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Abstract

In this paper we investigate the Hamiltonian dynamics of a lattice gauge model in three spatial

dimensions. Our model Hamiltonian is defined on the basis of a continuum version of a duality

transformation of a three dimensional Ising model. The system so obtained undergoes a thermo-

dynamic phase transition in the absence of a global symmetry-breaking and thus in the absence of

an order parameter. It is found that the first order phase transition undergone by this model fits

into a microcanonical version of an Ehrenfest-like classification of phase transitions applied to the

configurational entropy. It is discussed why the seemingly divergent behaviour of the third deriva-

tive of configurational entropy can be considered as the ”shadow” of some suitable geometrical and

topological transition of the equipotential submanifolds of configuration space.
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I. INTRODUCTION

One of the main topics in Statistical Mechanics concerns phase transitions phenomena.

From the theoretical viewpoint, understanding their origin, and the way of classifying them,

is of central interest.

Usually, phase transitions are associated with a spontaneous symmetry-breaking phe-

nomenon: at low temperatures the accessible states of a system can lack some of the global

symmetries of the Hamiltonian, so that the corresponding phase is the less symmetric one,

whereas at higher temperatures the thermal fluctuations allow the access to a wider range

of energy states having all the symmetries of the Hamiltonian. In the symmetry-breaking

phenomena, the extra variable which characterizes the physical states of a system is the or-

der parameter. The order parameter vanishes in the symmetric phase and is different from

zero in the broken-symmetry phase. This is the essence of Landau’s theory. If G0 is the

global symmetry group of the Hamiltonian, the order of a phase transition is determined

by the index of the subgroup G ⊂ G0 of the broken symmetry phase. The corresponding

mechanism in quantum field theory is described by the Nambu-Goldstone’s Theorem.

However, this is not an all-encompassing theory. In fact, many systems do not fit in this

scheme and undergo a phase transition in the absence of a symmetry-breaking. This is the

case of liquid-gas transitions, Kosterlitz-Thouless transitions, coulombian/confined regime

transition for gauge theories on lattice, transitions in glasses and supercooled liquids, in

general, transitions in amorphous and disordered systems, folding transitions in homopoly-

mers and proteins, to quote remarkable examples. All these physical systems lack an order

parameter.

Moreover, classical theories, as those of Yang-Lee [2] and of Dobrushin-Lanford-Ruelle [3],

require the N →∞ limit (thermodynamic limit) to mathematically describe a phase transi-

tion, but the study of transitional phenomena in finite N systems is particularly relevant in

many other contemporary problems [4], for instance related with polymers thermodynamics

and biophysics [5], with Bose-Einstein condensation, Dicke’s superradiance in microlasers,

nuclear physics [6], superconductive transitions in small metallic objects. The topological

theory of phase transitions provides a natural framework to get rid of the thermodynamic

limit dogma because clear topological signatures of phase transitions are found already at

finite and small N [7, 13].
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Therefore, looking for generalisations of the existing theories is a well motivated and

timely purpose. The present paper aims at giving a contribution in this direction along a

line of thought initiated several years ago with the investigation of the Hamiltonian dynam-

ical counterpart of phase transitions [7–9] which eventually led to formulate a topological

hypothesis. In fact, Hamiltonian flows (H-flows) can be seen as geodesic flows on suitable

Riemannian manifolds [7, 10], and then the question naturally arises of whether and how

these manifolds “encode” the fact that their geodesic flows/H-flows are associated or not

with a thermodynamic phase transition (TDPT). It is by following this conceptual pathway

that one is eventually led to hypothesize that suitable topological changes of certain sub-

manifolds of phase space are the deep origin of TDPT. This hypothesis was corroborated

by several studies on specific exactly solvable models [11–15] and by two theorems. These

theorems state that the unbounded growth with N of relevant thermodynamic quantities,

eventually leading to singularities in the N → ∞ limit - the hallmark of an equilibrium

phase transition - is necessarily due to appropriate topological transitions in configuration

space [7, 16–19].

Hence, and more precisely, the present paper aims at investigating whether also TDPT

occurring in the absence of symmetry-breaking, and thus in the absence of an order pa-

rameter, can be ascribed to some major geometrical/topological change of the previously

mentioned manifolds.

To this purpose, inspired by the dual Ising model, we define a continuous variables Hamil-

tonian in three spatial dimensions (3D) having the same local (gauge) symmetry of the dual

Ising model (reported in Section II) and then proceed to its numerical investigation. The

results are reported and discussed in Section III. Through a standard analysis of thermody-

namic observables, it is found that this model undergoes a first order phase transition. It is

also found that the larger the number of degrees of freedom the sharper the jump of the sec-

ond derivative of configurational entropy, what naturally fits into a proposed microcanonical

version of an Ehrenfest-like classification of phase transitions.

A crucial finding of the present work consists of the observation that this jump of the

second derivative of configurational entropy coincides with a jump of the second derivative

of a geometric quantity measuring the total dispersion of the principal curvatures of certain

submanifolds (the potential level sets) of configuration space. This is a highly non trivial

fact because the peculiar energy variation of the geometry of these submanifolds, entailing
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the jump of the second derivative of the total dispersion of their principal curvatures, is

a primitive, a fundamental phenomenon: it is the cause and not the effect of the energy

dependence of the entropy and its derivatives, that is, the phase transition is a consequence

of a deeper phenomenon. In its turn, the peculiar energy-pattern of this geometric quantity

appears to be rooted in the variations of topology of the potential level sets, thus the present

results provide a further argument in favour of the topological theory of phase transitions,

also in the absence of symmetry-breaking.

II. THE MODEL

Starting from the Ising Hamiltonian

− J
∑
〈ij〉∈Λ

σiσj (1)

with nearest-neighbor interactions (〈ij〉) on a 3D-lattice Λ, where the σi are discrete di-

chotomic variables (σi = ±1) defined on the lattice sites and J is real positive (ferromagnetic

coupling), one defines the dual model [20]

− J
∑
�

UijUjkUklUli (2)

where the discrete variables Umm′ are defined on the links joining the sites m and m′, and

Umm′ = ±1. The summation is carried over all the minimal plaquettes (denoted by �) into

which the lattice can be decomposed. The dual model in (2) has the local (gauge) symmetry

Uij → εiεjUij (3)

with εi, εj = ±1, and i, j ∈ Λ. Such a gauge transformation leaves the model (2) unaltered,

and after the Elitzur theorem [21] 〈Uij〉 does not qualify as a good order parameter to detect

the occurrence of a phase transition because 〈Uij〉 = 0 always. In other words, no bifurcation

of 〈Uij〉 can be observed at any phase transition point inherited by the model (2) from the

Ising model (1).

