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Résumé. Nous adressons le problème des taux de reconnexion magnétique spontanée sur couches de courants
minces, en présentant une généralisation de la notion de renormalisation des échelles des taux de croissance pour
les instabilités du type “tearing mode”. Nous révisons ainsi des résultats recents sur l’application de ces notions
aux processus de reconnexion non linéaire [1,2,3] et de reconnexion des couches minces en évolution rapide [1,4,10].

Abstract. We address the problem of magnetic reconnection rates on large aspect ratio current sheets by
presenting a generalisation of the notion of rescaling of the growth rates of tearing-type instabilities. In this, we
review some recent results on the application of these notions to nonlinear reconnection processes [1,2,3] and to
reconnection on rapidly evolving current sheets [1,4,10].

1 Introduction

Several plasma phenomena, ranging from solar eruptions to disruptive processes in tokamak, display an
abrupt release of magnetic energy in the form of particle acceleration and heating induced by spontaneous
magnetic reconnection events. The most known example of spontaneous reconnection is provided by
tearing-type modes [5], which develop in a 2D geometry from harmonic oscillations along current sheets
J corresponding to sufficiently strong spatial gradients across the sheets of the magnetic field components
of the B components parallel to the sheet. These linear instabilities generate the characteristic “magnetic
islands” structures (also named “magnetic vortices” or “plasmoids”) along a neutral line. These modes can
be described in the framework of the Magnetohydrodynamic (MHD) theory, in which the fluid equation
for the bulk plasma are coupled to the non-relativistic Maxwell’s equations by means of the so-called
generalized Ohm’s law. This equation describes the electron response to the electromagnetic forces :

E +
u

c
×B =

∑
i

O(εi)f i(∇B, ∇u, ∇J , ∇ ·Π), (1)

where coefficients of the order of infinitesimally small parameters “εi” wheigh vector functions f i which
depend on the gradients of the fluid components. Magnetic reconnection violates topological conservation
related to the “ideal” form of Eq.(1), which combined with Faraday’s law implies the Lagrangian transport
of distinct magnetic lines by the flow u in an MHD plasma [6]. The violation occurs locally when the
magnitude of the spatial gradients at r.h.s. of Eq.(1) compensates the smallness of the O(εi) coefficients,
which depend on effects neglected in the ideal MHD limit, such as plasma resistivity, a finite electron
inertia (finite me/mi corrections) or pressure anisotropy. Here, we provide examples for the first two
effects only, which we respectively label with i = η (resistivity) and i = me (finite electron inertia) and
which would enter at r.h.s. of Eq.(1) as “+ηJ” and “+me/(ne

2)(∂tJ + u ·∇J)” respectively, but our
presentation can in principle be generalised to include the neglected effects.

2 Theory of linear reconnecting instabilities revised

The classiclal linear theory of the tearing mode instability [5], assumes a slab geometry configuration
(all vector components in the plane x, y depend just on time and on the x and y coordinates) in which an
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equilibrium magnetic field Beq = (0, Beqy (x), Beqz ) with Beqz � Beqy and with Beqy (x) ∼ x/a for |x/a| � 1,
is sheared over a characteristic scale length “a”. This length scale therefore defines the characteristic
width of the current profile, Jeq, on which the linear stability of modes ∼ f(x)ei(ky−ωt) with ω ≡ ωR + γ
and k ≡ 2πm/L, corresponding to m oscillations on a periodical interval of length L, is investigated by
means of a boundary layer approach : at |x/a| & 1 ideal MHD stability is assumed, whereas non-ideal
terms are considered in the inner reconnecting layer (see Fig.1, left). Since a is here the only macroscopic
spatial scale, it is the natural reference length to be assumed as a normalisation length L0 = a. The
Alfvén crossing time in the ideal region, defined as τA = a/ca in terms of a reference in-plane Alfvén
velocity cA ≡ Beq/

