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A SEMI-LAGRANGIAN SCHEME FOR
HAMILTON-JACOBI-BELLMAN EQUATIONS ON NETWORKS ∗

E. CARLINI † , A. FESTA ‡ , AND N. FORCADEL §

Abstract. We present a semi-Lagrangian scheme for the approximation of a class of Hamilton-
Jacobi-Bellman (HJB) equations on networks. The scheme is explicit, consistent and stable for large
time steps. We prove a convergence result and two error estimates. For HJB equation with space
independent Hamiltonian, we obtain a first order error estimate. In the general case, we provide,
under a hyperbolic CFL condition, a convergence estimate of order one half. The theoretical results
are discussed and validated in a numerical tests section.
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1. Introduction. The interest in the study of linear and nonlinear partial dif-
ferential equations on networks raised consistently in the last decades motivated by
the modeling of various networked systems like roads, pipelines, electronic and infor-
mation networks.

In particular, an extensive literature has been developed for vehicular traffic sys-
tems modeled through conservation laws. Existence results can be found in [19], and
some partial uniqueness results (for a limited number of intersecting roads) in [18, 2].
In many cases, the lack of uniqueness on the junction points obliges to add some spe-
cial conditions which may be ambiguous or difficult to derive. More recently, models
based on Hamilton-Jacobi (HJ) equations have been proposed. In these models, the
density of the cars is obtained as the derivative of the solution of the HJ equation
(see [25]). The main advantage of this framework is to include an optimality prin-
ciple on the model, solving some of the ambiguities in the junction points without
the introduction of additional conditions. However, the relationship between the two
approaches is still under investigation.

The theory of HJ equations on networks is very recent. In general, these equations
do not have regular solutions, and the notion of weak solution (viscosity solution) need
to be extended on the junction points. So far several proposals have been made. The
early attempts are contained in the works [1, 7, 21, 22, 27], where the authors introduce
new definitions of weak solutions and prove the well-posedness of the problem. We
highlight the paper [10] where the authors discuss the differences among the models.
We also refer to the most recent works [5, 24] for simplified proof of uniqueness.

Regarding the numerical approximation, there are very few schemes and only
some of them are supported by theoretical results. Let us mention the finite differences
scheme proposed in [7, 11] and the paper [20] in which some error estimates are proved.
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In this paper, we adopt the framework and the notion of weak solution as intro-
duced in [21].This framework has the advantage to include very general models. Here,
the Hamiltonian is convex with respect to the gradient variable. At the junction, it
can be discontinuous with respect to the space variable, and may depend on a flux
limiter.

We propose a semi-Lagrangian (SL) scheme for this kind of equations by dis-
cretizing the dynamic programming principle presented in [21]. The scheme general-
izes that introduced in [8], and enables discrete characteristics to cross the junctions.
This property makes the scheme unconditionally stable, allowing for large time steps.
This is the main advantage compared to finite differences and finite elements schemes.
With almost standard techniques, it is possible to prove consistency and monotonicity,
which imply the convergence of the scheme.

We prove two convergence error estimates: for state-independent Hamiltonians,
where optimal controls are constant in time, and for more general Hamiltonians.
In the first case, we obtain a first-order convergence estimate depending only on
the space step. In the second case, we prove a general convergence result and, in
the case of Courant number less than one, an error estimate which, for constant
Courant number, gives order of convergence 1/2. The proof is obtained applying
some techniques derived from papers on regional optimal control problems [4, 5] and
it improves the results presented in [20] in the case of finite differences schemes.
For the sake of clarity, we consider a simplified network (a junction), but the result
can be extended to more general networks, with more than one junction, as we show
in the last numerical test.

Structure of the paper: in Section 2 we recall some basic notions for junctions and
we build the optimal control problem on these domains. In Section 3, we derive the
scheme and prove its basic properties: consistency, monotonicity, and regularity. In
Section 4, we present the main results concerning convergence and error estimates.
Finally, in Section 5, we show some numerical simulations.

2. An optimal control problem on networks. A network is a domain com-
posed of a finite number of nodes connected by a finite number of edges. To simplify
the description of such system we focus on the case of a junction, which is a network
composed of one node and a finite number of edges. We follow [21] and the notations
therein to describe the problem.
Given a positive number N , a junction J ∈ R2 is a network of N half lines Ji :=
{k ei, k ∈ R+} (where each line is isometric to [0,+∞) and ei is a unitary vector
centered at the origin) connected in a junction point that we conventionally place at
the origin. We then have

J :=
⋃

i=1,...,N

Ji, Ji ∩ Jj = {0}, ∀i 6= j, i, j ∈ {1, ..., N}.

We consider the geodesic distance function on J given by

d(x, y) =

{
|x− y|, if x, y ∈ Ji for one i ∈ {1, ..., N},
|x|+ |y|, otherwise.

For a real-valued function u defined on J , ∂iu(x) denotes the (spatial) derivative of u
at x ∈ Ji and the gradient of u is defined as:

(1) ux :=

{
∂iu(x) if x ∈ J∗i := Ji \ {0},
(∂1u(x), ∂2u(x), ..., ∂Nu(x)) if x = 0.
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Fig. 1. Junction with N = 5 edges.

We describe a finite-horizon optimal control problem on the network J . For a more
extensive description of the problem, see [21].
Let us define the set of admissible dynamics on the network J connecting the point
(s, y) to (t, x) as

(2) Γt,xs,y :=


(X(·), α(·)) ∈ Lip([s, t]; J)× L∞([s, t];RN+1)

Ẋ(τ) = U(X(τ), α(τ)), τ ∈ [s, t]
X(s) = y, X(t) = x

 ,

where for any (t, x) ∈ [0, T ]× J and α = (α0, α1, ..., αN ) ∈ RN+1 ,

U(x, α) =

{
αi if x ∈ J∗i
α0 if x = 0.

}
.

We define the cost function,

L(x, α) :=

{
Li(x, αi) if x ∈ Ji,
L0(α0) if x = 0,

where the functions Li : R+ × R→ R for i = 1, . . . , N satisfy:
(A1) Li are strictly convex (w.r.t. the second argument) and uniformly Lipschitz

continuous,
(A2) Li are strongly coercive w.r.t. the second argument uniformly in x

(Li(x, αi)/|αi| → +∞ for |αi| → +∞ uniformly in x ∈ R+),
(A3) for all µ > 0 there exists Cµ > 0 such that

sup
x∈Ji

∣∣∣∣ inf
αi∈[−µ,µ]

Li(x, αi)

∣∣∣∣ ≤ Cµ.
In addition, L0 : R→ R is defined as

L0(α0) :=

{
L̄0 if α0 = 0,
+∞ otherwise,

for a given L̄0 ∈ R. The value function of the optimal control problem is

(3) u(t, x) = inf
y∈J

inf
(X(·),α(·))∈Γt,x0,y

{
u0(y) +

∫ t

0

L(X(τ), α(τ))dτ

}
.
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Remark. We stress on the generality of the model in treating the junction: an
optimal trajectory chosen in (2) is evaluated by the functional (3) where the cost does
not have any regularity passing through the junction. The trajectories have also the
possibility of waiting in the junction paying a specific constant cost L0 per time unity.

It has been proved in [21] that the following dynamic programming principle
(DPP) holds.

Proposition 2.1 (Dynamic programming principle). For all x ∈ J , t ∈ (0, T ],
s ∈ [0, t), the value function u defined in (3) satisfies

(4) u(t, x) = inf
y∈J

inf
(X(·),α(·))∈Γt,xs,y

{
u(s,X(s)) +

∫ t

s

L(X(τ), α(τ))dτ

}
.

A direct approximation of the DPP (4) is the basis for the scheme which we
describe in the next section.
The following Theorem characterizes the value function (3) as the solution of a HJB
equation (for the definition of viscosity solution and the proof, see Appendix A and
[21]).

Theorem 2.2 (HJB equation satisfied by the value function u). Given a function
u0, globally Lipschitz continuous on J , the value function u defined in (3) is the unique
viscosity solution of

(5)

{
∂tu(t, x) +Hi(x, ux(t, x)) = 0 in (0, T )× J∗i ,
∂tu(t, x) + FA(ux(t, x)) = 0 in (0, T )× {0},

with initial condition u(0, x) = u0(x) for x ∈ J, where

Hi(x, p) := sup
αi∈R

{αi p− Li(x, αi)} ,

with p̂i(x) chosen such that Hi is non-increasing in (−∞, p̂i(x)] and non-decreasing
in [p̂i(x),∞). The operator FA : RN → R on the junction point is

(6) FA(p) := max

(
A, max

i=1,...,N
H−i (0, pi)

)
, with A = −L̄0,

where

H−i (x, p) :=

{
Hi(x, p) for p ≤ p̂i(x)
Hi(x, p̂i) for p > p̂i(x).

Remark. In the vehicular traffic flow models, the function H− can be related,
with suitable transformations, to the demand and supply functions, introduced in [23].
This relation has been observed in [22]. In this setting, the constant A is known as
the flux limiter at the junction. In fact, the lower the cost at the junction L̄0 is, the
longer the vehicles will stay at the junction and so the bigger is the flux limiter.

We now gives some useful results on the Hamiltonian H.

Proposition 2.3 (Properties on H). Under assumptions (A1)-(A3), the fol-
lowing assertions hold true:

i) for every x ∈ R+ ∪ {+∞} and bounded p, αi ∈ arg supαi∈R{αip− Li(x, αi)}
is bounded.
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ii) the nonincreasing part of Hi(x, p) with respect of pi is given by

H−i (x, pi) = sup
αi≤0
{αipi − Li(x, αi)}.

iii) (Regularity). For all M > 0 there exists a modulus of continuity ωM such
that for all |p|, |q| ≤M and x ∈ Ji

|Hi(x, p)−Hi(x, q)| ≤ ωM (|p− q|);

in addition, Hi(·, p) is Lipschitz continuous w.r.t. the space variable.
iv) (Uniform coercivity). Hi(x, p) → +∞ for |p| → +∞ uniformly for every

x ∈ Ji ∪ {+∞}, i = 1, ..., N ;
v) (Convexity). p 7→ Hi(x, p) is convex for every x ∈ J .
vi) (Uniform bound of the Hamiltonian for bounded gradient). For all M > 0,

there exists CM > 0 such that

sup
p∈[−M,M ], x∈J∗

|H(x, p)| ≤ CM ,

where J∗ := J \ {0}.
Remark. The previous proposition implies in particular the well-posedness of (5)

(see [21])

Proof. From assumptions (A1)-(A2), αip − Li(x, αi) is a continuous function
(negatively) coercive, therefore there exists a compact interval [−µ, µ], µ ∈ R, such
that

sup
αi∈R

{αi p− Li(x, αi)} = sup
αi∈[−µ,µ]

{αi p− Li(x, αi)} .

