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Short title: UUAT1 defines the mucilage sugar content 28 

 29 

One-sentence summary:  Screening of Arabidopsis mutants with altered seed mucilage allowed 30 
identification of UUAT1, a Golgi-localized protein that transports UDP-glucuronic acid and plays a role 31 
in the biosynthesis of pectin. 32 

 33 
Abstract 34 
UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides, and is 35 
required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the 36 
lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-37 
arabinose and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened 38 
Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered 39 
seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a 40 
result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and 41 
UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the 42 
soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs 43 
and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in 44 
GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not 45 
affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1. 46 
These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage 47 
sugar composition, and that its absence produces pleiotropic effects in this component of the plant 48 
extracellular matrix. 49 
  50 
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INTRODUCTION 51 

The plant cell wall is a complex and dynamic structure that is mainly composed of 52 

polysaccharides, with cellulose being a key component. The synthesis of noncellulosic 53 

polysaccharides (hemicellulose and pectin) occurs in the Golgi apparatus, where a number 54 

of glycosyltransferases (GTs) are located (Liepman et al., 2010; Scheible and Pauly, 2004). 55 

GTs transfer the sugar residue from an activated nucleotide donor, in the form of a UDP- or 56 

GDP-sugar, to a growing polysaccharide chain. Most GTs are type-II membrane-bound 57 

proteins with a catalytic domain facing the Golgi lumen (Sterling et al., 2001; Wulff et al., 58 

2000; Scheible and Pauly 2004). However, most nucleotide sugars utilized by GTs are 59 

produced in the cytosol (Bar-Peled and O’Neill, 2011; Bonin et al., 1997; Seifert, 2004). 60 

Therefore, the Golgi membrane is a physical barrier blocking access to the active GT site.  61 

Nucleotide sugar transporters (NSTs) in the Golgi membrane overcome this topological 62 

problem and supply the substrates needed in the Golgi lumen for polysaccharide 63 

biosynthesis (Orellana et. al., 2016; Reyes and Orellana, 2008; Temple et al., 2016). In 64 

Arabidopsis thaliana, the genes encoding for NSTs are similar to those encoding for plastidic 65 

triose phosphate translocators (TPTs); and together, 44 NSTs and 7 TPTs, form a gene 66 

family of 51 members (Knappe et al., 2003; Rautengarten et al., 2014). To date, a number of 67 

these NSTs from A. thaliana have been functionally characterized, specifically transporters 68 

for GDP-mannose (GDP-Man), GDP-fucose (GDP-Fuc), UDP-galactose (UDP-Gal), UDP-69 

glucose (UDP-Glc), UDP-rhamnose (UDP-Rha) and UDP-xylose (UDP-Xyl) (Bakker et al., 70 

2005; Baldwin et al., 2001; Ebert et al., 2015; Handford et al., 2012, 2004; Norambuena et 71 

al., 2002, 2005; Rautengarten et al., 2014; Rautengarten et al., 2016; Rollwitz et al., 2006). 72 

Hemicellulose and pectins have diverse structures and sugar compositions, and several 73 

nucleotide sugars are required for their synthesis. UDP-glucuronic acid (UDP-GlcA), plays a 74 

critical role in noncellulosic polysaccharide synthesis, as it is the precursor for several 75 

nucleotide sugars involved in hemicellulose and pectin synthesis. These sugars include 76 

UDP-galacturonic acid (UDP-GalA), UDP-Xyl, UDP-arabinose (UDP-Ara) and UDP-apiose 77 

(UDP-Api) (Reboul et al., 2011). Therefore, UDP-GlcA is a major precursor required for 78 

hemicellulose and pectic polysaccharide synthesis. Substrate interconversion is required for 79 

polysaccharide biosynthesis and in Arabidopsis leaves, polysaccharides containing sugars 80 

derived from UDP-GlcA, account for nearly 50% of the cell wall biomass (Zablackis et al., 81 

1995). The cytosol contains some of the enzymes for the interconversion of UDP-GlcA, such 82 

as soluble UDP-xylose synthase (UXS) (Harper and Bar-Peled, 2002; Pattathil et al., 2005; 83 

Kuang et al., 2016), UDP-apiose/UDP-xylose synthase (Guyett et al., 2009, Mølhøj et al., 84 

2003;) and UDP-arabinose mutase (Konishi et al., 2007; Rautengarten et al., 2011). There 85 

are also Golgi-localized interconverting enzymes. These include UDP-glucuronate 86 



 3 

epimerase (GAE), which converts UDP-GlcA into UDP-GalA (Gu and Bar-Peled, 2004; 87 

Mølhøj et al., 2004), membrane attached UXS (Harper and Bar-Peled, 2002; Kuang et al., 88 

2016) and UDP-xylose-4-epimerase, which catalyzes UDP-Xyl to UDP-arabinopyranose 89 

(UDP-Arap) epimerization (Burget et al., 2003). All these enzymes are predicted type-II 90 

membrane proteins, and their catalytic domain faces the lumen. Therefore, the transport of 91 

UDP-GlcA into the Golgi lumen is a critical step for UDP-GalA biosynthesis, as well as for 92 

part of the luminal UDP-Xyl. Additionally, UDP-Arap produced from lumen-synthesized UDP-93 

Xyl may rely on this transporter. UDP-GlcA transport is also important for glucuronoxylan 94 

biosynthesis because this polymer is synthesized in the Golgi lumen, where GlcA units are 95 

added to the xylan backbone. A NST that transports UDP-GlcA has been described in C. 96 

elegans and mutations in the protein responsible for this activity lead to an abnormal 97 

development in  this organism (Berninsone et al., 2000).  A Golgi-localized UDP-GlcA 98 

transporter is likely to play a critical role in plant cells by providing the substrate precursors 99 

needed for pectin and hemicellulose biosynthesis in the Golgi lumen. In this context, this 100 

transporter could play an important role in determining the content of plant cell wall sugars 101 

that are derived from UDP-GlcA. 102 

To identify a UDP-GlcA transporter and analyze its role in defining cell wall composition, we 103 

took advantage of the fact that Arabidopsis seeds produce copious amounts of a pectin-rich 104 

substance that is referred to as seed coat mucilage. It is comprised of gel-like molecules that 105 

are extruded from mature seeds following water imbibition (Saez-Aguayo et al., 2013; 106 

Western et al., 2000; Western, 2012; Young et al., 2008). Early visual examination of the 107 

mucilage provided evidence of its pectic nature and showed the presence of two distinct 108 

mucilage layers. Both layers contain large amounts of the GalA-containing polysaccharides 109 

rhamnogalacturonan I (RG-I) and homogalacturonan (HG). RG-I is mostly unbranched in the 110 

external layer, the soluble mucilage (SM), and it is branched, having arabinan and galactan 111 

side chains in the internal layer, the adherent mucilage (AM) (Macquet et al., 2007 Western 112 

et al., 2000; Willats et al., 2001). The AM also contains methylesterified HG and cellulose 113 

microfibrils (Macquet et al., 2007; Saez-Aguayo et al., 2013; Western et al., 2004; Willats et 114 

al., 2001). Because mucilage contains high pectin levels, changes in the pathway leading to 115 

the synthesis of UDP-GalA will alter RG-I or HG synthesis, affecting the seed mucilage 116 

formation and composition. Therefore, the seed coat NST expression analysis was 117 

combined with a mucilage release-screening assay of NST mutants to select any novel 118 

NSTs potentially involved in the RG-I or HG synthesis. We identified UUAT1 (UDP-URONIC 119 

ACID TRANSPORTER 1), a gene encoding a protein that can transport UDP-GlcA and 120 

UDP-GalA in vitro. A knockout line lacking UUAT1 has less galacturonic acid (GalA) and 121 

rhamnose (Rha) in both AM and SM, and less Xyl in SM. Also, a decrease in arabinan 122 
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content was observed in the seed coat. Analyses of UUAT1 expression in other organs and 123 

cells revealed differences in Ara content in uuat1 mutant vs. wild type tissue. Interestingly, 124 

besides changes in sugar content, a change in the HG methylation pattern was observed in 125 

the mucilage and more methyl groups were released from cell wall material from mucilage 126 

and stem, suggesting that HG methylation is also altered in some organs and indicating that 127 

pleiotropic changes might take place in the mutant cell wall. Our results suggest that UUAT1 128 

transports UDP-GlcA in vivo. Furthermore, the loss of function of this transporter leads to 129 

changes in monosaccharide composition, in the cell wall, mainly in those sugars related to 130 

