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Abstract

Scientific workflows emerged as a technology that enables scientists to undertake com-
putational scientific experiments. Workflow enactors map workflow tasks onto distributed
resources, hiding the inherent complexity of distributed infrastructures to the users. In
the past, while the emphasis has been focused in adapting the workflow structure onto the
resources, today the emergence of the cloud computing paradigm enables us to adapt the
resources to the workflow tasks based on their characteristics. In this paper, we exam-
ine the concept of Cloud Scientific Workflow, and propose a new architectural approach
based on autonomic principles, guided by a combination of high-level and low-level poli-
cies. High-level policies enable the workflow enactor to choose among a number of workflow
structure transformations that better suit the underlying resources dynamically depending
on the context, whereas low-level policies enable the autonomic resource manager to ad-
just the required computational power to the workload derived from a scientific workflow
specification, exploiting the cloud elasticity property, and to cope with performance fluc-
tuations or unexpected events in the cloud infrastructure. The novelty of our approach is
the combination of both policies that can lead to higher degrees of dynamism. The key en-
abling architectural components for such a dynamism are the petri-net based performance
models for implementing high-level policies and MOSt-CB system for the adaptation to
multi-cloud environments.

1 Introduction

Over the last years, scientific workflows have been used as high-level abstractions of compu-
tational scientific experiments. Such experiments often conduct data analysis operations or
complex simulations, and described in terms of a set of tasks and their data and control de-
pendencies. In order to execute them, workflow engines often map such tasks onto third-party
computational distributed resources. During the pre-cloud era, the emphasis of the proposed
mapping solutions has been in adapting the workflow structure onto the resources. Such map-
ping process has involved a number of intertwined processes: (i) the provisioning of the required
resources, (ii) the transformation of the workflow structure for optimizing the workflow execu-
tion prior to the mapping (i.e. by merging tasks and increasing their granularity), and (iii) the
scheduling of tasks, which consists of assigning the transformed workflow to the resources and
orchestrating their execution. Overall, the mapping considers user-defined Quality of Service
(QoS) metrics and the scheduling aims to enforce them.
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Nevertheless, current practice of workflow specification often makes use of specific, low-
level codes used for the execution, and on the specific workflow catalogues where they were
published [7]. Not only does this practice hinder workflow reusability, but also the flexibility
required for executing such workflows when the target infrastructures are changing. Moreover,
many workflow engines have integrated different target infrastructure middleware (e.g. Condor,
PBS, etc.), and delegate to them the execution and the resource management activities, while
very rarely workflow structure is modified at runtime. In consequence, the recovery strategies
and mechanisms under unexpected situations, such as resource unavailability, failures, or perfor-
mance degradation is tightly coupled to this specific middleware [16]. In many cases, however,
a much more flexible approach would exploit different ways of mapping a workflow, so that
the workflow enactor, if needed, can find an alternative to finalize the execution and eventually
satisfy users specifications. Moreover, scientific experiments are exploratory in nature, and as
recognised in [5], more flexible execution approaches should be adopted, involving, for instance,
human intervention in taking some decisions.

The emergence of the cloud computing paradigm enables a complete different approach in
the design of a workflow system architecture, since cloud computational resources, namely CPU,
communication network, or storage, can be provisioned on demand as needed. While the em-
phasis in workflow systems has been in transforming the workflow structure onto the resources,
the possibility of adapting the resources to the workflow tasks can now be also considered. To
the best of our knowledge, current use of cloud technologies by scientific workflow systems is
not fully exploiting the cloud paradigm to address the dynamism and flexible requirements of
scientific workflows. The existing proposals often replace the physical resources with virtual
resources, and the main novelty is on (de-) provisioning the virtual resources exactly when
required [11, 13].

In this paper, we examine the concept of Cloud Scientific Workflow, which re-visits tra-
ditional workflow architectures and explores new architectural organizations and blueprints.
Our architectural approach is based on autonomic principles, therefore, its ultimate goal is to
reduce human intervention in mapping workflow tasks. It also aims at reducing the perceived
complexity by enabling the autonomic platform to manage workflows in accordance with a com-
bination of high-level and low-level policies. High-level policies enable the workflow enactor to
choose among a number of workflow structure transformations that better suit the underlying
resources. Hence, such policies allow the platform to (i) interpret the application specifications;
(ii) map the specifications onto the target computing infrastructure, so that the workflows
are executed and their QoS, as specified in their Service Level Agreements (SLA), enforced;
and (iii) adapt automatically such previously established mappings when unexpected behav-
iors violate the QoS. Such adaptations may involve modifications in the arrangement of the
computational infrastructure. On the other hand, low-level policies will enable an autonomic
resource manager to: (i) adjust the required computational power to the workload derived from
a scientific workflow specification, exploiting the Cloud elasticity property; and (ii) cope with
performance fluctuations or unexpected events in Cloud infrastructures, making the mapping
workflow-resources an adaptive process. We use a model that support reasoning on the po-
tential workflow-resource mappings and provides with real-time performance information and
model refinement capabilities. MOSt-CB system in involved to map the workflow (i.e tasks)
specs into (IaaS) Cloud resources (e.g. processors, storage and network).