In order to define a Hamiltonian flow with the same property of local symmetry – hin-

dering the existence of a standard order parameter – we borrow the analytic form of (2) and

replace the discrete dichotomic variables Uij with continuous ones Uij ∈ R. We remark that
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we donot want to investigate the dual-Ising model, rather we just heuristically refer to it in

order to define a gauge model with the desired properties.

Moreover, we add to the continuous version of (2) a stabilizing term which is invariant

under the same local gauge transformation (3); this reads

α
∑
〈ij〉

(
U2
ij − 1

)4
, (4)

where 〈ij〉 stands for nearest-neighbor interactions for link variables and α is a real positive

coupling constant.

On a 3D-lattice Λ, and with I = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, we thus define the following

model Hamiltonian

H(π, U) =
∑
i∈Λ

∑
µ∈I

1

2
π2
iµ − J

∑
�∈Λ

UijUjkUklUli + α
∑
i∈Λ

∑
µ∈I

(
U2
iµ − 1

)4
(5)

whose flow is investigated through the numerical integration of the corresponding Hamilton

equations of motion.

A more explicit form of (5) is given by

H(π, U) =
n∑

i,j,k=1

3∑
ν=1

1

2
π2
ijkν − J

n∑
i,j,k=1

[Uijk1Ui+1jk2Uij+1k1Uijk2 (6)

+ Uijk2Uij+1k3Uijk+12Uijk3 + Uijk3Uijk+11Ui+1jk3Uijk1] + α
n∑

i,j,k=1

3∑
ν=1

(
U2
ijkν − 1

)4
,

where the summation is carried over trihedrals made of three orthogonal plaquettes. Here

Uijk1 is the link variable joining the sites (i, j, k) and (i + 1, j, k), Uijk2 is the link variable

joining the sites (i, j, k) and (i, j + 1, k), Uijk3 is the link variable joining the sites (i, j, k)

and (i, j, k+1). Similarly, for example, Ui+1jk2 joins the sites (i+1, j, k) and (i+1, j+1, k),

Uij+1k1 joins (i+ 1, j+ 1, k) and (i, j+ 1, k), and so on. That is to say that the fourth index

labels the direction, i.e which index is varied by one unit.

The Hamilton equations of motion are given by

U̇ijkν = πijkν ,

π̇ijkν = − ∂H
∂Uijkν

, i, j, k = 1, . . . , n; ν = 1, 2, 3, (7)

periodic boundary conditions are always assumed.

The numerical integration of these equations is correctly performed only by means of

symplectic integration schemes. These algorithms satisfy energy conservation (with zero
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mean fluctuations around a reference value of the energy) for arbitrarily long times as well

as the conservation of all the Poincaré invariants, which include the phase space volume, so

that also Liouville’s theorem is satisfied by a symplectic integration. We adopted a third-

order bilateral symplectic algorithm as described in [22]. We used J = 1 and α = 1, the

integration time step ∆t varied from 0.005 at low energy to 0.001 at high energy so as to

keep the relative energy fluctuations ∆E/E close to 10−6.

III. DEFINITION OF THE OBSERVABLES AND NUMERICAL INVESTIGA-

TION

Given any observable A = A(π, U), one computes its time average as

〈A〉t =
1

t

∫ t

0

dτ A[π(τ), U(τ)] (8)

along the numerically computed phase space trajectories. For sufficiently long integration

times, and for generic nonlinear (chaotic) systems, these time averages are used as estimates

of microcanonical ensemble averages in all the expressions given below.

A. Thermodynamic observables

The basic macroscopic thermodynamic observable is temperature. The microcanonical

definition of temperature depends on entropy — the basic thermodynamic potential in the

microcanonical ensemble — according to the relation

1

T
=

(
∂S

∂E

)
V
, (9)

where V is the volume, E is the energy and the entropy S is given by

S(N,E,V) = kB log

∫
dπ1 · · · dπNdU1 · · · dUN δ[E −H(π, U)] (10)

where N is the total number of degrees of freedom, N = 3n3 in the present context, and Uk

stands for any suitable labelling of them. By means of a Laplace transform technique [23],

from Eqs. (9) and (10) one gets (setting kB = 1)

T = 2
[
(N − 2)〈K−1〉

]−1
. (11)
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where 〈K−1〉 is the microcanonical ensemble average of the inverse of the kinetic energy

K = E − V (U), where V (U) is the potential part of the Hamiltonian (7).

In numerical simulations

〈K−1〉 =
1

t

∫ t

0

dτ

[
n∑

i,j,k=1

3∑
ν=1

1

2
π2
ijkν(τ)

]−1

. (12)

For t sufficiently large 〈K−1〉 attains a stable value (in general this is a rapidly converging

quantity entailing a rapid convergence of T ).

Since the invariant measure for nonintegrable Hamiltonian dynamics is the microcanonical

measure in phase space, the occurrence of equilibrium phase transitions can be investigated

in the microcanonical statistical ensemble through Hamiltonian dynamics [7, 24]. Standard

numerical signatures of phase transitions (also found with canonical Monte Carlo random

walks in phase space) are: the bifurcation of the order parameter at the transition point

(somewhat smoothed at finite number of degrees of freedom), and sharp peaks – of increasing

height with an increasing number of degrees of freedom – of the specific heat at the transition

point. As already remarked above, our model (7), because of the local (gauge) symmetry,

lacks a standard definition of an order parameter as is usually given in the case of symmetry-

breaking phase transitions. And in fact, in every numerical simulation of the dynamics we

have computed the time average 〈〈Uij〉〉t always finding 〈〈Uij〉〉t ' 0 independently of the

lattice size and of the energy value (the double average means averaging over the entire

lattice first, and then averaging over time).