UDP-GlcA metabolism in the Golgi lumen. These results show the importance of the 131 

transport of UDP-GlcA in the biosynthesis of the plant cell wall. 132 

 133 

RESULTS 134 

Analysis of NSTs Expressed in Seed Coats and Identification of UUAT1 135 

In silico data analyses revealed that twenty one out of the fifty one members of the NST/TPT 136 

Arabidopsis family (Rautengarten et al., 2014) are expressed in the seed coat during the 137 

developmental stages when mucilage is produced and accumulated in epidermal cells 138 

(Supplemental Figure 1) (Le et al., 2010; http://seedgenenetwork.net/arabidopsis). Of these 139 

twenty one candidates, we disregarded those with reported functions (ten known NSTs) in 140 

the Arabidopsis UDP-rhamnose/UDP-galactose transporter (URGT) family (Rautengarten et 141 

al., 2014), UDP-galactose transporters 1, 2 and 3  UTR1, UTR2, UTR3 (Norambuena et al., 142 

2002, 2005; Reyes et al., 2006, 2010), and GalT1 (Bakker et al., 2005). Among the eleven 143 

target genes that were expressed throughout seed development and lack a known function 144 

(Supplemental Figure 1), At5g17630 was discarded from the analysis because as it belongs 145 

to the triose phosphate translocator clade. Of the ten remaining genes, homozygous mutants 146 

could be obtained for seven of them, but only heterozygous mutants were obtained for the 147 

other three. Soluble mucilage content was assessed by measuring the uronic acid released 148 

following water imbibition. The results showed that a mutant allele of At5g04160, uuat1, 149 

exhibited the lowest level of mucilage uronic acid (Supplemental Figure 2). UUAT1 150 

expression was also measured during seed development to confirm that it is expressed 151 

during the mucilage production stages (6 to 8 DAP). Supplemental Figure 3 shows a peak in 152 

UUAT1 expression at 8 DAP, a pattern similar to the expression of genes involved in 153 

mucilage synthesis (Macquet et al., 2007; Saez-Aguayo et al., 2013; Rautengarten et al., 154 

2014). UUAT1 encodes a polytopic transmembrane protein with ten putative membrane 155 

spanning domains (Supplemental Figure 4) and belongs to a subclade composed of five 156 

paralogues with identities ranging from 81% to 49% (Supplemental Table 1). However, their 157 

expression levels are much lower than those of UUAT1 (Supplemental Figure 3). 158 
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Given these results, we decided to focus on UUAT1 by analyzing its role in the biosynthesis 159 

of seed coat mucilage. Three T-DNA insertion lines were identified in the At5g04160 locus 160 

and were designated uuat1-1, uuat1-2 and uuat1-3 (Figure 1A). These mutant lines had a 161 

lower content of GalA and Rha residues in the SM fraction compared to the wild type (WT) 162 

Col-0 plants (Figure 1C and Supplemental Table 2). When compared to the other two allelic 163 

lines, uuat1-2 exhibited the most pronounced decrease in both sugars. UUAT1 transcripts 164 

were undetectable in the uuat1-2 mutant line, whereas the other two lines (uuat1-1 and 165 

uuat1-3) exhibited some UUAT1 expression, albeit at lower levels than WT Col-0 (Figure 166 

1B). Thus, we concluded that uuat1-2 had the strongest phenotype because it was a true 167 

knock-out line, whereas the other alleles were knock-down lines and so the studies focused 168 

on the uuat1-2 allele. Molecular rescue of the uuat1-2 mutant confirmed that the absence of 169 

UUAT1 was responsible for the phenotypes observed in uuat1-2 (Supplemental Figure 5). 170 

The uuat1-2 line was transformed with a construct that contains the UUAT1 coding 171 

sequence (CDS) fused to a GFP tag and is driven by the UUAT1 endogenous promoter. 172 

Several independent transformants were obtained and the presence of the transgene was 173 

confirmed by RT-PCR (Supplemental Figure 5A). Wild-type ruthenium red staining of  174 

the AM and sugar content levels were observed in two independent transgenic lines, 175 

indicating that UUAT1-GFP had successfully rescued the mutant (Supplemental Figure 5B 176 

and 5C). 177 

 178 

UUAT1 is a UDP-Uronic Acid Transporter in the Golgi  179 

To determine the substrate specificity of UUAT1 in vitro, it was expressed heterologously in 180 

Saccharomyces cerevisiae (yeast) and transport assays were conducted as reported in 181 

Rautengarten et al (2014). Transport assays were performed using the microsomal proteins 182 

reconstituted in proteoliposomes. An immunoblotting analysis of the reconstituted protein 183 

confirmed the presence of UUAT1 in proteoliposomes (Figure 2A). Proteoliposomes were 184 

pre-loaded with uridine monophosphate (UMP), guanosine monophosphate (GMP), cytidine 185 

monophosphate (CMP) or adenosine monophosphate (AMP) and then incubated with a 186 

mixture of 15 nucleotides/nucleotide sugars to determine substrate specificity (Figure 2D, 187 

Supplemental Figure 6). Non-transported substrates were removed by gel filtration, and the 188 

proteoliposome content analyzed with liquid chromatography-tandem mass spectrometry 189 

(LC-MS/MS). The substrate preference exhibited by UUAT1 could readily be assessed after 190 

LC-MS/MS analysis when compared to the empty vector control. UUAT1 demonstrated clear 191 

preferences for UDP-GlcA and UDP-GalA when proteo-liposomes were preloaded with UMP 192 

(Figure 2D). No significant differences in transport activity between the control and UUAT1 193 
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were observed for any other nucleotide sugar apart from UDP-Arap, although this activity 194 

was much lower than that observed for the UDP-uronic acids (Figure 2D).  195 

These substrate preferences were only specific when the proteoliposomes were preloaded 196 

with UMP and not with GMP, CMP or AMP (Supplemental Figure 6). Given the additional 197 

negative charge present in UDP-uronic acids, UDP was also tested as a potential antiporter 198 

substrate, but no transport was observed (Supplemental Figure 6). Proteoliposomes 199 

preloaded with GMP could transport GDP-sugars and some lower activity was also observed 200 

when proteoliposomes were preloaded with AMP (Supplemental Figure 6), but this is likely 201 

to be the result of the endogenous transport activities of the yeast microsomal preparation, 202 

since the proteoliposome UUAT1 expression activity did not differ from the control, as has 203 

been observed previously (Ebert et al., 2015). UDP-GlcA transport by UUAT1 did not 204 

achieve saturation within the concentration range utilized in the assay (Figure 2B), however, 205 

transport was affected in a time dependent manner (Figure 2C). Analysis of transport rates 206 

indicated that UUAT1 has an apparent Km of 1.5 mM for UDP-GlcA (Figure 2B). 207 

A C-terminal translational fusion with green fluorescent protein (GFP) was used to determine 208 

the subcellular localization of UUAT1 using laser scanning confocal microscopy on transient 209 

transformed epidermal cells (Figure 3). The UUAT1-GFP distribution pattern was compared 210 

with those obtained for the cis-Golgi marker α-mannnosidase-I (Saint-Jore-Dupas et al., 211 

2006) and an endoplasmic reticulum (ER) marker (Nelson et al., 2007). The fluorescence 212 

signal obtained from the UUAT1-GFP protein colocalized with the punctate pattern obtained 213 

for the cis-Golgi marker α-Man-I but not with the ER marker (Figure 3A to 3F). To confirm 214 

the localization of UUAT1, trichomes of transgenic rescued plants expressing UUAT1-GFP 215 

under the endogenous promoter were analyzed, and they also showed motile structures 216 

exhibiting a punctate pattern, as has been described for Golgi resident proteins (Figure 3G) 217 