√
4πn0m, where Beq ≡ Beqy (x0) is evaluated in some point x0 of the “ideal” region

where also n0 is measured, provides the natural normalisation time of the system, τ0 = τA.
Regardless of the non-ideal parameter εi at play, different regimes can be characterised in terms of the

well-known instability parameter ∆′(ka) expressing the logarithmic derivative of the eigenmode across
the reconnecting layer [5]. The instability condition ∆′(ka) > 0 fixes the range of unstable wavenumbers
for each equilibrium profile and, for a fixed finite L, the maximum number of magnetic islands that can be
observed along the neutral line. Three main regimes can be thus identified in terms of the characteristic
width of the reconnecting layer, δ(εi, ka), which identifies the thickness of the current sheet generated by
the reconnecting mode during the linear stage (cf. Figs.1) :

i) the constant-ψ regime of the properly named “tearing mode” [5], for ∆′(ka)δ(εi, ka) < 1, that gives
a dispersion relation of the kind

γ
TM
τA ∼ εa1i (ka)a2(∆′a)a3 (2)

for some rational a1, a2, a3 with 1 > a1 > 0 ;
ii) the large-∆′ regime, characterising the so-called “internal kink mode” for ∆′(ka)δ(εi, ka)� 1 [7],

that gives a dispersion relation of the kind

γ
IK
τA ∼ εb1i (ka)b2 (3)

for some rational b1, b2 with 1 > b1 > 0 ;
iii) the fastest growing mode ([5], Appendix D) in a continuum wavenumber spectrum, which corres-

ponds to the condition ∆′(ka)δ(εi, ka) ' 1 and therefore gives

γ
M
τA ∼ εc1i (4)

for a k
M
τA ∼ εd1i with 1 > c1 > 0 and d1 > 0. The explicit dependence of γ

M
on k

M
is always eliminated

by deducing a dependence from k
M

on εi thanks to the condition γ
M
≡ γ

TM
= γ

IK
, while c1 depends on

the particular form of the equilibrium profile and can be deduced by estimating the power dependence
of ∆′ on ka for ka� 1 [2]. It is important to underline that in all these cases γ(εi)τA → 0 as εi → 0 by
construction and consistently with the notion of non-ideal instability.
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Figure 1. Sketch of the boundary layer approach (left frame) and example of tearing-type mode dispersion
function for the resistive case, with the three asymptotic regimes (i-iii) highlighted (right frame).
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Even if these modes were first identified in the MHD resistive regime, where εη = τAηc/(4πa
2) ≡ S−1

is the resistive Lundquist number, they were later generalized to other semi-collisional and collissionless
regimes and frequency ranges (see references in [3]). Here we also consider the MHD inertia-driven regime
where εm = c2me/(4πne

2a2) ≡ (de/a)2 and de is the electron skin-depth.
Due to the ideal MHD assumption at the scales a and τA, any microscopic space-depending and time-

depending quantity which enters in the small non-ideal parameters εi is necessarily normalised so that each
of the εi scale as some positive power of (1/a) and/or as some positive power of τA = (a/cA) ∼ (a/B0),

εi[a,B0] ∼
(

1

a

)q (
a

B0

)r
, q, r ≥ 0. (5)

This introduces a non trivial, implicit dependence on the normalization scales of the growth rates γτ
A

:
indeed, in the classical tearing mode theory first devised for reconnecting modes in tokamaks, the unstable
wave number is fixed by the integer poloidal number m associated with the resonant surface of radius rr
on which the mode is destabilised, L0 = a is of the order of the tokamak major radius, and the equilibrium
current layer is by construction periodic and of length L = 2πrr ∼ L0. Instead, in most astrophysical
environments, such as coronal loops or planetary magnetotails, as well as in the nonlinear evolution of
primary reconnecting modes or in MHD turbulence, large aspect ratio current sheets with L/a � 1 are
encountered. In these cases, while a may be small relative to L0 ∼ L it remains large enough to allow the
application of a boundary layer theory (a� δ(εi)).