Since p is bounded, i) holds. Assertion ii) follows from Lemma 6.2 in [21].
From i), we have

Hi(x, p)−Hi(x, q) ≤ ᾱ|p− q|

where ᾱ is the minimizer in Hi(x, q). Exchanging the role of p, q, we get iii).
Taking α = 1 in the Hamiltonian we have

Hi(x, p) ≥ p− Li(x, 1).

The same argument for α = −1 gives Hi(x, p) → +∞ for |p| → +∞, then iv) holds.
Finally v) holds since Hi is the upper envelope of convex functions and vi) follows
directly from assumption (A3).

We now give regularity results for the value functions.

Proposition 2.4 (Regularity of the value function). Under assumptions (A1)-
(A2), the value function u defined in (3) is Lipschitz continuous in space and time.

Proof. First, we remark that for C ≥ C0, with C0 defined as in vi) of Prop. 2.3
with L = 0 , u0(x)± Ct are respectively subsolution and supersolution of (5). Using
the comparison principle, we deduce that

u0(x)− Ct ≤ u(t, x) ≤ u0(x) + Ct.

Let h ≥ 0 and define uh(t, x) = u(t + h, x) − Ch. The previous inequalities implies
that

uh(0, x) = u(h, x)− Ch ≤ u(0, x).
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The equation is invariant by translation in time and by addition of constant (which
implies that uh is a subsolution of (5)), then we get by the comparison principle that

uh(t, x) ≤ u(t, x).

This implies that
u(t+ h, x)− u(t, x)

h
≤ C.

The reverse inequality can be proved in the same way (using that u(t+ h, x) +Ch is
a supersolution), so we deduce that

|ut| ≤ C,

since h can be chosen arbitrary small. Hence u is Lipschitz continuous in time. We
know that u is a viscosity solution of (5), therefore it satisfies in particular (in the
viscosity sense) for each i ∈ {1, . . . , N}:

Hi(x, ux) ≤ C on (0, T )× J∗i .

Using the coercivity of H, this implies the existence of a constant C̃ such that (in the
viscosity sense)

|ux| ≤ C̃ on (0, T )× J∗i .
Therefore, u is Lipschitz continuous also with respect to the space variable.

Remark. Note that in the classical setting (i.e., without junction), this type of
results can be obtained more directly using the definition of the value function and
the dynamic programming principle (obtaining first the regularity in space and then
in time). But the arguments use in this setting rely on the Lipschitz continuity of the
coset L which is no longer true at the junction. This is the reason why, in this proof,
we have to used viscosity techniques.

3. A semi-Lagrangian scheme for the approximation of the solution.
Let us introduce a uniform discretization of the network (0, T ) × J . The choice of
a uniform discretization is not restrictive, and the scheme can be easily extended to
non-uniform grids. Given ∆t and ∆x in R+, we define ∆ = (∆x,∆t), NT = bT/∆tc
(b·c is the integer part) and

G∆ := {tn : n = 0, . . . , NT } × J∆x

where J∆x :=
⋃
i=1,...,N J

∆x
i , J∆x

i = {k∆x ei : k ∈ N}. We define tn = n∆t for
n = 0, . . . , NT and we derive a discrete version of the dynamic programming principle
(5) defined on the grid G∆. To do so, as usual in first-order SL schemes, we discretize

the trajectories in Γ
tn+1,x
tn,y by one step of Euler scheme. For i ∈ {1, . . . , N}, let x ∈ Ji

and let α ∈ RN+1 be such that αi∆t ≤ |x|, then the approximated trajectory gets

x ' y + αi∆t.

In this case, the discrete backward trajectory x −∆tαi remains on Ji and, applying
a quadrature formula, a discrete version of (4) at the point (tn+1, x) is

u(tn+1, x) ' u(tn, x− αi∆tei) + ∆tLi(x, αi).

Instead, if αi∆t > |x|, the discrete trajectory reaches the junction at a time in-

cluded in the interval [0,∆t]. Denoting by s0 ∈ [0,∆t − |x|αi ] the time spent by the
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trajectory at the junction point, Jj the arc from which the trajectory comes, and

t̂ :=
(

∆t− s0 − |x|αi
)

the remaining time on a new arc Jj , the approximation of (4)

at the point (tn+1, x) becomes

u(tn+1, x) ' u
(
tn,−αj t̂ej

)
+ t̂ Lj(0, αj) + s0L0(α0) +

|x|
αi
Li(x, αi).

We denote B(J∆x) and B(G∆) the spaces of bounded functions defined respectively
on J∆x and on G∆. We approximate the value function on the feet of the dis-
crete trajectories, which in general are not grid nodes, by a standard piecewise linear
Lagrange interpolation I[û](z), where û ∈ B(J∆x) and z ∈ Jj , i.e.

I[û](z) := û(i∆xej) + (z − i∆xej)
û((i+ 1)∆xej)− û(i∆xej)

∆xej
,

for z ∈ [i∆xej , (i+ 1)∆xej).
Finally, we define a fully discrete numerical operator S : B(G∆)× J∆x → R as, if

x ∈ Ji

S[v̂](x) := min


min
αi<

|x|
∆t

I[v̂](x− αi∆tei) + ∆tLi(x, αi),

min
αi≥ |x|∆t

min
s0∈[0,∆t− |x|αi ]

min
j,αj≤0

{
I[v̂]

(
−
(

∆t− s0 − |x|αi
)
αjej

)
+
(

∆t− s0 − |x|αi
)
Lj(0, αj) + s0L0(α0) + |x|

αi
Li(x, αi)

}
,

and, if x = 0,

S[v̂](x) := min
j,αj≤0

min
s0∈[0,∆t]

{I[v̂] (− (∆t− s0)αjej)

+ (∆t− s0)Lj(0, αj) + s0L0(α0)} .

Then, the discrete solution w ∈ B(G∆) solves

(7) w(tn+1, x) = S[ŵn](x), n = 0, . . . , NT − 1, x ∈ J∆x

where ŵn := {w(tn, x)}x∈J∆x for n = 0, . . . , NT − 1 and ŵ0 = {u0(x)}x∈J∆x .

3.1. Basic properties of the scheme. We prove some basic properties of (7):

Proposition 3.1 (Monotonicity and stability of the scheme). We assume that
(A1)-(A3) hold. Then, the numerical scheme (7) is

i) monotone, i.e. given two discrete functions v1, v2 ∈ B(J∆x) such that v1 ≤ v2

we have
S[v̂1](x) ≤ S[v̂2](x), ∀x ∈ J∆x.

ii) invariant by addition of constants, i.e. S[ϕ̂ + C](z) = S[ϕ̂](z) + C for any
constant C.

iii) stable i.e. there exists a positive constant K such that for any (tn, x) ∈ G∆

|w(tn, x)− u0(x)| ≤ Ktn.

Proof. To prove monotonicity, let us fix a x ∈ J∆x
i . We focus on the difficulty due

to the junction. More precisely, we assume that the trajectory related to v1 passes
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through the junction and the one related to v2 does not. The other cases are easier
and they can be treated in a similar way. Let us denote (ᾱi, s̄0, j̄, ᾱj̄ , ᾱ0) the optimal
strategy contained in v1, and let us denote α̂i the optimal control of v2. The optimal
controls are bounded by Prop. 2.3. We have

S[v̂1](x) = I[v̂1]

(
−
(

∆t− s̄0 −
|x|
ᾱi

)
ᾱj̄ej̄

)
+

(
∆t− s̄0 −

|x|
ᾱi

)
Lj(0, ᾱj̄)

+ s̄0L0(ᾱ0) +
|x|
αi
Li(x, α̂i) ≤ I[v̂1](x− α̂i∆tei) + ∆tLi(x, α̂i) = S[v̂2](x),

which proves the monotonicity.
The point ii) is a straightforward verification. The stability property iii) follows

directly by i) and ii) with K ≥ supx∈J∆x
|S[û0](x)−u0(x)|

∆t . For the proof see [12] .

We now give a regularity result for the solution of the scheme. This is the discrete
analogue of the Lipschitz estimate in space of the value function. This will be used
in the proof of the error estimate.

Proposition 3.2. (Almost Lipschitz Regularity in space of w) Let w(tn, x) be a
solution of (7). If u0 is uniformly Lipschitz continuous then for x, y ∈ J∆x there
exists a C > 0 such that

|w(tn, x)− w(tn, y)| ≤ C (∆t+ d(x, y)), n = 0, . . . , Nt.

The proof is postponed to Appendix B.

Remark. (Bounded control) By Prop. 3.1 iii), w solution of (7) is bounded and
then the discrete problem (7) is well-posed. We observe also that the same argument
of Proposition 2.3 (based on (A2)) can be used to prove that the control α in (7) is
bounded. We define

(8) µ = sup
(x,t)∈J×(0,T ]

max
i=1,...,N

|α∗i |,

the maximal absolute value of the optimal control.

3.2. Consistency of the scheme. We now focus on the study of the consistency
properties of the scheme. First of all, we recall the definition of consistency, (the class
of test functions C2(J) is defined in Appendix A).

Definition 3.3 (Consistency). Let x ∈ J and (∆xm,∆tm)→ 0 as m→∞. Let
ym ∈ J∆xm be a sequence of grid points such that ym → x as m→∞. The scheme S
is said to be consistent with (5) if the following properties hold:

i) If x ∈ Ji, for all test function ϕ ∈ C2(J), we have

(9)
ϕ(ym)− S[ϕ̂](ym)

∆tm
→ Hi(x, ϕx(x)) as m→∞,

ii) If x = 0, for all test function ϕ ∈ C2(J) such that ∂iϕ(0) = pL0
i for i =

1, . . . , N , where pL0
i ∈ R are such that Hi(0, p

L0
i ) = H+

i (0, pL0
i ) = −L0 and

H+
i (x, p) := supαi≥0(αip− Li(x, α)), we have

(10)
ϕ(ym)− S[ϕ̂](ym)

∆tm
→ F−L0

(ϕx(x)) = −L0 as m→∞.