(Boevink et al., 1998). Taking these data together, these results indicate that UUAT1 is a 218 

Golgi-localized UDP-uronic acid transporter.  219 

 220 

Absence of UUAT1 Has Pleiotropic Effects on Seed Coat Cell Walls and Mucilage 221 

In order to better understand the effects on the composition of cell wall polysaccharides 222 

caused by the absence of UUAT1, we analyzed the sugar content of the polysaccharides 223 

present in the seed mucilage (Table 1) in both WT Col-0 and uuat1-2 mutant plants. The 224 

SM, as expected, contained mostly GalA and Rha. However, decreases in both GalA (20%) 225 

and  Rha (22%) were observed in the uuat1-2 mutant compared to the WT (Table 1). 226 

Interestingly, despite the low Xyl levels in the sample, it displayed a similar reduction (21%). 227 

Furthermore, the seed+AM fraction from uuat1-2 showed a 5% decrease in GalA content 228 
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along with a 9% reduction in Rha (Table 1).  229 

To further investigate the differences observed in the Seed+AM fraction and to better 230 

understand which polysaccharides might be altered in the mutant, we performed whole 231 

mount immunolabeling assays using antibodies against the epitopes present in cell wall 232 

polysaccharides, (Figure 4). Based on the measured monosaccharide composition and 233 

considering the mucilage polysaccharide composition, the labeling was performed using the 234 

following antibodies: CCRC-M36 (anti-RG-I), LM6 (anti-arabinan), JIM7 and LM20 (both anti- 235 

methylated HG) (Macquet et al., 2007; Verhertbruggen et al., 2009; Willats et al., 2001). In 236 

addition, to visualize the cell wall, we used calcofluor or propidium iodide which stain β-1,4 237 

glucans and polysaccharides. RG-I labeling, was reduced in the AM of uuat1-2 seeds 238 

compared to WT Col-0 seeds (Figures 4A and 4C, green signal). Moreover, the calcofluor 239 

labeling showed a distal cell wall defect in the mutant when compared with WT Col-0 240 

(Figures 4B and 4D, pink labeling), likely due to an abnormal cell wall rupture. The LM6 241 

antibody showed less arabinan in the uuat1-2 AM compared to the WT Col-0, especially in 242 

the distal wall of the epidermal cells (Figures 4E and 4F). The lack of staining with the LM6 243 

antibody was restored in the transgenic plants that expressed UUAT1-GFP with the 244 

endogenous promoter (Supplemental Figure 7), providing further evidence that this 245 

phenotype is due to the UUAT1 absence.  246 

As the rupture of the distal cell wall upon water imbibition seemed to be altered, we 247 

reasoned that the cell wall stiffness might have changed. Because the degree of HG 248 

methylation affects the stiffness of the cell wall (Peaucelle et al., 2008), the LM20 and JIM7 249 

antibodies were used to look at the highly methylesterified HG distribution (Figure 5 and 250 

Supplemental Figure 8). An increase in LM20 labeling in AM was observed in the uuat1-2 251 

mutant when compared to WT Col-0 (Figures 5 A and 5B), suggesting the presence of HG 252 

with a higher degree of methyl esterification in the mutant. This result was also observed 253 

using the JIM7 antibody in the allelic lines uuat1-1 and uuat1-3 (Supplemental Figure 8). 254 

Analysis of the uuat1-2 lines expressing UUAT1 supported this observation by showing less 255 

labelling than in the mutant, but more labelling than in the WT Col-0 when JIM7 and LM20 256 

were used to assess the methylated HG content (Supplemental Figure 7). In addition, we 257 

performed ruthenium red staining in the presence of EDTA, a chelator that removes cations 258 

and increases the exposure of carboxylic groups, thus enhancing the ruthenium red staining 259 

(Figures 5C and 5D). WT Col-0 seeds showed intense staining but mutant seeds exhibited a 260 

pale color, suggesting that fewer carboxylic groups were available for binding the dye 261 

(Figure 5D). To confirm changes in HG methylesterification in the uuat1-2 mutant, the 262 

contents of methyl groups present in the soluble mucilage and seed+AM fractions were 263 

determined by measuring the methanol released upon saponification. Both fractions 264 
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displayed greater methanol release of 37% and 67%, respectively (Figure 5E). Finally, these 265 

HG methylesterification changes correlated with a 10% decrease in pectin methylesterase 266 

activity (PME), measured in dry mutant seeds (Figure 5F). All these results provide strong 267 

evidence that UUAT1 absence leads to an increase of highly methylesterified HG epitopes in 268 

mucilage. 269 

 270 

UUAT1 Functions in Different Plant Organs 271 

We next analyzed the UUAT1 expression pattern in organs such as roots, seedlings, rosette 272 

and cauline leaves, stems, flowers, siliques and seeds at different development stages 273 

(Supplemental Figure 9). The UUAT1 transcript was detected by qPCR in all organs 274 

analyzed, with expression peaking in stems and flowers (Supplemental Figure 9A). The GUS 275 

reporter gene (Jefferson, 1989) was cloned under the control of the UUAT1 promoter and 276 

transformed into WT Col-0 plants to obtain spatial information regarding UUAT1 expression. 277 

Strong GUS activity was detected in roots, seedlings, trichomes, flowers and developing 278 

seeds (Supplemental Figure 9B), confirming that UUAT1 is predominantly expressed in 279 

these organs. 280 

All obvious phenotypes in the uuat1-2 mutant were examined first to investigate whether the 281 

UUAT1 mutation leads to changes in plant development and or cell wall composition in 282 

organs or tissues apart from the seed mucilage. Interestingly, the only change observed was 283 

in the primary stem, as uuat1-2 plants displayed an early elongation phenotype when 284 

compared to WT Col-0 plants (Figure 6A). However, this morphological difference 285 

disappeared once the plants reached a mature stage. No changes were observed in sugar 286 

composition of the stem cell wall for any of the sugars analyzed, including Xyl (Figure 6C), 287 

the most abundant sugar due to the presence of glucuronoxylan, one of the more abundant 288 

stem polymers. Because glucuronoxylan also contains GlcA in a given branching frequency, 289 

a carbohydrate gel electrophoresis (PACE) polysaccharide analysis (Mortimer et al., 2010) 290 

was used to quantify the oligosaccharides Xyl, Xyl2, and GlcAXyl4/[MeGlcA] Xyl4 released by 291 

xylanase GH11. No changes were found in the GlcA/Xyl ratio, suggesting that the 292 

glucuronoxylan structure is normal in the uuat1-2 mutant (Figure 6D). Additionally, because 293 

changes were observed in mucilage HG methylesterification, this modification was further 294 

analyzed in three development stages in stems. The methylesterification levels were 295 

observed to be significantly higher in all conditions in the uuat1-2 mutant when compared to 296 

WT Col-0 (Figure 6B). 297 

The alcohol insoluble residue (AIR) sugar composition in uuat1-2 mutant roots, trichome, 298 

and pollen tube preparations was analyzed to uncover any possible changes in cell wall 299 
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composition in other UUAT1 expressing organs (Figure 7). Ara levels were reduced in roots 300 

and pollen tubes. A slight decrease was observed in trichomes but it was not significant. No 301 

decrease in GalA or Xyl was observed in any other of the tissues analyzed; thus, Ara was 302 

the only sugar whose content consistently decreased in the mutant and this decrease was 303 

tissue-specific. In conclusion, our results indicate that plants lacking UUAT1 show changes 304 

in the composition of cell wall monosaccharides derived from the metabolism of UDP-GlcA in 305 

the Golgi, with arabinose being the most affected. Furthermore, mutants in UUAT1 show 306 

enhanced levels of methylesterification in cell wall polysaccharides, a likely response to cope 307 

with changes in cell wall composition. 308 

 309 

DISCUSSION 310 

UDP-GlcA is synthesized and utilized in the plant cell cytosol, but it is also required in the 311 