Thus, the presence of a phase transition is detected through the shape of the so-called

caloric curve, that is, T = T (E). For the model in (7) this has been computed by means of

Eq. (11). Then the microcanonical constant-volume specific heat follows according to the

relation 1/CV = ∂T (E)/∂E. The numerical computation of specific heat can be indepen-

dently performed, with respect to the caloric curve, as follows. Starting with the definition

of the entropy, given in (10), an analytic formula can be worked out [23], which is exact at

any value of N . This formula reads

cV(E) =
CV
N

=
N(N − 2)

4

[
(N − 2)− (N − 4)

〈K−2〉
〈K−1〉2

]−1

, (13)

and this is the natural expression to work out the microcanonical specific heat by means of

Hamiltonian dynamical simulations.
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In order to get the above defined specific heat, time averages of the kind

〈Kα〉t =
1

t

∫ t

0

dτ

[
n∑

i,j,k=1

3∑
ν=1

1

2
π2
ijkν(τ)

]α
are computed with α = −1,−2. Then, for sufficiently large t, the microcanonical averages

〈Kα〉 can be replaced by 〈Kα〉t.

Figure 1. (Color online) Caloric curve. Temperature is computed according to Eq.(11). Lattice

dimensions: n3 = 6 × 6 × 6 (rhombs), n3 = 8 × 8 × 8 (squares), n3 = 10 × 10 × 10 (circles). The

dashed lines identify the point of flat tangency at lower energy.

In Figure 1 the caloric curve is reported for different sizes of the lattice. A kink, typical of

first order phase transitions, can be seen. This entails the presence of negative values of the

specific heat, and, consequently, ensemble nonequivalence for the model under consideration.

And, in fact, in Figure 2, where we report the outcomes of the computations of the specific

heat according to Eq.(13), we can observe an energy interval where the specific heat CV is

negative, and very high peaks are also found. Nevertheless, these peaks are not related with

an analyticity loss of the entropy (see Section III C) but rather depend on the existence of

two points of flat tangency to the caloric curve.

In Figure 3 the average potential energy per lattice site u = 〈V 〉/N is displayed as a

function of the total energy density. Also in this case we observe a regular function which is

stable with the number of degrees of freedom. The dashed lines identify the phase transition

point which corresponds to Ec/N ' −0.40 and uc/N ' −1.32.
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Figure 2. (Color online) Constant volume specific heat computed by means of Eq.(13). Lattice

dimensions: n3 = 6× 6× 6 (rhombs), n3 = 8× 8× 8 (squares), n3 = 10× 10× 10 (circles).

Figure 3. (Color online) Internal potential energy density computed through Eq.(8) where the

observable A is the potential function per degree of freedom of the system. Lattice dimensions:

n3 = 6× 6× 6 (rhombs), n3 = 8× 8× 8 (squares), n3 = 10× 10× 10 (circles).

The results so far reported provide us with a standard numerical evidence of the exis-

tence of a first order phase transition undergone by the model investigated. Besides standard

thermodynamic observables, the study of phase transitions through Hamiltonian dynamics

makes available a new observable, the largest Lyapunov exponent λ, which is of purely dy-
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namical kind, and which has usually displayed peculiar patterns in presence of a symmetry-

breaking phase transition [7, 9, 25, 27–30]. Therefore in the following Section an attempt is

made to characterise the phase transition undergone by our model also through the energy

dependence of λ.

B. A Dynamic observable: the largest Lyapunov exponent

The largest Lyapounov exponent λ is the standard and most relevant indicator of the

dynamical stability/instability (chaos) of phase space trajectories. Let us quickly recall that

the numerical computation of λ proceeds by integrating the tangent dynamics equations,

which, for Hamiltonian flows, read

ξ̇i = ζi ,

ζ̇i = −
N∑
j=1

(
∂2V

∂q1∂qj

)
q(t)

ξj , i = 1, . . . , N (14)

together with the equations of motion of the Hamiltonian system under investigation. Then

the largest Lyapunov exponent λ is defined by

λ = lim
t→∞

1

t
log

[ξ2
1(t) + · · ·+ ξ2

N(t) + ζ2
1 (t) + · · ·+ ζ2

N(t)]
1/2

[ξ2
1(0) + · · ·+ ξ2

N(0) + ζ2
1 (0) + · · ·+ ζ2

N(0)]
1/2

, (15)

In a numerical computation the discretized version of (15) is used, with ξ = (ξ1, . . . , ξ2N)

and ξi+N = ξ̇i

λ = lim
m→∞

1

m

m∑
i=1

1

∆t
log
‖ξ[(i+ 1)∆t]‖
‖ξ(i∆t)‖

, (16)

where, after a given number of time steps ∆t, for practical numerical reasons it is convenient

to renormalize the value of ‖ξ‖ to a fixed one. The numerical estimate of λ is obtained by

retaining the time asymptotic value of λ(m∆t). This is obtained by checking the relaxation

pattern of log λ(m∆t) versus log(m∆t).

Note that λ can be expressed as the time average of a suitable observable defined as

follows. From the compact notation

ξ̇i =
∑
k

Jik[q(t)]ξk

for the system (14) and observing that

1

2

d

dt
log(ξT ξ) =

ξT ξ̇ + ξ̇T ξ

2ξT ξ
=
ξTJ [q(t)]ξ + ξTJT [q(t)]ξ

2ξT ξ
,
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Figure 4. Largest Lyapunov exponent versus the energy per degree of freedom. Lattice dimensions:

n3 = 6× 6× 6 (rhombs), n3 = 8× 8× 8 (squares), n3 = 10× 10× 10 (circles). The dashed vertical

l line indicates the phase transition point.

setting J [q(t), ξ(t)] = {ξTJ [q(t)]ξ + ξTJT [q(t)]ξ}/(2ξT ξ), one gets

λ = lim
t→∞

1

t
log
‖ξ(t)‖
‖ξ(0)‖

= lim
t→∞

1

t

∫ t

0

dτ J [q(τ), ξ(τ)] , (17)

which formally gives λ as a time average as per Eq.(8).

The numerical results summarised in Figure 4 qualitatively indicate a transition between

two dynamical regimes of chaoticity: from a weakly chaotic dynamics at low energy density

values, to a more chaotic dynamics at large energy density values. However the transition

between these dynamical states is a mild one. At variance with those models where a phase

transition stems from a symmetry-breaking, here there is no peculiar property of the shapes

of λ = λ(E/N) in correspondence of the phase transition. Therefore, in the following Section

we directly tackle the numerical study of the differentiability class of the entropy.