A SEMI-LAGRANGIAN SCHEME FOR HJ EQUATIONS ON NETWORKS 9

Definition 3.4 (Consistency estimate). Let x ∈ J∆x and ∆x,∆t > 0. We say
that the scheme S satisfies a consistency estimate E(∆x,∆t) > 0 if for all test
function ϕ ∈ C2(J) with bounded second order derivatives, the following holds

i) If x ∈ J∆x
i \ {0}, we have

(11)

∣∣∣∣ϕ(x)− S[ϕ̂](x)

∆t
−Hi(x, ϕx(x))

∣∣∣∣ ≤ ‖ϕxx‖∞ E(∆x,∆t);

ii) If x = 0, we have

(12)

∣∣∣∣ϕ(x)− S[ϕ̂](x)

∆t
− F−L0

(ϕx(x))

∣∣∣∣ ≤ ‖ϕxx‖∞ E(∆x,∆t);

Remark. Let us remark that, due to the particular form of the test function in
(10), if the scheme admits a consistency estimates E(∆x,∆t) → 0, then the scheme
is consistent in the sense of Definition 3.3. Indeed, if ym → 0 as m → +∞, with
ym ∈ J∗i and ϕ ∈ C2(J) with ∂iϕ(0) = pL0

i , then the consistency estimate implies

ϕ(ym)− S[ϕ̂](ym)

∆tm
→ Hi(0, ϕx(0)) = Hi(0, p

L0
i ) = −L0

We begin to prove some consistency estimates for the numerical operators.

Proposition 3.5. Given ∆t > 0 and ∆x > 0, let us assume the CFL condition

(13) µ
∆t

∆x
≤ 1, (with µ as in (8)),

then for any ϕ ∈ C2(J) the following estimates hold for (7):

i) if x ∈ J∆x
i \ {0},

∣∣∣∣ϕ(x)− S[ϕ̂](x)

∆t
−Hi(x, ϕx(x))

∣∣∣∣
≤ K‖ϕxx‖∞

(
∆t+ min(∆x,

∆x2

∆t
)

)
,

ii) if x = 0,

∣∣∣∣ϕ(x)− S[ϕ̂](x)

∆t
− F−L0

(ϕx(x))

∣∣∣∣
≤ K‖ϕxx‖∞

(
∆t+ min(∆x,

∆x2

∆t
)

)
,

where K is a positive constant.

Remark. (Small Courant number) In the case very small Courant number are
considered, µ∆t

∆x ≤ ∆x, the estimates in Prop. 3.5 ensure consistency error of order

1. These estimates improve the classical estimate ∆x2

∆t + ∆t for first order semi-
Lagrangian scheme, and have first been proved in [14].

Proof. i) Let x ∈ J∆x
i \ {0}. We remark that the condition (13) implies in

particular that the scheme reads

S[ϕ̂](x) = min
αi<

|x|
∆t

I[ϕ̂](x−∆tαiei) + ∆tLi(x, αi) = min
αi∈R

I[ϕ̂](x−∆tαiei) + ∆tLi(x, αi).

By using recent estimates proved in [14, 15], we have

(14) I[ϕ̂](x−∆tαiei) = ϕ(x−∆tαiei) +K‖ϕxx‖∞ min(∆x2,∆t∆x),
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then by standard Taylor expansion we get the result.
ii) Let x = 0. In this case

S[ϕ̂](0) = min
s0∈[0,∆t]

min
j,αj≤0

{I[ϕ̂](−(∆t− s0)αjej) + (∆t− s0)Lj(0, αj) + s0L0(α0)} .

Let us define K∆t := s0
∆t , since s0 ∈ [0,∆t] we have K∆t ∈ [0, 1]. Again by Taylor

expansion, by Prop. 2.3 and by the interpolation error (14), we have

max
ϕ(0)− S[ϕ̂](0)

∆t
+K‖ϕxx‖∞

(
∆t+ min(∆x,

∆x2

∆t
)

)
= − min

K∆t∈[0,1]
min
j,αj≤0

(−(1−K∆t)αj∂jϕ(0) + (1−K∆t)Lj(0, αj) +K∆tL0(α0))

= − min
K∆t∈[0,1]

[
(1−K∆t) min

j,αj≤0
(−αj∂jϕ(0) + Lj(0, αj)) +K∆t min

α0

(L0(α0))

]
= max
K∆t∈[0,1]

[
(1−K∆t) max

j,αj≤0
(αj∂jϕ(0)− Lj(0, αj)) +K∆t max

α0

(−L0(α0))

]
= max
K∆t∈[0,1]

{
(1−K∆t) max

j
H−j (0, ∂jϕ(0))−K∆tL0

}
= max

(
max
j
H−j (0, ∂jϕ(0)),−L0

)
.

This ends the proof of the proposition.

The case that we study behaves differently from classic SL schemes, where the
consistency error estimate is not limited by a CFL condition. This difference is due
to the presence of discontinuities on the Hamiltonians at the junction point.

It is worth to underline that consistency (in the sense of Definition 3.3) holds even
without (13), and consequently the scheme is convergent without any CFL condition,
as we show at the beginning of Section 4.

Proposition 3.6 (Consistency of the scheme). Assume min(∆x2

∆t ,∆x) → 0.
Then, the scheme (7) is consistent according to Definition 3.3.

Proof. Let us consider a sequence ym such that ym → x as ∆m = (∆xm,∆tm)→
(0, 0). For notational convenience we drop the index m of the sequence of grid points.
In case the limit point x is not on the junction since x is fixed for every sequence
(∆x,∆t)→ (0, 0), y eventually verifies |y| > µ∆t independently from the rate ∆t/∆x.
Then, the consistency follows as Case 1 in the proof of Prop. 3.5 (without the
condition ∆t/∆x ≤ 1/µ).
The situation is more complex when the limit point x is 0. If y ≡ 0, this case is
equivalent to Case 2 in the proof of Prop. 3.5. If y is such that y → 0 and y 6= 0, up
to a subsequence, we can assume that y ∈ Ji, for some i independent of m. In that
case, the optimal trajectory can cross the junction in one time step. Let ϕ ∈ C2(J)
such that ∂iϕ(0) = pAi for i = 1, . . . , N and let us define the two quantities:

I1 := min
αi<

|y|
∆t

(I[ϕ̂](y −∆tαiei) + ∆tLi(y, αi)),

I2 := min
α,αi≥ |y|∆t

min
s0∈[0,∆t− |y|αi ]

min
j,αj≤0

{
I[ϕ̂]

(
−
(

∆t− s0 −
|y|
αi

)
αjej

)
+

(
∆t− s0 −

|y|
αi

)
Lj(0, αj) + s0L0(α0) +

|y|
αi
Li(y, αi)

}
.
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We remark that S[ϕ](y) = min(I1, I2). We begin with the term I1. Evaluating the
interpolation error and using a Taylor expansion, we get

I1 =

min
αi≤ |y|∆t

{ϕ(y)− αi∆t∂iϕ(y) + ∆tLi(y, αi)}+K‖ϕxx‖∞
(
min(∆x2,∆t∆x) + ∆t2

)
= ϕ(y)−∆t max

αi≤ |y|∆t

{αi∂iϕ(y)− Li(y, αi)}+K‖ϕxx‖∞
(
min(∆x2,∆t∆x) + ∆t2

)
Using the inequality

max
αi≤ |y|∆t

{αi∂iϕ(y)− Li(y, αi)} ≤ max
αi∈R

{αi∂iϕ(y)− Li(y, αi)}

= Hi(y, ∂iϕ(y)) = −L0 + o(1),

we deduce that

(15) I1 ≥ ϕ(y)−∆tA+ ∆t o(1) +K‖ϕxx‖∞
(
min(∆x2,∆t∆x) + ∆t2

)
.

For the term I2, we add into the argument of ϕ the term y − |y|αi αiei = 0. Using the
Taylor expansion twice and the interpolation accuracy, we obtain

I[ϕ]

(
−
(

∆t− s0 −
|y|
αi

)
αjej

)
= ϕ(y)− |y|

αi
αi∂iϕ(y)−

(
∆t− s0 −

|y|
αi

)
αj∂jϕ(0)

+K‖ϕxx‖∞
(
min(∆x2,∆t∆x) + ∆t2

)
.

The equation above implies

I2 +K‖ϕxx‖∞
(
min(∆x2,∆t∆x) + ∆t2

)
= min
αi≥ |y|∆t

min
s0∈[0,∆t− |y|αi ]

{
min
j

min
αj≤0

{
−
(

∆t− s0 −
|y|
αi

)
(αj∂jϕ(0)− Lj(0, αj))

}
+ ϕ(y)− |y|

αi
(αi∂iϕ(y)− Li(y, αi)) + s0L0(α0)

}
= ϕ(y) + min

αi≥ |y|∆t

min
s0∈[0,∆t− |y|αi ]

{
− |y|
αi

(αi∂iϕ(y)− Li(y, αi)) + s0L0(α0)

−
(

∆t− s0 −
|y|
αi

)
max
j

max
αj≤0

{(αj∂jϕ(0)− Lj(0, αj))}
}

= ϕ(y) + min
αi≥ |y|∆t

min
s0∈[0,∆t− |y|αi ]

{
− |y|
αi

(αi∂iϕ(y)− Li(y, αi)) + s0L0(α0)

−
(

∆t− s0 −
|y|
αi

)
max
j
H−j (0, ∂jϕ(0))

}
.

Using maxj H
−
j (0, ∂jϕ(0)) = maxj minpHj(0, p) =: H̄0, and L0(α0) = L0, we deduce
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that (we use H̄0 ≤ −L0)

I2 +K‖ϕxx‖∞
(
min(∆x2,∆t∆x) + ∆t2

)
= ϕ(y) + min

αi≥ |y|∆t

{
− |y|
αi

(αi∂iϕ(y)− Li(y, αi))

+ min
s0∈[0,∆t− |y|αi ]

{
s0(H̄0 + L0)−

(
∆t− |y|

αi

)
H̄0

}}
= ϕ(y) + min

αi≥ |y|∆t

{
− |y|
αi

(αi∂iϕ(y)− Li(y, αi)) +

(
∆t− |y|

αi

)
L0

}
(16)

= ∆t L0 + ϕ(y)− max
αi≥ |y|∆t

{
|y|
αi

(αi∂iϕ(y)− Li(y, αi) + L0)

}
.

