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We present a semi-Lagrangian scheme for the approximation of a class of Hamilton-Jacobi-Bellman (HJB) equations on networks. The scheme is explicit, consistent and stable for large time steps. We prove a convergence result and two error estimates. For HJB equation with space independent Hamiltonian, we obtain a first order error estimate. In the general case, we provide, under a hyperbolic CFL condition, a convergence estimate of order one half. The theoretical results are discussed and validated in a numerical tests section.

Introduction.

The interest in the study of linear and nonlinear partial differential equations on networks raised consistently in the last decades motivated by the modeling of various networked systems like roads, pipelines, electronic and information networks.

In particular, an extensive literature has been developed for vehicular traffic systems modeled through conservation laws. Existence results can be found in [START_REF] Garavello | Traffic flow on networks[END_REF], and some partial uniqueness results (for a limited number of intersecting roads) in [START_REF] Garavello | Conservation laws with discontinuous flux[END_REF][START_REF] Andreianov | A theory of l1-dissipative solvers for scalar conservation laws with discontinuous flux[END_REF]. In many cases, the lack of uniqueness on the junction points obliges to add some special conditions which may be ambiguous or difficult to derive. More recently, models based on Hamilton-Jacobi (HJ) equations have been proposed. In these models, the density of the cars is obtained as the derivative of the solution of the HJ equation (see [START_REF] Newell | A simplified theory of kinematic waves in highway traffic, part i: General theory[END_REF]). The main advantage of this framework is to include an optimality principle on the model, solving some of the ambiguities in the junction points without the introduction of additional conditions. However, the relationship between the two approaches is still under investigation.

The theory of HJ equations on networks is very recent. In general, these equations do not have regular solutions, and the notion of weak solution (viscosity solution) need to be extended on the junction points. So far several proposals have been made. The early attempts are contained in the works [START_REF] Achdou | Hamilton-jacobi equations constrained on networks[END_REF][START_REF] Camilli | A flame propagation model on a network with application to a blocking problem[END_REF][START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF][START_REF] Imbert | A hamilton-jacobi approach to junction problems and application to traffic flows[END_REF][START_REF] Schieborn | Viscosity solutions of eikonal equations on topological networks[END_REF], where the authors introduce new definitions of weak solutions and prove the well-posedness of the problem. We highlight the paper [START_REF] Camilli | A comparison among various notions of viscosity solution for Hamilton-Jacobi equations on networks[END_REF] where the authors discuss the differences among the models. We also refer to the most recent works [START_REF] Barles | Flux-limited and classical viscosity solutions for regional control problems[END_REF][START_REF] Lions | Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions[END_REF] for simplified proof of uniqueness.

Regarding the numerical approximation, there are very few schemes and only some of them are supported by theoretical results. Let us mention the finite differences scheme proposed in [START_REF] Camilli | A flame propagation model on a network with application to a blocking problem[END_REF][START_REF] Costeseque | A convergent scheme for hamiltonjacobi equations on a junction: application to traffic[END_REF] and the paper [START_REF] Guerand | Error estimates for finite difference schemes associated with hamilton-jacobi equations on a junction[END_REF] in which some error estimates are proved.

In this paper, we adopt the framework and the notion of weak solution as introduced in [START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF].This framework has the advantage to include very general models. Here, the Hamiltonian is convex with respect to the gradient variable. At the junction, it can be discontinuous with respect to the space variable, and may depend on a flux limiter.

We propose a semi-Lagrangian (SL) scheme for this kind of equations by discretizing the dynamic programming principle presented in [START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF]. The scheme generalizes that introduced in [START_REF] Camilli | An approximation scheme for a hamilton-jacobi equation defined on a network[END_REF], and enables discrete characteristics to cross the junctions. This property makes the scheme unconditionally stable, allowing for large time steps. This is the main advantage compared to finite differences and finite elements schemes. With almost standard techniques, it is possible to prove consistency and monotonicity, which imply the convergence of the scheme.

We prove two convergence error estimates: for state-independent Hamiltonians, where optimal controls are constant in time, and for more general Hamiltonians. In the first case, we obtain a first-order convergence estimate depending only on the space step. In the second case, we prove a general convergence result and, in the case of Courant number less than one, an error estimate which, for constant Courant number, gives order of convergence 1/2. The proof is obtained applying some techniques derived from papers on regional optimal control problems [START_REF] Barles | A bellman approach for two-domains optimal control problems in r n[END_REF][START_REF] Barles | Flux-limited and classical viscosity solutions for regional control problems[END_REF] and it improves the results presented in [START_REF] Guerand | Error estimates for finite difference schemes associated with hamilton-jacobi equations on a junction[END_REF] in the case of finite differences schemes. For the sake of clarity, we consider a simplified network (a junction), but the result can be extended to more general networks, with more than one junction, as we show in the last numerical test.

Structure of the paper: in Section 2 we recall some basic notions for junctions and we build the optimal control problem on these domains. In Section 3, we derive the scheme and prove its basic properties: consistency, monotonicity, and regularity. In Section 4, we present the main results concerning convergence and error estimates. Finally, in Section 5, we show some numerical simulations.

2. An optimal control problem on networks. A network is a domain composed of a finite number of nodes connected by a finite number of edges. To simplify the description of such system we focus on the case of a junction, which is a network composed of one node and a finite number of edges. We follow [START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF] and the notations therein to describe the problem. Given a positive number N , a junction J ∈ R 2 is a network of N half lines J i := {k e i , k ∈ R + } (where each line is isometric to [0, +∞) and e i is a unitary vector centered at the origin) connected in a junction point that we conventionally place at the origin. We then have J := i=1,...,N J i , J i ∩ J j = {0}, ∀i = j, i, j ∈ {1, ..., N }.

We consider the geodesic distance function on J given by d(x, y) = |x -y|, if x, y ∈ J i for one i ∈ {1, ..., N }, |x| + |y|, otherwise.

For a real-valued function u defined on J, ∂ i u(x) denotes the (spatial) derivative of u at x ∈ J i and the gradient of u is defined as:

(1) We describe a finite-horizon optimal control problem on the network J. For a more extensive description of the problem, see [START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF]. Let us define the set of admissible dynamics on the network J connecting the point (s, y) to (t, x) as

u x := ∂ i u(x) if x ∈ J * i := J i \ {0}, (∂ 1 u(x), ∂ 2 u(x), ..., ∂ N u(x)) if x = 0.
(2) Γ t,x s,y :=    (X(•), α(•)) ∈ Lip([s, t]; J) × L ∞ ([s, t]; R N +1 ) Ẋ(τ ) = U (X(τ ), α(τ )), τ ∈ [s, t] X(s) = y, X(t) = x    ,
where for any (t,

x) ∈ [0, T ] × J and α = (α 0 , α 1 , ..., α N ) ∈ R N +1 , U (x, α) = α i if x ∈ J * i α 0 if x = 0. .
We define the cost function,

L(x, α) := L i (x, α i ) if x ∈ J i , L 0 (α 0 ) if x = 0,
where the functions L i : R + × R → R for i = 1, . . . , N satisfy: (A1) L i are strictly convex (w.r.t. the second argument) and uniformly Lipschitz continuous, (A2) L i are strongly coercive w.r.t. the second argument uniformly in x

(L i (x, α i )/|α i | → +∞ for |α i | → +∞ uniformly in x ∈ R + ), (A3) for all µ > 0 there exists C µ > 0 such that sup x∈Ji inf αi∈[-µ,µ] L i (x, α i ) ≤ C µ .
In addition, L 0 : R → R is defined as

L 0 (α 0 ) := L0 if α 0 = 0, +∞ otherwise,
for a given L0 ∈ R. The value function of the optimal control problem is

(3) u(t, x) = inf y∈J inf (X(•),α(•))∈Γ t,x 0,y u 0 (y) + t 0 L(X(τ ), α(τ ))dτ .
Remark. We stress on the generality of the model in treating the junction: an optimal trajectory chosen in (2) is evaluated by the functional (3) where the cost does not have any regularity passing through the junction. The trajectories have also the possibility of waiting in the junction paying a specific constant cost L 0 per time unity.

It has been proved in [START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF] that the following dynamic programming principle (DPP) holds.

Proposition 2.1 (Dynamic programming principle). For all x ∈ J, t ∈ (0, T ], s ∈ [0, t), the value function u defined in (3) satisfies

(4) u(t, x) = inf y∈J inf (X(•),α(•))∈Γ t,x s,y u(s, X(s)) + t s L(X(τ ), α(τ ))dτ .
A direct approximation of the DPP (4) is the basis for the scheme which we describe in the next section. The following Theorem characterizes the value function (3) as the solution of a HJB equation (for the definition of viscosity solution and the proof, see Appendix A and [START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF]).

Theorem 2.2 (HJB equation satisfied by the value function u). Given a function u 0 , globally Lipschitz continuous on J, the value function u defined in (3) is the unique viscosity solution of

(5) ∂ t u(t, x) + H i (x, u x (t, x)) = 0 in (0, T ) × J * i , ∂ t u(t, x) + F A (u x (t, x)) = 0 in (0, T ) × {0},
with initial condition u(0, x) = u 0 (x) for x ∈ J, where

H i (x, p) := sup αi∈R {α i p -L i (x, α i )} ,
with pi (x) chosen such that H i is non-increasing in (-∞, pi (x)] and non-decreasing in [p i (x), ∞). The operator F A : R N → R on the junction point is

(6) F A (p) := max A, max i=1,...,N H - i (0, p i ) , with A = -L0 ,
where

H - i (x, p) := H i (x, p) for p ≤ pi (x) H i (x, pi ) for p > pi (x).
Remark. In the vehicular traffic flow models, the function H -can be related, with suitable transformations, to the demand and supply functions, introduced in [START_REF] Lebacque | The Godunov scheme and what it means for first order traffic flow models[END_REF]. This relation has been observed in [START_REF] Imbert | A hamilton-jacobi approach to junction problems and application to traffic flows[END_REF]. In this setting, the constant A is known as the flux limiter at the junction. In fact, the lower the cost at the junction L0 is, the longer the vehicles will stay at the junction and so the bigger is the flux limiter.

