call

Fig. 5: CPU Usage (2)

twenty-six alerts (twenty-five proactive and one emergency). After analyzing the
alerts, we discovered that the emergency alert happened after the same compo-
nent caused four proactive alerts as depicted in Figure 6 and Figure 7.

Proceedings ADVANCE 2018 ISBN 978-2-9561129

9



0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

R
e

sp
o

n
se

 T
im

e
 (

s)

Hours

RT
max

RT
min

Fig. 6: Response Time Result

0

1

2

3

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
ro

a
ct

iv
e

 A
le

rt
s

HoursEmergency Alert

Fig. 7: Alerts Result

5 Conclusions and Future Works

Assuring SLA in Cloud Computing environment is very important for its adop-
tion. However, the QoS metrics that are defined by Cloud Providers are hetero-
geneous, domain dependent and more seriously lacking the same semantics from
one application to another. Thus, if we exclude traditional hardware monitoring
and tuning, it is difficult to have common tools to manage these metrics in an
efficient way. Cloud applications are used to build a set of components that are
logically connected together. It is important to monitor each component indi-
vidually and understand how the performance violation of each component may
impact the service as a whole. It is also important to avoid performing unnec-
essary reconfiguration or scaling on these components and to refine the right
thresholds and failure occurrence before any action. In this work, we have pro-
posed an approach to optimize and adapt these values based on peak hour and
normal hours to minimize resources usage and enhance the overall system per-
formance. In the future, we would like to leverage this approach to other QoS,
improve the provisioning process and scaling mechanism using Container (e.g.
Docker) technology and associated monitoring mechanisms. In this scenario scal-
ing containers instead of VM may permit to better optimize resource utilization
by modeling a set of components as an application.

Acknowledgments

This research is partially funded by the French Ministry of Foreign Affairs and
International Development (MAEDI) in the frame of the AmSuD-VNET project
(16STIC11-VNET). Also by the Industry and Innovation department of the
Aragonese Government and European Social Funds (COSMOS group, ref. T93)
and the Spanish Ministry of Economy (TIN2013-40809-R). Thanks to all the
partners of the project who have helped with their discussions to improve the
research work presented in this paper.

Proceedings ADVANCE 2018 ISBN 978-2-9561129

10



References

1. Appirio. Cloud Metrics for Salesforce.com. Technical report, Appirio, Inc., 760
Market St. 11th Floor, San Francisco, CA 94102, 2012.

2. The Kubernetes Authors. Production-grade container orchestration, 2017.
3. A.K. Bardsiri and S.M. Hashemi. QoS Metrics for Cloud Computing Services Eval-

uation. I.J. Intelligent Systems and Applications, MECS, pages 27–33, December
2014. doi:10.5815/ijisa.2014.12.04.

4. Ch. Braga, F. Chalub, and A. Sztajnberg. A Formal Semantics for a Quality of
Service Contract Language. ELSEVIER, Electronic Notes in Theoretical Computer
Science 203 (2009), pages 103–120, 2009.

5. A. Ciuffoletti. A simple generic interface for a cloud monitoring service. CLOSER
2014 - 4th International Conference on Cloud Computing and Services Science,
April 2-5 2014 (Barcelona), April 2014.

6. G. Dobson, R. Lock, and I. Sommerville. QoSOnt: A QoS Ontol-
ogy for Service-Centric Systems. 31st EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications, pages 80–87, September 2005.
doi:10.1109/EUROMICRO.2005.49.

7. S. Hanna and A. Alawneh. An Approach of Web Service Quality Attributes Spec-
ification. IBIMA Publishing, Communications of the IBIMA Journal (ISSN:1943-
7765), 2010:1–13, January 2010. doi:10.5171/2010.552843.

8. R. Hunt. Introducing aws fargate run containers without managing infrastructure,
November 2017.

9. A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema.
Performance Analysis of Cloud Computing Services for Many-Tasks Scientific Com-
puting. IEEE Transactions on Parallel and Distributed Systems, 22:931–945, June
2011. 10.1109/TPDS.2011.66.

10. C. Irvine and T. Levin. Toward a Taxonomy and Costing Method for Security
Services. Proc. ACSAC99, Phoenix AZ, December 1999.

11. C. Irvine and T. Levin. Quality of Security Service. NSPW - Proceedings of the
workshop on New security paradigms, pages 91–99, 2001.

12. J. McKendrick. Survey: Public Cloud Metrics Are Still Too... Cloudy.
http://www.forbes.com/forbes/welcome/3db1de661194, December 2015.

13. J. Jin and K. Nahrstedt. QoS Specification Languages for Distributed Multimedia
Applications: A Survey and Taxonomy. IEEE Computer Society, IEEE MultiMe-
dia, ISSN :1070-986X, 11:74–87, July 2004. doi:10.1109/MMUL.2004.16.

14. JSON. The home of JSON Schema. Json-schema Organization (2017). http://json-
schema.org/documentation.html, 2017.

15. M. Mohamed, Dj. Belaid, and S. Tata. Extending OCCI for autonomic manage-
ment in the cloud. http://elsevier.com/locate/jss, 2016.

16. OGF. GFD228-Open Cloud Computing Interface Service Level Agreements.
http://occi-wg.org/2016/10/, October 2016.

17. Opengroup. The Open Group, Building Return on Investment from Cloud
Computing : Cloud Computing Key Performance Indicators and Metrics.
www.opengroup.org/cloud/whitepapers/ccroi/kpis.htm, June 2016.

18. P. Pritzker and W. May. Cloud Computing Service Metrics Description. National
Institute of Standards and Technology, Special Publication 500-307, 2015.

19. Slalom Project. SLA specification and reference model-c-D3.6. Technical report,
Institute of Communication and Computer Systems and other members of the
SLALOM consortium, 2016, ICCS 9, Iroon. Polytechniou Str., 157 73 Zografou,
Greece, 2016.

Proceedings ADVANCE 2018 ISBN 978-2-9561129

11



20. M. Selva, L. Morel, K. Marquet, and S. Frenot. A QoS Monitoring System for
Dataflow Programs. ComPAS2013 : RenPar21/ SympA15/ CFSE9 - Grenoble,
France, January 2013. HAL Id: hal-00780976.

21. R. Sioss. SAS 9.4, Web Application Performance: Monitoring, Tuning, Scaling,
and Troubleshooting. Proceedings 2014, SAS Global Forum, March 2014.

22. Wikipedia. Quality of service. https://en.wikipedia.org/wiki/Quality of service/,
August 2016.

23. Wikipedia. Representational state transfer. https://en.wikipedia.org/wiki/Representational state transfer/,
September 2017.

Proceedings ADVANCE 2018 ISBN 978-2-9561129

12