C. Microcanonical definition of phase transitions

As is well known, according to the Ehrenfest classification, the order of a phase transition

is given by the order of the discontinuous derivative with respect to temperature T of the

Helmholtz free energy F (T ). However, a difficulty arises in presence of divergent specific
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heat CV associated with a second order phase transition because this implies a divergence of

(∂2F/∂T 2), and, in turn, a discontinuity of (∂F/∂T ) so that the distinction between first and

second order transitions is lost. By resorting to the concept of symmetry-breaking, Landau

theory circumvents this difficulty by classifying the order of a phase transition according

to the index of the symmetry group of the broken-symmetry phase which is a subgroup of

the group of the more-symmetric phase. As in the present work we are tackling a system

undergoing a phase transition in the absence of symmetry-breaking, we have to get back to

the origins as follows. According to the Ehrenfest theory, a phase transition is associated with

a loss of analyticity of a thermodynamic potential (Helmholtz free energy, or, equivalently

Gibbs free energy), and the order of the transition depends on the differentiability class of this

thermodynamic potential. Later, on a mathematically rigorous ground, the identification

of a phase transition with an analyticity loss of a thermodynamic potential (in the gran-

canonical ensemble) was confirmed by the Yang-Lee theorem. Now, let us consider the

statistical ensemble which is the natural counterpart of microscopic Hamiltonian dynamics,

that is, microcanonical ensemble. As already recalled in Section III.A, here the relevant

thermodynamic potential is entropy, and considering the specific heat

C−1
V =

∂T (E)

∂E
which, after Eq.(9), reads CV = −

(
∂S

∂E

)2(
∂2S

∂E2

)−1

, (18)

from the last expression we see that CV can diverge only as a consequence of the vanishing

of (∂2S/∂E2) which has nothing to do with a loss of analyticity of S(E). This is why

in Section III.A we have affirmed that the peaks of CV reported in Figure 2 stem from a

rather trivial effect. For standard Hamiltonian systems (i.e. quadratic in the momenta) the

relevant information is carried by the configurational microcanonical ensemble, where the

configurational canonical free energy is

fN(β) ≡ fN(β;VN) =
1

N
logZc(β,N)

with

Zc(β,N) =

∫
(Λd)×n

dq1 . . . dqN exp[−βVN(q1, . . . , qN)]

and the configurational microcanonical entropy (in units s.t. kB = 1) is

SN(v̄) ≡ SN(v̄;VN) =
1

N
log Ω(Nv̄,N) ,
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where v̄ = v/N is the potential energy per degree of freedom, and

Ω(v,N) =

∫
(Λd)×n

dq1 · · · dqN δ[VN(q1, . . . , qN)− v] , (19)

is the volume of the equipotential hypersurface Σv (codimension-1 subset of configuration

space), and δ[·] is the Dirac functional. Then SN(v̄) is related to the configurational canonical

free energy, fN , for any N ∈ N, v̄ ∈ R, and β ∈ R through the Legendre transform

−fN(β) = β · v̄N − SN(v̄N) (20)

where the inverse of the configurational temperature T (v) is given by

βN(v̄) =
∂SN
∂v̄

(v̄) . (21)

Then consider the function φ(v̄) = fN [β(v̄)], from φ′(v̄) = −v̄ [dβN(v̄)/dv̄] we see that

if βN(v̄) ∈ Ck(R) then also φ(v̄) ∈ Ck(R) which in turn means SN(v̄) ∈ Ck+1(R) while

fN(β) ∈ Ck(R).

Hence, if the functions {SN(v̄)}N∈N are convex, thus ensuring the existence of the above

Legendre transform, and if in the N → ∞ limit it is f∞(β) ∈ C0(R) then S∞(v̄) ∈ C1(R),

and if f∞(β) ∈ C1(R) then S∞(v̄) ∈ C2(R). We are now ready for a classification of phase

transitions à la Ehrenfest in the present microcanonical configurational context.

The original Ehrenfest definition associates a first or second order phase transition with

a discontinuity in the first or second derivatives of f∞(β), that is with f∞(β) ∈ C0(R) or

f∞(β) ∈ C1(R), respectively. This premise heuristically suggests to associate a first order

phase transition with a discontinuity of the second derivative of the entropy S∞(v̄), and to

associate a second order phase transition with a discontinuity of the third derivative of the

entropy S∞(v̄). Let us stress that this definition is proposed regardless the existence of the

Legendre transform, which typically fails in presence of first order phase transitions which

bring about a kink-shaped energy dependence of the entropy [4]. Thus, strictly speaking,

the definition that we are putting forward does not mathematically and logically stem from

the original Ehrenfest classification. The introduction of our entropy-based classification of

phase transitions à la Ehrenfest is heuristically motivated, but to some extent arbitrary. This

entropy-based classification no longer suffers the previously mentioned difficulty arising in

the framework of canonical ensemble, including here both divergent specific heat in presence

of a second order phase transition and ensemble non-equivalence. In the end the validity of
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the proposed classification has to be checked against practical examples. The gauge model,

here under investigation, provides a first benchmarking in this direction.

It is worth mentioning that a thorough investigation of microcanonical thermodynamics,

with special emphasis on phase transitions, can be found in Ref.[4]. However, our above

proposed approach is rather different from (and complementary to) that discussed in [4].

In fact, in [4] the determinant and the eigenvalues of the curvature matrix associated with

the two dimensional entropy surface S(E,N) are the basic quantities to signal the presence,

and define the order, of a phase transition; while no reference is made to the differentiability

class of the entropy to characterise a phase transition.

1.5
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3.5

-2.5 -2 -1.5 -1 -0.5 0 0.5

∂
u
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Figure 5. (Color online) First derivative ∂S/∂u of the configurational entropy versus the average

potential energy per degree of freedom u. Lattice dimensions: n3 = 6 × 6 × 6 (red full circles),

n3 = 8 × 8 × 8 (green full circles), n3 = 10 × 10 × 10 (blue full circles), n3 = 14 × 14 × 14 (black

full circles). The vertical dashed line locates the phase transition point.