2 Related Work

There are a number of models of computation for scientific workflows [14]. The most common
one, however, is the simple parallelism model, where workflows are typically expressed as Di-
rected Acyclic Graphs (DAGs). Nodes in such graphs represent tasks, whereas edges represent
(data or control) dependencies among the tasks. Tasks can be executed in parallel providing
there are no data dependencies among them. The structure of a given DAG workflow deter-
mines the steps required for scheduling and executing the workflow. At each step, there is
a maximum number of tasks, which due to their dependencies, can be executed in parallel.
There is a significant amount of scheduling algorithms proposed [6, 15] for different scenarios,
e.g. computational resources with different characteristics such as type of resources like grid,
cluster resources (in other words, heterogeneity vs. homogeneity), etc. optimising different
QoS attributes or combinations of such attributes such as cost, energy efficiency or workflow
makespan (workflow overall execution time).

Pegasus [6] is one of the most popular scientific workflow systems and it has already ex-
plored the use of cloud computing for scientific workflows, focusing on DAGs [10, 9, 20]. More
recently, Pegasus made use of Mobius and ShadowQ [13] in order to predict the number of
VMs required at each scheduling step. The system provisions VMs in advance and de-allocates
them afterward. Similarly, one of the early studies proposing a Scientific Cloud Workflow ar-
chitecture was that of SwinDeW-C [11]. Its main focused is on QoS enforcement in multi-cloud
environments. In contrast, our proposal aims at supporting further dynamism by enabling the
workflow enactor to switch from one mapping strategy to an alternative one at runtime.

On the other hand, this idea of greater degrees of the flexibility in executions and the feasi-
bility to perform changes in workflow process instances, while they are being executed is not new
in the scientific workflow community [5, 16]. In general, there is a common agreement that dy-
namism is an intrinsic requirement for scientific workflows, but the understanding about the real
needs and functionality to be provided is still confusing. An analysis of requirements for such
dynamism is discussed in [5] and it involves the different aspects of scientific workflows, namely
changes in the workflow abstract specification [17, 8], changes in the Abstract-to-Concrete trans-
formation (which is part of the mapping process, selecting one or another resource), changes in
the datasets (that is, during runtime a given workflow requires an update of some datasets) and
changes in the computational resources (as third-party distributed resources, they are always
subject to unexpected change, cloud technologies are not an exception).

3 Cloud Workflow Architecture

The mapping of tasks onto distributed computational resources is one the most important chal-
lenges for the enactment of scientific workflows. In the past, a plethora of mapping strategies,
which can be alternatively used, were developed for workflow DAGs [6], acting on different
transformations on the workflow specification. Task clustering is a workflow transformation
technique that aggregates fine-grained tasks to increase the granularity, so that the enactment
overheads (i.e. typically due to scheduling) are minimized and the overall workflow performance
(makespan) is improved.

3.1 Architectural Requirements for Cloud Workflows

As it has already been recognized, the computational resources involved in the enactment
process are subject to unexpected change [5] and can exhibit unforeseen behaviors in terms of
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Figure 1: Generic Cloud Scientific Workflow Architecture

performance and faults. Hence, more flexible enactment approaches are desired. For instance,
when a chosen mapping strategy reveals unexpected performance degradation, one would desire
the workflow enactor to detect such circumstance, and autonomously correct it; for instance, by
migrating the mapping to an alternative one where the workflow QoS can be enforced. Cloud
technologies enable such flexibility, as the infrastructure can be provisioned and configured on
demand.

Nevertheless, in order to enable such autonomic behavior, two main architectural require-
ments need to be addressed in the traditional Scientific Workflow Architecture: (R1) Once a
mapping strategy in chosen, the computational resources, namely CPU, storage, and network,
need to be (de-) provisioned and configured on demand, helping the infrastructure to enforce
the SLA. (R2) However, in case the adaptation mechanisms at resource-level cannot achieve
the desired QoS targets, the system needs to find alternative ways of mapping the tasks onto
resources. Therefore, a workflow enactment can be temporarily suspended, migrated to a new
mapping, and then the enactment resumed. Then, resources also need to be (de-) provisioned
and configured on demand.