We now gives some useful results on the Hamiltonian H. Proposition 2.3 (Properties on H). Under assumptions (A1)-(A3), the following assertions hold true: i) for every x ∈ R + ∪ {+∞} and bounded p, α i ∈ arg sup αi∈R {α i p -L i (x, α i )} is bounded.

ii) the nonincreasing part of H i (x, p) with respect of p i is given by

H - i (x, p i ) = sup αi≤0 {α i p i -L i (x, α i )}.
iii) (Regularity). For all M > 0 there exists a modulus of continuity ω M such that for all |p|, |q| ≤ M and x ∈ J i

|H i (x, p) -H i (x, q)| ≤ ω M (|p -q|); in addition, H i (•, p) is Lipschitz continuous w.r.t. the space variable. iv) (Uniform coercivity). H i (x, p) → +∞ for |p| → +∞ uniformly for every x ∈ J i ∪ {+∞}, i = 1, ..., N ; v) (Convexity). p → H i (x, p) is convex for every x ∈ J.
vi) (Uniform bound of the Hamiltonian for bounded gradient). For all M > 0, there exists

C M > 0 such that sup p∈[-M,M ], x∈J * |H(x, p)| ≤ C M ,
where J * := J \ {0}.

Remark. The previous proposition implies in particular the well-posedness of (5) (see [START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF])

Proof. From assumptions (A1)-(A2), α i p -L i (x, α i ) is a continuous function (negatively) coercive, therefore there exists a compact interval [-µ, µ], µ ∈ R, such that sup αi∈R {α i p -L i (x, α i )} = sup αi∈[-µ,µ] {α i p -L i (x, α i )} .
Since p is bounded, i) holds. Assertion ii) follows from Lemma 6.2 in [START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF].

From i), we have

H i (x, p) -H i (x, q) ≤ ᾱ|p -q|
where ᾱ is the minimizer in H i (x, q). Exchanging the role of p, q, we get iii).

Taking α = 1 in the Hamiltonian we have

H i (x, p) ≥ p -L i (x, 1).
The same argument for α = -1 gives H i (x, p) → +∞ for |p| → +∞, then iv) holds. Finally v) holds since H i is the upper envelope of convex functions and vi) follows directly from assumption (A3).

We now give regularity results for the value functions.

Proposition 2.4 (Regularity of the value function). Under assumptions (A1)-(A2), the value function u defined in (3) is Lipschitz continuous in space and time.

Proof. First, we remark that for C ≥ C 0 , with C 0 defined as in vi) of Prop. 2.3 with L = 0 , u 0 (x) ± Ct are respectively subsolution and supersolution of [START_REF] Barles | Flux-limited and classical viscosity solutions for regional control problems[END_REF]. Using the comparison principle, we deduce that

u 0 (x) -Ct ≤ u(t, x) ≤ u 0 (x) + Ct.
Let h ≥ 0 and define u h (t, x) = u(t + h, x) -Ch. The previous inequalities implies that u h (0, x) = u(h, x) -Ch ≤ u(0, x).

The equation is invariant by translation in time and by addition of constant (which implies that u h is a subsolution of ( 5)), then we get by the comparison principle that

u h (t, x) ≤ u(t, x).
This implies that u(t

+ h, x) -u(t, x) h ≤ C.
The reverse inequality can be proved in the same way (using that u(t + h, x) + Ch is a supersolution), so we deduce that

|u t | ≤ C,
since h can be chosen arbitrary small. Hence u is Lipschitz continuous in time. We know that u is a viscosity solution of ( 5), therefore it satisfies in particular (in the viscosity sense) for each i ∈ {1, . . . , N }:

H i (x, u x ) ≤ C on (0, T ) × J * i .
Using the coercivity of H, this implies the existence of a constant C such that (in the viscosity sense)

|u x | ≤ C on (0, T ) × J * i .
Therefore, u is Lipschitz continuous also with respect to the space variable.

Remark. Note that in the classical setting (i.e., without junction), this type of results can be obtained more directly using the definition of the value function and the dynamic programming principle (obtaining first the regularity in space and then in time). But the arguments use in this setting rely on the Lipschitz continuity of the coset L which is no longer true at the junction. This is the reason why, in this proof, we have to used viscosity techniques.

A semi-Lagrangian scheme for the approximation of the solution.

Let us introduce a uniform discretization of the network (0, T ) × J. The choice of a uniform discretization is not restrictive, and the scheme can be easily extended to non-uniform grids. Given ∆t and ∆x in R + , we define ∆ = (∆x, ∆t), N T = T /∆t ( • is the integer part) and

G ∆ := {t n : n = 0, . . . , N T } × J ∆x
where J ∆x := i=1,...,N J ∆x i , J ∆x i = {k∆x e i : k ∈ N}. We define t n = n∆t for n = 0, . . . , N T and we derive a discrete version of the dynamic programming principle (5) defined on the grid G ∆ . To do so, as usual in first-order SL schemes, we discretize the trajectories in Γ tn+1,x tn,y by one step of Euler scheme. For i ∈ {1, . . . , N }, let x ∈ J i and let α ∈ R N +1 be such that α i ∆t ≤ |x|, then the approximated trajectory gets x y + α i ∆t.

In this case, the discrete backward trajectory x -∆tα i remains on J i and, applying a quadrature formula, a discrete version of (4) at the point (t n+1 , x) is

u(t n+1 , x) u(t n , x -α i ∆te i ) + ∆tL i (x, α i ).
Instead, if α i ∆t > |x|, the discrete trajectory reaches the junction at a time included in the interval [0, ∆t]. Denoting by s 0 ∈ [0, ∆t -|x| αi ] the time spent by the trajectory at the junction point, J j the arc from which the trajectory comes, and t := ∆t -s 0 -|x| αi the remaining time on a new arc J j , the approximation of (4) at the point (t n+1 , x) becomes

u(t n+1 , x) u t n , -α j te j + t L j (0, α j ) + s 0 L 0 (α 0 ) + |x| α i L i (x, α i ).
We denote B(J ∆x ) and B(G ∆ ) the spaces of bounded functions defined respectively on J ∆x and on G ∆ . We approximate the value function on the feet of the discrete trajectories, which in general are not grid nodes, by a standard piecewise linear Lagrange interpolation I[û](z), where û ∈ B(J ∆x ) and z ∈ J j , i.e.

I[û](z) := û(i∆xe j ) + (z -i∆xe j ) û((i + 1)∆xe j ) -û(i∆xe j ) ∆xe j ,
for z ∈ [i∆xe j , (i + 1)∆xe j ). Finally, we define a fully discrete numerical operator S :

B(G ∆ ) × J ∆x → R as, if x ∈ J i S[v](x) := min            min αi< |x| ∆t I[v](x -α i ∆te i ) + ∆tL i (x, α i ), min αi≥ |x| ∆t min s0∈[0,∆t- |x| α i ] min j,αj ≤0 I[v] -∆t -s 0 -|x| αi α j e j + ∆t -s 0 -|x| αi L j (0, α j ) + s 0 L 0 (α 0 ) + |x| αi L i (x, α i ) ,
and, if x = 0,

S[v](x) := min j,αj ≤0 min s0∈[0,∆t] {I[v] (-(∆t -s 0 ) α j e j )
+ (∆t -s 0 ) L j (0, α j ) + s 0 L 0 (α 0 )} .

Then, the discrete solution w ∈ B(G ∆ ) solves ( 7)

w(t n+1 , x) = S[ ŵn ](x), n = 0, . . . , N T -1, x ∈ J ∆x
where ŵn := {w(t n , x)} x∈J ∆x for n = 0, . . . , N T -1 and ŵ0 = {u 0 (x)} x∈J ∆x .

3.1. Basic properties of the scheme. We prove some basic properties of (7):

Proposition 3.1 (Monotonicity and stability of the scheme). We assume that (A1)-(A3) hold. Then, the numerical scheme

(7) is i) monotone, i.e. given two discrete functions v 1 , v 2 ∈ B(J ∆x ) such that v 1 ≤ v 2 we have S[v 1 ](x) ≤ S[v 2 ](x), ∀x ∈ J ∆x .
ii) invariant by addition of constants, i.e. S[ φ + C](z) = S[ φ](z) + C for any constant C. iii) stable i.e. there exists a positive constant K such that for any

(t n , x) ∈ G ∆ |w(t n , x) -u 0 (x)| ≤ Kt n .
Proof. To prove monotonicity, let us fix a x ∈ J ∆x i . We focus on the difficulty due to the junction. More precisely, we assume that the trajectory related to v 1 passes through the junction and the one related to v 2 does not. The other cases are easier and they can be treated in a similar way. Let us denote (ᾱ i , s0 , j, ᾱj, ᾱ0 ) the optimal strategy contained in v 1 , and let us denote αi the optimal control of v 2 . The optimal controls are bounded by Prop. 2.3. We have

S[v 1 ](x) = I[v 1 ] -∆t -s0 - |x| ᾱi ᾱjej + ∆t -s0 - |x| ᾱi L j (0, ᾱj) + s0 L 0 (ᾱ 0 ) + |x| α i L i (x, αi ) ≤ I[v 1 ](x -αi ∆te i ) + ∆tL i (x, αi ) = S[v 2 ](x),
which proves the monotonicity. The point ii) is a straightforward verification. The stability property iii) follows directly by i) and ii) with

K ≥ sup x∈J ∆x |S[û 0 ](x)-u0(x)| ∆t
. For the proof see [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF] .

We now give a regularity result for the solution of the scheme. This is the discrete analogue of the Lipschitz estimate in space of the value function. This will be used in the proof of the error estimate. Proposition 3.2. (Almost Lipschitz Regularity in space of w) Let w(t n , x) be a solution of [START_REF] Camilli | A flame propagation model on a network with application to a blocking problem[END_REF]. If u 0 is uniformly Lipschitz continuous then for x, y ∈ J ∆x there exists a C > 0 such that

|w(t n , x) -w(t n , y)| ≤ C (∆t + d(x, y)), n = 0, . . . , N t .
The proof is postponed to Appendix B.