From the numerical results concerning the functions T (E) and u(E), reported in Figure 1

and Figure 3, respectively, we computed the first and second derivatives of the configura-

tional entropy as

∂S

∂u
=
∂S

∂E

dE

du
=

1

T (E)

dE

du
, (22)

∂2S

∂u2
=

∂

∂u

(
1

T (E)

dE

du

)
. (23)
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Figure 6. (Color online) Zoom of the first derivative ∂S/∂u of the configurational entropy versus

the average potential energy per degree of freedom u. Lattice dimensions: n3 = 6× 6× 6 (red full

circles), n3 = 8× 8× 8 (green full circles), n3 = 10× 10× 10 (blue full circles), n3 = 14× 14× 14

(black full circles). The vertical dashed line locates the phase transition point.

The derivative (dE/du) entering Eq.(22) is obtained after inversion of the function u = u(E)

reported in Figure 3 and by means of a spline interpolation of its points. Whereas ∂2
uS(u)

in Eq.(23) is computed from the raw numerical data, and the derivatives with respect to u

have been obtained by means of a standard central difference formula.

The four patterns of ∂uS(u), computed for different sizes of the lattice and reported in

Figure 5 and Figure 6, show that each ∂uS(u) appears splitted into two monotonic branches,

one decreasing and the other increasing as functions of u, respectively. Approximately out of

the interval u ∈ (−1.6,−0.65) the four patterns are perfectly superposed, whereas within this

interval - which contains the transition value uc ' −1.32 - we can observe that the transition

from ∂uS < 0 to ∂uS > 0 gets sharper at increasing lattice dimension. This means that

the second derivative of the entropy, ∂2
uS(u), tends to make a sharper jump at increasing

N . And in fact, this is what is suggested by the four patterns of ∂2
uS(u) - computed for

the same sizes of the lattice - reported in Figure 7. These are strongly suggestive to belong

to a sequence of patterns converging to a step-like limit pattern. In this case the third

order derivative (∂3S/∂u3) would asymptotically diverge entailing a loss of analyticity of

the entropy which, in fact, would drop to S∞(u) ∈ C1. And this is in agreement with the
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Figure 7. (Color online) Second derivative ∂2S/∂u2 of the configurational entropy versus the

average potential energy per degree of freedom u. Lattice dimensions: n3 = 6 × 6 × 6 (thin solid

line with small triangles), n3 = 8 × 8 × 8 (dot-dashed line), n3 = 10 × 10 × 10 (dashed line),

n3 = 14× 14× 14 (thick solid line).

above proposed classification à la Ehrenfest.

It is worth noting that we have found evidence of only one transition point, despite

the presence of two peaks of the specific heat, thus confirming that in order to correctly

characterize a phase transition in the microcanonical ensemble one has to look for the signals

of analyticity loss of the entropy.

D. A geometric observable for the level sets Σv in configuration space

We have seen in the preceding Section that - within the confidence limits of a numerical

investigation - the first order phase transition of the gauge model under investigation seems

to correspond to an asymptotic divergence of the third derivative (∂3S/∂u3) of the micro-

canonical configurational entropy. Under the main theorem in Ref.[18] this should stem from

a topological change of the potential level sets Σu = V −1(u). In order to get some infor-

mation of topological kind about these level sets one has to resort to concepts and methods

of differential topology. In fact, differential topology allows to catch some topological infor-
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mation on differentiable manifolds through suitable curvature integrals (the Gauss-Bonnet

theorem being the first classical example of this type). Relevant geometric quantities can

be computed through the extrinsic geometry of hypersurfaces of a Euclidean space. To do

this one has to study the way in which an N -surface Σ curves around in RN+1 by measuring

the way the normal direction changes as we move from point to point on the surface. The

rate of change of the normal direction N at a point x ∈ Σ in direction v is described by

the shape operator (sometimes also called Weingarten’s map) Lx(v) = −∇vN = −(v ·∇)N,

where v is a tangent vector at x and ∇v is the directional derivative; gradients and vectors

being represented in RN+1.

For the level sets of a regular function, as is the case of the constant-energy hypersurfaces

in the phase space of Hamiltonian systems or of the equipotential hypersurfaces in configura-

tion space, thus generically defined through a regular real-valued function f as Σa := f−1(a),

the normal vector is N = ∇f/‖∇f‖. The eigenvalues κ1(x), . . . , κN(x) of the shape operator

are the principal curvatures at x ∈ Σ. For the potential level sets Σv = V −1(v) the trace

of the shape operator at any given point is the mean curvature at that point and can be

written as [7, 31]

M = − 1

N
∇ ·
(
∇V
‖∇V ‖

)
=

1

N

N∑
i=1

κi . (24)

We have numerically computed the second moment of M averaged along the Hamiltonian

flow

σM = N〈V ar(M)〉t = N [〈M2〉t − 〈M〉2t ] '
1

N

N∑
i=1

〈κ2
i 〉t −

1

N

N∑
i=1

〈κi〉2t , (25)

where we have assumed that the correlation term N−2
∑

i,j[〈kikj〉t − 〈ki〉t〈kj〉t] vanishes. In

fact, on the one side there is no conserved ordering of the eigenvalues of the shape operator

along a dynamical trajectory, and on the other side the averages are performed along chaotic

trajectories (the largest Lyapounov exponent is always positive) so that ki and kj vary almost

randomly from point to point and independently one from the other.

The numerical results are reported in Figure 8 and Figure 9, where an intriguing feature

of the patterns of σM(E) and σM(u) is evident: below the transition point (marked with a

vertical dashed line) the concavity of both σM(E) and σ(u) is oriented downward so that

d2σM/dE
2 and d2σM/du

2 are negative, whereas just above the transition point both σM(E)

and σM(u) are segments of a straight line, so that d2σM/dE
2 and d2σM/du

2 vanish. Thus

both derivatives make a jump at the transition point. Again within the validity limits
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Figure 8. (Color online) Second moment of the total mean curvature of the potential level sets Σu

versus energy density E/N . n3 = 6× 6× 6 (rhombs), n3 = 8× 8× 8 (squares), n3 = 10× 10× 10

(circles). The oblique dashed line is a guide to the eye. The vertical dashed line corresponds to

the point where the second derivative d2σM/dE
2 jumps from a negative value to zero.

of numerical investigations, this means that the third order derivatives, and in particular

d3σM/du
3, diverge. It is then natural to think of a connection with the asymptotic divergence

of d3S/du3 suggested by the results reported in the preceding Section.