3.2 System Architecture

Our generic architectural blueprint for Scientific Cloud Workflow Architecture is depicted in
Fig. 1. It follows a classical 3-tier architecture, consisting of workflow level, Platform as a
Service (PaaS) level, and resource level. The architecture is designed to meet Requirements R1
& R2 by following the principles described in [18]. Based on autonomic computing principles,
the ultimate goal of the approach is to reduce human intervention when mapping scientific
workflows onto a Cloud infrastructure.



The mapping process is subject to the inherent complexities of distributed infrastructures.
Therefore, the system architecture incorporates performance analysis tools for modeling such
mapping solutions. Given the fact that a performance engineer can find a number of alterna-
tive workflow mappings onto distributed resources, the usage of performance models enables an
autonomic model-driven workflow enactment in accordance with high-level policies. Such poli-
cies allow the platform to (i) interpret the workflow specifications; (ii) map the specifications
onto the target computing infrastructure, so that the workflows are executed and their QoS, as
specified in their SLA, are enforced; and, most importantly, (iii) adapt automatically such pre-
viously established mappings when unexpected behaviors occur. Such adaptations may involve
modifications in the arrangements of the computational infrastructure, i.e. by re-designing a
different communication network topology that dictates how computational resources interact,
or even the live-migration to a different computational infrastructure.

The underlying actions to achieve the aforementioned self-adaption is to (de-) provision
computational machines, storage and networking links. This is accomplished by the resource
manager component. It is based on MOSt-CB, specified in Section 3.5. Besides, the archi-
tecture, as depicted in Fig. 1, integrates emerging paradigms such as DevOps for automate
deployments, Monitoring as a Service (MaaS) for accurate and large-scale monitoring, or well-
known formalisms such as Petri Nets for building performance models (Performance Analysis
Tool component), which enable the workflow enactor to evaluate and choose a mapping strategy.

3.3 Performance Models of Workflows

Our performance workflow models consists of 3 different abstraction levels: (i) Abstract Work-
flow: The workflow is specified as a platform-independent model, i.e. as a Directed Acyclic
Graph, where nodes represent workflow tasks, and edges represent data and control dependen-
cies. This is a popular model of representation of workflows in the community. (ii) Operational
model: The Operational Model is obtained from the Abstract Workflow Model, by refining it
and adding operational resources and data transmission tasks to it when required (i.e. to move
data from a resource location to another). An operational resource can be seen as a generic
computational resource, which is able to perform the required computation. Its behavior is
ideal, in the sense that it is not subject to failures or unexpected performance variations. From
this model, worst- & best-case performance and cost boundaries can be obtained (though, per-
haps, other QoS attributes could also be incorporated). (iii) Infrastructure-specific (Cloud)
model: The Infrastructure-specific model is obtained by refining the Operational model with
constraints and characteristics from the target infrastructure. It typically incorporates two as-
pects: (i) The operational resource become real resources by incorporating in them real-time
performance information, so that an actual and more accurate QoS parameter estimation is ob-
tained. It lies somewhere between the worst- & best-case boundaries of the Operational model.
(ii) The real resources are typically configured forming a topology in a communication network.
Many topologies can be possible, having each different impacts in the QoS. An operation model
analyses one mapping workflow-resources. It can assess resource provisioning and scheduling
strategies, therefore, its objective is to enable comparison among multiple mappings. In gen-
eral terms, the construction of the models can involve complex mapping of tasks, requiring a
number of transformation of the original structure and different resource configurations –i.e.
machines and their corresponding network links, conforming network topologies. As a result,
this process should be human-directed: In many cases, only a performance engineer can deal
with such complexity of better establishing a number of resource configurations and elaborating
a catalogue of mappings that can be subsequently used by the system at runtime.