Remark. (Bounded control) By Prop. 3.1 iii), w solution of ( 7) is bounded and then the discrete problem (7) is well-posed. We observe also that the same argument of Proposition 2.3 (based on (A2)) can be used to prove that the control α in (7) is bounded. We define

(8) µ = sup (x,t)∈J×(0,T ] max i=1,...,N |α * i |,
the maximal absolute value of the optimal control.

3.2. Consistency of the scheme. We now focus on the study of the consistency properties of the scheme. First of all, we recall the definition of consistency, (the class of test functions C 2 (J) is defined in Appendix A).

Definition 3.3 (Consistency). Let x ∈ J and (∆x m , ∆t m ) → 0 as m → ∞. Let y m ∈ J ∆xm
be a sequence of grid points such that y m → x as m → ∞. The scheme S is said to be consistent with (5) if the following properties hold:

i) If x ∈ J i , for all test function ϕ ∈ C 2 (J), we have (9) ϕ(y m ) -S[ φ](y m ) ∆t m → H i (x, ϕ x (x)) as m → ∞, ii) If x = 0, for all test function ϕ ∈ C 2 (J) such that ∂ i ϕ(0) = p L0 i for i = 1, . . . , N , where p L0 i ∈ R are such that H i (0, p L0 i ) = H + i (0, p L0 i ) = -L 0 and H + i (x, p) := sup αi≥0 (α i p -L i (x, α)), we have (10) ϕ(y m ) -S[ φ](y m ) ∆t m → F -L0 (ϕ x (x)) = -L 0 as m → ∞.
Definition 3.4 (Consistency estimate). Let x ∈ J ∆x and ∆x, ∆t > 0. We say that the scheme S satisfies a consistency estimate E(∆x, ∆t) > 0 if for all test function ϕ ∈ C 2 (J) with bounded second order derivatives, the following holds

i) If x ∈ J ∆x i \ {0}, we have (11) ϕ(x) -S[ φ](x) ∆t -H i (x, ϕ x (x)) ≤ ϕ xx ∞ E(∆x, ∆t); ii) If x = 0, we have (12) ϕ(x) -S[ φ](x) ∆t -F -L0 (ϕ x (x)) ≤ ϕ xx ∞ E(∆x, ∆t);
Remark. Let us remark that, due to the particular form of the test function in [START_REF] Camilli | A comparison among various notions of viscosity solution for Hamilton-Jacobi equations on networks[END_REF], if the scheme admits a consistency estimates E(∆x, ∆t) → 0, then the scheme is consistent in the sense of Definition 3.3. Indeed, if y m → 0 as m → +∞, with

y m ∈ J * i and ϕ ∈ C 2 (J) with ∂ i ϕ(0) = p L0 i , then the consistency estimate implies ϕ(y m ) -S[ φ](y m ) ∆t m → H i (0, ϕ x (0)) = H i (0, p L0 i ) = -L 0
We begin to prove some consistency estimates for the numerical operators.

Proposition 3.5. Given ∆t > 0 and ∆x > 0, let us assume the CFL condition

(13) µ ∆t ∆x ≤ 1, (with µ as in (8)),
then for any ϕ ∈ C 2 (J) the following estimates hold for (7):

i) if x ∈ J ∆x i \ {0}, ϕ(x) -S[ φ](x) ∆t -H i (x, ϕ x (x)) ≤ K ϕ xx ∞ ∆t + min(∆x, ∆x 2 ∆t ) , ii) if x = 0, ϕ(x) -S[ φ](x) ∆t -F -L0 (ϕ x (x)) ≤ K ϕ xx ∞ ∆t + min(∆x, ∆x 2 ∆t ) ,
where K is a positive constant.

Remark. (Small Courant number) In the case very small Courant number are considered, µ ∆t ∆x ≤ ∆x, the estimates in Prop. 3.5 ensure consistency error of order 1. These estimates improve the classical estimate ∆x 2 ∆t + ∆t for first order semi-Lagrangian scheme, and have first been proved in [START_REF] Charles | Enhanced convergence estimates for semi-Lagrangian schemes: application to the Vlasov-Poisson equation[END_REF].

Proof. i) Let x ∈ J ∆x i \ {0}.
We remark that the condition (13) implies in particular that the scheme reads

S[ φ](x) = min αi< |x| ∆t I[ φ](x -∆tα i e i ) + ∆tL i (x, α i ) = min αi∈R I[ φ](x -∆tα i e i ) + ∆tL i (x, α i ).
By using recent estimates proved in [START_REF] Charles | Enhanced convergence estimates for semi-Lagrangian schemes: application to the Vlasov-Poisson equation[END_REF][START_REF] Falcone | Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations[END_REF], we have ( 14)

I[ φ](x -∆tα i e i ) = ϕ(x -∆tα i e i ) + K ϕ xx ∞ min(∆x 2 , ∆t∆x),
then by standard Taylor expansion we get the result.

ii) Let x = 0. In this case

S[ φ](0) = min s0∈[0,∆t] min j,αj ≤0 {I[ φ](-(∆t -s 0 )α j e j ) + (∆t -s 0 )L j (0, α j ) + s 0 L 0 (α 0 )} .
Let us define K ∆t := s0 ∆t , since s 0 ∈ [0, ∆t] we have K ∆t ∈ [0, 1]. Again by Taylor expansion, by Prop. 2.3 and by the interpolation error ( 14), we have

max ϕ(0) -S[ φ](0) ∆t + K ϕ xx ∞ ∆t + min(∆x, ∆x 2 ∆t ) = -min K∆t∈[0,1] min j,αj ≤0 (-(1 -K ∆t )α j ∂ j ϕ(0) + (1 -K ∆t )L j (0, α j ) + K ∆t L 0 (α 0 )) = -min K∆t∈[0,1] (1 -K ∆t ) min j,αj ≤0 (-α j ∂ j ϕ(0) + L j (0, α j )) + K ∆t min α0 (L 0 (α 0 )) = max K∆t∈[0,1] (1 -K ∆t ) max j,αj ≤0 (α j ∂ j ϕ(0) -L j (0, α j )) + K ∆t max α0 (-L 0 (α 0 )) = max K∆t∈[0,1] (1 -K ∆t ) max j H - j (0, ∂ j ϕ(0)) -K ∆t L 0 = max max j H - j (0, ∂ j ϕ(0)), -L 0 .
This ends the proof of the proposition.

The case that we study behaves differently from classic SL schemes, where the consistency error estimate is not limited by a CFL condition. This difference is due to the presence of discontinuities on the Hamiltonians at the junction point.

It is worth to underline that consistency (in the sense of Definition 3.3) holds even without [START_REF] Cristiani | Multiscale modeling of granular flows with application to crowd dynamics[END_REF], and consequently the scheme is convergent without any CFL condition, as we show at the beginning of Section 4. Proposition 3.6 (Consistency of the scheme). Assume min( ∆x 2 ∆t , ∆x) → 0. Then, the scheme (7) is consistent according to Definition 3.3.

Proof. Let us consider a sequence y m such that y m → x as ∆ m = (∆x m , ∆t m ) → (0, 0). For notational convenience we drop the index m of the sequence of grid points. In case the limit point x is not on the junction since x is fixed for every sequence (∆x, ∆t) → (0, 0), y eventually verifies |y| > µ∆t independently from the rate ∆t/∆x. Then, the consistency follows as Case 1 in the proof of Prop. 3.5 (without the condition ∆t/∆x ≤ 1/µ). The situation is more complex when the limit point x is 0. If y ≡ 0, this case is equivalent to Case 2 in the proof of Prop. 3.5. If y is such that y → 0 and y = 0, up to a subsequence, we can assume that y ∈ J i , for some i independent of m. In that case, the optimal trajectory can cross the junction in one time step. Let ϕ ∈ C 2 (J) such that ∂ i ϕ(0) = p A i for i = 1, . . . , N and let us define the two quantities:

I 1 := min αi< |y| ∆t (I[ φ](y -∆tα i e i ) + ∆tL i (y, α i )), I 2 := min α,αi≥ |y| ∆t min s0∈[0,∆t- |y| α i ] min j,αj ≤0 I[ φ] -∆t -s 0 - |y| α i α j e j + ∆t -s 0 - |y| α i L j (0, α j ) + s 0 L 0 (α 0 ) + |y| α i L i (y, α i ) .
We remark that S[ϕ](y) = min(I 1 , I 2 ). We begin with the term I 1 . Evaluating the interpolation error and using a Taylor expansion, we get

I 1 = min αi≤ |y| ∆t {ϕ(y) -α i ∆t∂ i ϕ(y) + ∆tL i (y, α i )} + K ϕ xx ∞ min(∆x 2 , ∆t∆x) + ∆t 2 = ϕ(y) -∆t max αi≤ |y| ∆t {α i ∂ i ϕ(y) -L i (y, α i )} + K ϕ xx ∞ min(∆x 2 , ∆t∆x) + ∆t 2
Using the inequality max

αi≤ |y| ∆t {α i ∂ i ϕ(y) -L i (y, α i )} ≤ max αi∈R {α i ∂ i ϕ(y) -L i (y, α i )} = H i (y, ∂ i ϕ(y)) = -L 0 + o(1),
we deduce that ( 15)

I 1 ≥ ϕ(y) -∆tA + ∆t o(1) + K ϕ xx ∞ min(∆x 2 , ∆t∆x) + ∆t 2 .
For the term I 2 , we add into the argument of ϕ the term y -|y| αi α i e i = 0. Using the Taylor expansion twice and the interpolation accuracy, we obtain

I[ϕ] -∆t -s 0 - |y| α i α j e j = ϕ(y) - |y| α i α i ∂ i ϕ(y) -∆t -s 0 - |y| α i α j ∂ j ϕ(0) + K ϕ xx ∞ min(∆x 2 , ∆t∆x) + ∆t 2 .
The equation above implies