We use |y|αi ≤ ∆t in the last sup, and we observe that αi∂iϕ(y)−Li(y, αi) +L0 ≤ o(1)
getting

(17) I2 +K‖ϕxx‖∞
(
min(∆x2,∆t∆x) + ∆t2

)
≥ +∆t L0 + ϕ(y) + ∆to(1).

Finally, via (15) and (17), we obtain

(18) S[ϕ](y) = min(I1, I2)

≥ +∆tL0 + ϕ(y) + ∆to(1) +K‖ϕxx‖∞
(
min(∆x2,∆t∆x) + ∆t2

)
.

Now, we need to show that this inequality is in fact an equality. We denote by ᾱi the
solution of

max
αi∈R
{αi∂iϕ(y)− Li(y, αi)},

and distinguish two cases. Firstly, we consider the case ᾱi ≤ |y|
∆t . This implies in

particular that

max
αi≤ |y|∆t

{αi∂iϕ(y)− Li(y, αi)} = max
αi∈R
{αi∂iϕ(y)− Li(y, αi)}

=Hi(y, ∂iϕ(y)) = −L0 + o(1).

Using (5), we deduce that

I1 = ∆tL0 + ϕ(y) + ∆to(1) +K‖ϕxx‖∞
(
min(∆x2,∆t∆x) + ∆t2

)
and so (18) is an equality.

We now consider the case ᾱi ≥ |y|∆t . We define

Ī2 := max
αi≥ |y|∆t

{
|y|
αi

(αi∂iϕ(y)− Li(y, αi) + L0)

}
.

Clearly, 0 ≤ |y|αi ≤ ∆t and αi∂iϕ(y)− Li(y, αi) + L0 ≤ o(1), therefore we can say

∆t o(1) ≥ Ī2 ≥∆t

{
max
αi≥ |y|∆t

{
|y|
αi

(αi∂iϕ(y)− Li(y, αi)
}

+ L0

}
=∆t(Hi(y, ∂iϕ(y)) + L0) = ∆t o(1).

This implies again that (18) is an equality and completes the proof.
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4. Convergence and convergence estimates. In this section, we introduce
the main results of the paper. First of all, the convergence of the scheme can be
proven with a standard argument based on the monotonicity:

Theorem 4.1 (Convergence). Assume that min(∆x2/∆t,∆x)→ 0 and let T >
0 and u0 be a Lipschitz continuous function on J . Then the numerical solution w
of (7) converges uniformly on any compact set K of (0, T ) × J as ∆ → (0, 0) to the
unique viscosity solution u of (5) , i.e.

lim sup
∆x,∆t→0

sup
(t,x)∈K∩G∆

|w(t, x)− u(t, x)| = 0.

Proof. Since the scheme is consistent (Prop. 3.6) for a subsequence verifying
min(∆x2/∆t,∆x)→ 0, monotone and stable, we can follow [6, 11, 21] and obtain the
result. Note that the choice of the test functions in the definition of the consistency
at the junction uses Theorem A.2 ii)

Once shown the convergence of the scheme, we want to provide also some conver-
gence estimates. This is a less easy task. We need to take into account two different
scenarios: for the special case of space independent Hamiltonians, i.e. assuming the
following additional property

(A4) the Lagrangians Li(x, αi) ≡ Li(y, αi) =: Li(αi) for every choice of x, y ∈ Ji,

it is possible to prove an error bound, independent of the time step. We observe that,
as consequence of the structure of the costs, the optimal control ᾱi is constant in time
and no restriction on the time step is required.

Theorem 4.2 (Rate of convergence in the case of space independent Hamiltoni-
ans). Let (A1),(A2),(A4) be verified. Considered u a viscosity solution of (5), and
w a solution of the scheme (7). Then, there exists a positive constant C depending
only on the Lipschitz constant of u such that

(19) sup
(t,x)∈G∆

|u(t, x)− w(t, x)| ≤ CT∆x.

The proof is contained in Appendix C.

For more general Hamiltonians (i.e. without assuming (A4)), we prove an error
bound that applies to any stable, monotone scheme for which a consistency estimate
is valid.

Theorem 4.3 (Rate of convergence). Assume (A1)-(A3). Let u be the viscosity
solution of (5), w be the solution of a scheme for which Prop. 3.1 holds and assume
that the scheme satisfies a consistency estimate E(∆t,∆x) as in Definition 3.4. Then,
there exists a positive constant C independent of ∆t and ∆x such that

(20) sup
(t,x)∈G∆

|u(t, x)−w(t, x)| ≤ CT
(
E(∆t,∆x)√

∆t
+
√

∆t

)
+ sup
x∈J∆x

|u0(x)−w(0, x)|.

By applying the previous Theorem, we get an error estimate for scheme (7) under
a restriction on the time step, given by assumption (13) .

Corollary 4.4 (Rate of convergence for (7)). In the specific case of the scheme
(7), assuming (13), we have
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(21) sup
(t,x)∈G∆

|u(t, x)− w(t, x)| ≤ CT
(√

∆t+
1√
∆t

min

(
∆x2

∆t
,∆x

))
.

Remark. (CFL condition and error estimates) The CFL condition (13) is needed
to prove the error estimate (21), and it is not assumed to prove the convergence result
in Theorem 4.1. If the assumption (A4) holds, no CFL condition is needed to prove
the error estimate (19).

Proof. As standard in this kind of proof, we only prove that

(22) u(t, x)− w(t, x) ≤ C
(
E(∆t,∆x)√

∆t
+
√

∆t

)
+ sup
x∈J∆x

|u0(x)− w(0, x)| in G∆,

since the reverse inequality is obtained with small modifications. Assume that T ≤ 1
(the case T ≥ 1 is obtained by induction).

For i ∈ {1, . . . , N} and j ∈ N, we set xij = j∆xei, and we define the extension in
the continuous space of w as

w#(tn, x) = I[ŵ(tn, ·)](x).

Firstly, we assume that

u0(xij) ≥ w#(0, xij) for all i ∈ {0, . . . , N} and j ∈ N,

and we define
0 ≤ µ0 := sup

x∈J
{|u0(x)− w#(0, x)|},

assuming without any restriction that µ0 ≤ K. For every β, η ∈ (0, 1) and σ > 0, we
define an auxiliary function, for (t, s, x) ∈ [0, T )× {tn : n = 0, . . . , NT } × J

ψ(t, s, x) := u(t, x)− w#(s, x)− (t− s)2

2η
− β|x|2 − σt,

Using Prop. 3.1 iii), the inequality |u(x, t) − u0(x)| ≤ CT (which holds for the
continuous solution, see Theorem 2.14 in [21]), we deduce that ψ(t, s, x) → −∞ as
|x| → +∞ and then the function ψ achieves its maximum at some point (tβ , sβ , xβ).
In particular, we have

ψ(tβ , sβ , xβ) ≥ ψ(0, 0, 0) = u0(0)− w#(0, 0) ≥ 0.

In the following, we denote by K several positive constants only depending on the
Lipschitz constants of u.
Case 1: xβ ∈ Ji \ {0}.
In this case, we duplicate the space variable by considering, for ε ∈ (0, 1),

ψ1(t, s, x, y) =u(t, x)− w#(s, y)− (t− s)2

2η
− d(x, y)2

2ε
− β

2
(|x|2 + |y|2)− σt

− β

2
|x− xβ |2 −

β

2
|y − x̄β |2 −

β

2
|t− tβ |2 −

β

2
|s− sβ |2,

for (t, s, x, y) ∈ [0, T )× {tn : n = 0, . . . , NT } × J × J.
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Using Proposition 3.1 iii) again, the inequality |u(x, t) − u0(x)| ≤ CT , and the fact
that u0 is Lipschitz continuous, we deduce that ψ1(t, s, x, y)→ −∞ as |x|, |y| → +∞
and then the function ψ1 achieves its maximum at some point (t, s, x, y), i.e.

ψ1(t, s, x, y) ≥ ψ1(t, s, x, y) for all (t, x), (s, y) ∈ [0, T )× J.

It is also easy to show that (t, s, x, y) → (tβ , sβ , xβ , xβ) as ε goes to zero and so
x, y ∈ Ji \ {0}, for ε small enough.

Step 1. (Basic estimates). The maximum point of ψ1 satisfies the following
estimates:

(23) d(x, y) ≤ Kε, |t− s| ≤ Kη.

(24) β
(
|x|2 + |ȳ|2

)
≤ K, β

(
|x̄− x̄β |2 + |ȳ − x̄β |2 + |t̄− t̄β |2 + |s̄− s̄β |2

)
≤ K

From
ψ1(t, s, x, y) ≥ ψ1(tβ , sβ , xβ , xβ)=ψ(tβ , sβ , xβ) ≥ 0,

we get, (using 0 ≥ −(t̄− s̄)2/2η − d(x̄, ȳ)2/2ε− σt̄)

β

2
(|x̄|2 + |ȳ|2) +

β

2

(
|x̄− x̄β |2 + |ȳ − x̄β |2 + |t̄− t̄β |2 + |s̄− s̄β |2

)
≤u(t̄, x̄)− w#(s̄, ȳ) ≤ u0(x̄)− w#(0, ȳ) +Kt̄+Ks̄ ≤ K(1 + |x̄|+ |ȳ|)(25)

where we used Proposition 3.1 i) (extended to all the points of J thanks to the mono-
tonicity of the interpolation operator), [21, Theorem 2.14] for the second inequality,
and the fact that T ≤ 1 for the last one. Using Young’s inequality, (i.e. the fact that
|x̄| ≤ 1/β + β/4|x̄|2 since (β/2|x̄| − 1)2 ≥ 0) (25) implies in particular that

β

2
(|x̄|2 + |ȳ|2) ≤ K

(
1 +

2

β
+
β

4
(|x̄|2 + |ȳ|2)

)
.

Multiplying by β and using β ≤ 1, we finally deduce that

β|x̄|, β|ȳ| ≤ K.

Then using this in (25), we have

β
(
|x̄− x̄β |2 + |ȳ − x̄β |2 + |t̄− t̄β |2 + |s̄− s̄β |2

)
≤ K

(
1 +

1

β

)
and, in particular,

β (|x̄− x̄β |+ |ȳ − x̄β |+ |t̄− t̄β |+ |s̄− s̄β |) ≤ K.