Two cases of rescaling can be then considered for reconnection on large aspect ratio current sheets.
The first one rescales only lengths, while the reference magnetic field amplitude B0 is fixed as the reference
magnetic field Bcs on the current sheet, i.e., Bcs = Beqy (x0) of the classical tearing mode analysis. In this
case we neglect the explicit dependence on B0 and, from Eq.(5),

τA[a] = τA[L0]

(
a

L0

)
, εi[a] = εi[L0]

(
L0

a

)q−r
, q, r ≥ 0. (6)

The second case, which generalises the previous one, is when both the reference length scale L0 and the
magnetic field amplitude B0 differ from a and Bcs. In this case, using again Eq.(5) :

τA[a,Bcs] = τA[L0, B0]

(
a

L0

)(
B0

Bcs

)
, εi[a,Bcs] = εi[L0, B0]

(
L0

a

)q−r (
B0

Bcs

)r
, q, r ≥ 0. (7)

2.1 Application to thin current sheets

Considering for example the simplest rescaling of Eq.(6), it generally follows that for some s > 0
which depends on q, r and on the specific scaling of γ[a] with εi[a],

γ[L0]τA[L0] ∼ (γ[a]τA[a])|a→L0
(L0/a)

s
. (8)

Here (γ[a]τA[a])|a→L0
stands for the scaling of the mode obtained in the standard tearing theory (any

of the three of Eqs.(2-4)) in terms of εi, k and ∆′, which this time are normalised to L0. For the fastest
growing mode, for example, using Eq.(4) we find s = c1(q − r) + 1 and Eq.(8) becomes

γ
M

[L0]τA[L0] ∼ (εi[L0])c1 (L0/a)
c1(q−r)+1

. (9)

The growth rate of the fastest growing mode (4,9) is representative of the overall reconnection rate on Jeq
when a sufficiently large aspect ratio current sheet is considered, so that an almost continuum spectrum
of wavenumbers can be destabilised. In particular, it was shown [8] that an aspect ratio L/a & 20 is
sufficient to destabilize a mode whose growth rate is well approximated by (4). In this case the amplitude

of (L0/a)
c1(q−r)+1

may so compensate the smallness of εi[L0]. The consequence of this has been discussed
in [4] by noticing that, when L0 = L, a maximum growth rate exists for spontaneous reconnecting
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modes, which can not trespass the order of magnitude γ[L]τA[L] ∼ O(1) because of the “causality
prescription” imposed by fact that in MHD energy is mediated by Alfvén waves. This leads to the notion
of “ideal tearing” regime first introduced in resistive MHD in [4] and then generalized in [2], that is, of
a ∆′δ ∼ 1 tearing mode which develops with an Alfvénic growth rate γ[L0] ∼ τA[L0]−1, independent of
the macroscopic parameter εi allowing reconnection, when the aspect ratio becomes comparable to the
threshold value (

L

a

)
Bcs∼B0

∼ (εi[L])−α, α =
c1

c1(q − r) + 1
. (10)

For example, in the purely resistive regime where εη[a] = S−1
a , so that q = 2, r = 1, and for an

Harris-pinch equilibrium Bcs(x) = B0 tanh(x/a) for which c1 = 1/2, we recover the threshold scaling
α = 1/3 of Ref.[4]. Slightly different values in the range 1/4 < α < 1/2 [2,9] can be recovered for
different dependences of Jeq on the x coordinate, which imply, as shown in [2], different values of c1. As
a second example, an analogous threshold α = 1/3 [2] is recovered in the inertia-driven regime, where
εd[a] ≡ (de/a)2 so that q = 2, r = 0, and for a Bcs(x) = B0 tanh(x/a), for which this time c1 = 1.

It is worth stressing the physical relevance of the ideal tearing solution : despite all the above estimates
are obtained in the framework of an asymptotic theory, for which εi[a], εi[L0]→ 0, the geometric threshold
condition stated by (10) has proven by numerical analysis to be well satisfied by small yet finite values
of εi[L0] (say εi[L0] . 10−7), which are relevant to a variety of reconnection processes in nature and
laboratory [1,2,4,10].