Remark. There is a point of utmost importance to comment on. In presence of a phase

transition (and of a finite size of a phase transition as is the case of numerical simulations)

the typical variations of many observables at the transition point are the effects of the

singular properties of the statistical measures and hence of the corresponding thermodynamic

potentials (entropy, free energy, pressure). But this is not true for the geometric quantity

σM(u) which is independent of the properties of any statistical measure. Peculiar changes

of the geometry - and possibly of the topology - of the potential level sets of configuration

space (detected by σM) constitute the deep origin, the cause of phase transitions, not an

effect. The singular pattern of σM at the transition point is a primitive phenomenon. In

other words, geometrical/topological variations of the spaces where the statistical measures

are defined (phase space and configuration space) entail their singular properties [7]. The

vice versa is meaningless.
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Figure 9. (Color online) Second moment of the total mean curvature of the potential level sets Σu

versus the average potential energy per degree of freedom u. n3 = 6×6×6 (rhombs), n3 = 8×8×8

(squares), n3 = 10× 10× 10 (circles). The oblique dashed line is a guide to the eye. The vertical

dashed line corresponds to the point where the second derivative d2σM/du
2 jumps from a negative

value to zero.

Let us now see how the jump of the second derivative of σM(u) and the jump of the

second derivative of the configurational entropy S(u) can be both attributed to a deeper

phenomenon: a suitable change of the topology of the {Σu}u∈R. In what follows we resort

to the best, non-trivial approximations at present available.

Consider the pointwise dispersion of the principal curvatures

sκ =
1

N

N∑
i=1

(κi − κ)2 (26)

where

κ =
1

N

N∑
i=1

κi (27)

equation (26) is equivalently rewritten as [32]

sκ =
1

N2

N∑
i,j=1

(κi − κj)2 (28)

and the time average along the Hamiltonian flow of sκ is then equivalently written as

〈sκ〉t =
1

N

N∑
i=1

〈κ2
i 〉t − 〈κ2〉t =

1

N2

N∑
i,j=1

〈(κi − κj)2〉t . (29)
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Now, from Eqs.(25) and (29) we get

σM − 〈sκ〉t ' −
1

N

N∑
i=1

〈κi〉2t + 〈κ2〉t (30)

so that, if we make a “mean field”-like approximation in the first term of the r.h.s. of (30)

by replacing the κi with their average κ it follows σM − 〈sκ〉t ' −〈κ〉2t + 〈κ2〉t, and as κ in

Eq.(27) is the same of M in Eq.(24) one trivially gets

(1− 1

N
)σM − 〈sκ〉t ' 0 (31)

so that, under this “mean field”-like approximation, σM in Eq.(25) can be used to estimate

〈sκ〉t. Then, as the ergodic invariant measure of chaotic Hamiltonian dynamics is the micro-

canonical one, the time averages 〈·〉t provide the values of the surface averages 〈·〉ΣE . Hence,

and within the validity limits of the undertaken approximations, an interesting connection

can be used between extrinsic curvature properties of an hypersurface of a Euclidean space

RN+1 and its Betti numbers (the diffeomorphism-invariant dimensions of the cohomology

groups of the hypersurface, thus topological invariants) [33]. This connection is made by

Pinkall’s inequality given in the following.

Denoting by

σ(Lx)
2 =

1

N2

∑
i<j

(κi − κj)2

the dispersion of the principal curvatures of the hypersurface, then after Pinkall’s theorem

[34]

1

vol(SN)

∫
ΣNv

[σ(Lx)]
N dµ(x) ≥

N−1∑
i=1

(
i

N − i

)N/2−i
bi(Σ

N
v ) , (32)

where bi(Σ
N
v ) are the Betti numbers of the manifold ΣN

v immersed in the Euclidean space

RN+1, SN is an N -dimensional sphere of unit radius, and µ(x) is the measure on ΣN
v .

With the help of the Hölder inequality for integrals we have∫
ΣNv

[σ(Lx)]
2 dµ(x) ≤

[∫
ΣNv

{[σ(Lx)]
2}N/2dµ(x)

]2/N [∫
ΣNv

dµ(x)

]1/(1−2/N)

(33)

whence, at large N ,[∫
ΣNv

dµ(x)

]−1 ∫
ΣNv

[σ(Lx)]
2 dµ(x) ≤

[∫
ΣNv

{[σ(Lx)]
2}N/2dµ(x)

]2/N

(34)
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this inequality becomes an equality when |f |p/‖f‖pp = |g|q/‖g‖qq almost everywhere [35],

where ‖f‖p is the standard Lp norm ‖f‖p =
(∫

S
|f |pdµ(x)

)1/p
, where S is a measurable space.

In the inequalities above g(x) = 1, thus the Hölder inequality becomes an equality when

|f |p = ‖f‖pp/
∫
S
dµ(x), that is, when |σ(Lx)|N equals its average value almost everywhere on

ΣN
v . Introducing a positive remainder function r(v), Eq.(34) is rewritten as[∫

ΣNv

dµ(x)

]−1 ∫
ΣNv

[σ(Lx)]
2 dµ(x) =

[∫
ΣNv

{[σ(Lx)]
2}N/2dµ(x)

]2/N

− r(v) . (35)

For the model under investigation, the pointwise dispersion of the principal curvatures of

the potential level sets actually displays a limited variability from point to point. This

follows from the observation that the numerically computed variance of the mean curvature

in Eq.(25) is very fastly convergent to its asymptotic value, independently of the initial

condition [36]. Hence, in the present case, the remainder r(v) appears to be a small correction

and, consequently, the Hölder inequality is tight.

Then, using

σM = N [〈M2〉Σv − 〈M〉2Σv ] ∼
[∫

ΣNv

dµ(x)

]−1 ∫
Σv

[σ(Lx)]
2 dµ(x) (36)

together with Eq.(35) and the Pinkall inequality, one finally gets

σM ∼
[∫

ΣNv

{[σ(Lx)]
2}N/2dµ(x)

]2/N

−r(v) ∼

[
vol(SN)

N−1∑
i=1

(
i

N − i

)N/2−i
bi(Σ

N
v )

]2/N

−r(v) ,

(37)

that is, the observable σM(v) is explicitly related with the topology of the level sets ΣN
v . This

relation, even being an approximate one, is definitely non-trivial because there are very few

possibilities of relating total curvature properties of a manifold with its topological invariants.