From ψ1(t, s, x, y) ≥ ψ1(t, s, y, y) we get

(26)
d(x, y)2

2ε
≤ u(t, x)− u(t, y) +

β

2
(|ȳ|2 − |x|2) +

β

2
(|ȳ − x̄β |2 − |x̄− x̄β |2)

≤ Kd(x̄, ȳ) +
β

2
(|x̄|+ |ȳ|)d(x̄, ȳ) +

β

2
(|x̄− x̄β |+ |ȳ − x̄β |)d(x̄, ȳ) ≤ Kd(x̄, ȳ)
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which implies the first estimate of (23). The second bound in (23) is deduced from
ψ(t, s, x, y) ≥ ψ(s, s, x, y) in the same way.

If we include the estimate

u(t̄, x̄)− w#(s̄, ȳ) ≤ u0(x̄) +Kt̄− w#(0, ȳ)+Ks̄ ≤ K(µ0 + d(x̄, ȳ) + 1) ≤ K

in the first part of (25), we finally deduce (24).

Step 2. (Viscosity inequalities). We claim that for σ large enough, the
supremum of ψ1 is achieved for t = 0 or s = 0. We prove the assertion by contra-
diction. Suppose t > 0 and s > 0. Using the fact that (t, x) → ψ1(t, s̄, x, ȳ) has a
maximum in (x̄, t̄) and that u is a subsolution, we get

(27)
t̄− s̄
η

+ σ + β(t̄− t̄β) +Hi

(
d(x̄, ȳ)

ε
+ β|x̄|+ β(|x̄− x̄β |)

)
≤ 0.

Since s̄ > 0 we know that ψ1(t̄, s̄, x̄, ȳ) ≥ ψ1(t̄, s̄ − ∆t, x̄, y) for a generic y and, by

defining ϕ(s, y) = −
(

(t̄−s)2

2η + d(x̄,y)2

2ε + β
2 |y|

2 + β
2 |y − x̄β |

2 + β
2 |s− s̄β |

2
)

, it implies

that, for a generic y,

w#(s̄, ȳ)− ϕ(s̄, ȳ) ≤ w#(s̄−∆t, y)− ϕ(s̄−∆t, y).

In particular, we have that for any z ∈ J∆x

w#(s̄, ȳ)− ϕ(s̄, ȳ) ≤ w(s̄−∆t, z)− ϕ(s̄−∆t, z).

By the monotonicity of the scheme and the fact that the scheme is invariant by
addition of constants, adding w#(s̄, ȳ)− ϕ(s̄, ȳ) we get, for any z ∈ J∆x,

w(s̄, z) = S[ŵ(s̄−∆t)](z) ≥ S[ϕ̂(s̄−∆t)](z) + C.

By the monotonicity of the interpolation operator, this implies

w#(s̄, ȳ) = I[ŵ(s̄, ·)](ȳ) ≥ I[S[ϕ̂(s̄−∆t)](·)](ȳ) + w#(s̄, ȳ)− ϕ(s̄, ȳ).

Simplifying by w#(s̄, ȳ), we obtain

−
∑
i

φi(ȳ)S[ϕ̂(s̄−∆t)](yi) = −I[S[ϕ̂(s̄−∆t)](·)](ȳ) ≥ −ϕ(s̄, ȳ),

where φi are the basis functions of the interpolation operator. Adding and subtracting
I[ϕ̂(s̄, ·)](ȳ)− I[ϕ̂(s̄−∆t, ·)](ȳ) and dividing by ∆t , we get

∑
i

φi(ȳ)

(
ϕ(s̄−∆t, yi)− S[ϕ̂(s̄−∆t)](yi)

∆t
+
ϕ(s̄, yi)− ϕ(s̄−∆t, yi)

∆t

)
≥ O

(
∆x2

ε

)
,

where we have used ϕxx = O( 1
ε ) together with the properties of the interpolation

operator. We observe that ϕ(s̄,yi)−ϕ(s̄−∆t,yi)
∆t = ϕs(s̄, yi) + O(∆t/η), then, using the

consistency definition (Def 3.4), we obtain∑
φi(ȳ) (−ϕs(s̄, yi) +Hi(ϕx(s̄−∆t, yi))) ≥ O

(
∆t

η
+

∆x2

ε

)
+
E(∆t,∆x)

ε
.
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By the regularity of ϕ and H (Lipschitz continuous) and the interpolation error for
Lipschitz function, there exists a positive constant K such that

(28) ϕs(s̄, ȳ) +Hi(ϕx(s̄−∆t, ȳ)) ≥ −K
(

∆t

η
+

∆x2

ε

)
+
E(∆t,∆x)

ε
.

We subtract (28) to (27) and use the explicit form of ϕ, obtaining

σ + β(s̄− s̄β) + β(t̄− t̄β) +Hi

(
d(x̄, ȳ)

ε
+ β|x̄|+ β(|x̄− x̄β |)

)
−Hi

(
d(x̄, ȳ)

ε
− β|ȳ| − β(|ȳ − x̄β |)

)
≤ K

(
∆t

η
+

∆x2

ε

)
+
E(∆t,∆x)

ε
.

Then, using that Hi is Lipschitz continuous and the basic estimates of the Step 1, we
arrive to

(29) σ < K
√
β +K

(
∆t

η
+

∆x2

ε

)
+
E(∆t,∆x)

ε
=: σ∗.

Therefore, we have that for a σ ≥ σ∗ at least one between t̄ and s̄ is equal to zero.

Step 3. (Conclusion). If t = 0 (a similar argument applies if s̄ = 0) we have

ψ1(0, s̄, x̄, ȳ) ≤ u0(x)− w#(s, y) ≤ u0(x)− u0(y) + Cs+ µ0 ≤ Kε+Kη + µ0.

Taking σ = σ∗, we obtain

u(t, x)− w#(t, x)− β

2

(
|x|2 + |y|2 + |x− x̄β |2 + |y − x̄β |2 + |t− t̄β |2 + |s− s̄β |2

)
−
(
K
√
β +K

(
∆t

η
+

∆x2

ε

)
+
E(∆t,∆x)

ε

)
T ≤ Kε+Kη + µ0.

Where, sending β → 0 and choosing ε = η =
√

∆t, we get the desired estimate.

Case 2: xβ = 0.
Firstly we observe that assuming

(30) σ > K
√
β +K

(
E(∆t,∆x)

ε
+

∆t

ε
+

∆x

ε

)
(which is compatible with σ > σ∗) then, there exists a Ā ∈ R such that

(31)
s̄β − t̄β
η

−K
(
E(∆t,∆x)

ε
+

∆t

ε

)
+K

√
β > Ā >

s̄β − t̄β
η

− σ +K
√
β.

Using the fact that (t, x) → ψ(t, s̄β , x) has a maximum in (t̄β , x̄β) and that u is a
subsolution, we get

(32)
t̄β − s̄β
η

+ σ + F−L0
(∂xϕ(t̄β , 0)) ≤ 0,

with ϕ(t, x) = w#(s̄β , x) +
(t−s̄β)2

2η + β|x|2 + σt and from (32) and (31),

(33) Ā > F−L0
(∂xϕ(t̄β , 0)) .
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We use (33), the definition of F−L0
, and the coercivity of the Hamiltonians to obtain

the existence of values λi such that

(34) Hi(λi) = H+
i (λi) = Ā

(cf. Fig. 2) that will be useful in the remaining part of the proof.

H

H

H

1

2

3

p

A

λ3λ1λ2

Fig. 2. An example of H+
i functions.

Now we pass to identify the right test function to treat this case. We duplicate
the space variable differently than in Case 1. We consider, for ε ∈ (0, 1),

ψ2(t, s, x, y) = u(t, x)− w#(s, y)− (t− s)2

2η
− d(x, y)2

2ε
− β

2
(|x|2 + |y|2)

− σt− (h(x) + h(y))− β

2
(t− tβ)2 − β

2
(s− sβ)2,

for (t, s, x, y) ∈ [0, T )× {tn : n = 0, . . . , NT } × J × J.

where h(x) = λix if x ∈ Ji and the λi are defined in (34).
We denote by (t, s, x, y) the maximum point of ψ2 (we keep the same notation

than the previous case, but they are possibly different points). We remark that
(t, s, x, y)→ (tβ , sβ , xβ , xβ) as ε→ 0.

Step 2. (Viscosity inequalities). We claim that for σ large enough, the
supremum of ψ1 is achieved for t = 0 or s = 0. We prove the assertion by con-
tradiction. Suppose t > 0 and s > 0. We can have different scenarios: if x and y
belong to the same arc (junction point excluded) the case is contained in Case 1. If
instead x̄ ∈ Ji \{0}, ȳ ∈ Jj (x̄ and ȳ belong to different arcs), we can repeat the same
argument to obtain (27) with the test function ψ2. We have:

t̄− s̄
η

+ β(t̄− t̄β) + σ +Hi

(
d(x̄, ȳ)

ε
+ 2β|x̄|+ λi

)
≤ 0.

Observing that the argument inside the Hamiltonian is bigger than λi, we use (34)
arriving to

0 ≥ t̄− s̄
η

+ β(t̄− t̄β) + σ +H+
i (λi) =

t̄β − s̄β
η

+ σ + Ā+K
√
β,
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which contradicts (31). Then, this case cannot occur.
We pass to the last case to consider: x̄ = 0, ȳ ∈ Ji \ {0}. First of all, we notice

that the basic estimates (23)-(24) are still valid for (t, s, x, y) maximum point of ψ2

since the added terms h(x), h(y) are easily included in the other linear elements of
the estimates.

In this case, the difficulty comes comparing two Hamiltonians evaluated, respec-
tively, on the junction point and on one arc. Using the subsolution property with the
test function ψ2, we have as first equation:

(35)
t̄− s̄
η

+ β(t̄− t̄β) + σ + F−L0

(
−|ȳ|
ε

+ λi

)
≤ 0,

where

F−L0

(
−|ȳ|
ε

+ λi

)
= max

(
−L0, max

j

(
H−j

(
−|ȳ|
ε

+ λi

)))
.

From the definition of FA it is also valid

(36)
t̄− s̄
η

+ β(t̄− t̄β) + σ +H−i

(
−|ȳ|
ε

+ λi

)
≤ 0.

Since ȳ ∈ Ji \ {0} with the same argument to obtain (28) (but for the test function
ψ2) and using the consistency result, we have

t̄− s̄
η

+ β(s̄− s̄β) +Hi

(
−|ȳ|
ε
− 2βȳ + λi

)
≥ K

(
E(∆t,∆x)

ε
+

∆t

η
+

∆x2

ε

)
.