I 2 + K ϕ xx ∞ min(∆x 2 , ∆t∆x) + ∆t 2 = min αi≥ |y| ∆t min s0∈[0,∆t- |y| α i ] min j min αj ≤0 -∆t -s 0 - |y| α i (α j ∂ j ϕ(0) -L j (0, α j )) + ϕ(y) - |y| α i (α i ∂ i ϕ(y) -L i (y, α i )) + s 0 L 0 (α 0 ) = ϕ(y) + min αi≥ |y| ∆t min s0∈[0,∆t- |y| α i ] - |y| α i (α i ∂ i ϕ(y) -L i (y, α i )) + s 0 L 0 (α 0 ) -∆t -s 0 - |y| α i max j max αj ≤0 {(α j ∂ j ϕ(0) -L j (0, α j ))} = ϕ(y) + min αi≥ |y| ∆t min s0∈[0,∆t- |y| α i ] - |y| α i (α i ∂ i ϕ(y) -L i (y, α i )) + s 0 L 0 (α 0 ) -∆t -s 0 - |y| α i max j H - j (0, ∂ j ϕ(0)) .
Using max j H - j (0, ∂ j ϕ(0)) = max j min p H j (0, p) =: H0 , and L 0 (α 0 ) = L 0 , we deduce that (we use H0 ≤ -L 0 )

I 2 + K ϕ xx ∞ min(∆x 2 , ∆t∆x) + ∆t 2 = ϕ(y) + min αi≥ |y| ∆t - |y| α i (α i ∂ i ϕ(y) -L i (y, α i )) + min s0∈[0,∆t- |y| α i ] s 0 ( H0 + L 0 ) -∆t - |y| α i H0 = ϕ(y) + min αi≥ |y| ∆t - |y| α i (α i ∂ i ϕ(y) -L i (y, α i )) + ∆t - |y| α i L 0 (16) = ∆t L 0 + ϕ(y) -max αi≥ |y| ∆t |y| α i (α i ∂ i ϕ(y) -L i (y, α i ) + L 0 ) .
We use |y| αi ≤ ∆t in the last sup, and we observe that 1) getting ( 17)

α i ∂ i ϕ(y) -L i (y, α i ) + L 0 ≤ o(
I 2 + K ϕ xx ∞ min(∆x 2 , ∆t∆x) + ∆t 2 ≥ +∆t L 0 + ϕ(y) + ∆to(1).
Finally, via ( 15) and ( 17), we obtain

(18) S[ϕ](y) = min(I 1 , I 2 ) ≥ +∆tL 0 + ϕ(y) + ∆to(1) + K ϕ xx ∞ min(∆x 2 , ∆t∆x) + ∆t 2 .
Now, we need to show that this inequality is in fact an equality. We denote by ᾱi the solution of max

αi∈R {α i ∂ i ϕ(y) -L i (y, α i )},
and distinguish two cases. Firstly, we consider the case ᾱi ≤ |y| ∆t . This implies in particular that max

αi≤ |y| ∆t {α i ∂ i ϕ(y) -L i (y, α i )} = max αi∈R {α i ∂ i ϕ(y) -L i (y, α i )} =H i (y, ∂ i ϕ(y)) = -L 0 + o(1).
Using (5), we deduce that

I 1 = ∆tL 0 + ϕ(y) + ∆to(1) + K ϕ xx ∞ min(∆x 2 , ∆t∆x) + ∆t 2
and so ( 18) is an equality.

We now consider the case ᾱi ≥ |y| ∆t . We define

Ī2 := max αi≥ |y| ∆t |y| α i (α i ∂ i ϕ(y) -L i (y, α i ) + L 0 ) . Clearly, 0 ≤ |y| αi ≤ ∆t and α i ∂ i ϕ(y) -L i (y, α i ) + L 0 ≤ o(1), therefore we can say ∆t o(1) ≥ Ī2 ≥∆t max αi≥ |y| ∆t |y| α i (α i ∂ i ϕ(y) -L i (y, α i ) + L 0 =∆t(H i (y, ∂ i ϕ(y)) + L 0 ) = ∆t o(1).
This implies again that ( 18) is an equality and completes the proof.

4. Convergence and convergence estimates. In this section, we introduce the main results of the paper. First of all, the convergence of the scheme can be proven with a standard argument based on the monotonicity: Theorem 4.1 (Convergence). Assume that min(∆x 2 /∆t, ∆x) → 0 and let T > 0 and u 0 be a Lipschitz continuous function on J. Then the numerical solution w of (7) converges uniformly on any compact set K of (0, T ) × J as ∆ → (0, 0) to the unique viscosity solution u of (5) , i.e.

lim sup ∆x,∆t→0 sup (t,x)∈K∩G ∆ |w(t, x) -u(t, x)| = 0.
Proof. Since the scheme is consistent (Prop. 3.6) for a subsequence verifying min(∆x 2 /∆t, ∆x) → 0, monotone and stable, we can follow [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF][START_REF] Costeseque | A convergent scheme for hamiltonjacobi equations on a junction: application to traffic[END_REF][START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF] and obtain the result. Note that the choice of the test functions in the definition of the consistency at the junction uses Theorem A.2 ii) Once shown the convergence of the scheme, we want to provide also some convergence estimates. This is a less easy task. We need to take into account two different scenarios: for the special case of space independent Hamiltonians, i.e. assuming the following additional property

(A4) the Lagrangians L i (x, α i ) ≡ L i (y, α i ) =: L i (α i ) for every choice of x, y ∈ J i ,
it is possible to prove an error bound, independent of the time step. We observe that, as consequence of the structure of the costs, the optimal control ᾱi is constant in time and no restriction on the time step is required. Theorem 4.2 (Rate of convergence in the case of space independent Hamiltonians). Let (A1),(A2),(A4) be verified. Considered u a viscosity solution of (5), and w a solution of the scheme [START_REF] Camilli | A flame propagation model on a network with application to a blocking problem[END_REF]. Then, there exists a positive constant C depending only on the Lipschitz constant of u such that [START_REF] Garavello | Traffic flow on networks[END_REF] sup

(t,x)∈G ∆ |u(t, x) -w(t, x)| ≤ CT ∆x.
The proof is contained in Appendix C.

For more general Hamiltonians (i.e. without assuming (A4)), we prove an error bound that applies to any stable, monotone scheme for which a consistency estimate is valid.

Theorem 4.3 (Rate of convergence). Assume (A1)-(A3). Let u be the viscosity solution of (5), w be the solution of a scheme for which Prop. 3.1 holds and assume that the scheme satisfies a consistency estimate E(∆t, ∆x) as in Definition 3.4. Then, there exists a positive constant C independent of ∆t and ∆x such that [START_REF] Guerand | Error estimates for finite difference schemes associated with hamilton-jacobi equations on a junction[END_REF] sup

(t,x)∈G ∆ |u(t, x) -w(t, x)| ≤ CT E(∆t, ∆x) √ ∆t + √ ∆t + sup x∈J ∆x |u 0 (x) -w(0, x)|.
By applying the previous Theorem, we get an error estimate for scheme (7) under a restriction on the time step, given by assumption [START_REF] Cristiani | Multiscale modeling of granular flows with application to crowd dynamics[END_REF] .

Corollary 4.4 (Rate of convergence for [START_REF] Camilli | A flame propagation model on a network with application to a blocking problem[END_REF]). In the specific case of the scheme [START_REF] Camilli | A flame propagation model on a network with application to a blocking problem[END_REF], assuming (13), we have [START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF] sup

(t,x)∈G ∆ |u(t, x) -w(t, x)| ≤ CT √ ∆t + 1 √ ∆t min ∆x 2 ∆t , ∆x . 
Remark. (CFL condition and error estimates) The CFL condition (13) is needed to prove the error estimate [START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF], and it is not assumed to prove the convergence result in Theorem 4.1. If the assumption (A4) holds, no CFL condition is needed to prove the error estimate [START_REF] Garavello | Traffic flow on networks[END_REF].

Proof. As standard in this kind of proof, we only prove that [START_REF] Imbert | A hamilton-jacobi approach to junction problems and application to traffic flows[END_REF] 

u(t, x) -w(t, x) ≤ C E(∆t, ∆x) √ ∆t + √ ∆t + sup x∈J ∆x |u 0 (x) -w(0, x)| in G ∆ ,
since the reverse inequality is obtained with small modifications. Assume that T ≤ 1 (the case T ≥ 1 is obtained by induction). For i ∈ {1, . . . , N } and j ∈ N, we set x i j = j∆xe i , and we define the extension in the continuous space of w as

w # (t n , x) = I[ ŵ(t n , •)](x).
Firstly, we assume that u 0 (x i j ) ≥ w # (0, x i j ) for all i ∈ {0, . . . , N } and j ∈ N, and we define 0 ≤ µ 0 := sup

x∈J {|u 0 (x) -w # (0, x)|},
assuming without any restriction that µ 0 ≤ K. For every β, η ∈ (0, 1) and σ > 0, we define an auxiliary function, for (t, s, x)

∈ [0, T ) × {t n : n = 0, . . . , N T } × J ψ(t, s, x) := u(t, x) -w # (s, x) - (t -s) 2 2η -β|x| 2 -σt,
Using Prop. 3.1 iii), the inequality |u(x, t) -u 0 (x)| ≤ C T (which holds for the continuous solution, see Theorem 2.14 in [START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF]), we deduce that ψ(t, s, x) → -∞ as |x| → +∞ and then the function ψ achieves its maximum at some point (t β , s β , x β ).

In particular, we have

ψ(t β , s β , x β ) ≥ ψ(0, 0, 0) = u 0 (0) -w # (0, 0) ≥ 0.
In the following, we denote by K several positive constants only depending on the Lipschitz constants of u. Case 1:

x β ∈ J i \ {0}.
In this case, we duplicate the space variable by considering, for ε ∈ (0, 1),

ψ 1 (t, s, x, y) =u(t, x) -w # (s, y) - (t -s) 2 2η - d(x, y) 2 2ε - β 2 (|x| 2 + |y| 2 ) -σt - β 2 |x -x β | 2 - β 2 |y -xβ | 2 - β 2 |t -t β | 2 - β 2 |s -s β | 2 ,
for (t, s, x, y) ∈ [0, T ) × {t n : n = 0, . . . , N T } × J × J.

Using Proposition 3.1 iii) again, the inequality |u(x, t) -u 0 (x)| ≤ C T , and the fact that u 0 is Lipschitz continuous, we deduce that ψ 1 (t, s, x, y) → -∞ as |x|, |y| → +∞ and then the function ψ 1 achieves its maximum at some point (t, s, x, y), i.e.