Golgi lumen for synthesis of UDP-GalA, UDP-Xyl and UDP-Arap. Therefore, UDP-GlcA 312 

needs to be transported from the cytosol across the Golgi membrane into the Golgi lumen to 313 

be converted into these nucleotide sugars. Our work led to the identification of UUAT1, a 314 

protein that can transport UDP-GlcA, UDP-GalA and low levels of UDP-Arap in vitro. 315 

However, UUAT1 is unlikely to transport significant amounts of UDP-GalA or UDP-Arap in 316 

vivo, because both UDP-GlcA 4-epimerase and UDP-Xyl 4-epimerase, the enzymes 317 

involved in the synthesis of UDP-GalA and UDP-Arap respectively, are located in the Golgi 318 

lumen (Burget et al., 2003; Gu and Bar-Peled, 2004; Mølhøj et al., 2004). A cytosolic 319 

salvage pathway for UDP-GalA has been reported (Yang et al., 2009), but requires release 320 

from the cell wall of GalA, which can then be converted into UDP-GalA by the enzymes GalA 321 

kinase and Sloppy, a promiscuous UDP-sugar pyrophosphorylase (Kotake et al., 2007). 322 

Therefore, this salvage pathway may be active only under certain circumstances and 323 

perhaps cytosolic UDP-GalA formed via this pathway could be transported by UUAT1. UDP-324 

Arap can also be biosynthesized by UGE1 and UGE3 in the cytoplasm, using UDP-Xyl to 325 

form UDP-Arap. This would presumably be in addition to their roles in the UDP-Glc to UDP-326 

Gal epimerization. However, mutations in these genes suggest that this cytosolic pathway is 327 

less important than that located in the Golgi (Rösti et al., 2007; Kotake et al., 2009; 328 

Rautengarten et al., 2011; Kotake et al., 2016). Furthermore, because UUAT1 did not exhibit 329 

in vitro transport activity for UDP-Araf (arabinose in its furanose form), we postulate that the 330 

main in vivo role for UUAT1 is to transport UDP-GlcA to the Golgi lumen. Finally, we believe 331 

the low UDP-Arap activity observed is not a function specific to UUAT1, because it is also 332 

observed in other nucleotide sugar transporters such as the UDP-Rha/UDP-Gal transporters 333 

and the UDP-Xyl transporter (Ebert et al., 2015; Rautengarten et al., 2014) 334 
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UUAT1 is expressed in seed coat epidermal cells and knockout plants showed a number of 335 

mucilage-related phenotypes. The uuat1-2 mutant displayed reduced GalA and Rha content 336 

in both the SM and the seed+AM fraction. Thus, the GalA decrease could be explained by a 337 

lower UDP-GlcA transport rate to the Golgi lumen, the substrate required for the UDP-GalA 338 

synthesis. Thus, its reduced transport rate could lead to lower levels of this nucleotide sugar 339 

in the mutant. On the other hand, UUAT1 does not transport UDP-Rha, so the Rha decrease 340 

is likely due to an impairment in synthesis of the RG-I backbone, which is composed of 341 

repeating (GalA-Rha)n disaccharide units. Because one of the substrates (UDP-GalA) is 342 

reduced, it is likely that Rha incorporation has been also affected, leading to lower levels of 343 

this sugar in SM and the seed+AM fraction. Something similar occurs in mutants in URGT2, 344 

a UDP-Rha transporter that is also expressed in seed coat epidermal cells. SM in this 345 

mutant also exhibits lowered Rha and GalA, even though URGT2 does not transport UDP-346 

uronic acids (Rautengarten et al., 2014). The GalA and Rha decrease observed in mucilage 347 

(a RG-I enriched matrix) from UDP-Rha and UDP-GlcA transporter mutants suggests a 348 

coordination in the supply of both nucleotide sugars during RG-I biosynthesis. 349 

The uuat1 mutants exhibit a decrease in arabinan in AM, as detected by LM6 antibody 350 

immunolabeling. Ara is an abundant sugar in the seed+AM fraction and can be present in 351 

other polysaccharides (Western et al., 2001), so changes in the total Ara content may not 352 

reveal the differences in a low-abundant Ara-containing polymer. The use of antibodies can 353 

detect precise changes in arabinan, which is present in the wild type and almost 354 

undetectable in the mutant, suggesting that UUAT1 plays an important role in providing the 355 

precursor for arabinan synthesis. The absence of UUAT1 also results in a reduction in Xyl in 356 

SM. However, this phenotype is different from the one observed for muci21 and irx14, 357 

xylosyltransferases mutants that show alterations in epidermal cell mucilage adhesion (Hu et 358 

al., 2016; Voiniciuc et al., 2015; Ralet et al., 2016). On the other hand, no Xyl changes were 359 

observed in the seed+AM fraction, suggesting a precise and discrete role for UUAT1 in Xyl-360 

containing polymer synthesis. 361 

The results show that both the SM and seed+AM matrices in the uuat1 mutants have lower 362 

levels of sugars (GalA, Xyl and Ara) provided by UDP-sugars derived from the metabolism of 363 

UDP-GlcA in the Golgi. This supports the role of UUAT1 as an in vivo UDP-GlcA transporter. 364 

Because these sugars are not completely diminished, it suggests that other UDP-GlcA 365 

transporters are present in seed coat epidermal cells. Alternatively, some compensatory 366 

mechanisms, such as UDP-Xyl transport by specific transporters could be activated (Ebert et 367 

al., 2015).  368 

In addition to the changes in cell wall composition, our calcofluor staining studies revealed 369 

that distal cell walls of seed coat epidermal cells exhibited an abnormal rupture upon 370 
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imbibition. Whether the changes observed in GalA, Rha, Xyl and arabinan are responsible 371 

for this feature remains to be determined. However, an interesting observation was that the 372 

uuat1-2 mutant exhibits an increase in the level of HG methylation, a feature that was 373 

partially rescued in plants expressing UUAT1. The increase in labeling by the LM20 antibody 374 

in mucilage correlated with reduced ruthenium red staining, a dye that binds to the HG 375 

carboxyl groups, suggesting their blockage by methyl groups. In addition, more methyl 376 

groups were released from mucilage derived from uuat1-2 mutant seeds and lower PME 377 

activity was detected. This methylation increase may be the result of the adaptation that 378 

takes place in the uuat1-2 mutant to compensate for changes in its cell wall. Because the 379 

degree of HG methylation correlates to cell wall stiffness, methylation changes may 380 

contribute to the altered rupture of distal cell walls during seed imbibition. Regarding HG 381 

methylation and arabinan content, it is interesting to note that mutants containing lower HG 382 

methylation levels due to defective pectin methyltransferase activity exhibit an increase in 383 

Ara (Kim et al., 2015), which could account for higher arabinan levels. By contrast, uuat1-2 384 

plants show a greater HG methylation and lower arabinan levels, suggesting that an inverse 385 

correlation may exist between arabinan content and the degree of HG methylation. 386 

The expression pattern of UUAT1 indicates that it might have additional functional roles in 387 

other organs or cell types. Indeed, an evaluation of the cell wall sugar composition of other 388 

organs and cells from the uuat1-2 mutant showed lower levels of Ara in roots and pollen 389 

tubes, but not a decrease in Xyl or GalA. These results suggest that changes in the mutant 390 

plant cell wall composition are organ-dependent. In this sense, Ara is the sugar most 391 

affected in the organs evaluated, suggesting that the supply of UDP-Ara for 392 

arabinosyltransferases is more affected in uuat1-2 plants. On the other hand, the levels of 393 

GalA and Xyl did not exhibit significant differences in the mutant, except in seeds. These 394 

results could be explained due to redundancy of paralogue genes present in subclade V of 395 

the NST gene family (Rautengarten et al., 2014), which could supply UDP-GlcA for the UDP-396 

GalA synthesis. This explanation is also valid for the absence of Xyl changes, but it is 397 

important to mention that UDP-Xyl levels in the Golgi lumen are also directly controlled by a 398 

UDP-Xyl transporter (UXT1), described recently by Ebert et al. (2015). Mutants in this 399 

transporter had decreased Xyl content in stems, and glucuronoxylan was strongly affected 400 