3.4 The Enactment of a Workflow

Once a workflow specification is generated, it is sent to the autonomic Platform as a Service
(PaaS). Then, the autonomic PaaS in conjunction with the workflow designer builds operational
(logic) QoS workflow models and starts to perform analysis to meet users SLAs. At that
stage, operational (logic) computational resources are represented and performance figures (i.e.
execution time) are added to the model. As a result of this human-assisted analysis, a catalog
of workflow operational (logic) resource assignments is obtained. The objective is to map the
workflow onto cloud resources managed by a cloud IaaS infrastructure. So, the next step is to
refine the model with the cloud resources constraints: measured in terms of performance time
(i.e. execution time), limitations in the number of resources (if any), limitations in the network
(if any), etc. Such refined models need to be updated constantly with real time information
from the infrastructure. In case anything goes wrong (e.g. unexpected performance variations)
and the cloud IaaS cannot do anything to deal with it, an event is generated and triggered
to the autonomic PaaS. Then, the autonomic PaaS, in accordance with the catalog of logic
assignments, it can decide whether to choose among alternative workflow mappings, and proceed
with the actions to replace the executions in the IaaS infrastructure.

3.5 Resource Management: MOSt-CB

The resource manager component of our architecture is based on the Multi-Site Orchestration
System (MOSt), also based on Cloud Brokerage (CB) [2]. It was designed to calculate an opti-
mal provisioning plan in a multi-site Cloud environment distributed over multiple geographical
location and managed by a Site Manager (e.g., Openstack). MOSt relies on a placement algo-
rithm IGM (Iterative Graph Mapping) described in [19], which was updated by adding, at each
call, a parameter containing a specified list of target sites (Target Cloud Infrastructure).

The challenges addressed by MOSt-CB are (i) dynamic provisioning, (ii) configuration, (iii)
re- configuration and (iv) optimization of: computing resources nodes, i.e. Virtual Machines;
and networking resources links (i.e. the traffic exchange between Cloud Provider domains).
MOSt-CB operates in four different phases: (i) Partitioning and coordinating phase: MOSt-CB
extracts the virtual network graph and calculates its optimal partitioning given the partici-
pating Cloud Providers and their respective SLAs. More precisely, it divides the requested
network graph into as many sub-graphs as necessary based on the terms of the SLA, i.e. cost,
compute, storage, network, type of service, and requested Geographical zone, and the available
characteristics of provided resources by underlying CPs. (ii) Provisioning phase: MOSt-CB
calculates the optimal provisioning plan and engages the resources (e.g., Virtual Machines) in
the multiple underlying CP domains. (iii) Post-configuration phase: MOSt-CB launches the
post- configuration of the deployed virtual machines based on the request graph (e.g. Open-
Stack manifest). (iv) Networking provisioning phase: MOSt-CB launches the configuration of
the network connections between the various sites to fulfill the service nodes communication
requirements (as specified in the service graph). This requires to instantiate specific network
gateways in each site to build the necessary VPL (Virtual Private Links) to allow Virtual Ma-
chines (VMs) of the same project to communicate. For the SLA assurance, MOSt-CB monitors
the provisioned services in the different domains and verify whether the terms of the CCs SLA
are fulfilled. In case of SLA violation, it can take re-configuration actions, that involves virtual
network topology adaptation and node reconfiguration (i.e. VM migration could be considered,
but perhaps, in this context, instead of VM migration, another alternative VM could work
perfectly). In [2], the MOSt-CB shows the re-configurability mechanisms it offers in order to
find virtual network and VMs alternative configurations that enforce the QoS.



4 Case Study: Image Stitching Workflow

A number of disciplines such as medicine or astronomy make use of the image stitching process
in order to combine various overlapping images to generate a larger panoramic image. Although
some digital cameras can already generate panoramic images, the Image Stitching process can
also be accomplished by means of software libraries. The authors in [4] present the standard
pipeline workflow (see Fig. 2), which shares some analogies with the more complex and famous
Montage workflow [6] for astronomic images, to achieve Image Stitching. The workflow consists
on four main steps: a. Feature Extraction: that consists on a set of tasks to perform on all
images to identify distinctive points (or keypoints) in each image. Therefore, a feature descriptor
[3], [12] is computed for each keypoint. b. Image/Feature Matching : that consists on a set of
tasks to perform on all images of the set to match features between pairs of images to estimate
relative camera transformations. c. Global Refinement : that consists on a set of tasks to achieve
camera transformation parameters across all images (e.g. differences in lighting, colors, etc.).
d. Seam Blending : that consists on a set of tasks to estimate seams pairs of images and then
blending task is performed.

As presented in [1], ”the set of images are represented as a data graph G = (V,E), where
each vertex corresponds to an image and two vertices are connected by an edge, if the two
images overlap in content, i.e. capture a part of the scene from two viewpoints”. The stitching
workflow consists in this case on the four main steps, however the individual tasks execution
could be executed in parallel in different possible configuration (onto different groups of images,
different parts of the same image, etc.).