The more complex scenario in which rescaling (7) must be performed because of B0 6= Bcs requires
further ansatz. A case we will consider here is that of “embedded current sheets” [11], in which the
hypothesis that the amplitude of the equilibrium current sheet, |Jeq| = Jeq ∼ Bcs/a, be comparable to
some reference current density amplitude J0 ∼ B0/L0, allows to express the scaling of Bcs with respect
to B0 as a geometrical scaling with a/L0 : from J0 ∼ Jeq one obtains

Bcs
B0
∼
(
a

L0

)
. (11)

When applied to tearing-type modes [3] on large aspect ratio current sheets, Eq.(9) becomes

γ
M

[L0]τA[L0] ∼ (εi[L0])c1 (L0/a)
c1q . (12)

Repeating the argument of Ref.[4] for L0 = L, one finds in this case a threshold aspect ratio for the onset
of a reconnection independent on εi, given by :(

L

a

)
Jcs∼J0

∼ (εi[L])−α, α =
1

q
. (13)

Interestingly, this threshold condition only depends on the spatial dependence of the microscopic parame-
ter εi but not on its time-dependence and not on the growth rate scaling (4) of the fastest growing mode,
nor, therefore, on the magnetic equilibrium profile. In both the resistive [3] and inertia-driven regimes one
then finds α = 1/2.

3 Discussion : reconnecting instabilities on evolving current sheets

When one wants to apply the estimate of the previous section for a tearing-type growth rate γ̃ to
current sheets which are evolving on a time scale τcs, one should formally stick to the condition τ−1

cs � γ̃, so
to consider the evolving current sheet as a relative equilibrium profile on which to perform a linear analysis.
However, even when one considers current sheets evolving on a time scale τcs ∼ τA[L0], if L0 = L, the
threshold aspect ratio scalings of (10),(13) provide a necessary condition for the disruption of the current
sheet by spontanous reconnecting modes. It is indeed by recognising the geometrical threshold condition
of Eqs.(10,13) that, for B0 = Bcs, a distinction was first made [4] between modes classified as slow (i.e.,
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ideally stable), fast (i.e., (quasi-)ideally unstable), and violently unstable (i.e., with diverging growth rates
while approaching the ideal limit) : this made it possible to explain the paradox of the diverging growth
rate obtained for the plasmoid instability [12] as εη[L] → 0, as due to the un-realizability of the Sweet-
Parker steady configuration, since its aspect ratio L/a ∼ (εη[L])−1/2 obtained for τA[L0]/τcs ' 0 is much
larger than the threshold value of (10), that is, larger than current sheets which would be disrupted at
ideal time scales. The argument generalizes to collisionless steady reconnection regimes [2] (see Fig.2). The

  

(I)

(II) (III)

a > ai

a < aiai

L
 

(I)   Asymptotically stable region : “slow” reconnecting modes 
                                   (classical tearing) 

(II)   Quasi-ideal reconnection : “fast” reconnecting modes          
              (“ideal tearing” on quasi-singular current sheets) 

(III)   “Inaccessible region”  for  spontaneous reconnection
         (e.g. plasmoid instability on Sweet-Parker  current sheets) 

Figure 2. Classification of reconnection regimes for B0 ∼ Bcs at the varying of (a/L) for fixed L, ai representing
the critical value which, for a given L, satisfies Eq.(10) : “slow” reconnection modes for a & ai, “fast” (i.e, at
ideal scales) reconnection modes for a ∼ ai, “violently unstable” (i.e, faster than Alfvénic) modes for a . ai.

interesting question then arises about current sheets for which τA[L0]/τcs 6= 0. This requires knowledge
of the dynamics of the current sheet. Here we distinguish two major cases : current sheets generated by
primary reconnecting modes growing on current profiles J0 ∼ B0/L0 with rates γ0[L0] and for which we
can assume τ−1

cs ∼ γ0[L0], and current sheets generated by convective motions at Alfvénic scales, such
as, e.g., in turbulence. In the first case we can speak of secondary reconnecting instabilities, and they
have been considered candidates responsible for a nonlinear reconnection rate increase relative to primary
modes since the 1990s (see [3], App. B for a review). Secondary instabilities may be also of fluid type [13],
which may nonlinearly enhance the reconnection rate via secondary turbulent reconnection processes,
though here we focus on secondary tearing-type modes only.