On the other hand, both Pinkall’s inequality and the Hölder inequality are sufficiently tight

to make Eq.(37) meaningful. In fact, in addition to the already given arguments concerning

the Hölder inequality in Eq.(34), Pinkall’s inequality stems from the Morse inequalities

µk(M) ≥ bk(M) which relate the Morse indexes µk(M) to the Betti numbers bk(M) of a

manifold M (Pinkall’s inequality would be replaced by an equality if written with Morse

indexes), and these Morse inequalities are very tight since the alternating sums of Morse

indexes and of Betti numbers, respectively, give the same result (the Euler characteristic).

Therefore, the integral in the l.h.s. of Eq.(37) necessarily follows the topological variations

of the ΣN
v described by the weighted sum of its Betti numbers. The consequence is that a
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suitable variation with v of the weighted sum of the Betti numbers of a ΣN
v can be sufficient

to entail a sudden change of the convexity of the function σM(v), as reported in Figure 9,

and thus entail a discontinuity of its second derivative [37].

On the other hand, the existence of a relationship between thermodynamics and config-

uration space topology is provided by the following exact formula [7, 18]

S
(−)
N (v) = (kB/N) log

[∫
MN
v

dNq

]

=
kB
N

log

vol[MN
v \

N (v)⋃
i=1

Γ(x(i)
c )] +

N∑
i=0

wi µi(M
N
v ) +R

 , (38)

where S
(−)
N is the configurational entropy, and the µi(M

N
v ) are the Morse indexes (in one-to-

one correspondence with topology changes) of the submanifolds {MN
v = V −1

N ((−∞, v])}v∈R
of configuration space; in square brackets: the first term is the result of the excision of certain

neighbourhoods of the critical points of the interaction potential from MN
v ; the second term

is a weighed sum of the Morse indexes, and the third term is a smooth function of N and v.

Again, sharp changes in the potential energy pattern of at least some of the µi(M
N
v ) (thus

of the way topology changes with v) affect S
(−)
N (v) and its derivatives.

In other words, both the jump of the second derivative of the entropy and of the second

derivative of σM are possibly rooted in the same topological ground, where some adequate

variation of the topology of the ΣN
v - foliating the configuration space - takes place. Notice

that even if in Eq.(38) S
(−)
N (v) depends on the topology of the MN

v through the Morse

indexes µi(M
N
v ), in the framework of Morse theory a topology change of a level set ΣN

v is

always associated with a topology change of the associated manifold MN
v of which ΣN

v is the

boundary [38].

Summarizing, the topology changes indirectly detected by the function σM(u) can affect

the configurational entropy SN(v) and its tendency to develop an asymptotic discontinuity

of ∂2
vS∞(v) (we use u and v interchangeably).

Finally, in Appendix we show that the non-trivial contribution to the homology groups

of the energy level sets ΣN
E comes from the homology groups of the configuration space

submanifolds MN
v ⊂MN

E and ΣN
v ⊂ ΣN

E . Therefore, the topology variations of the ΣN
v imply

topology variations of the ΣN
E , and these necessarily affect also the functional dependence

on E of the total entropy SN(E). In fact, the variation with v of the topology of the ΣN
v
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is in one-to-one correspondence with some variation with v of the Betti numbers bi(Σ
N
v )

entering Eq.(37), and this entails the variation with E of the Betti numbers bi(Σ
N
E ), so that,

according to the following formula [7] for the total entropy

SN(E) ≈ kB

N
log

[
vol(SN−1

1 )
N∑
i=0

bi(Σ
N
E ) +R1(E)

]
+R2(E) , (39)

where R1(E), and R2(E) are smooth functions, we see that the variation with v of the

topology of the ΣN
v implies also the variation with E of the total entropy.

IV. CONCLUDING REMARKS

We have tackled the problem of characterizing a phase transition in the absence of global

symmetry breaking from the point of view of Hamiltonian dynamics and related geometri-

cal and topological aspects. In this condition the Landau classification of phase transitions

does not apply, because no order parameter - commonly associated with a global symmetry

- exists. The system chosen is inspired by the dual of the Ising model, and the discrete

variables are replaced by continuous ones. We stress that our work has nothing to do with

the true dual Ising model, which has just suggested how to define a classical Hamiltonian

system with a local (gauge) symmetry. Since the ergodic invariant measure for generically

non-integrable Hamiltonian systems is the microcanonical measure in phase space, study-

ing phase transitions through Hamiltonian dynamics is the same as studying them in the

microcanonical ensemble.

A standard analysis has been performed to locate the phase transition and to determine

its order through the shape of the caloric curve, T = T (E), which appeared typical of

a first order phase transition. The presence of energy intervals of negative specific heat

are indicative of ensemble nonequivalence. At variance with what has been systematically

observed for systems undergoing symmetry-breaking phase transitions, the energy pattern

of the largest Lyapunov exponent does not allow to locate the transition point.

After the Yang-Lee theory, phase transitions are commonly associated with a loss of

analyticity of a thermodynamic potential entailing non-analytic patterns of thermodynamic

observables (the pertinent potential depends on the statistical ensemble chosen). However,

the caloric curve found for our gauge model is very regular, no bifurcating order parameter

exists, and the peaks of specific heat are just due to horizontal tangencies to the caloric
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curve. In other words, apparently there is no evidence of the existence of genuinely non-

analytic energy pattern of some observable. However, by directly looking at the energy

pattern of the entropy, we have identified a point of discontinuity of its second derivative

(or at least a finite size version of such a discontinuity), hence an asymptotic divergence of

the third derivative of the entropy. Then we have discussed how this fits into a classification

scheme à la Ehrenfest, adapted to the framework of microcanonical ensemble, that allows

to determine the order of a phase transition on the basis of the differentiability class of the

entropy in the thermodynamic limit.