(Ebert et al., 2015), suggesting that the UDP-Xyl biosynthesized by cytosolic UXS and 401 

transported by UXT1 may be required for xylan synthesis. Furthermore, an Arabidopsis 402 

cytosolic UXS triple mutant was shown to have an irregular xylem phenotype, while the 403 

lumenal UXS triple mutant had no Xyl-associated phenotype (Kuang et al., 2016). These 404 

findings suggest that UUAT1 is less important in the synthesis of Xyl-containing 405 

polysaccharides. Furthermore, it is likely that the UDP-Xyl made in the cytosol is used to 406 
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synthesize Xyl-containing polysaccharides, whereas the UDP-Xyl made in the Golgi lumen 407 

could be used for the synthesis of UDP-Arap in a tissue-specific manner. However, more 408 

data will be required to confirm this hypothesis. No changes were observed in the GlcA/Xyl 409 

ratio of glucuronoxylan, one of the main polymers containing GlcA, supporting the idea of 410 

redundancy in the UDP-GlcA transport.  411 

Cell walls of the uuat1-2 mutant also exhibited other pleiotropic changes in sugar 412 

composition and HG methylation depending on the tissue analyzed. For instance, a Gal 413 

decrease was observed in roots, and a GalA increase occurred in pollen tubes. HGs can 414 

modulate cell wall stiffness in pollen tubes (Parre and Geitmann, 2005a), and callose content 415 

changes may also have an impact on the cell wall mechanics of pollen tubes (Parre and 416 

Geitmann 2005b). Consequently, these changes may be a response to the Ara change 417 

observed in the uuat1-2 mutant. Stems also showed methylation increases at different 418 

development stages, which correlate with an early plant bolting phenotype. These pleiotropic 419 

events may correspond to adaptations of the mutant due to the absence of UUAT1 and are 420 

an indication of the plasticity displayed by the plant cell wall. 421 

 422 

METHODS 423 

Plant Material and Growth Conditions 424 

Unless specified otherwise, Arabidopsis (Arabidopsis thaliana (L.) Heynh) and tobacco 425 

(Nicotiana benthamiana Domin) plants were germinated and grown in a growth chamber 426 

using a long-day regime (16 h photoperiod), the light intensity was 100 μmol m−2 s−1 and the 427 

temperature 21°C. For seeds and aerial tissue collection, plants were grown in soil (Terracult 428 

blue substrate, Terracult GmbH) supplemented with fertilizer (Basacote plus 6M, Compo 429 

Expert) in a relative humidity (RH) of 60%. The plants were grown in MS media  (Duchefa) 430 

(2.155 g/L), 1% sucrose and 0.8% agar to obtain root material. T-DNA insertion lines for 431 

UUAT1 (SALK_124146C/ uuat1-1, SALK_105023C/ uuat1-2 and SALK_048507/ uuat1-3) 432 

were obtained from the Arabidopsis Biological Resource Center (ABRC, http://abrc.osu.edu/) 433 

using the SIGnAL Salk collection (Alonso et al., 2003). SALK_105023C was annotated as 434 

uuat1-2. Wild type Columbia-0 (WT Col-0) and mutants were transformed using 435 

Agrobacterium tumefaciens (GV3101::pMP90) carrying the specified vectors, using the 436 

standard floral dip method (Clough and Bent, 1998).  437 

Infiltration of Tobacco Leaves and Subcellular Localization of UUAT1-GFP 438 

Six week-old tobacco leaves were infiltrated with Agrobacterium tumefaciens, strain 439 

GV3101::pMP90 as described in (Batoko et al., 2000). Two independent transformations 440 

were undertaken for analyzing UUAT1 subcellular localization. ER localization was analyzed 441 
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using UUAT1-GFP and the ER marker AtWAK-mCherry-HDEL (Wall Associated Kinase-2 442 

carrying an ER retention signal). Golgi localization was analyzed by cotransformation of 443 

UUAT1-GFP and the Golgi localized protein -mannosidase I (-mannosidase I–mCherry; 444 

Nelson et al 2007). Fluorescent signals were analyzed 60 h after infiltration by confocal laser 445 

scanning microscopy, using an Olympus FluoView FV1000 spectral microscope. 446 

GUS Staining 447 

The histochemical localization of β-glucuronidase (GUS) activity was performed as 448 

described in Jefferson (1989). Tissues were imaged using an Olympus SZ61 stereoscopic 449 

microscope and seeds were analyzed with an Olympus Fluoview FV1000 confocal 450 

microscope. 488 nm excitation and emission of 485 nm and 491 nm were used for the 451 

analysis of seed GUS staining by confocal microscopy, (Truernit et al., 2008). 452 

Ruthenium Red Staining 453 

Mucilage released from mature dry seeds was stained either directly with 0.03% (w/v) 454 

ruthenium red or after imbibition in 0.5 M EDTA, pH 8.0, for 90 min. After EDTA treatment, 455 

seeds were stained for 2 min and observed with a light microscope (Olympus SZ61).  456 

Genotyping 457 

Genomic DNA was extracted from Arabidopsis 7 d-old cotyledons as described in Edwards 458 

et al. (1991). PCR was conducted to amplify the wild type and mutant alleles using the 459 

primers described in Supplementary Table 3. 460 

Cloning Procedures 461 

The UUAT1 coding sequence (CDS) without the stop codon was amplified from cDNA 462 

prepared from Arabidopsis leaf RNA, using the primers described in Supplemental Table 3. 463 

Resulting PCR products were introduced into the pENTR/D TOPO vector according to 464 

standard protocols (Life Technologies) to generate the entry clone pENTR-UUAT1. The C-465 

terminal GFP fusion under the control of the cauliflower mosaic virus 35S promoter was 466 

generated by introducing the UUAT1 CDS from the entry clone into the gateway destination 467 

vector pK7FWG2.0 (Karimi et al., 2002) using LR clonase (Thermo Fisher Scientific). For the 468 

rescue construct, the intergenic region (653 bp) between At5g04170 and At5g04160 was 469 

defined as the UUAT1 promoter (pUUAT1) and was amplified from Arabidopsis genomic 470 

DNA using the primers described in Supplemental Table 3. Resultant PCR products were 471 

introduced into the pENTR 5-TOPO vector (Thermo Fisher Scientific) to generate the 472 

pENTR5-pUUAT1 entry clone. Both, C-terminal GFP and HA fusions were obtained by 473 

recombining the entry clones pENTR-UUAT1 and pENTR5-pUUAT1 with destination vectors 474 

R4pGWB504 and R4pGWB513, respectively. For the transcriptional fusion of pUUAT1 to the 475 
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GUS reporter gene, the entry clone pENTR5-pUUAT1 and the destination vector pKGWFS7 476 

(Karimi et al., 2002) were recombined using LR clonase (Thermo Fisher Scientific). 477 

Expression Analysis 478 

Total RNA from stems, rosette and cauline leaves, and roots was extracted using Trizol 479 

(Thermo Fisher Scientific). For developing seeds, the pollination time in days after pollination 480 

(DAP) was defined phenotypically as the time at which the flowers are just starting to open 481 

and the long stamens grow over the gynoecium, as previously described in Western et al., 482 

(2000). Seeds were dissected from approximately nine siliques in each DAP for further RNA 483 

extraction. RNA extractions were performed using RNeasy Plus Micro Kit, according to 484 

manufacturer instructions (Quiagen). 1 μg of total RNA was used as a template for first-485 

strand cDNA synthesis with an oligo (dT) primer and SuperScript II (Thermo Fisher 486 

Scientific), according to the manufacturer instructions. The primers described in 487 

Supplemental Table 3 were used to amplify PCR products from single-stranded cDNA in the 488 

wild type and uuat1-2 samples for the CDS of UUAT1 CDS; EF1αA4, primers were 489 

described in North et al., 2007. Quantitative PCR (qPCR) was performed using the Fast 490 