Now recalling that H+(λi) = Ā,

t̄− s̄
η

+ β(s̄− s̄β) +H+
i

(
−|ȳ|
ε
− 2βȳ + λi

)
−K

(
E(∆t,∆x)

ε
+

∆t

η
+

∆x2

ε

)
≤ t̄− s̄

η
+ β(s̄− s̄β) +H+

i (λi)−K
(
E(∆t,∆x)

ε
+

∆t

η
+

∆x2

ε

)
≤ t̄β − s̄β

η
+K

√
β + Ā−K

(
E(∆t,∆x)

ε
+

∆t

η
+

∆x2

ε

)
< 0

for ε small enough, where we used β(s̄− s̄β) ≤ K
√
β (basic estimates). We can claim

that

(37)
t̄− s̄
η

+ β(s̄− s̄β) +H−i

(
−|ȳ|
ε
− 2βȳ + λi

)
≥ K

(
E(∆t,∆x)

ε
+

∆t

η
+

∆x2

ε

)
.

Finally, we subtract (37) to (35), obtaining the desired estimate on σ

(38) σ ≤ K
√
β +K

(
E(∆t,∆x)

ε
+

∆t

ε
+

∆x

ε

)
:= σ∗.

In this case we obtain a contradiction with (30): since, assuming σ > σ∗, at least one
between t and s is equal to zero.

Step 3. (Conclusion). We obtain the same estimate as in Case 1.

It just remains to prove the general case (for which we do not assume that u0(x) ≥
w#(0, x),∀x ∈ J∆x). Remarking that ū = u + µ1 with µ1 = supx∈J∆x(w#(0, x) −
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Fig. 3. Initial condition and numerical solution at time t = 0.2 (left) and at time T = 2 (right),
computed with parameter L0 = 0, 0.2, 0.4, 0.6.

u0(x)) is a solution of the same equation of u but satisfying ū(0, x) ≥ w#(0, x),∀x ∈
J∆x, we deduce that ū satisfies

sup
(t,x)∈G∆

(u(t, x) + µ1 − w(t, x))

≤ C
(
E(∆t,∆x)√

∆t
+
√

∆t

)
+ sup
x∈J∆x

|u0(x) + µ1 − w(0, x)|.

which implies (22) ending the proof of the Theorem.

5. Numerical tests. In this section, we present some numerical simulations to
show the features and the convergence properties of the scheme proposed. In the first
two tests Assumptions (A1)-(A4) are verified, while in the last test (A4) does not
hold.

Test 1. We consider a basic network composed by two edges connecting the
nodes (−1, 0) and (1, 0) with a junction in 0. This case can be seen as an 1D problem
in Γ = Γ1 ∪ Γ2 = [−1, 0] ∪ [0, 1] = [−1, 1] with a discontinuity on the Hamiltonian at
the origin. Despite its simplicity, this tests helps us to understand the effect of the
flux limiter contained in the operator FA.
We consider the following Hamiltonian on Γ:

H(x, p) =

{
p2

2 −
1
2 , x ∈ Γ1,

p2

2 − 1, x ∈ Γ2.

This example has been used as a benchmark also in [20]. Using the Legendre trans-
form, we rewrite (5) as

H(x, p) =


max
α∈R

(
α1p−

α2
1

2

)
− 1

2
, x ∈ Γ1,

max
α∈R

(
α2p−

α2
2

2

)
− 1, x ∈ Γ2.

where we can deduce L1(α1) = (α2
1 + 1)/2 and L2(α2) = (α2

1 + 2)/2. We choose
as initial condition u0(x) = sin(π|x|), and we impose Dirichlet boundary conditions
u(t,−1) = u(t, 1) = 0. The Dirichlet boundary condition are implemented numerically
by truncating the characteristics that cross the boundary, as in [15].
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Fig. 4. Graphic of E∆
∞ with respect the space step, together with the line K∆x. Left L0 = 0,

with K = 3.7, right L0 = 0.2, with K = 3.9.

In Fig.3, we show the numerical solution at time t = 0.2 and T = 2 computed with
parameter L0 = 0, 0.2, 0.4, 0.6. We can observe as the asymmetry of the Hamiltonian
with respect to the origin induces an asymmetric behavior of the solution. We can
also highlight how the choice of parameter L0 influences globally the value function
of the problem. In fact, when L0 = 0 the optimal control in x = 0 is simply α0 = 0
that corresponds to a zero cost, and since u0(0) = 0, the solution u(t, 0) = 0 for each
t ∈ [0, T ]. This explains the choice of the name flux limiter for L0: in this case the
parameter blocks the passage of information between the two arcs which could be
solved separately. In the case of L0 > 0 the situation is different: the control α0 = 0
does not correspond to a null cost. A trajectory, which remains on the junction
point, entails a cost. Furthermore, we observe that for values of |L0| sufficiently
large, the behavior of the solution does not change anymore with respect to L0. This
happens because remaining on the junction point is no more a convenient choice,
i.e., the transition condition (6) is reached only by one non-increasing Hamiltonian.
Therefore, the flux limiter is not active anymore.
In Figure 4, we show the convergence rates in the case of L0 = 0 and L0 = 0.2. In
absence of an analytic exact solution, we compare the approximated solution w(T, x)
with an approximation u(T, x) obtained on a very fine grid with ∆x = 10−4 and
∆t = 2.5∆x. The error is evaluated with respect to the uniform discrete norm defined
by

(39) E∆
∞ := max

x∈J∆x
(|w(T, x)− u(T, x)|).

The error E∆
∞ as a function of ∆x is represented in Figure 4, for the choice L0 = 0

(left) and L0 = 0.2 (right), the final time T and the time step are fixed to T = 0.2
and ∆t = 2.5∆x. We observe in the case L0 = 0 a linear decay of the E∆

∞ error,
in particular, the E∆

∞ errors fit with a linear regression curve of ratio K1 = 3.7. We
also observe the same convergence order in the case L0 = 0.2, with almost the same
ratio K1 = 3.9. In this case, since Theorem 4.2 holds, their rate of convergence is 1
independently of the choice of ∆t, so large time steps are allowed (cf. [15] where a
similar property is discussed for Euclidian domains).

Test 2. We consider a simple junction network composed by three edges connect-
ing the nodes (0, 1), (−1,−1), (1,−1) with the junction point placed in (0, 0). We
denote by J1 the edge connecting (0, 1) to (0, 0) and by J2, J3 the edges connecting
(0, 0) to (1,−1) and (−1,−1), respectively. The cost function Li, i = 0, 1, 2, 3 are
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Fig. 5. Projection on the state coordinate plane of the Initial Condition (top left), numerical
solution at time t = 0.5 (top right), t = 1 (bottom left) and t = 1.5 (bottom right).

defined as follows

Li(αi) =


α2
i

2 + 1 if i = 1, 3,
α2
i

2 + 2 if i = 2,
2 if i = 0, and α0 = 0,
+∞ if i = 0, and α0 6= 0.

We impose Dirichlet boundary conditions on the boundary nodes:

u(t, x) =

{
0 if x = {(−1,−1), (1,−1)},√

2 + 1 if x = {(0, 1)}.

The initial value u0 is chosen as the restriction of 1 + x2 on J , where we denote
(x1, x2) = x. In Figure 5, we show the color map of the initial condition and of the
numerical solution at time t = 0.5, 1, 1.5, projected on the state coordinate plane. It
is possible to observe that the initial datum u0 (Fig. 5 left/top) quickly evolves to
the stationary solution (Fig. 5 right/bottom), which represents a weighted distance
from the boundary points, with exit costs equal to the boundary values.

We compare the approximate solution at T = 1.5 with the exact solution of the
corresponding stationary problem; this makes sense since the approximate solution
has already reached the steady state. The exact steady state solution is

(40) u(x) =


√

2 + x2, if x ∈ J1,

min
(

2
√

(x1 − 1)2 + (x2 + 1)2,
√

2 + 2
√
x2

1 + x2
2

)
, if x ∈ J2,√

(x1 + 1)2 + (x2 + 1)2, if x ∈ J3.
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Fig. 6. Graphic of E∆
∞ with respect the space step, together with the line K∆x with K = 6.5.

In Figure 6, we show the behavior of the error (39) for various values of ∆x, setting
∆t = 2.5∆x. We observe as in the first test a linear decay of the E∆

∞, allowing large
time steps.

Test 3. We conclude this section treating a more complex network. We consider
a network formed by 4-junctions and 8-arcs, defined in (x1, x2) ∈ R2 and connecting
the points V1 = (−2, 0), V2 = (−1, 0), V3 = (0, 2), V4 = (0, 1), V5 = (2, 0), V6 = (1, 0),
V7 = (0,−2), V8 = (0,−1). We define the edges J1 = V1V2, J2 = V2V4, J3 = V2V8,
J4 = V3V4, J5 = V4V6, J6 = V5V6, J7 = V6V8, J8 = V7V8. We choose the costs on
each arc as

Li(x, αi) =

{
α2
i

2 + (2 + x1)2, for i = 1, 2, 3, 4,
α2
i

2 + (−2 + x2)2 for i = 5, 6, 7, 8.

We set the costs on the junction points Vi with i = 2, 4, 8 (when the relative control
α0 is null) equal to L(Vi, α) = 4, and on V6 equal to L(V6, α) = 0.4. We impose zero
Dirichlet boundary conditions on the boundary points Vi with i = 1, 3, 5, 7.
We choose as discretization steps ∆x = 0.013, ∆t = 0.065 and as the initial condition
u0 = 2− (x2

1 +x2
2)/2. We observe that the CFL condition (13) is not verified, however

we have convergence since Th. 4.1 holds (but the estimate Th. 4.3 does not hold).
In Figure 7, we show the initial value function and its evolution at different times. We
observe that the value function starts from a symmetric configuration and it looses
its symmetry since the costs are not constant on the various edges of the network and
they also depend on x. We highlight also that an optimal trajectory does not stop on
junction points since it would run into a cost considerably higher than elsewhere in
the network. The only exception is in V6, where the waiting cost is 0.4, and it is where
the value function assumes a local minimum. Clearly, for t → +∞ such minimum
tends to disappear since the cost is positive. In Figure 8, we also compare the value
function at t = 1.4 with the value function computed with same data except than the
cost in V6, which is set to L(V6, α) = 4. We observe that, since in this case the cost
to stop in V6 is higher, the local minimum disappears.