Remarkably, we have found a quantity, σM(v), that - by measuring the total degree

of inhomogeneity of the extrinsic curvature of the potential level sets Σv = V −1(v) in

configuration space - identifies the phase transition point. This quantity is not a ther-

modynamic observable, has a purely geometric meaning, and displays a discontinuity of

its second derivative in coincidence with the same kind of discontinuity displayed by the

entropy. Rather than being a trivial consequence of the presence of the phase transition,

the peculiar change of the geometry of the {ΣN
v }v∈R so detected is the deep cause of the

singularity of the entropy. In fact, the potential level sets are simply subsets of RN defined

as ΣN
v = {(q1, . . . , qN) ∈ RN |V (q1, . . . , qN) = v}, whose ensemble {ΣN

v }v∈R foliates the con-

figuration space; the volume Ω(v,N) - of each leaf ΣN
v - and the way it varies as a function

of v is just a matter of geometrical/topological properties of the leaves of the foliation.

These properties entail the v-dependence of the entropy SN(v) = (1/N) log Ω(v,N), and,

of course, its differentiability class. This is why the v-pattern of the quantity σM(v) is not

the consequence of the presence of a phase transition but, rather, the reason of its appear-

ance. This is already a highly non trivial fact indicating that whether a physical system

can undergo a phase transition is somehow already encoded in the interactions among its

degrees of freedom described by the potential function V (q1, . . . , qN), independently of the

statistical ensemble chosen to describe its macroscopic observables. However, we can wonder

if one can go deeper by looking for the origin of the peculiar changes with v of the geome-

try of the ΣN
v . Actually, by resorting to a theorem in differential topology, and with some

approximations, these geometrical changes appear to be due to changes of the topology of

both the potential level sets in configuration space and the energy level sets in phase space.

Therefore, the results of the present work lend further support to the topological theory of

phase transitions.
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Moreover, since the practical computation of σM(v), or of σM(E), is rather straightfor-

ward, this can be used to complement the study of transitional phenomena in the absence of

symmetry-breaking, as is the case of: liquid-gas change of state, Kosterlitz-Thouless transi-

tions, glasses and supercooled liquids, amorphous and disordered systems, folding transitions

in homopolymers and proteins, both classical and quantum transitions in small N systems.

With respect to the latter case, a remark about the topological theory is in order. In nature,

phase transitions (that is major qualitative physical changes) occur also in very small sys-

tems with N much smaller than the Avogadro number, but their mathematical description

through the loss of analyticity of thermodynamic observables requires the asymptotic limit

N → ∞. To the contrary, within the topological framework a sharp difference between

the presence or the absence of a phase transition can be made also at any finite and even

very small N . At finite N , the microscopic states that significantly contribute to the sta-

tistical averages of thermodynamic observables are spread in regions of configuration space

which get narrower as N increases, so that the statistical measures better concentrate on a

specific potential level set thus better detecting its sudden and major topology changes, if

any. Eventually, in the N →∞ limit the extreme sharpening of the effective support of the

measure leads to a topology-induced nonanalyticity of thermodynamic observables [7].

Furthermore, even if somewhat abstract, the model studied in the present work has the

basic properties of a lattice gauge model, that is, its potential depends on the circulations

of the gauge field on the plaquettes, so that the geometrical/topological approach developed

here could be also of some interest to the numerical investigation of phase transitions of

Euclidean gauge theories on lattice. In fact, computing σM(v), or σM(E), is definitely easier

than computing the Wilson loop, commonly adopted in place of an order parameter for gauge

theories. Actually, a few decades ago, several papers on the microcanonical formulation of

quantum field theories appeared [39, 40], motivated by the fact that in statistical mechanics

and in field theory there are systems for which the canonical description is pathological,

but the microcanonical is not, also arguing, for instance and among other things, that a

microcanonical formulation of quantum gravity may be less pathological than the usual

canonical formulation [41–44]. More recent works can also be found on these topics [45–48].

Finally, as a side issue, it is provided here an example of statistical ensemble non-

equivalence in a system with short-range interactions. Ensemble non-equivalence is another

topic which is being given much attention in recent literature [49].
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APPENDIX

A. Relation between topological changes of the Σv and of the ΣE

Now, let us see why a topological change of the configuration space submanifolds Σv =

V −1(v) (potential level sets) implies the same phenomenon for the ΣE. The potential level

sets are the basic objects, foliating configuration space, that represent the nontrivial topo-

logical part of phase space. The link of these geometric objects with microcanonical entropy

is given by

S(−)(E) =
kB
2N

log

∫ E

0

dη

∫
dNp δ(

∑
i

p2
i /2− η)

∫
ΣE−η

dσ

‖∇V ‖
. (40)

As N increases the microscopic configurations giving a relevant contribution to the entropy,

and to any microcanonical average, concentrate closer and closer on the level set Σ〈E−η〉. A

link among the topology of the energy level sets and the topology of configuration space can

be established for systems described by a Hamiltonian of the form HN(p, q) =
∑N

i=1 p
2
i /2 +

VN(q1, ..., qN).

In fact, (using a cumbersome notation for the sake of clarity) the level sets ΣHNE of the

energy function HN can be given by the disjoint union of a trivial unitary sphere bundle

(representing the phase space region where the kinetic energy does not vanish) and the

hypersurface in configuration space where the potential energy takes the total energy value

(details are given in [? ])

ΣHNE homeomorphic to MVN
E × SN−1

⊔
ΣVN
E (41)

where Sn is the n-dimensional unitary sphere and

M f
c = {x ∈ Dom(f)|f(x) < c} ,

Σf
c = {x ∈ Dom(f)|f(x) = c} .

(42)

The idea that finite N topology, and ”asymptotic topology” as well, of ΣHNE is affected by

the topology of the accessible region of configuration space is suggested by the Künneth

formula: if Hk(X) is the k-th homological group of the topological space X on the field F

then

Hk(X × Y ;F) '
⊕
i+j=k

Hi(X;F) ⊗ Hj(Y ;F) . (43)
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Moreover, as Hk

(
tNi=1Xi,F

)
=
⊕N

i Hk(Xi,F), it follows that:

Hk

(
ΣHNE ,R

)
'
⊕
i+j=k

Hi

(
MVN

E ;R
)
⊗ Hj

(
SN−1;R

)
⊕Hk

(
ΣVN
E ;R

)
' Hk−(N−1)

(
MVN

E ;R
)
⊗ R⊕Hk

(
MVN

E ;R
)
⊗ R

⊕Hk

(
ΣVN
E ;R

)
(44)

the r.h.s. of Eq.(44) shows that the topological changes of ΣHNE only stem from the topo-

logical changes in configuration space.
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