Consider first modes developing on a current sheet born of the collapse of an X-point into two Y -points
[14], shown to occur during the nonlinear evolution of large-∆′ “slow” modes (γ0[L0, B0]τA[L0, B0]� 1),
both resisistive and collisionless [15]. We consider in particular a primary purely resistive mode (simula-
tions in the inertia-driven regime evidence the dominant role played by flows and the onset of secondary
fluid instabilities rather than tearing modes [13]) for which Eq.(3) specialises to γ0[L0, B0]τA[L0, B0] ∼
(εη[L0])1/3(kL0)2/3. This case has been studied in Ref.[3] by noting that the current sheet attains
at the end of the linear stage of the primary mode a length L ∼ L0, a thickness a which can be
(over-)estimated using the reconnecting layer width δ0(εη[L0, B0]) of the primary mode, and an am-
plitude Jcs ∼ J0, so that condition (11) holds. Heuristically assuming that this condition still holds
when a sufficiently rapid secondary tearing mode disrupts Jcs, by using (12) one finds that the fastest
growing mode satisfies this condition, since it is destabilised in a few e-folding times of the primary
linear instability, and since its growth rate γ̃[L0, B0]τA[L0, B0] ∼ (εη[L0, B0])1/6 asymptotically satisfies
γ̃

M
[L0, B0] � γ0[L0, B0] ∼ τ−1

cs . Considering then that a transition from a resistive to a collisionless
regime occours when γ̃[L0, B0]τA[L0, B0] & νc[L0, B0]τA[L0, B0] with νc being the electron-ion collision
frequency, using νc[L0, B0]τA[L0, B0] ∼ εη[L0, B0]/εde [L0, B0], which corresponds to the non-negligibility
of the me/(ne

2)∂tJ term with respect to the ηJ term at r.h.s. of Ohm’s law, one finds that collisionless
physics dominates the secondary mode when

γ̃[L0, B0]τA[L0, B0] &
εη[L0, B0]

εm[L0, B0]
=

S−1
L0

(de/L0)2
. (14)
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For a primary resistive large-∆′ mode in the reduced MHD framework in which Hall effects in Ohm’s
law are neglected, this transition occours at εη[L0, B0] ∼ (εm[L0, B0])12/5, whereas secondary Alfvénic
reconnection rates, yet not −by properly speaking− in the ideal tearing regime, can be attained when
εη[L0, B0] ∼ (εm[L0, B0])3 (see Ref.[3]).

In order to study the nonlinear behaviour of reconnection starting from a quasi-equilibrium state, it
was chosen in [1] to simulate current sheet collapse via a series of equilibria evolving on a time-scale such
that τA[L]/τcs[L] & 1, in order to reduce the length of the simulations while correctly capturing the onset
of fast tearing. The authors of Ref.[1] showed that reconnecting instabilities satisfying the ideal tearing
threshold condition develop on quasi-singular current sheets (for Bcs = B0 and L0 = L, Eq.(11) implies
Jcs/J0 ∼ L/a� 1). It was thus demonstrated that a fractal-like cascade of ideal tearing modes develops
from the recurrent X-point collapse of recurrent thinning sheets developing from the initial ideal tearing.
As a result, the current sheet completely disrupted immediately after reaching the ideal threshold and
could not thin much further.

We conclude by noting that later attempts to follow the linear growth of modes from an arbitrarily
perturbed evolving equilibrium in a semi-analytic fashion [16] lead to a logarithmic correction in critical
aspect ratios ; computed by assuming a contemporary thinning of the equilibrium and growth of perturba-
tions up until island widths and current sheet singular layer thicknesses are comparable, the results seem
questionable for a number of reasons : first, the final result explicitly depends on the initial perturbation
amplitude, which is forced to vanish in the limit of large Lundquist numbers by an inequality used to
derive the result itself ; second, the evolution was calculated as though any initial perturbation could be
expanded in terms of purely growing modes, i.e. neglecting any transients, though growing transients
have been shown to enhance the instability properties of thin sheets [17]. In summary, our opinion is that
such attempts at a so-called “general” theory of the plasmoid instability are neither general nor correct.
This point, as well as inclusion of further non-ideal effects in Ohm’s law and a more accurate account of
the role of flows deserve further dedicated studies and will be addressed in forthcoming articles.
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