Choosing an effective Courant number is not a trivial task. In particular, large
Courant numbers can considerably increase the complexity of the scheme near the
junctions. In contrast, the opposite can produce low accuracy for long time approxi-
mations due to numerical diffusion effects.
In Table 1, we show the CPU times of a code implementing the proposed method for
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Fig. 7. Evolution of the value function at times t = 0, 0.26, 0.52, 1.04.

Test 3. The code is written in MatLab R2018a and runs on a MacBookPro 2017 2.5
GHz Intel Core i7. The variable nc represents the number of points used to compute
the minimum by comparison, with respect to the time s0, in (3).
The second and third columns show that the minimum complexity is reached when
∆t = ∆x/8, which corresponds to the case when the discrete characteristics do not
cross the junctions. Choosing a time step lower than ∆x/8 is no more convenient
in terms of computational time. In the last column, we consider the case when
L(Vi, α) = 4 for i = 2, 4, 6, 8. This choice corresponds to the case in which the char-
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Fig. 8. Comparison between the value functions varying the cost in V6, L(V6, α) = 0.4 (above)
L(V6, α) = 4 (below) at time t = 1.04.

acteristics never stop on the junctions. Therefore the minimization with respect to s0

is not necessary, and nc is set to 1. In this case, the minimum complexity is reached
using the largest time step.
In conclusion, Table 1 shows that large time steps may imply higher complexity due to
the cost of exploring all the arcs and computing the minimum of the waiting time s0

on the junctions. However, in semi-Lagrangian schemes, large time steps correspond
to less diffusive numerical approximations. Still, very large time steps can imply a
low accuracy in the approximation of the characteristics (when the characteristics are
not straight lines). The best choice, in term of accuracy, may consist in choosing a
time step which optimizes the consistency error proved in Prop. 3.5.

L(V6, α) = 0.4 L(V6, α) = 4
∆t nc =3 nc =6 nc =1
4∆x 10.4 19.4 3.7
2∆x 9.8 19.0 3.7
∆x 9.6 18.0 3.9
∆x/2 8.8 15.6 4.1
∆x/4 8.3 13.2 5.2
∆x/8 7.4 7.5 7.2
∆x/16 14.7 14.8 14.4
∆x/32 29.5 30.0 28.5

Table 1
CPU times in seconds for Test 3, computed with ∆x = 0.013

Appendix A. Definition of viscosity solution. Let us introduce the class
of test functions. For T > 0, set JT = (0, T )×J . We define the class of test functions
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on JT and on J as

Ck(JT ) = {ϕ ∈ C(JT ), ϕ ∈ Ck((0, T )× Ji, ∀i = 1, . . . , N)},

Ck(J) = {ϕ ∈ C(J), ϕ ∈ Ck(Ji), ∀i = 1, . . . , N}.

We recall also the definition of upper and lower semi-continuous envelopes u∗ and u∗
of a (locally bounded) function u defined on [0, T )× J ,

u∗(t, x) = lim sup
(s,y)→(t,x)

u(s, y) and u∗(t, x) = lim inf
(s,y)→(t,x)

u(s, y).

We say that a test function ϕ touches a function u from below (respectively from
above) at (t, x) if u− ϕ reaches a local minimum (respectively maximum) at (t, x).

Definition A.1 (Flux-limited solutions). Assume that the Hamiltonian satisfies
some standard hypotheses of regularity, convexity and coercivity and let u : [0, T )×J →
R.

i) We say that u is a flux-limited subsolution (resp. flux-limited supersolution)
of (5) in (0, T )×J if for all test function ϕ ∈ C1(JT ) touching u∗ from above
(resp. u∗ from below) at (t0, x0) ∈ JT , we have

(41)
ϕt(t0, x0) +Hi(x0, ϕx(t0, x0)) ≤ 0 (resp. ≥ 0) if x0 ∈ Ji,
ϕt(t0, x0) + FA(ϕx(t0, x0)) ≤ 0 (resp. ≥ 0) if x0 = 0.

ii) We say that u is a flux-limited subsolution (resp. flux-limited supersolution)
of (5) on [0, T )× J if additionally

(42) u∗(0, x) ≤ u0(x) (resp. u∗(0, x) ≥ u0(x)) for all x ∈ J.

iii) We say that u is a flux-limited solution if u is both a flux-limited subsolution
and a flux-limited supersolution.

In [21], an equivalent definition of viscosity solutions for (5) is proved. We use
this equivalent definition in particular in the definition of the consistency in Section
3. In the following theorem, we adapt this result for Hamiltonians depending on x.
The proof is a straightforward adaptation of the one in [21].

Theorem A.2 (Equivalent definition for sub/supersolutions).
Let H̄0 = maxj minpHj(0, p) and consider A ∈ [H̄0,+∞). Given solutions pAi ∈ R of

(43) Hi

(
0, pAi

)
= H+

(
0, pAi

)
= A

let us fix any time independent test function φ0(x) satisfying, for i = 1, . . . , N ,

∂iφ
0(0) = pAi .

Given a function u : (0, T )× J → R, the following properties hold true.
i) If u is an upper semi-continuous subsolution of (5) with A = H0, for x 6= 0,

satisfying

u(t, 0) = lim sup
(s,y)→(t,0), y∈J∗i

u(s, y),(44)

then u is a H0-flux limited subsolution.
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ii) Given A > H0 and t0 ∈ (0, T ), if u is an upper semi-continuous subsolution of
(5) for x 6= 0, satisfying (44), and if for any test function ϕ touching u from above at
(t0, 0) with

ϕ(t, x) = ψ(t) + φ0(x),(45)

for some ψ ∈ C2 ((0,+∞)), we have

ϕt + FA (ϕx) ≤ 0 at (t0, 0),

then u is a A-flux limited subsolution at (t0, 0).
iii) Given t0 ∈ (0, T ), if u is a lower semi-continuous supersolution of (5) for

x 6= 0 and if for any test function ϕ satisfying (45) touching u from above at (t0, 0)
we have

ϕt + FA (ϕx) ≥ 0 at (t0, 0),

then u is a A-flux limited supersolution at (t0, 0).

Remark. In fact this theorem shows that, at the junction, it is sufficient to test
with test function having the form (45).

Appendix B. Proof of Prop. 3.2.

Proof. In this proof, we denote by C a constant that depends only on Li and that
may change line to line and with Lf the Lipschitz constant of a generic function f .
Let just assume that x, y ∈ Ji ∩ J∆x. The latter is not restrictive since if x ∈
Jj ∩ J∆x, y ∈ Ji ∩ J∆x with j 6= i, we come back to the case of a comparison between
point belonging to the same arc writing

|w(tn, x)− w(tn, y)| ≤ |w(tn, x)− w(tn, 0)|+ |w(tn, 0)− w(tn, y)| .

We denote ᾱi the optimal control of S[wn−1](y) associated to the i-arc. We consider
three different cases:

1) ᾱi < |y|/∆t with y 6= 0.
In this case, we consider αi such that x−∆tαiei = y −∆tᾱiei. This means that

(46) |αi − ᾱi| =
|x− y|

∆t
.

Using the suboptimal control αi for S[ŵn−1](x) yields

w(tn, x)− w(tn, y) ≤ I[ŵn−1] (− (x− αi∆tei)) + ∆tLi(x, αi)

− I[ŵn−1] (− (y − ᾱi∆tei))−∆tLi(y, ᾱi) ≤ ∆tLLi |αi − ᾱi| ≤ LLi |x− y|.

2) 0 < |y|
∆t ≤ ᾱi. In this case the discrete trajectory starting from y passes through

the junction. We denote by (ᾱi, s̄0, ᾱ0, j̄, ᾱj̄) the optimal control associated with
S[ŵn−1](y). We distinguish two subcases:

2.i) x = 0. In this case, we choose the suboptimal control (s̄0+ |y|ᾱi , ᾱ0, j̄, ᾱj̄) (if ᾱ0 6= 0,
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we replace it by 0 in order to stay in the origin) obtaining

w(tn, x)− w(tn, y) ≤ I[ŵn−1]

(
−
(

∆t− s̄0 −
|y|
ᾱi

)
ᾱj̄ej̄

)
+

(
s̄0 +

|y|
ᾱi

)
L0(ᾱ0)

+

(
∆t− s̄0 −

|y|
ᾱi

)
Lj̄(0, ᾱj̄)− I[ŵn−1]

(
−
(

∆t− s̄0 −
|y|
ᾱi

)
ᾱj̄ej̄

)
−
(

∆t− s̄0 −
|y|
ᾱi

)
Lj̄(0, ᾱj̄) − s̄0L0(ᾱ0)− |y|

ᾱi
Li(y, ᾱi) ≤

|y|
ᾱi

(L0(ᾱ0)− Li(y, ᾱi)) .

If ᾱi ≥ 1, using that Li is Lipschitz continuous, we get that there exists a constant C
(depending only on Li(y, 0) and the Lipschitz constant of Li) such that

|Li(y, ᾱi)|
|ᾱi|

≤ C.

Injecting the estimate above in (8) and using that L0(0) is bounded, we deduce

w(tn, x)− w(tn, y) ≤ C|y| = Cd(x, y).

If ᾱi ≤ 1, since L0(0) and Li(ᾱi) are bounded, there exists a constant C such that

w(tn, x)− w(tn, y) ≤ C |y|
ᾱi
≤ C∆t.

We finally get that in all the cases, w(tn, x)− w(tn, y) ≤ C (∆t+ d(x, y)) .

2.ii) |x| > 0. In this case, we choose αi such that |x|αi = |y|
ᾱi

. This implies in particular

x− |x|
αi
αiei = y − |x|

αi
ᾱiei

and so |x|αi |αi − ᾱi| = |x− y| = d(x, y). Using the suboptimal control (αi, s̄0, ᾱ0, j̄, ᾱj̄)

for S[wn−1](x), we have

w(tn, x)− w(tn, y)

≤ I[ŵn−1]

(
−
(

∆t− s̄0 −
|x|
αi

)
ᾱj̄ej̄

)
+

(
∆t− s̄0 −

|x|
αi

)
Lj̄(0, ᾱj̄)

+ s̄0L0(ᾱ0) +
|x|
αi
Li(x, αi)− I[ŵn−1]

(
−
(

∆t− s̄0 −
|y|
ᾱi

)
ᾱj̄ej̄

)
−
(

∆t− s̄0 −
|y|
ᾱi

)
Lj̄(0, ᾱj̄)− s̄0L0(ᾱ0)− |y|

ᾱi
Li(y, ᾱi)

≤ LLi
|x|
αi
|αi − ᾱi| ≤ LLid(x, y)

3) y = 0. We denote by (s̄0, ᾱ0, j̄, ᾱj̄) the optimal control associated to the operator
S[wn−1](y). We distinguish two subcases again:

3.i) : s̄0 = ∆t. We choose αi ≥ max(1, |x|∆t ) and the suboptimal control (αi, s̄0− |x|αi , ᾱ0)
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for S[wn−1](x) obtaining

w(tn, x)− w(tn, y)

≤ I[ŵn−1] (0) +

(
s̄0 −

|x|
αi

)
L0(ᾱ0) +

|x|
αi
Li(x, αi)− I[ŵn−1] (0)− s̄0L0(ᾱ0)

≤ |x|
αi

(Li(x, αi)− L0(ᾱ0)) ≤ LLid(x, y)

Using that Li is Lipschitz continuous, we get that there exists a constant C (depending
only on Li(0), L0(0) and on the Lipschitz constant of Li) such that

|Li(x, ᾱi)|+ |L0(ᾱ0)|
|ᾱi|

≤ C.