ψ 1 (t, s, x, y) ≥ ψ 1 (t, s, x, y) for all (t, x), (s, y) ∈ [0, T ) × J.

It is also easy to show that (t, s, x, y) → (t β , s β , x β , x β ) as ε goes to zero and so x, y ∈ J i \ {0}, for ε small enough.

Step 1. (Basic estimates). The maximum point of ψ 1 satisfies the following estimates: [START_REF] Lebacque | The Godunov scheme and what it means for first order traffic flow models[END_REF] d(x, y) ≤ Kε, |t -s| ≤ Kη.

(24)

β |x| 2 + |ȳ| 2 ≤ K, β |x -xβ | 2 + |ȳ -xβ | 2 + | t -tβ | 2 + |s -sβ | 2 ≤ K From ψ 1 (t, s, x, y) ≥ ψ 1 (t β , s β , x β , x β )=ψ(t β , s β , x β ) ≥ 0, we get, (using 0 ≥ -( t -s) 2 /2η -d(x, ȳ) 2 /2ε -σ t) β 2 (|x| 2 + |ȳ| 2 ) + β 2 |x -xβ | 2 + |ȳ -xβ | 2 + | t -tβ | 2 + |s -sβ | 2 ≤u( t, x) -w # (s, ȳ) ≤ u 0 (x) -w # (0, ȳ) + K t + K s ≤ K(1 + |x| + |ȳ|) (25) 
where we used Proposition 3.1 i) (extended to all the points of J thanks to the monotonicity of the interpolation operator), [21, Theorem 2.14] for the second inequality, and the fact that T ≤ 1 for the last one. Using Young's inequality, (i.e. the fact that |x| ≤ 1/β + β/4|x| 2 since (β/2|x| -1) 2 ≥ 0) [START_REF] Newell | A simplified theory of kinematic waves in highway traffic, part i: General theory[END_REF] implies in particular that

β 2 (|x| 2 + |ȳ| 2 ) ≤ K 1 + 2 β + β 4 (|x| 2 + |ȳ| 2 ) .
Multiplying by β and using β ≤ 1, we finally deduce that β|x|, β|ȳ| ≤ K.

Then using this in (25), we have

β |x -xβ | 2 + |ȳ -xβ | 2 + | t -tβ | 2 + |s -sβ | 2 ≤ K 1 + 1 β
and, in particular,

β (|x -xβ | + |ȳ -xβ | + | t -tβ | + |s -sβ |) ≤ K.
From ψ 1 (t, s, x, y) ≥ ψ 1 (t, s, y, y) we get

(26) d(x, y) 2 2ε ≤ u(t, x) -u(t, y) + β 2 (|ȳ| 2 -|x| 2 ) + β 2 (|ȳ -xβ | 2 -|x -xβ | 2 ) ≤ Kd(x, ȳ) + β 2 (|x| + |ȳ|)d(x, ȳ) + β 2 (|x -xβ | + |ȳ -xβ |)d(x, ȳ) ≤ Kd(x, ȳ)
which implies the first estimate of [START_REF] Lebacque | The Godunov scheme and what it means for first order traffic flow models[END_REF]. The second bound in ( 23) is deduced from ψ(t, s, x, y) ≥ ψ(s, s, x, y) in the same way.

If we include the estimate

u( t, x) -w # (s, ȳ) ≤ u 0 (x) + K t -w # (0, ȳ)+K s ≤ K(µ 0 + d(x, ȳ) + 1) ≤ K
in the first part of (25), we finally deduce (24).

Step 2. (Viscosity inequalities).

We claim that for σ large enough, the supremum of ψ 1 is achieved for t = 0 or s = 0. We prove the assertion by contradiction. Suppose t > 0 and s > 0. Using the fact that (t, x) → ψ 1 (t, s, x, ȳ) has a maximum in (x, t) and that u is a subsolution, we get [START_REF] Schieborn | Viscosity solutions of eikonal equations on topological networks[END_REF] t -

s η + σ + β( t -tβ ) + H i d(x, ȳ) ε + β|x| + β(|x -xβ |) ≤ 0.
Since s > 0 we know that ψ 1 ( t, s, x, ȳ) ≥ ψ 1 ( t, s -∆t, x, y) for a generic y and, by

defining ϕ(s, y) = -( t-s) 2 2η + d(x,y) 2 2ε + β 2 |y| 2 + β 2 |y -xβ | 2 + β 2 |s -sβ | 2 , it implies that, for a generic y, w # (s, ȳ) -ϕ(s, ȳ) ≤ w # (s -∆t, y) -ϕ(s -∆t, y).
In particular, we have that for any z ∈ J ∆x

w # (s, ȳ) -ϕ(s, ȳ) ≤ w(s -∆t, z) -ϕ(s -∆t, z).
By the monotonicity of the scheme and the fact that the scheme is invariant by addition of constants, adding w # (s, ȳ) -ϕ(s, ȳ) we get, for any z ∈ J ∆x ,

w(s, z) = S[ ŵ(s -∆t)](z) ≥ S[ φ(s -∆t)](z) + C.
By the monotonicity of the interpolation operator, this implies

w # (s, ȳ) = I[ ŵ(s, •)](ȳ) ≥ I[S[ φ(s -∆t)](•)](ȳ) + w # (s, ȳ) -ϕ(s, ȳ).
Simplifying by w # (s, ȳ), we obtain

- i φ i (ȳ)S[ φ(s -∆t)](y i ) = -I[S[ φ(s -∆t)](•)](ȳ) ≥ -ϕ(s, ȳ),
where φ i are the basis functions of the interpolation operator. Adding and subtracting I[ φ(s, •)](ȳ) -I[ φ(s -∆t, •)](ȳ) and dividing by ∆t , we get

i φ i (ȳ) ϕ(s -∆t, y i ) -S[ φ(s -∆t)](y i ) ∆t + ϕ(s, y i ) -ϕ(s -∆t, y i ) ∆t ≥ O ∆x 2 ε ,
where we have used ϕ xx = O( 1 ε ) together with the properties of the interpolation operator. We observe that ϕ(s,yi)-ϕ(s-∆t,yi) ∆t = ϕ s (s, y i ) + O(∆t/η), then, using the consistency definition (Def 3.4), we obtain

φ i (ȳ) (-ϕ s (s, y i ) + H i (ϕ x (s -∆t, y i ))) ≥ O ∆t η + ∆x 2 ε + E(∆t, ∆x) ε .
By the regularity of ϕ and H (Lipschitz continuous) and the interpolation error for Lipschitz function, there exists a positive constant K such that

(28) ϕ s (s, ȳ) + H i (ϕ x (s -∆t, ȳ)) ≥ -K ∆t η + ∆x 2 ε + E(∆t, ∆x) ε .
We subtract [START_REF] Treiber | Traffic flow dynamics, Traffic Flow Dynamics: Data, Models and Simulation[END_REF] to [START_REF] Schieborn | Viscosity solutions of eikonal equations on topological networks[END_REF] and use the explicit form of ϕ, obtaining

σ + β(s -sβ ) + β( t -tβ ) + H i d(x, ȳ) ε + β|x| + β(|x -xβ |) -H i d(x, ȳ) ε -β|ȳ| -β(|ȳ -xβ |) ≤ K ∆t η + ∆x 2 ε + E(∆t, ∆x) ε .
Then, using that H i is Lipschitz continuous and the basic estimates of the Step 1, we arrive to

(29) σ < K β + K ∆t η + ∆x 2 ε + E(∆t, ∆x) ε =: σ * .
Therefore, we have that for a σ ≥ σ * at least one between t and s is equal to zero.

Step 3. (Conclusion). If t = 0 (a similar argument applies if s = 0) we have

ψ 1 (0, s, x, ȳ) ≤ u 0 (x) -w # (s, y) ≤ u 0 (x) -u 0 (y) + Cs + µ 0 ≤ Kε + Kη + µ 0 .
Taking σ = σ * , we obtain

u(t, x) -w # (t, x) - β 2 |x| 2 + |y| 2 + |x -xβ | 2 + |y -xβ | 2 + |t -tβ | 2 + |s -sβ | 2 -K β + K ∆t η + ∆x 2 ε + E(∆t, ∆x) ε T ≤ Kε + Kη + µ 0 .
Where, sending β → 0 and choosing ε = η = √ ∆t, we get the desired estimate.

Case 2: x β = 0. Firstly we observe that assuming

(30) σ > K β + K E(∆t, ∆x) ε + ∆t ε + ∆x ε (which is compatible with σ > σ * ) then, there exists a Ā ∈ R such that (31) sβ -tβ η -K E(∆t, ∆x) ε + ∆t ε + K β > Ā > sβ -tβ η -σ + K β.
Using the fact that (t, x) → ψ(t, sβ , x) has a maximum in ( tβ , xβ ) and that u is a subsolution, we get

(32) tβ -sβ η + σ + F -L0 (∂ x ϕ( tβ , 0)) ≤ 0, with ϕ(t, x) = w # (s β , x) + (t-s β ) 2 2η
+ β|x| 2 + σt and from (32) and ( 31),

(33) Ā > F -L0 (∂ x ϕ( tβ , 0)) .
We use (33), the definition of F -L0 , and the coercivity of the Hamiltonians to obtain the existence of values λ i such that (34)

H i (λ i ) = H + i (λ i ) = Ā
(cf. Fig. 2) that will be useful in the remaining part of the proof. Now we pass to identify the right test function to treat this case. We duplicate the space variable differently than in Case 1. We consider, for ε ∈ (0, 1),

ψ 2 (t, s, x, y) = u(t, x) -w # (s, y) - (t -s) 2 2η - d(x, y) 2 2ε - β 2 (|x| 2 + |y| 2 ) -σt -(h(x) + h(y)) - β 2 (t -t β ) 2 - β 2 (s -s β ) 2 ,
for (t, s, x, y) ∈ [0, T ) × {t n : n = 0, . . . , N T } × J × J.

where h(x) = λ i x if x ∈ J i and the λ i are defined in (34). We denote by (t, s, x, y) the maximum point of ψ 2 (we keep the same notation than the previous case, but they are possibly different points). We remark that (t, s, x, y) → (t β , s β , x β , x β ) as ε → 0.