EvaGreen qPCR Master Mix kit (Mx3000P, Stratagene). Reactions contained 1 μL of 1:2 491 

diluted cDNA in a total volume of 10 μL. Reactions were carried out using primers that has 492 

been previously tested for their efficiency rates and sensitivity in a cDNA dilution series. The 493 

quantification and normalization procedures were done using the following equation, as 494 

described by Stratagene: 495 

 Normalized 
Unknown

Control
=  

(1+𝐸 target)−∆𝐶𝑡 target

(1+𝐸 norm)−∆𝐶𝑡 norm  496 

where E corresponds to the efficiency of amplification of the target gene, Ct = 497 

threshold cycle (Ct), “Control” represents the calibrator sample and norm refers to 498 

the reference or normalizer gene. Primers for UUAT1, UUAT2, UUAT3, UUAT4, UUAT5, 499 

EF1α (Hong et al., 2010), UBC9 and seed reference gene At4g12590 (Hong et al., 2010) 500 

were those described in Supplemental Table 3.  501 

Analysis of In Vitro UUAT1 Transport 502 

For heterologous expression, we used the uracil-auxotrophic Saccharomyces cerevisiae 503 

strain INVSc-1 (MATa his3D1 leu2 trp1-289 ura3-52 MAT his3D1 leu2 trp1-289 ura3-52, 504 

Thermo Fisher Scientific). The UUAT1 coding sequence was cloned onto the Gateway 505 

expression vector pYES-DEST52 (Thermo Fisher Scientific) and then introduced into the 506 

yeast strain with the S.c. EasyComp Transformation Kit (Thermo Fisher Scientific). The 507 

control was the yeast strain transformed with the empty vector pYES-DEST52. Microsomal 508 

fractions were obtained from 200 mL cultures grown at 30°C. Yeast cells were pelleted and 509 
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spheroplasts produced in 10 mL resuspension buffer (50 mM potassium phosphate, pH 7.1, 510 

1.4 M sorbitol, 10 mM NaN3, and 40 mM 2-mercaptoethanol, 6,000 U Lyticase (Sigma-511 

Aldrich) for 1 h at 37°C. Spheroplasts were harvested by centrifugation and washed with 0.8 512 

M sorbitol, 10 mM triethanolamine / acetic acid pH 7.2, 1 mM EDTA. The spheroplasts were 513 

lysed with glass beads in 5 mL 0.8 M sorbitol, 10 mM triethanolamine/acetic acid pH 7.2, 1 514 

mM EDTA, protease inhibitor cocktail from SIGMA ALDRICH and 1 mM PMSF. Microsomes 515 

were isolated by sequential centrifugation (8,000 g for 10 min (F1), and 100,000 g for 75 min 516 

(F2)). The F2 fraction was reconstituted in 10 mM Tricine-KOH pH 7.5, 50 mM potassium 517 

gluconate, 20% glycerol. Proteoliposomes were generated with acetone-washed soybean L-518 

α-phosphatidylcholine (Avanti Polar Lipids) in reconstitution buffer (10 mM Tricine-KOH pH 519 

7.5, 50 mM potassium gluconate and 20% glycerol). Reconstitution of microsomal 520 

membranes obtained from the UUAT1-expressing yeast or the control cells was undertaken 521 

using approximately 400 µg microsomal protein in reconstitution buffer, lipid at a ratio of 13:1 522 

(lipid:protein), 10 mM exchange substrate and 50 mM octyl-β-glucoside. Unincorporated 523 

components were removed from reconstituted liposomes using Sephadex G50 columns (GE 524 

Healthcare). 200 µL Aliquots were incubated with nucleotide sugar substrates at 25°C for the 525 

indicated times to assess transporter activities. Kinetic parameters were calculated with non-526 

linear regression using the Prism 7 application (GraphPad Software, La Jolla, CA). 527 

Polyacrylamide gel electrophoresis was carried out with 2.5 µg protein of proteoliposomes 528 

on a 7-15% SDS-PAGE gel. Immunoblotting was conducted with the anti-V5 antibody, using 529 

a 1:10,000 dilution (Thermo Fisher Scientific). 530 

Nucleotide Sugar Quantification Using Tandem Mass Spectrometry 531 

The transport assay reactions were purified using ENVI-Carb SPE columns (Sigma-Aldrich) 532 

and then lyophilized overnight, as outlined in Ito et al., (2014), and then analyzed by tandem 533 

mass spectrometry (LC-MS/MS). Nucleotide sugars were separated using a Hypercarb 534 

column (150 mm × 1 mm, 5 μm) at a flow rate of 50 μL min-1 with an 1100 series HPLC 535 

system (Agilent Technologies, CA) and a 4000 QTRAP LC-MS/MS system (Sciex, CA) 536 

equipped with a TurboIonSpray ion source. Initial conditions were 95% buffer A (LC-MS 537 

grade water with 0.3% formic acid, pH 9.0 with ammonia) and 5% buffer B (100 % 538 

acetonitrile) for 1 min followed by a gradient to 75% (A) in 20 min, then 50% (A) in 5 min 539 

before returning to 95% (A) in 5 min. The instrument was operated in negative ion mode, 540 

using the multiple reaction monitoring (MRM) scan type. A declustering potential (DP) of -40, 541 

entrance potential (EP) of -10, collision cell exit potential (CXP) was -15. The ion spray 542 

voltage was set at -4200 V, source temperature (TEM) at 425 °C, collision gas (CAD) was 543 

set to High and source gas 1 (GS1) and 2 (GS2) were both set to 20. A time of 100 ms was 544 

applied for each transition, resulting in a duty cycle of 1.0501 s with both Q1 and Q3 545 
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resolution set to Unit. All data were acquired using Analyst 1.6 Build 3773 (Sciex, CA). 546 

Nucleotide sugars were quantified using MultiQuant 2.1 (build 2.1.1296.02.1) software 547 

(Sciex, CA) by integrating the signal peak areas of samples against a range of nucleotide 548 

sugar standards (2.5 to 20 pmol). 549 

Seed Immunolabeling 550 

Immunolabeling was performed with four monoclonal antibodies, CCRC-M36 (labels 551 

rhamnogalacturonan-I), LM6 (arabinan), JIM7 (partially methyl-esterified homogalacturonan) 552 

and LM20 (highly methyl-esterified homogalacturonan)  (Saez-Aguayo et al., 2013). A 553 

double labeling with an antibody plus calcofluor white (0.01%) or propidium iodide (20 µg 554 

mL-1) was performed as indicated for each antibody to observe the seed surface and AM 555 

layer. Optical sections were obtained using an Olympus LX81 spectral confocal laser-556 

scanning microscope. A 488 nm argon laser line was used to excite Alexa Fluor 488, a 405 557 

nm diode laser line was used to excite calcofluor white and a 543 nm neon laser line was 558 

used to excite propidium iodide. Fluorescence emission was detected between 504 and 579 559 

nm for Alexa Fluor 488, 412 and 490 nm for calcofluor white, and 550 nm and 725 nm for 560 

propidium iodide. For comparisons of the signal intensity within one experiment, the laser 561 

gain values were fixed. 562 

Trichome Isolation 563 

Trichome isolation was performed as described in Marks et al. (2008), with slight 564 

modifications. The aerial parts of 18 d-old seedlings were placed in a 50 mL tube with 15 mL 565 

of preheated (37ºC) phosphate-buffered saline (137 mM KCl, 10 mM K2HPO4, 2 mM 566 

KH2PO4) containing 100 mM EGTA-KOH (pH 7.5) and 50 mg of glass beads 425-600 µm 567 

(Sigma-Aldrich). The plant material was then subjected to four cycles at maximum vortex 568 

speed for 30 s and on ice for 30 s. The trichomes were recovered using a nylon cell strainer 569 

(pore size: 70 µm, BD Falcon) and re-suspended in PBS buffer without EGTA. 570 

Alcohol-Insoluble Residue (AIR) Preparation  571 

Plant tissues were ground in liquid nitrogen and extracted twice in 80% ethanol with agitation 572 

for 1 h at room temperature followed by removal of lipids by washing twice with 573 

methanol:chloroform (1:1) and twice with acetone. The final alcohol insoluble residue (AIR) 574 

was dried overnight at room temperature. A sequential extraction procedure was used for 575 

determining the sugar composition of SM and seed+AM,. 20 mg of seeds were imbibed 3 576 

times with 1 mL of water for 20 min; the SM was separated by 10 min of centrifugation at 577 