This implies that w(tn+1, x)− w(tn+1, y) ≤ C|x| = Cd(x, y).

3.ii): s̄0 < ∆t. We choose αi ≥ max(1, |ᾱj̄ |) such that

(47)
|x|
αi
≤ ∆t− s̄0

2
and

∆t− s̄0

∆t− s̄0 − |x|αi
|ᾱj̄ | ≤ αi.

We also set αj̄ = ∆t−s̄0
∆t−s̄0− |x|αi

ᾱj̄ , which satisfies in particular αi ≥ |αj̄ |. Taking the

suboptimal control (αi, s̄0, ᾱ0, j̄, αj̄) for S[wn−1](x), we get

(48) w(tn, x)− w(tn, y) ≤ I[ŵn−1]

(
−
(

∆t− s̄0 −
|x|
αi

)
αj̄ej̄

)
+

(
∆t− s̄0 −

|x|
αi

)
Lj̄(0, αj̄) + s̄0L0(ᾱ0) +

|x|
αi
Li(x, αi)

− I[ŵn−1]
(
− (∆t− s̄0) ᾱj̄ej̄

)
− (∆t− s̄0)Lj̄(0, ᾱj̄)− s̄0L0(ᾱ0)

≤ |x|
αi

(
Li(x, αi)− Lj̄(0, αj̄)

)
+ (∆t− s̄0)

(
Lj̄(0, αj̄)− Lj̄(0, ᾱj̄)

)
≤ |x|
αi

(
Li(x, αi)− Lj̄(0, αj̄)

)
+ (∆t− s̄0)LLj̄ |αj̄ − ᾱj̄ |.

Using that αi ≥ 1, we get that |Li(x,αi)αi
≤ C. In the same way (using that αi ≥ αj̄)

|Lj̄(0, αj̄)|
αi

≤ 1

αi

(
Lj̄(0, 0) + LLj̄ |αj̄ |

)
≤ Lj̄(0, 0) + LLj̄

|αj̄ |
αi
≤ C.

Finally, using the definition of αj̄ , we observe that

(∆t− s̄0)|αj̄ − ᾱj̄ | = |x|
|αj̄ |
αi
≤ |x|.

Injecting these estimates in (48), we obtain w(tn, x)− w(tn, y) ≤ C|x| = Cd(x, y).

Appendix C. Proof of Theorem 4.2.

Proof. The proof is made by induction assuming that for n ≥ 1

(49) |wn−1(x)− u(tn−1, x)| ≤ (n− 1)C∆x ∀x ∈ J∆x.
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Note that the thesis is clearly satisfied for n = 1. We then want to show that

|wn(x)− u(tn, x)| ≤ nC∆x ∀x ∈ J∆x.

From Proposition 2.1, we know that

(50) u(tn, x) := inf
y∈J

inf
(X(.),α(.))∈Γtn,xtn−1,y

u(tn−1, y) +

tn∫
tn−1

L(X(τ), α(τ))dτ

 .,

where we use the notation L(X(τ), α(τ)) ≡ Li(αi) if X(τ) ∈ Ji, (see (A4)).
We denote ᾱ = (ᾱ0, ᾱ1, ..., ᾱN ) and s̄0 the optimal argument of S[wn−1](x) and

we treat only the case where x ∈ Ji\{0} and |x|/ᾱi < ∆t (this corresponds to the
more difficult case in which the optimal trajectory crosses the junction). We also
denote by X̄(t) (with t ∈ [tn−1, tn]) the trajectory obtained applying the control ᾱ.

Clearly such trajectory belongs to Γtn,x
tn−1,X̄(tn−1)

with X̄(tn−1) =
(

∆t− s0 − |x|ᾱi
)
ej

and

(51)


X̄(t) ∈ Ji for t ∈

[
tn − |x|ᾱi , tn

)
,

X̄(t) = 0 for t ∈
[
tn − |x|ᾱi − s̄0, tn − |x|ᾱi

)
,

X̄(t) ∈ Jj for t ∈
[
tn−1, tn − |x|ᾱi − s̄0

]
.

Therefore,

u(tn, x)− wn(x) =

inf
y∈J

inf
(X,α)∈Γtn,xtn−1,y

u(tn−1, y) +

tn∫
tn−1

L(X(τ), α(τ))dτ

− S[wn](x)

≤u(tn−1, X(tn−1)) +

∫ tn

tn−1

L(X(τ), α(τ))dτ − S[wn](x)

≤u(tn−1, X(tn−1))− I[wn−1](X̄(tn−1))|

+

∫ ∆t− |x|ᾱi −s̄0

0

L(X̄(τ), ᾱ(τ))dτ −
(

∆t− s̄0 −
|x|
ᾱi

)
Lj(ᾱj)

+

∆t− |x|ᾱi∫
∆t−s̄0− |x|ᾱi

L(X̄(τ), ᾱ(τ))dτ − s0L0(ᾱ0) +

∆t∫
∆t− |x|ᾱi

L(X̄(τ), ᾱ(τ))dτ − |x|
ᾱi
Li(ᾱi).

Since L(., α) is constant in time, the cost terms cancel. Moreover, using standard
interpolation operator properties and (49), we observe that

u(tn−1, X(tn−1))− I[wn−1](X̄(tn−1))|
=u(tn−1, X(tn−1))− I[u(tn−1, ·)](X(tn−1)) + (n− 1)C∆x

+ I[u(tn−1, ·)− (n− 1)C∆x](X(tn−1)) + I[wn−1](X̄(tn−1)) ≤ nC∆x,

and consequently
u(tn, x)− wn(x) ≤ nC∆x.
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For the inverse inequality, we invert the whole argument. An additional difficulty
comes for the choice of the good control for the S[wn−1] term. We proceed considering
a continuous optimal control ᾱ(·) for u(tn, x) in (50). Without loss of generality we
assume that the associated trajectory X̄(t) is such that

(52)

 X̄(t) ∈ Ji, for t ∈ (t̄2, tn] ,
X̄(t) = 0, for t ∈ (t̄1, t̄2] ,
X̄(t) ∈ Jj , for t ∈ [tn−1, t̄1] ,

Indeed, we can exclude that an optimal trajectory passes in another arc or touches
multiple times the junction point thanks to the convexity of the functions L. In fact,
in such case, it would be necessary for an optimal trajectory to pass twice for the
same point, i.e. X(t̃1) = x̃ and X(t̃2) = x̃, with X(t) 6= x̃ for t ∈ (t̃1, t̃2). This means
that since Ẋ(t) = ᾱ(t), we have that∫ t̃2

t̃1

ᾱ(τ)dτ = X(t̃1)−X(t̃2) = 0.

Then, the average control on [t̃1, t̃2] is zero. Using the strict convexity and the Jensen’s
inequality, we find that the optimal control ᾱ should be zero. This contradicts the
definition of X.

We can now build a discrete control and an associated trajectory (α̂, X̂) for
S[ϕ̂](x) such that

α̂i =
|x|

tn − t̄2
=

1

tn − t̄2

∫ tn

t̄2

ᾱi(τ)dτ, ŝ0 = t̄2 − t̄1,

α̂j =
1

t̄1 − tn−1

∫ t̄1

tn−1

ᾱj(τ)dτ.

Then, by construction X̂(tn−1) = X̄(tn−1) and

S[wn−1](x)− u(tn, x) = S[wn−1](x)− u(tn−1, y) +

∫ tn

tn−1

L(X̄(τ), ᾱ(τ))dτ

≤I[wn−1](X̂(tn−1))− u(tn−1, X̄(tn−1)) + (∆t− t̄2)Li(α̂i)−
∫ ∆t

t̄2

L(X̄(τ), ᾱ(τ))dτ

+

(
(t̄2 − t̄1)L0 −

∫ t̄2

t̄1

L(X̄(τ), ᾱ(τ))dτ

)
+

(
t̄1Lj(α̂j)−

∫ t̄1

tn−1

L(X̄(τ), ᾱ(τ))dτ

)
.

Using Jensen’s inequality knowing that the L-functions are convex, we get

t̄1Lj(α̂j)−
∫ t̄1

tn−1

L(X̄(τ), ᾱ(τ))dτ

=t̄1Lj

(
1

t̄1 − tn−1

∫ t̄1

tn−1

ᾱj(τ)dτ

)
−
∫ t̄1

tn−1

Lj(ᾱj(τ))dτ

≤
∫ t̄1

tn−1

Lj(ᾱj(τ))dτ −
∫ t̄1

tn−1

Lj(ᾱj(τ))dτ = 0
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The two others cost terms can be treated in a similar way. Using that

I[wn−1](X̂(tn−1))− u(tn−1, X̄(tn−1)) ≤ I[wn−1](X̂(tn−1))

− I[u(tn−1, ·) + (n− 1)C∆x](X̄(tn−1)) + I[u(tn−1, ·)](X̄(tn−1))

+ (n− 1)C∆x− u(tn−1, X̄(tn−1)) ≤ nC∆x

for the basic properties of the interpolation operator and (49), we can claim that

wn(x)− u(tn, x) ≤ nC∆x

and this concludes the proof.
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[22] C. Imbert, R. Monneau, and H. Zidani, A hamilton-jacobi approach to junction problems

and application to traffic flows, ESAIM: Control, Optimisation and Calculus of Variations,
19 (2013), pp. 129–166.

[23] J. P. Lebacque, The Godunov scheme and what it means for first order traffic flow models,
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