Step 2. (Viscosity inequalities).

We claim that for σ large enough, the supremum of ψ 1 is achieved for t = 0 or s = 0. We prove the assertion by contradiction. Suppose t > 0 and s > 0. We can have different scenarios: if x and y belong to the same arc (junction point excluded) the case is contained in Case 1. If instead x ∈ J i \ {0}, ȳ ∈ J j (x and ȳ belong to different arcs), we can repeat the same argument to obtain [START_REF] Schieborn | Viscosity solutions of eikonal equations on topological networks[END_REF] with the test function ψ 2 . We have:

t - s η + β( t -tβ ) + σ + H i d(x, ȳ) ε + 2β|x| + λ i ≤ 0.
Observing that the argument inside the Hamiltonian is bigger than λ i , we use (34) arriving to

0 ≥ t - s η + β( t -tβ ) + σ + H + i (λ i ) = tβ -sβ η + σ + Ā + K β,
which contradicts (31). Then, this case cannot occur. We pass to the last case to consider: x = 0, ȳ ∈ J i \ {0}. First of all, we notice that the basic estimates (23)-( 24) are still valid for (t, s, x, y) maximum point of ψ 2 since the added terms h(x), h(y) are easily included in the other linear elements of the estimates.

In this case, the difficulty comes comparing two Hamiltonians evaluated, respectively, on the junction point and on one arc. Using the subsolution property with the test function ψ 2 , we have as first equation:

(35) t - s η + β( t -tβ ) + σ + F -L0 -|ȳ| ε + λ i ≤ 0,
where

F -L0 -|ȳ| ε + λ i = max -L 0 , max j H - j -|ȳ| ε + λ i .
From the definition of F A it is also valid

(36) t - s η + β( t -tβ ) + σ + H - i -|ȳ| ε + λ i ≤ 0.
Since ȳ ∈ J i \ {0} with the same argument to obtain (28) (but for the test function ψ 2 ) and using the consistency result, we have

t - s η + β(s -sβ ) + H i -|ȳ| ε -2β ȳ + λ i ≥ K E(∆t, ∆x) ε + ∆t η + ∆x 2 ε . Now recalling that H + (λ i ) = Ā, t - s η + β(s -sβ ) + H + i -|ȳ| ε -2β ȳ + λ i -K E(∆t, ∆x) ε + ∆t η + ∆x 2 ε ≤ t - s η + β(s -sβ ) + H + i (λ i ) -K E(∆t, ∆x) ε + ∆t η + ∆x 2 ε ≤ tβ -sβ η + K β + Ā -K E(∆t, ∆x) ε + ∆t η + ∆x 2 ε < 0
for ε small enough, where we used β(s -sβ ) ≤ K √ β (basic estimates). We can claim that

(37) t - s η + β(s -sβ ) + H - i -|ȳ| ε -2β ȳ + λ i ≥ K E(∆t, ∆x) ε + ∆t η + ∆x 2 ε .
Finally, we subtract (37) to (35), obtaining the desired estimate on σ

(38) σ ≤ K β + K E(∆t, ∆x) ε + ∆t ε + ∆x ε := σ * .
In this case we obtain a contradiction with (30): since, assuming σ > σ * , at least one between t and s is equal to zero.

Step 3. (Conclusion). We obtain the same estimate as in Case 1.

It just remains to prove the general case (for which we do not assume that u 0 (x) ≥ w # (0, x), ∀x ∈ J ∆x ). Remarking that ū = u + µ 1 with µ 1 = sup x∈J ∆x (w # (0, x) - u 0 (x)) is a solution of the same equation of u but satisfying ū(0, x) ≥ w # (0, x), ∀x ∈ J ∆x , we deduce that ū satisfies sup

(t,x)∈G ∆ (u(t, x) + µ 1 -w(t, x)) ≤ C E(∆t, ∆x) √ ∆t + √ ∆t + sup x∈J ∆x |u 0 (x) + µ 1 -w(0, x)|.
which implies [START_REF] Imbert | A hamilton-jacobi approach to junction problems and application to traffic flows[END_REF] ending the proof of the Theorem.

Numerical tests.

In this section, we present some numerical simulations to show the features and the convergence properties of the scheme proposed. In the first two tests Assumptions (A1)-(A4) are verified, while in the last test (A4) does not hold.

Test 1. We consider a basic network composed by two edges connecting the nodes (-1, 0) and (1, 0) with a junction in 0. This case can be seen as an 1D problem in

Γ = Γ 1 ∪ Γ 2 = [-1, 0] ∪ [0, 1] = [-1, 1]
with a discontinuity on the Hamiltonian at the origin. Despite its simplicity, this tests helps us to understand the effect of the flux limiter contained in the operator F A . We consider the following Hamiltonian on Γ:

H(x, p) = p 2 2 -1 2 , x ∈ Γ 1 , p 2 2 -1, x ∈ Γ 2 .
This example has been used as a benchmark also in [START_REF] Guerand | Error estimates for finite difference schemes associated with hamilton-jacobi equations on a junction[END_REF]. Using the Legendre transform, we rewrite (5) as

H(x, p) =        max α∈R α 1 p - α 2 1 2 - 1 2 , x ∈ Γ 1 , max α∈R α 2 p - α 2 2 2 -1, x ∈ Γ 2 .
where we can deduce L 1 (α 1 ) = (α 2 1 + 1)/2 and L 2 (α 2 ) = (α 2 1 + 2)/2. We choose as initial condition u 0 (x) = sin(π|x|), and we impose Dirichlet boundary conditions u(t, -1) = u(t, 1) = 0. The Dirichlet boundary condition are implemented numerically by truncating the characteristics that cross the boundary, as in [START_REF] Falcone | Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations[END_REF]. In Fig. 3, we show the numerical solution at time t = 0.2 and T = 2 computed with parameter L 0 = 0, 0.2, 0.4, 0.6. We can observe as the asymmetry of the Hamiltonian with respect to the origin induces an asymmetric behavior of the solution. We can also highlight how the choice of parameter L 0 influences globally the value function of the problem. In fact, when L 0 = 0 the optimal control in x = 0 is simply α 0 = 0 that corresponds to a zero cost, and since u 0 (0) = 0, the solution u(t, 0) = 0 for each t ∈ [0, T ]. This explains the choice of the name flux limiter for L 0 : in this case the parameter blocks the passage of information between the two arcs which could be solved separately. In the case of L 0 > 0 the situation is different: the control α 0 = 0 does not correspond to a null cost. A trajectory, which remains on the junction point, entails a cost. Furthermore, we observe that for values of |L 0 | sufficiently large, the behavior of the solution does not change anymore with respect to L 0 . This happens because remaining on the junction point is no more a convenient choice, i.e., the transition condition [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF] is reached only by one non-increasing Hamiltonian. Therefore, the flux limiter is not active anymore. In Figure 4, we show the convergence rates in the case of L 0 = 0 and L 0 = 0.2. In absence of an analytic exact solution, we compare the approximated solution w(T, x) with an approximation u(T, x) obtained on a very fine grid with ∆x = 10 -4 and ∆t = 2.5∆x. The error is evaluated with respect to the uniform discrete norm defined by

(39) E ∆ ∞ := max x∈J ∆x (|w(T, x) -u(T, x)|).
The error E ∆ ∞ as a function of ∆x is represented in Figure 4, for the choice L 0 = 0 (left) and L 0 = 0.2 (right), the final time T and the time step are fixed to T = 0.2 and ∆t = 2.5∆x. We observe in the case L 0 = 0 a linear decay of the E ∆ ∞ error, in particular, the E ∆ ∞ errors fit with a linear regression curve of ratio K 1 = 3.7. We also observe the same convergence order in the case L 0 = 0.2, with almost the same ratio K 1 = 3.9. In this case, since Theorem 4.2 holds, their rate of convergence is 1 independently of the choice of ∆t, so large time steps are allowed (cf. [START_REF] Falcone | Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations[END_REF] where a similar property is discussed for Euclidian domains).

Test 2. We consider a simple junction network composed by three edges connecting the nodes (0, 1), (-1, -1), (1, -1) with the junction point placed in (0, 0). We denote by J 1 the edge connecting (0, 1) to (0, 0) and by J 2 , J 3 the edges connecting (0, 0) to (1, -1) and (-1, -1), respectively. The cost function L i , i = 0, 1, 2, 3 are defined as follows

L i (α i ) =          α 2 i 2 + 1 if i = 1, 3, α 2 i 2 + 2 if i = 2, 2
if i = 0, and α 0 = 0, +∞ if i = 0, and α 0 = 0.

We impose Dirichlet boundary conditions on the boundary nodes:

u(t, x) = 0 if x = {(-1, -1), (1, -1)}, √ 2 + 1 if x = {(0, 1)}.
The initial value u 0 is chosen as the restriction of 1 + x 2 on J, where we denote (x 1 , x 2 ) = x. In Figure 5, we show the color map of the initial condition and of the numerical solution at time t = 0.5, 1, 1.5, projected on the state coordinate plane. It is possible to observe that the initial datum u 0 (Fig. 5 left/top) quickly evolves to the stationary solution (Fig. 5 right/bottom), which represents a weighted distance from the boundary points, with exit costs equal to the boundary values. We compare the approximate solution at T = 1.5 with the exact solution of the corresponding stationary problem; this makes sense since the approximate solution has already reached the steady state. The exact steady state solution is In Figure 6, we show the behavior of the error (39) for various values of ∆x, setting ∆t = 2.5∆x. We observe as in the first test a linear decay of the E ∆ ∞ , allowing large time steps. Test 3. We conclude this section treating a more complex network. We consider a network formed by 4-junctions and 8-arcs, defined in (x 1 , x 2 ) ∈ R 2 and connecting the points V 1 = (-2, 0), V 2 = (-1, 0), V 3 = (0, 2), V 4 = (0, 1), V 5 = (2, 0), V 6 = (1, 0), V 7 = (0, -2), V 8 = (0, -1). We define the edges