12,000 g, lyophilized and resuspended in 300 µL of water before hydrolysis. The AM + seed 578 

fraction was lyophilized and AIR preparation was prepared as described above. 579 
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Acid Hydrolysis 580 

Two mg AIR were hydrolyzed for 20 min for soluble mucilage and 1h for other tissues with 581 

450 µL 2 M trifluoroacetic acid (TFA) at 121 °C. TFA was evaporated at 60°C with nitrogen 582 

and the samples were washed twice in 250 µL of 100% isopropanol and dried in a speed-583 

vac. The suspension was clarified by passing through a syringe filter (pore size: 0.45 µm), 584 

transferred to a new tube and used for HPAEC-PAD analysis as described below. Inositol 585 

was used as the internal control for TFA hydrolysis.  586 

In Vitro Pollen Tube Growth and Cell Wall Extraction 587 

Pollen was grown in vitro in a liquid medium according to the method described in Boavida 588 

and McCormick, (2007), Dardelle et al. (2010). Forty freshly opened flowers were 589 

submerged in 1 mL of germination medium containing 5 mM CaCl2·, 0.01% (w/v) H3BO3, 5 590 

mM KCl, 1 mM MgSO4, and 10% (w/v) sucrose (pH 7.5), and tubes were shaken with a 591 

vortex to release the pollen grains from the anthers. Flowers were removed with a pair of 592 

tweezers, and the pollen suspension was then pelleted at 3,200 g for 6 min. New GM (250 593 

µL) was added to the pellet, and pollen grains were grown in a growth chamber in the dark 594 

at 22°C for 6 h. Before any further manipulation, pollen germination and pollen tube growth 595 

were assessed with an inverted microscope. After 6 h, three volumes of 95% ethanol were 596 

added to the GM and stored at 4°C until use. Six h-old pollen tubes from 480 flowers were 597 

pooled, centrifuged at 5,000 g and rinsed three times with 1 mL of 70% ethanol to remove 598 

salts and sucrose. The insoluble material was ground and treated three times with 70% 599 

ethanol at 70°C for 15 min followed by an incubation with 1 mL of a mixture of 600 

chloroform:methanol (1:1, v/v) for 15 min. After centrifugation (12,000 g for 10 min), the 601 

remaining insoluble material was dried to yield the AIR fraction (about 1 mg). This 602 

experiment was performed three times. 603 

Methylesterification Analysis of AIR Samples 604 

The degree of methylesterification of WT Col-0 and uuat1-2 was analyzed in 2 mg of AIR 605 

preparations from roots or seeds with AM. For SM, 5 mg of seeds were imbibed in 200 µL of 606 

ultrapure water for 6 h, as described in Anthon and Barrett, (2004). All experiments were 607 

done using 3 technical replicates and at least 2 biological replicates.  608 

High Performance Anion Exchange Chromatography with Pulsed Amperometric 609 

Detection (HPAEC-PAD) 610 

A Dionex ICS3000 ion chromatography system, equipped with a pulsed amperometric 611 

detector, a CarboPac PA1 (4 mm x 250 mm) analytical column and a CarboPac PA1 (4 mm 612 

x 50 mm) guard column was used to quantify sugars. The separation of neutral sugars was 613 
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performed at 40ºC with a flow rate of 1 mL/min using an isocratic gradient of 20 mM NaOH 614 

for 20 min followed by a wash with 200 mM NaOH for 10 min. After every run, the column 615 

was equilibrated in 20 mM NaOH for 10 min. Separation of acidic sugars was performed 616 

using 150 mM NaOAc and 100 mM NaOH for 10 min at a flow rate of 1 mL/min at 40°C. 617 

Standard curves of neutral sugars (D-Fuc, L-Rha, L-Ara, D-Gal, D-Glc, D-Xyl, and D-Man) or 618 

acidic sugars (D-GalA and D-GlcA) were used for quantification. 619 

Determination of Monosaccharide Composition of Pollen Tubes Using Gas 620 

Chromatography–Flame Ionization Detection (GC-FID) 621 

Samples were prepared as described in Dardelle et al., 2014. Approximately 0.5 mg of 622 

sample was hydrolyzed with 2 M TFA for 2 h at 110°C. Monosaccharides were then 623 

derivatized with 1 M methanol-HCl at 80°C overnight followed by a mixture of 624 

hexamethyldisiloxan:trimethyldisiloxan:pyridine (3:1:9) at 110°C for 20 min. After drying, 625 

derivatives were dissolved in 1 mL of cyclohexane and injected into the 3800 GC system 626 

equipped with a CP-Sil5-CB column. A temperature gradient from 120 to 160°C at 10°C min-627 

1, 160 to 220°C at 1.5°C min-1 and 220 to 280°C at 20°C min-1 was used. Quantification was 628 

based on the internal standard and response factors previously determined for each 629 

monosaccharide. 630 

Determination of PME Activity 631 

Total protein extraction and PME activity assays were performed as described in Saez-632 

Aguayo et al. (2013). Measurements of stained areas to determine PME activity were 633 

obtained using the ImageJ software (Abramoff et al., 2004) 634 

Analysis of Stem Xylan Using PACE 635 

AIR preparations and PACE were performed as described by Mortimer et al. (2010). One mg 636 

of AIR from basal stems were incubated overnight in 0.1 M ammonium acetate buffer 637 

(pH5.5) with an excess of Neocallimastix patriciarum Xyn11A xylanase at 21ºC. 638 

Samples were derivatized with 8-aminonapthalene-1,3,6-trisulphonic acid (ANTS; 639 

Invitrogen). After drying in vacuo, the samples were resuspended in 3 M urea (100 640 

μL), of which 5 μL was loaded onto the PACE gels. Samples were electrophoresed 641 

for 30 min at 200 V and then for 100 min at 1,000 V. Gels were visualized using a 642 

Genebox (Syngene) equipped with a transilluminator with long-wave tubes emitting 643 

at 365 nm and a short-pass (500–600 nm) filter. The quantity of each of the 644 

oligosaccharides released by Xyn11A [Xyl, (Xyl)2, GlcA-(Xyl)4/ Me-GlcA(Xyl)4] as well 645 

as the GlcA/Xyl ratio could be calculated by using the analytical software Genetools 646 
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(Syngene). Results presented correspond to 4 biological replicates. The enzyme was 647 

a kind gift of Harry Gilbert (University of Newcastle, UK). 648 

Accession Numbers 649 

Nucleotide sequences for Arabidopsis UUAT1 have been deposited in GenBank (Benson et 650 

al., 2012) under accession numbers KT923621 (At5g04160, coding sequence) and 651 

KT923622 (At5g04160, promoter).  T-DNA insertion lines in the At5g04160 locus were 652 

obtained from the Arabidopsis Biological Resource Center: uuat1-1 (SALK_124146C), 653 

uuat1-2, (SALK_105023C) and uuat1-3  (SALK_048507). 654 
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Table 1. Sugar Composition of Seeds Plus Adherent Mucilage (seed + AM) and Extracted 697 

Soluble Mucilage (SM) from WT Col-0 and uuat1-2 Plants.  698 

Structure Sugar WT Col-0 uuat1-2 

Seed +AM GalA 20.67 (0.21)* 19.68 (0.42)* 

Rha 21.77 (0.77)* 20.02 (0.45)* 

 Fuc 1.74 (0.05) 1.72 (0.03) 

 Ara 41.21 (1.59) 39.62 (1.06) 

 Xyl  11.37 (0.56) 11.45 (0.47) 

 Man 3.44 (0.12) 3.69 (0.16) 

 Gal 30.23 (0.40) 29.06 (1.13) 

 Glc 7.43 (0.26) 8.18 (0.29) 

 GlcA 2.44 (0.08) 2.55 (0.07) 

Total Seed + AM  140.30 (2.80) 135.96 (1.92) 

    

SM GalA 5.66 (0.21)* 4,56 (0.22)* 

 Rha 8,65 (0.49)* 6.76 (0.43) * 

 Ara 0.08 (0.02) 0.09 (0.01) 

 Xyl  0.43 (0.02)* 0.34 (0.02)* 

 Gal 0.31 (0.04) 0.26 (0.02) 

Total SM  15.15 (0.64) 11.99 (0.95) 

 699 

To analyze monosaccharide composition, a water-soluble extraction was used to isolate the 700 

SM fraction. The adherent mucilage cannot be detached from the seed and form the seed+ 701 

soluble mucilage fraction (seed + MA). Sugar content was obtained using HPAEC-PAD from 702 

seed + AM and from SM. Values are in mg/g of dry seeds and are the means of 3 biological 703 

replicates. Standard errors are shown in parentheses for 2 technical replicates each. (*) 704 

Significant statistical differences using the Wilcoxon test (p <0.05). 705 

 706 

 707 

 708 

  709 
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Figure 1. Characterization of Mutants in UUAT1.