Figure 2: Datagraph and Panorama (source : arXiv:1506.04130v2 [cs.CV] 15 Jun 2016)

As explained in [1], in case the number of images is large, it is possible to process the images
independently as far as a minimum information about the camera parameters are communi-
cated to the neighboring process. Therefore, the performance engineer could design workflow
transformations, as depicted in Fig. 3b, enabling different forms of parallel tasks as far as the
data (images) are available to them.

The global architecture that encompasses the workflow manager and MOSt is presented as
follows: The workflow manager receives the images stitching request with the URL where the
images are. The workflow manager identifies the initial workflow and specifies the manifest
(set of tasks to execute, source of data, SLA, etc.) to transmit to MOSt. This later identifies



Feature 
Extraction

Image/Feature 
Extraction

Global Camera 
Refinement

Seam
Blending

(a) Initial Image Stitching Workflow

Image/Feature 
Extraction

Image/Feature 
Extraction

Feature 
Extraction

Feature 
Extraction

Global Camera 
Refinement

Seam
Blending

(b) Transformed Workflow with parallel processing

Figure 3: Autonomic Workflow Transformation

Workflow

Manager

MOSt

System

Datacenter1 Datacenteri Datacentern

Infrastructure Layer

Deployment

Configuration

Enforcement
Performance

Fault Monitoring

Workflow 

Execution

Enforcement

Workflow 

Error

Notification

Request
Feature 

Extraction3

Image/Feat
ure 

Extraction

Global 
Camera 

Refinement

Seam
Blending

Image/Feat
ure 

Extraction

Image/Feat
ure 

Extraction

Feature 
Extraction

Feature 
Extraction

Global 
Camera 

Refinement

Seam
Blending33

Figure 4: Global Proposed Architecture: Two loops self-optimization

the VM to engage and the data-centers where these VM should be executed. Once all the VM
are engaged, MOSt triggers the execution of the initial workflow and monitors the execution.
When the workflow is fully executed, MOSt collects the results and sends the response to the
workflow manager which in turns sends it to the client (URL from where to download the
panorama image). In case of issues in the execution of one the VMs, MOSt receives alarms.
If the problem is a lack of resources, MOSt could enforce a vertical elasticity allocating more
resources to the VM. In case it is a failure, MOSt notifies the workflow manager to ask for the
appropriate action to perform. The workflow manager could either ask to MOSt to re-execute
the VM without any consequence on the global execution of the workflow or find another
transformed workflow to continue the execution and sends therefore the required information
to MOSt.

5 Conclusions

In this paper, we proposed a novel Cloud Scientific Workflow based on autonomic principles.
While, traditional workflow systems often adapt the workflow structure to the underlying phys-
ical resources, our architectural approach also supports the adaptation of computational re-



sources to the workflow structure. Such combination enables a greater degree of flexibility and
dynamism, which can reduce human-intervention at runtime and can help reduce the growing
complexity of distributed infrastructures. The autonomic behavior of the system is provided
by the combination of high-level and low-level policies. High-level policies enable the workflow
enactor to choose among a number of workflow structure transformations that better suit the
underlying resources dynamically depending on the context, whereas low-level policies enable
the autonomic resource manager to adjust the required computational power to the workload
derived from a scientific workflow specification, exploiting the cloud elasticity property, and to
cope with performance fluctuations or unexpected events in cloud infrastructures. The nov-
elty of the approach is the combination of both policies that can lead to higher degrees of
dynamism. The key enabling architectural components for such dynamism are the petri-net
based performance analysis tools for implementing high-level policies and MOSt-CB system for
the adaptation to multi-cloud environments. In the future, we aim at (i) studying how we can
exploit autonomic principles to explore different mapping of tasks in an automated way, (ii)
to further develop the mechanisms required for accomplishing low-level policies (i.e. involv-
ing MOSt), and (iii) to perform experimentation on the existing platform and highlight the
performance of our approach against other approaches.
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[20] Jens-Sönke Vöckler, Gideon Juve, Ewa Deelman, Mats Rynge, and Bruce Berriman. Experiences
using cloud computing for a scientific workflow application. In Proceedings of the 2nd international
workshop on Scientific cloud computing, pages 15–24. ACM, 2011.


	Introduction
	Related Work
	Cloud Workflow Architecture
	Architectural Requirements for Cloud Workflows
	System Architecture
	Performance Models of Workflows
	The Enactment of a Workflow
	Resource Management: MOSt-CB

	Case Study: Image Stitching Workflow
	Conclusions