(40) u(x) =      √ 2 + x 2 , if x ∈ J 1 , min 2 (x 1 -1) 2 + (x 2 + 1) 2 , √ 2 + 2 x 2 1 + x 2 2 , if x ∈ J 2 , (x 1 + 1) 2 + (x 2 + 1) 2 , if x ∈ J 3 .
J 1 = V 1 V 2 , J 2 = V 2 V 4 , J 3 = V 2 V 8 , J 4 = V 3 V 4 , J 5 = V 4 V 6 , J 6 = V 5 V 6 , J 7 = V 6 V 8 , J 8 = V 7 V 8 .
We choose the costs on each arc as

L i (x, α i ) = α 2 i 2 + (2 + x 1 ) 2 , for i = 1, 2, 3, 4, α 2 i
2 + (-2 + x 2 ) 2 for i = 5, 6, 7, 8. We set the costs on the junction points V i with i = 2, 4, 8 (when the relative control α 0 is null) equal to L(V i , α) = 4, and on V 6 equal to L(V 6 , α) = 0.4. We impose zero Dirichlet boundary conditions on the boundary points V i with i = 1, 3, 5, 7. We choose as discretization steps ∆x = 0.013, ∆t = 0.065 and as the initial condition

u 0 = 2 -(x 2 1 + x 2 
2 )/2. We observe that the CFL condition ( 13) is not verified, however we have convergence since Th. 4.1 holds (but the estimate Th. 4.3 does not hold). In Figure 7, we show the initial value function and its evolution at different times. We observe that the value function starts from a symmetric configuration and it looses its symmetry since the costs are not constant on the various edges of the network and they also depend on x. We highlight also that an optimal trajectory does not stop on junction points since it would run into a cost considerably higher than elsewhere in the network. The only exception is in V 6 , where the waiting cost is 0.4, and it is where the value function assumes a local minimum. Clearly, for t → +∞ such minimum tends to disappear since the cost is positive. In Figure 8, we also compare the value function at t = 1.4 with the value function computed with same data except than the cost in V 6 , which is set to L(V 6 , α) = 4. We observe that, since in this case the cost to stop in V 6 is higher, the local minimum disappears.

Choosing an effective Courant number is not a trivial task. In particular, large Courant numbers can considerably increase the complexity of the scheme near the junctions. In contrast, the opposite can produce low accuracy for long time approximations due to numerical diffusion effects. In Table 1, we show the CPU times of a code implementing the proposed method for The second and third columns show that the minimum complexity is reached when ∆t = ∆x/8, which corresponds to the case when the discrete characteristics do not cross the junctions. Choosing a time step lower than ∆x/8 is no more convenient in terms of computational time. In the last column, we consider the case when L(V i , α) = 4 for i = 2, 4, 6, 8. This choice corresponds to the case in which the char- acteristics never stop on the junctions. Therefore the minimization with respect to s 0 is not necessary, and nc is set to 1. In this case, the minimum complexity is reached using the largest time step. In conclusion, Table 1 shows that large time steps may imply higher complexity due to the cost of exploring all the arcs and computing the minimum of the waiting time s 0 on the junctions. However, in semi-Lagrangian schemes, large time steps correspond to less diffusive numerical approximations. Still, very large time steps can imply a low accuracy in the approximation of the characteristics (when the characteristics are not straight lines). The best choice, in term of accuracy, may consist in choosing a time step which optimizes the consistency error proved in Prop. 3.5. Appendix A. Definition of viscosity solution. Let us introduce the class of test functions. For T > 0, set J T = (0, T ) × J. We define the class of test functions on J T and on J as

L(V 6 , α) = 0.4 L(V 6 , α) = 4 ∆t nc =3 nc =6 nc =1 4∆x 10 
C k (J T ) = {ϕ ∈ C(J T ), ϕ ∈ C k ((0, T ) × J i , ∀i = 1, . . . , N )}, C k (J) = {ϕ ∈ C(J), ϕ ∈ C k (J i ), ∀i = 1, . . . , N }.
We recall also the definition of upper and lower semi-continuous envelopes u * and u * of a (locally bounded) function u defined on [0, T ) × J, u * (t, x) = lim sup (s,y)→(t,x) u(s, y) and u * (t, x) = lim inf (s,y)→(t,x) u(s, y).

We say that a test function ϕ touches a function u from below (respectively from above) at (t, x) if u -ϕ reaches a local minimum (respectively maximum) at (t, x).

Definition A.1 (Flux-limited solutions). Assume that the Hamiltonian satisfies some standard hypotheses of regularity, convexity and coercivity and let u : [0, T )×J → R.

i) We say that u is a flux-limited subsolution (resp. flux-limited supersolution) of ( 5) in (0, T ) × J if for all test function ϕ ∈ C 1 (J T ) touching u * from above (resp. u * from below) at (t 0 , x 0 ) ∈ J T , we have

(41) ϕ t (t 0 , x 0 ) + H i (x 0 , ϕ x (t 0 , x 0 )) ≤ 0 (resp. ≥ 0) if x 0 ∈ J i , ϕ t (t 0 , x 0 ) + F A (ϕ x (t 0 , x 0 )) ≤ 0 (resp. ≥ 0) if x 0 = 0.
ii) We say that u is a flux-limited subsolution (resp. flux-limited supersolution) of ( 5) on [0, T ) × J if additionally (42) u * (0, x) ≤ u 0 (x) (resp. u * (0, x) ≥ u 0 (x)) for all x ∈ J.

iii) We say that u is a flux-limited solution if u is both a flux-limited subsolution and a flux-limited supersolution.

In [START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF], an equivalent definition of viscosity solutions for (5) is proved. We use this equivalent definition in particular in the definition of the consistency in Section 3. In the following theorem, we adapt this result for Hamiltonians depending on x. The proof is a straightforward adaptation of the one in [START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF].

Theorem A.2 (Equivalent definition for sub/supersolutions). Let H0 = max j min p H j (0, p) and consider A ∈ [ H0 , +∞). Given solutions p

A i ∈ R of (43) H i 0, p A i = H + 0, p A i = A
let us fix any time independent test function φ 0 (x) satisfying, for i = 1, . . . , N ,

∂ i φ 0 (0) = p A i .
Given a function u : (0, T ) × J → R, the following properties hold true. i) If u is an upper semi-continuous subsolution of (5) with A = H 0 , for x = 0, satisfying u(t, 0) = lim sup (s,y)→(t,0), y∈J * i u(s, y), (44) then u is a H 0 -flux limited subsolution.

we replace it by 0 in order to stay in the origin) obtaining

w(t n , x) -w(t n , y) ≤ I[ ŵn-1 ] -∆t -s0 - |y| ᾱi ᾱjej + s0 + |y| ᾱi L 0 (ᾱ 0 ) + ∆t -s0 - |y| ᾱi Lj(0, ᾱj) -I[ ŵn-1 ] -∆t -s0 - |y| ᾱi ᾱjej -∆t -s0 - |y| ᾱi Lj(0, ᾱj) -s0 L 0 (ᾱ 0 ) - |y| ᾱi L i (y, ᾱi ) ≤ |y| ᾱi (L 0 (ᾱ 0 ) -L i (y, ᾱi )) .
If ᾱi ≥ 1, using that L i is Lipschitz continuous, we get that there exists a constant C (depending only on L i (y, 0) and the Lipschitz constant of L i ) such that

|L i (y, ᾱi )| |ᾱ i | ≤ C.
Injecting the estimate above in (8) and using that L 0 (0) is bounded, we deduce w(t n , x) -w(t n , y) ≤ C|y| = Cd(x, y).

If ᾱi ≤ 1, since L 0 (0) and L i ( ᾱi ) are bounded, there exists a constant C such that

w(t n , x) -w(t n , y) ≤ C |y| ᾱi ≤ C∆t.
We finally get that in all the cases, w(t n , x) -w(t n , y) ≤ C (∆t + d(x, y)) . 2.ii) |x| > 0. In this case, we choose α i such that |x| αi = |y| ᾱi . This implies in particular

x -|x| α i α i e i = y -|x| α i ᾱi e i and so |x| αi |α i -ᾱi | = |x -y| = d(x, y). Using the suboptimal control (α i , s0 , ᾱ0 , j, ᾱj) for S[w n-1 ](x), we have

w(t n , x) -w(t n , y) ≤ I[ ŵn-1 ] -∆t -s0 - |x| α i ᾱjej + ∆t -s0 - |x| α i Lj(0, ᾱj) + s0 L 0 (ᾱ 0 ) + |x| α i L i (x, α i ) -I[ ŵn-1 ] -∆t -s0 - |y| ᾱi ᾱjej -∆t -s0 - |y| ᾱi Lj(0, ᾱj) -s0 L 0 (ᾱ 0 ) - |y| ᾱi L i (y, ᾱi ) ≤ L Li |x| α i |α i -ᾱi | ≤ L Li d(x, y ) 
3) y = 0. We denote by (s 0 , ᾱ0 , j, ᾱj) the optimal control associated to the operator S[w n-1 ](y). We distinguish two subcases again:

3.i) : s0 = ∆t. We choose α i ≥ max(1, |x| ∆t ) and the suboptimal control (α i , s0 -|x| αi , ᾱ0 )

for S[w n-1 ](x) obtaining w(t n , x) -w(t n , y)

≤ I[ ŵn-1 ] (0) + s0 - |x| α i L 0 ( ᾱ0 ) + |x| α i L i (x, α i ) -I[ ŵn-1 ] (0) -s0 L 0 (ᾱ 0 ) ≤ |x| α i (L i (x, α i ) -L 0 (ᾱ 0 )) ≤ L Li d(x, y)
Using that L i is Lipschitz continuous, we get that there exists a constant C (depending only on L i (0), L 0 (0) and on the Lipschitz constant of L i ) such that

|L i (x, ᾱi )| + |L 0 (ᾱ 0 )| |ᾱ i | ≤ C.
This implies that w(t n+1 , x) -w(t n+1 , y) ≤ C|x| = Cd(x, y).

3.ii): s0 < ∆t. We choose

α i ≥ max(1, |ᾱj|) such that (47) |x| α i ≤ ∆t -s0 2 and ∆t -s0 ∆t -s0 -|x| αi |ᾱj| ≤ α i .
We also set αj = ∆t-s0 ∆t-s0- Injecting these estimates in (48), we obtain w(t n , x) -w(t n , y) ≤ C|x| = Cd(x, y).