(A) Schematic representation of UUAT1 structure, as annotated in The Arabidopsis Information 

Resource (TAIR: http://www.arabidopsis.org/). The sites and orientations of the T-DNA insertions in 

allelic lines uuat1-1, uuat1-2 and uuat1-3 are indicated. Numbers indicate the positions (in bp) of the 

start and stop codons and the T-DNA insertion sites. White boxes, 5’- and 3’-UTRs; grey boxes, 

protein coding sequences; black lines, introns; LB, left border.

(B) Analysis of UUAT1 expression in T-DNA insertion lines. RT-PCR analyses were performed on 

RNAs isolated from WT Col-0, uuat1-1, uuat1-2 and uuat1-3 lines using specific primers for the full-

length coding sequence of UUAT1. EF1α expression was used as a control.

(C) Measurement of galacturonic acid and rhamnose levels in soluble mucilage after 10 min of seed 

imbibition in water. Error bars represent SE (n = 6) of 3 biological replicates. * Significant difference 

from WT using the t-test p < 0.05. 



Figure 2. UUAT1 is a UDP-Uronic Acid Transporter.

(A) Immunoblot of the yeast microsomal fractions used to make the proteoliposomes. 2.5 µg 

total protein was probed with an anti-V5 tag antibody and strong expression of UUAT1 (~35 kDa) 

was observed.

(B) Kinetics of UDP-GlcA transport at varying concentrations (0.5 to 400 µM) into proteoliposomes 
pre-loaded with UMP and then incubated for 2 min at 25°C.

(C) Time course for UDP-GlcA (50 µM) uptake into proteoliposomes preloaded with UMP and then 

incubated at 25°C. All values were normalized to the total protein content of the proteoliposome 
preparations and are means ± SD of 4 independent experiments.

(D) Quantification of nucleotide sugar uptake into proteoliposomes containing UUAT1 that were 

preloaded with UMP. Data are the means ± SD of four independent transport assays quantified by 

LC-MS/MS and normalized to the total protein content of the reconstituted proteoliposomes. The 

empty expression vector was used as a negative control. Significantly different values are marked 

with asterisks: *p < 0.05 and **p < 0.01; Student’s t-test.



Figure 3. UUAT1 is Located in the Golgi Apparatus.

(A) to (F) Tobacco epidermal cells were co-transformed with Agrobacteria carrying vectors containing 

Pro35S:UUAT1-GFP with the cis-Golgi marker α-Mannosidase-I-Cherry (A) to (C) or the endoplasmic reticulum 

marker wall-associated kinase-2-signal peptide-mCherry-HDEL (D) to (F). GFP labelling co-localized with the 

Golgi marker (C) but not with the ER marker (F). Bar = 5 μm.

(G) Subcellular localization of UUAT1-GFP in trichomes from uuat1-2 plants rescued with the ProUUAT1:UUAT1-
GFP construct; Bar = 100 um.



Figure 4. The uuat1-2 Mutant is Affected in Seed Mucilage Structure and Composition

(A) to (F) RG-I and arabinan labelling in adherent mucilage from WT Col-0 seeds and the uuat1-2 mutant line. 

Confocal microscopy optical section reconstruction of adherent mucilage (AM) released from imbibed seeds. 

Asterisks represent differences in labeling.

(A) to (D) CCRC-M36 antibody (green) was used to label RG-I domains and calcofluor white was used to detect 
β- 1,4-glucans (purple). (B) and (D) are magnifications of parts (A) and (C) showing greater detail of the AM, 

the distal cell wall (dw) and the columella cells (c).

(E) and (F) The LM6 antibody was used to label arabinan (green) in both WT Col-0 and uuat1-2 seeds. Bars = 
(A) and (C), 100 μm; (B) to (F), 50 µm. 



Figure 5. The uuat1-2 Mutant Shows Increased Pectin Methylesterification and Has Reduced Pectin 

Methylesterase Activity in Seeds.

(A) and (B) Labeling of highly methylesterified HG in the adherent mucilage from seeds of WT Col-0 (A) and 

the uuat1-2 mutant line (B). Confocal microscopy optical section reconstruction of AM released from imbibed 

seeds. The LM20 antibody (green) was used to label HG domains and propidium iodide was used to stain 

the seed coat surface (pink). Bars = 100 μm; AM, adherent mucilage.

(C) and (D) Appearance of seed adherent mucilage from WT Col-0 (C) and uuat1-2 (D) in the presence of a 

cation chelator. Seeds were stained with ruthenium red after 1 h of imbibition in 0.5 M EDTA. AM, adherent 

mucilage. Bars = 100 μm.

(E) Degree of methylesterification in WT Col-0 and uuat1-2 in seed + AM and the soluble mucilage fractions. 

Error bars represent SE (n = 16, from 3 biological replicates). ANOVA and Tukey tests were performed and 

compared to WT Col-0 (*p < 0.05). 

(F) Seed pectin methylesterase (PME) activity. Total protein extracts from mature dry seeds of WT Col-0 and 

uuat1-2 were used to measure PME activity. The PME activity was normalized to the average wild-type 

activity (100). Error bars represent SE (n = 16 for SM and n = 12 for seed + AM from 3 biological replicates).. 



Figure 6. The uuat1-2 Mutant Line Displays an Early Stem Elongation Phenotype and an Increase in 

Methylesterification, but Shows No Changes in Sugar Content In Stem Cell Walls.

(A) The uuat1-2 mutant displays early stem elongation when compared to the WT Col-0. 7 week-old WT Col- 
0 and uuat1-2 plants show a pronounced difference in stem height. This difference disappears once the 

plants reach their adult state. This phenotype was observed in 3 biological replicates.

(B) Determination of the degree of methylesterification in stems. Error bars represent SE (n = 8) from 2 

biological replicates. Asterisks represent significant difference from WT Col-0 using ANOVA and Tukey tests 

(p < 0.05).

(C) HPAEC-PAD was used to quantify the cell wall extract monosaccharide composition from WT Col-0 and 

uuat1-2 stems (20-24 cm). Error bars represent SE (n = 6) from 3 biological replicates.

(D) Ratio of GlcA/Xyl content of xylan products digested with GH11 xylanase. AIR material from basal stems 

of WT Col-0 and uuat1-2 was used to determine the frequency of GlcA branches on the xylan backbone 

using PACE. The quantity of each of the oligosaccharides released by GH11 xylanase [Xyl, (Xyl)2, GlcA-

(Xyl)4/MeGlcA(Xyl)4] was calculated and the GlcA/Xyl ratio determined. Error bars represent SE (n = 9) from 3 

biological replicates.



Figure 7. Monosaccharide Composition of Different Organs, Tissues or Cells from WT Col-0 and 

uuat1-2 Mutant Plants.

(A) to (C) Quantification of the monosaccharide composition of the cell wall extracts from WT Col-0 and 

uuat1-2 mutant plants using HPAEC-PAD and GC-FID.

(A) Roots from 7 d-old plants.

(B) Trichomes from 14 d-old plants.

(C) Pollen tubes from 6 h-old plants. Error bars represent SE (n = 6) from 3 biological replicates. * Significant 

differences from WT using the Wilcoxon test (p < 0.05).