Appendix C. Proof of Theorem 4.2.

Proof. The proof is made by induction assuming that for n ≥ 1 (49) |w n-1 (x) -u(t n-1 , x)| ≤ (n -1)C∆x ∀x ∈ J ∆x .

Note that the thesis is clearly satisfied for n = 1. We then want to show that |w n (x) -u(t n , x)| ≤ nC∆x ∀x ∈ J ∆x .

From Proposition 2.1, we know that where we use the notation L(X(τ ), α(τ )) ≡ L i (α i ) if X(τ ) ∈ J i , (see (A4)).

We denote ᾱ = ( ᾱ0 , ᾱ1 , ..., ᾱN ) and s0 the optimal argument of S[w n-1 ](x) and we treat only the case where x ∈ J i \{0} and |x|/ᾱ i < ∆t (this corresponds to the more difficult case in which the optimal trajectory crosses the junction). We also denote by X(t) (with t ∈ [t n-1 , t n ]) the trajectory obtained applying the control ᾱ.

Clearly such trajectory belongs to Γ tn,x tn-1, X(tn-1) with X(t n-1 ) = ∆t -s 0 -|x| ᾱi e j and (51) For the inverse inequality, we invert the whole argument. An additional difficulty comes for the choice of the good control for the S[w n-1 ] term. We proceed considering a continuous optimal control ᾱ(•) for u(t n , x) in (50). Without loss of generality we assume that the associated trajectory X(t) is such that (52)    X(t) ∈ J i , for t ∈ ( t2 , t n ] , X(t) = 0, for t ∈ ( t1 , t2 ] , X(t) ∈ J j , for t ∈ [t n-1 , t1 ] ,

             X(
Indeed, we can exclude that an optimal trajectory passes in another arc or touches multiple times the junction point thanks to the convexity of the functions L. In fact, in such case, it would be necessary for an optimal trajectory to pass twice for the same point, i.e. X( t1 ) = x and X( t2 ) = x, with X(t) = x for t ∈ ( t1 , t2 ). This means that since Ẋ(t) = ᾱ(t), we have that t2 t1 ᾱ(τ )dτ = X( t1 ) -X( t2 ) = 0.

Then, the average control on [ t1 , t2 ] is zero. Using the strict convexity and the Jensen's inequality, we find that the optimal control ᾱ should be zero. This contradicts the definition of X.

We can now build a discrete control and an associated trajectory (α, X) for Then, by construction X(t n-1 ) = X(t n-1 ) and S[w n-1 ](x) -u(t n , x) = S[w n-1 ](x) -u(t n-1 , y) + tn tn-1 L( X(τ ), ᾱ(τ ))dτ ≤I[w n-1 ]( X(t n-1 )) -u(t n-1 , X(t n-1 )) + (∆t -t2 ) L i (α i ) - The two others cost terms can be treated in a similar way. Using that I[w n-1 ]( X(t n-1 )) -u(t n-1 , X(t n-1 )) ≤ I[w n-1 ]( X(t n-1 ))

-I[u(t n-1 , •) + (n -1)C∆x]( X(t n-1 )) + I[u(t n-1 , •)]( X(t n-1 ))

+ (n -1)C∆x -u(t n-1 , X(t n-1 )) ≤ nC∆x for the basic properties of the interpolation operator and (49), we can claim that w n (x) -u(t n , x) ≤ nC∆x and this concludes the proof.
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 1 Fig. 1. Junction with N = 5 edges.
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 3 Fig. 3. Initial condition and numerical solution at time t = 0.2 (left) and at time T = 2 (right), computed with parameter L 0 = 0, 0.2, 0.4, 0.6.
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 4 Fig. 4. Graphic of E ∆∞ with respect the space step, together with the line K∆x. Left L 0 = 0, with K = 3.7, right L 0 = 0.2, with K = 3.9.
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 5 Fig. 5. Projection on the state coordinate plane of the Initial Condition (top left), numerical solution at time t = 0.5 (top right), t = 1 (bottom left) and t = 1.5 (bottom right).
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 6 Fig. 6. Graphic of E ∆∞ with respect the space step, together with the line K∆x with K = 6.5.
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 7 Fig. 7. Evolution of the value function at times t = 0, 0.26, 0.52, 1.04.
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 3 The code is written in MatLab R2018a and runs on a MacBookPro 2017 2.5 GHz Intel Core i7. The variable nc represents the number of points used to compute the minimum by comparison, with respect to the time s 0 , in (3).
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 8 Fig. 8. Comparison between the value functions varying the cost in V 6 , L(V 6 , α) = 0.4 (above) L(V 6 , α) = 4 (below) at time t = 1.04.

  satisfies in particular α i ≥ |αj|. Taking the suboptimal control (α i , s0 , ᾱ0 , j, αj) for S[w n-1 ](x), we get(48) w(t n , x) -w(t n , y) ≤ I[ ŵn-1 ] -∆t -s0 -|x| α i αjej + ∆t -s0 -|x| α i Lj(0, αj) + s0 L 0 (ᾱ 0 ) + |x| α i L i (x, α i ) -I[ ŵn-1 ] -(∆t -s0 ) ᾱjej -(∆t -s0 ) Lj(0, ᾱj) -s0 L 0 (ᾱ 0 ) ≤ |x| α i L i (x, α i ) -Lj(0, αj) + (∆t -s0 ) Lj(0, αj) -Lj(0, ᾱj) ≤ |x| α i L i (x, α i ) -Lj(0, αj) + (∆t -s0 )L Lj |αj -ᾱj|.Using that α i ≥ 1, we get that |Li(x,αi) αi ≤ C. In the same way (using that α i ≥ αj)|Lj(0, αj)| α i ≤ 1 α i Lj(0, 0) + L Lj |αj| ≤ Lj(0, 0) + L Lj |αj| α i ≤ C.Finally, using the definition of αj, we observe that (∆t -s0 )|αj -ᾱj| = |x| |αj| α i ≤ |x|.
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 11 (X(τ ), α(τ ))dτ   -S[w n ](x) ≤u(t n-1 , X(t n-1 )) + tn tn-(X(τ ), α(τ ))dτ -S[w n ](x) ≤u(t n-1 , X(t n-1 )) -I[w n-1 ]( X(t n-1 )(τ ), ᾱ(τ ))dτ -∆t -s0 -|x| ᾱi L j (ᾱ j ) τ ), ᾱ(τ ))dτ -s 0 L 0 ( ᾱ0 ) + ∆t ∆t-|x| ᾱi L( X(τ ), ᾱ(τ ))dτ -|x| ᾱi L i (ᾱ i ).Since L(., α) is constant in time, the cost terms cancel. Moreover, using standard interpolation operator properties and (49), we observe thatu(t n-1 , X(t n-1 )) -I[w n-1 ]( X(t n-1 ))| =u(t n-1 , X(t n-1 )) -I[u(t n-1 , •)](X(t n-1 )) + (n -1)C∆x + I[u(t n-1 , •) -(n -1)C∆x](X(t n-1 )) + I[w n-1 ]( X(t n-1 )) ≤ nC∆x,and consequently u(t n , x) -w n (x) ≤ nC∆x.

1 L 1 L

 11 (τ ), ᾱ(τ ))dτ + ( t2 -t1 )L 0 -t2 t1 L( X(τ ), ᾱ(τ ))dτ + t1 L j (α j ) -t1 tn-( X(τ ), ᾱ(τ ))dτ .Using Jensen's inequality knowing that the L-functions are convex, we get t1 L j (α j )j (ᾱ j (τ ))dτ≤ t1 tn-1 L j (ᾱ j (τ ))dτ -t1 tn-1L j (ᾱ j (τ ))dτ = 0

Table 1

 1 CPU times in seconds for Test 3, computed with ∆x = 0.013

		.4	19.4	3.7
	2∆x	9.8	19.0	3.7
	∆x	9.6	18.0	3.9
	∆x/2	8.8	15.6	4.1
	∆x/4	8.3	13.2	5.2
	∆x/8	7.4	7.5	7.2
	∆x/16 14.7	14.8	14.4
	∆x/32 29.5	30.0	28.5

  t) ∈ J i for t ∈ t n -|x| ᾱi , t n , X(t) = 0 for t ∈ t n -|x| ᾱi -s0 , t n -|x| ᾱi ,

X(t) ∈ J j for t ∈ t n-1 , t n -|x| ᾱi -s0 .
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ii) Given A > H 0 and t 0 ∈ (0, T ), if u is an upper semi-continuous subsolution of (5) for x = 0, satisfying (44), and if for any test function ϕ touching u from above at (t 0 , 0) with

for some ψ ∈ C 2 ((0, +∞)), we have

iii) Given t 0 ∈ (0, T ), if u is a lower semi-continuous supersolution of (5) for x = 0 and if for any test function ϕ satisfying (45) touching u from above at (t 0 , 0) we have

Remark. In fact this theorem shows that, at the junction, it is sufficient to test with test function having the form (45).

Proof. In this proof, we denote by C a constant that depends only on L i and that may change line to line and with L f the Lipschitz constant of a generic function f . Let just assume that x, y ∈ J i ∩ J ∆x . The latter is not restrictive since if x ∈ J j ∩ J ∆x , y ∈ J i ∩ J ∆x with j = i, we come back to the case of a comparison between point belonging to the same arc writing

We denote ᾱi the optimal control of S[w n-1 ](y) associated to the i-arc. We consider three different cases: 1) ᾱi < |y|/∆t with y = 0. In this case, we consider α i such that x -∆tα i e i = y -∆tᾱ i e i . This means that (46)

Using the suboptimal control α i for S[ ŵn-1 ](x) yields

2) 0 < |y| ∆t ≤ ᾱi . In this case the discrete trajectory starting from y passes through the junction. We denote by ( ᾱi , s0 , ᾱ0 , j, ᾱj) the optimal control associated with S[ ŵn-1 ](y). We distinguish two subcases: 2.i) x = 0. In this case, we choose the suboptimal control (s 0 + |y| ᾱi , ᾱ0 , j, ᾱj) (if ᾱ0 = 0,